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Abstract 29 

For the purpose of providing reliable and robust air quality predictions, an 30 

operational air quality prediction system was developed for the main air quality criteria 31 

species in South Korea (PM10, PM2.5, CO, O3, and SO2). The main caveat of the system is to 32 

prepare the initial conditions (ICs) of the Community Multi-scale Air Quality (CMAQ) 33 

model simulations using observations from the Geostationary Ocean Color Imager (GOCI) 34 

and ground-based monitoring networks in northeast Asia. The performance of the air quality 35 

prediction system was evaluated during the Korea-United States Air Quality Study (KORUS-36 

AQ) campaign period (1 May–12 June 2016). Data assimilation (DA) of optimal 37 

interpolation (OI) with Kalman filter was used in this study. One major advantage of the 38 

system is that it can predict not only particulate matter (PM) concentrations but also PM 39 

chemical composition including five main constituents: sulfate (SO4
2− ), nitrate (NO3

− ), 40 

ammonium (NH4
+), organic aerosols (OAs), and elemental carbon (EC). In addition, it is also 41 

capable of predicting the concentrations of gaseous pollutants (CO, O3 and SO2). In this sense, 42 

this new operational air quality prediction system is comprehensive. The results with the ICs 43 

(DA RUN) were compared with those of the CMAQ simulations without ICs (BASE RUN). 44 

For almost all of the species, the application of ICs led to improved performance in terms of 45 

correlation, errors, and biases over the entire campaign period. The DA RUN agreed 46 

reasonably well with the observations for PM10 (IOA = 0.60; MB = -13.54) and PM2.5 (IOA = 47 

0.71; MB = -2.43) as compared to the BASE RUN for PM10 (IOA = 0.51; MB = -27.18) and 48 

PM2.5 (IOA = 0.67; MB = -9.9). A significant improvement was also found with the DA RUN 49 

in terms of bias. For example, for CO, the MB of -0.27 (BASE RUN) was greatly enhanced 50 

to -0.036 (DA RUN). In the cases of O3 and SO2, the DA RUN also showed better 51 
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performance than the BASE RUN. Further, several more practical issues frequently 52 

encountered in the operational air quality prediction system were also discussed. In order to 53 

attain more accurate ozone predictions, the DA of NO2 mixing ratios should be implemented 54 

with careful consideration of the measurement artifacts (i.e., inclusion of alkyl nitrates, HNO3, 55 

and PANs in the ground-observed NO2 mixing ratios). It was also discussed that, in order to 56 

ensure accurate nocturnal predictions of the concentrations of the ambient species, accurate 57 

predictions of the mixing layer heights (MLH) should be achieved from the meteorological 58 

modeling. Several advantages of the current air quality prediction system, such as its non-59 

static free parameter scheme, dust episode prediction, and possible multiple implementations 60 

of DA prior to actual predictions, were also discussed. These configurations are all possible 61 

because the current DA system is not computationally expensive. In the ongoing and future 62 

works, more advanced DA techniques such as the three-dimensional variational (3DVAR) 63 

method and ensemble Kalman filter (EnK) are being tested and will be introduced to the 64 

Korean operational air quality forecasting system. 65 

 66 

Keywords: Air quality prediction; Particulate matter (PM); Geostationary satellite sensor 67 

(GOCI); Air Korea; Data assimilation (DA); Dust episode predictions; NO2 measurement 68 

artifacts  69 
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1. Introduction 70 

Air quality has long been considered an important issue in climate change, visibility, 71 

and public health, and it is strongly dependent upon meteorological conditions, emissions, 72 

and the transport of air pollutants. Air pollutants typically consist of atmospheric particles and 73 

gases such as particulate matter (PM), carbon monoxide (CO), ozone (O3), nitrogen dioxide 74 

(NO2), and sulfur dioxide (SO2). These aerosols and gases play important roles in 75 

anthropogenic climate forcing both directly (Bellouin et al., 2005; Carmichael et al., 2009; 76 

IPCC, 2013; Scott et al., 2014) and indirectly (Bréon et al., 2002; IPCC, 2013; Penner et al., 77 

2004; Scott et al., 2014) in influencing the global radiation budget. Among the various air 78 

pollutants, PM and surface O3 are the most notorious health threats, as has been stated by 79 

several previous studies (e.g. Carmichael et al., 2009; Dehghani et al., 2017; Khaniabadi et al., 80 

2017).  81 

With the stated importance of atmospheric aerosols and gases, considerable research 82 

efforts have been made to monitor and quantify their amounts in the atmosphere through 83 

satellite-, airborne-, and ground-based observations as well as chemistry-transport model 84 

(CTM) simulations. In South Korea, the Korean Ministry of the Environment (KMoE) 85 

provides real-time chemical concentrations as measured by ground-based observations for six 86 

criteria air pollutants (PM10, PM2.5, O3, CO, SO2, and NO2) at the Air Korea website 87 

(https://www.airkorea.or.kr). In addition, the National Institute of Environmental Research 88 

(NIER) of South Korea provides air quality (chemical weather) predictions using multiple 89 

CTM simulations. Air quality predictions are another crucial element for protecting public 90 

health through the forecasting of high air pollution episodes in advance and alerting citizens 91 

about these high episodes. In this context, reliable and robust chemical weather forecasts are 92 
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necessary to avoid any confusion caused by poor predictions given by CTM simulations.  93 

 Although there are various datasets representing air quality, limitations remain in the 94 

observations and model outputs. Specifically, observation data are, in general, known to be 95 

more accurate than model outputs, but they have spatial and temporal limitations. Unlike 96 

observation data, models can provide meteorological and chemical information without any 97 

spatial and temporal data discontinuity, but they do have an issue of inaccuracy. The major 98 

causes of uncertainty in the results of CTM simulations are introduced from imperfect 99 

emissions, meteorological fields, initial conditions (ICs), and physical and chemical 100 

parameterizations in the models (Carmichael et al., 2008). In order to minimize the 101 

limitations and maximize the advantages of observation data and model outputs, there have 102 

been numerous attempts to provide accurate and spatially- as well as temporally- continuous 103 

information on chemical composition in the atmosphere by integrating observation data with 104 

model outputs via data assimilation (DA) techniques.  105 

Although the Korean operational numerical weather prediction (NWP) carried out by 106 

the Korea Meteorological Administration (KMA) employs various DA techniques, almost no 107 

previous efforts have been made to develop a chemical weather prediction system with DA in 108 

South Korea. Therefore, in the present study, an operational chemical weather prediction 109 

system named as Korean Air Quality Prediction System version 1 (KAQPS v1) was 110 

developed by preparing ICs via DA for the Community Multi-scale Air Quality (CMAQ) 111 

model (Byun and Schere, 2006; Byun and Ching, 1999) using satellite- and ground-based 112 

observations for particulate matter (PM) and atmospheric gases such as CO, O3, and SO2. The 113 

performances of the system were then demonstrated during the period of the Korea-United 114 

States Air Quality Study (KORUS-AQ) campaign (1 May – 12 June 2016) in South Korea. 115 
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In this study, the optimal interpolation (OI) method with the Kalman filter was 116 

applied in order to develop an operational air quality prediction system, since this method is 117 

still useful and viable in terms of computational cost and performance. The performance of 118 

the method is almost comparable to that of the three-dimensional variational (3DVAR) 119 

method, as shown in Tang et al. (2017). More complex and advanced DA techniques are 120 

currently being and will continue to be applied to current air quality prediction systems. 121 

These works are now in progress.  122 

In addition, this manuscript also discusses several practical issues frequently 123 

encountered in the operational air quality predictions such as: i) DA of NO2 mixing ratios for 124 

accurate ozone prediction with a careful consideration of measurement artifacts; ii) the issue 125 

of the nocturnal mixing layer height (MLH) for nocturnal predictions; iii) predictions of dust 126 

episodes; iv) the use of non-static free parameters; and v) the influences of multiple 127 

implementations of the DA before the actual predictions.   128 

 The details of the datasets and methodology used in this study are described in Sect. 129 

2. The results of the developed operational chemical weather prediction system are discussed 130 

in Sect. 3, and then a summary and conclusions are given in Sect. 4. 131 

 132 

2. Methodology 133 

The operational air quality prediction system was developed using the CMAQ model 134 

along with meteorological inputs provided by the Weather Research and Forecasting (WRF) 135 

model (Skamarock et al., 2008). The ICs for the CMAQ model simulations were prepared via 136 

the DA method using satellite-retrieved and ground-based observations. The performances of 137 

the developed prediction system were evaluated using ground in-situ data. The models, data, 138 

and DA technique are described in detail in the following sections. 139 
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2.1 Meteorological and chemistry-transport modeling 140 

2.1.1 WRF model simulations  141 

The WRF model has been developed for providing mesoscale numerical weather 142 

prediction (NWP). It has also been used to provide meteorological input fields for CTM 143 

simulations (Appel et al., 2010; Chemel et al., 2010; Foley et al., 2010; Lee et al., 2016; Park 144 

et al., 2014). In this study, WRF v3.8.1 with the Advanced Research WRF (ARW) dynamic 145 

core was applied to prepare the meteorological inputs for the CMAQ model simulations. The 146 

National Centers for Environmental Prediction Final Analysis data (NCEP FNL) were chosen 147 

for the ICs and boundary conditions (BCs) for the WRF simulations. In order to minimize 148 

meteorological field error, the objective analysis (OBSGRID) nudging was conducted using 149 

the NCEP Automated Data Processing (ADP) global upper-air/surface observational weather 150 

data. The model domain for the WRF simulations covers Northeast Asia with a horizontal 151 

resolution of 15 × 15 km2, having a total of 223 latitudinal and 292 longitudinal grid cells. 152 

The size of the WRF domain is slightly larger than that of the CMAQ domain, as shown in 153 

Fig. 1. The meteorological data also have 27 vertical layers from the surface (1000 hPa) to 50 154 

hPa. 155 

 156 

2.1.2 CMAQ model simulations 157 

The CMAQ v5.1 model was used to estimate the concentrations of the atmospheric 158 

chemical species over the domain, as shown in Fig. 1. The CMAQ domain has 204 latitudinal 159 

and 273 longitudinal grid cells in total, and also has a 15 × 15 km2 horizontal resolution and 160 

27 sigma vertical layers. For anthropogenic emissions, KORUS v1.0 emissions (Woo et al., 161 
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2012) were used. The KORUS v1.0 emissions cover almost all of Asia, and are based on 162 

three emission inventories: the Comprehensive Regional Emissions inventory for 163 

Atmospheric Transport Experiment (CREATE) for East Asia excluding Japan; the Model 164 

Inter-Comparison Study for Asia (MICS-Asia) for Japan; and the Studies of Emissions and 165 

Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) 166 

for South and Southeast Asia.  167 

Biogenic emissions were prepared by running the Model of Emissions of Gases and 168 

Aerosols from Nature (MEGAN v2.1; Guenther et al., 2006, 2012) with a grid size identical 169 

to that of the CMAQ model simulations. For the MEGAN simulations, the MODIS land 170 

cover data (Friedl et al., 2010) and improved leaf area index (LAI) based on MODIS datasets 171 

(Yuan et al., 2011) were utilized. Pyrogenic emissions were obtained from the Fire Inventory 172 

from NCAR (FINN; Wiedinmyer et al., 2006, 2011). The lateral BCs for the CMAQ model 173 

simulations were prepared using the global model results of the Model for Ozone and Related 174 

chemical Tracers version 4 (MOZART-4; Emmons et al., 2010) at every 6 hours. The 175 

mapping and re-gridding of the MOZART-4 data were conducted by matching the CMAQ 176 

grid information.  177 

 178 

2.2 Observation data 179 

2.2.1. Satellite-based observations 180 

A Korean geostationary satellite of Communication, Ocean, and Meteorological 181 

Satellite (COMS) was launched on 26 June in 2010 over the Korean Peninsula. The COMS is 182 

a geostationary orbit satellite and it is stationed at an altitude of approximately 36,000 km at a 183 

latitude of 36°N and a longitude of 128.2°E with a horizontal coverage of 2500 × 2500 km2 184 

(refer to Fig. 1). Among the three payloads of the COMS, Geostationary Ocean Color Image 185 
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(GOCI) is the first multi-channel ocean color sensor with visible and near infrared channels. 186 

The GOCI instrument provides hourly spectral images with a spatial resolution of 500 × 500 187 

m2 from 00:30 to 07:30 Coordinated Universal Time (UTC) for eight spectral (6 visible and 2 188 

near-infrared) channels at 412, 443, 490, 555, 660, 680, 745, and 865 nm. 189 

The Yonsei aerosol retrieval (YAER) algorithm for the GOCI sensor was initially 190 

developed by Lee et al. (2010) to retrieve the aerosol optical properties (AOPs) over ocean 191 

areas, and was then improved by expanding to consider non-spherical aerosol optical 192 

properties (Lee et al., 2012). Choi et al. (2016) further extended the algorithm for application 193 

to land surfaces, and the algorithm was referred to as the GOCI YAER version 1 algorithm. 194 

With the GOCI YAER algorithm, hourly Aerosol Optical Depths (AODs) at 550 nm were 195 

produced over East Asia. Choi et al. (2016) compared the retrieved GOCI AODs with other 196 

satellite-retrieved and ground-based observations, and found several errors in the cloud 197 

masking and surface reflectances. These errors were corrected in the recently updated second 198 

version of the GOCI YAER algorithm (Choi et al., 2018), which used the updated cloud 199 

masking and more accurate surface reflectances. In this study, the most recent GOCI AOD 200 

products from the GOCI YAER version 2 algorithm were used.  201 

 202 

2.2.2. Ground-based observations 203 

In addition to the satellite data, ground-based observations in South Korea and China 204 

were also collected for use in the operational air quality prediction system for PM and gas-205 

phase pollutants. The orange, red, and blue dots in Fig. 1 represent the ground-based 206 

observation sites in China, Air Korea, and super-site stations in South Korea, respectively. 207 

These observations provide real-time concentrations of criteria species such as PM10, PM2.5, 208 
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CO, O3, SO2, and NO2.  209 

Throughout the period of the KORUS-AQ campaign, ground-based observation data 210 

were obtained from 1514 stations in China, 264 Air Korea stations, and seven super-site 211 

stations in South Korea. In this study, 80 % of the ground-based observations in China and 212 

Air Korea stations in South Korea were randomly selected for use in the prediction system. 213 

The other 20 % of the data and super-site observations were used to evaluate the 214 

performances of the developed air quality prediction system. 215 

In addition, AErosol RObotic NETwork (AERONET) AODs were used to conduct an 216 

independent evaluation of the air quality prediction system. AERONET is a federated global 217 

ground-based sun photometer network (Holben et al., 1998). Cloud-screened and quality-218 

assured level 2.0 AODs for the AERONET were used in this study. 219 

 220 

2.3 Operational air quality prediction system 221 

In the present study, the operational air quality prediction system was developed by 222 

adjusting the ICs for the CMAQ model simulations based on DA with satellite-retrieved and 223 

ground-measured observations. Two parallel WRF-CMAQ model runs were conducted. The 224 

first experiment that involved adjusting ICs via DA is referred to as DA RUN (see Fig. 2). In 225 

order to evaluate the prediction system, a second experiment, in which the ICs were 226 

originated from the previous CMAQ model simulations without assimilations, was also 227 

conducted. This CMAQ run is referred to as BASE RUN.               228 

 229 

2.3.1. AOD calculations 230 

CMAQ AODs are calculated by integrating the aerosol extinction coefficient (σext) 231 
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using the following equation:  232 

 233 

AOD(λ) = ∫ σext(λ) 
z

0
dz                       (1) 234 

 235 

where z represents the vertical height; σext  is defined as the sum of the absorption 236 

coefficient (σabs) and the scattering coefficient (σsca); and σabs and σsca can be estimated 237 

by Eqns (3) and (4), respectively, as shown below: 238 

 239 

σext(λ) = σabs(λ) + σsca(λ)                    (2) 240 

σabs(λ) [Mm−1] = ∑ ∑ {(1 − ωij(λ)) ∙ βij(λ) ∙ fij(RH) ∙ [C]ij}
m
j

n
i        (3) 241 

σsca(λ) [Mm−1] = ∑ ∑ {ωij(λ) ∙ βij(λ) ∙ fij(RH) ∙ [C]ij}
m
j

n
i          (4) 242 

 243 

where i and j denote the particulate species and size bin (or particle mode), respectively; 244 

ωij(λ) is the single scattering albedo; βij(λ) is the mass extinction efficiency (MEE) of 245 

particulate species i for the size bin or particle mode j; [C]ij  is the concentration of 246 

particulate species including (NH4)2SO4, NH4NO3, black carbon, organic aerosols (OA), 247 

mineral dust, and sea-salt aerosols; RH  is the relative humidity; and fij(RH)  is the 248 

hygroscopic factor. 249 

 Here, the single scattering albedo (ω) refers to the fraction (portion) of the scattering 250 

over total extinction. In this work, σext was estimated using β and f(RH), as suggested by 251 

Chin et al. (2012). Park et al. (2014) and Lee et al. (2016) found that the values reported by 252 

Chin et al. (2012) produced the best results in estimating AODs at 550 nm over East Asia. 253 

The calculated AODs were used in the air quality prediction system in order to prepare the 254 
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ICs for the PM predictions.  255 

 256 

2.3.2. Data assimilation (DA) 257 

The ground-based observations, together with GOCI-derived AODs, were used to 258 

prepare the ICs for the operational air quality predictions with the CMAQ model simulations. 259 

In order to achieve this, the following steps were taken: (i) the CMAQ-calculated 260 

concentrations of CO, O3, and SO2 were combined with the concentrations of CO, O3, and 261 

SO2 obtained from ground-based observations in South Korea (Air Korea) and China; (ii) the 262 

CMAQ-calculated AODs were assimilated with the GOCI AODs; (iii) the assimilated AODs 263 

were converted into PM10; (iv) the converted PM10 was again assimilated at the surface in 264 

South Korea and China; and (v) after the DA at the surface, the ratios of the assimilated 265 

species concentrations to the original CMAQ-simulated concentrations were applied so as to 266 

the adjust vertical profiles of the chemical species above the surface. In the operational 267 

prediction system, the DA cycle is 24 hours and the assimilation takes place every day at 268 

00:00 UTC (refer to Fig. 3).  269 

 The optimal interpolation (OI) method with the Kalman filter was chosen in the 270 

operational air quality prediction system. The OI method was originally used for 271 

meteorological applications (Lorenc, 1986), and has also been used in the assimilations for 272 

trace gases (Khattatov et al., 1999, 2000; Lamarque et al., 1999; Levelt et al., 1998). Recently, 273 

the OI technique has also been applied to aerosol fields (Collins et al., 2001; Yu et al., 2003; 274 

Generoso et al., 2007; Adhikary et al., 2008; Carmichael et al., 2009; Chung et al., 2010; Park 275 

et al., 2011; Tang et al., 2015, 2017).  276 

Aerosol assimilation using the OI method was first applied by Collins et al. (2001) as 277 
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follows: 278 

 279 

τm
′ = τm + 𝐊(τo − 𝐇τm)                         (5) 280 

𝐊 = 𝐁𝐇T(𝐇𝐁𝐇T + 𝐎)−1                         (6) 281 

𝐎 = [(foτo)2 + (εo)2]𝐈                          (7) 282 

𝐁(dx, dz) = [(fmτm)2 + (εm)2]exp [−
dx

2

2lmx
2 ] exp [−

dz
2

2lmz
2 ]             (8) 283 

 284 

where τm
′ , τm, and τo represent the assimilated products by the OI method, the modeled 285 

values, and the observed values, respectively; 𝐊 is the Kalman gain matrix; 𝐇 is the 286 

observation operator (or forward operator), which is an interpolator from model to 287 

observation space; 𝐁 and 𝐎 are the background and observation error covariance matrices, 288 

respectively; (∙)T  denotes the transpose of a matrix; fo  is the fractional error in the 289 

observation-retrieved value; εo is the minimum root mean square error in the observation-290 

retrieved values; fm is the fractional error in the model estimates; εm is the minimum root 291 

mean square error in the model estimates; dx is the horizontal distance between two model 292 

grid points; lmx is the horizontal correlation length scale for the errors in the model; dz is 293 

the vertical distance between two model grid points; and lmz is the vertical correlation 294 

length scale for the errors in the model. In this work, the OI technique was applied for the DA 295 

of atmospheric gaseous species as well as particulate species.  296 

Six free parameters (fm, fo, εm, εo, lmx, and lmz) were used to calculate the error 297 

covariance matrices of the observations and model, the mathematical formalisms of which 298 

are described in Eq. (7) and (8), respectively. Several previous studies have used fixed values 299 

for free parameters (Collins et al., 2001; Yu et al., 2003; Adhikary et al., 2008; Chung et al., 300 
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2010). These runs are called “static” runs. In contrast to those previous studies, “non-static” 301 

free parameters were applied in this study by minimizing the differences between the 302 

assimilated values and observations via an iterative process at each assimilation time step. 303 

This non-static free parameter scheme is possible due to the fact that the OI technique with 304 

the Kalman filter is much less costly in terms of computation time than other DA techniques, 305 

such as the 3-D or 4-D variational methods. This is another advantage of using the OI 306 

technique in this system. It typically takes less than 20 minutes with a workstation 307 

environment (dual Intel Xeon 2.40 GHz processor). 308 

   309 

2.3.3. Allocation of the assimilated PM10 & PM2.5 into particulate composition 310 

In the procedure of operational DA, PM10 was assimilated in this study, because the 311 

PM10 data were more plentiful than PM2.5. The assimilated PM10 then needs to be allocated 312 

into the PM composition for the CMAQ-model prediction runs. In order to achieve this, the 313 

differences between the assimilated PM10 and background PM10 (∆PM10) were first calculated. 314 

Then, ∆PM2.5 was estimated using the ratios of PM2.5 to PM10 from the background CMAQ 315 

model runs (i.e., ∆PM2.5=∆PM10×PM2.5/PM10). ∆PM2.5 was then allocated to the PM2.5 316 

composition according to the comparison between two PM2.5 compositions observed at the 317 

seven super-sites and simulated from the CMAQ model runs over South Korea. Both of the 318 

compositions are shown in Fig. 4. In Fig. 4, “PM OTHERS” indicates the remaining 319 

particulate matter species after excluding sulfate, nitrate, ammonium, organic aerosol (OA), 320 

and elementary carbon (EC). The PM OTHERS occupies 25 % of the total PM2.5 observed at 321 

super-sites. The other fraction, ∆PM10×(1-PM2.5/PM10), was also distributed into the coarse-322 

mode particles (PM2.5-10) as crustal elements.  323 
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3. Results and discussions 324 

The performances of the air quality prediction system were evaluated by comparing 325 

them with ground-based observations from the Air Korea network and super-site stations in 326 

South Korea. Several sensitivity analyses were also conducted in order to assess the 327 

influences of the DA time-intervals on the accuracy of the air quality prediction.  328 

 329 

3.1. Evaluation of the air quality prediction system 330 

3.1.1. Time-series analysis 331 

Figure 5 shows the time-series plots of PM10, PM2.5, CO, O3, and SO2 concentrations 332 

from the BASE RUN and the DA RUN. Here, the observation data (OBS) obtained from the 333 

Air Korea network were compared with the results of the two sets of the CMAQ model 334 

simulations, i.e., (1) BASE RUN and (2) DA RUN. As mentioned previously, 20% of the Air 335 

Korea observations used in the evaluation were randomly selected during the period of the 336 

KORUS-AQ campaign. The other 80 % of the Air Korea data were used in the DA at 00:00 337 

UTC. For the forecast hours from 01:00 to 23:00 UTC, all of the ground observations (254 338 

Air Korea and seven super-site stations) were used to evaluate the performances of the 339 

developed air quality prediction system. As shown in Fig. 5, we achieved some improvements 340 

in the prediction performances by applying the ICs to the CMAQ model simulations. The 341 

BASE RUN significantly under-predicted PM10, PM2.5, and CO while the DA RUN produced 342 

concentrations that were more consistent with the observations than those of the BASE RUN. 343 

 In case of CO, the observed CO mixing ratios were about three times higher than 344 

those from the BASE RUN. These large differences are well known, and have been attributed 345 

to the underestimated emissions of CO (Heald et al., 2004). However, when the DA was 346 
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applied, the predictions of the CO mixing ratios improved. Similarly, the performances of the 347 

PM10 and PM2.5 predictions improved with the application of the DA. Unlike PM10, PM2.5, 348 

and CO, the O3 mixing ratios and its diurnal trends from both the BASE RUN and DA RUN 349 

tend to be well-matched with the observations. By contrast, the poorest performances of the 350 

BASE RUN and the DA RUN were shown for SO2.  351 

In addition, a dust event took place between 6 May and 8 May. This event is captured 352 

by the DA RUN (check red peaks in Fig. 5(a) and (b)), while the BASE RUN cannot capture 353 

this dust event. This demonstrates the capability of the current system to possibly predict dust 354 

events in South Korea. In the DA RUN, dust information is provided into the CMAQ model 355 

runs through both/either GOCI AOD and/or ground PM observations measured along the dust 356 

plume tracks.       357 

The effectiveness of the DA with prediction time was also analyzed by calculating 358 

the aggregated average concentrations of atmospheric species (see Figs. 6, 7, and 9). Fig. 6 359 

depicts the CMAQ-calculated average concentrations of PM10, PM2.5, CO, and SO2 against 360 

the Air Korea observations. Our air quality prediction system re-generated relatively well-361 

matched concentrations for PM10, PM2.5, and CO from the DA RUN.  362 

 Figure 7 shows the case of ozone. The ozone mixing ratios from the DA RUN in Fig. 363 

7(a) were reasonably consistent with the observations at 00:00 UTC, but disagreed with those 364 

between 04:00 and 09:00 UTC (13:00 and 18:00 KST), when solar insolation is the most 365 

intense. This may be attributed to the chemical imbalances between ozone production and 366 

ozone destruction (or titration). However, if CMAQ NO2 was assimilated with ground-based 367 

observations in South Korea (Air Korea) and China, the predicted ozone mixing ratios 368 

became substantially closer to the observations, as shown in Fig. 7(b). This is clearly due to 369 
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the fact that NOx is an important precursor of ozone. In the prediction of the ozone mixing 370 

ratios, both 1-hr peak ozone (around 15:00 KST) and 8-hr averaged ozone mixing ratios 371 

(between 9:00 and 17:00 KST) are important. Fig. 7 clearly shows that the prediction 372 

accuracies of both the ozone mixing ratios were improved after the DA of NO2 mixing ratios.   373 

Although the DA for NO2 provided better ozone predictions, one should take caution 374 

in using the NO2 observations. The NO2 mixing ratios measured at Air Korea sites are known 375 

to be contaminated by other nitrogen gases such as nitric acid (HNO3), peroxyacetyl nitrates 376 

(PANs), and alkyl nitrates (ANs), since the Air Korea NO2 mixing ratios are measured 377 

through a chemiluminescent method with catalysts of gold or molybdenum oxide at high 378 

temperatures. These are known to be “NO2 measurement artifacts” (Jung et al., 2017), which 379 

is one of the reasons that the DA of NO2 was not shown in Fig. 6. The NO2 mixing ratios are 380 

corrected from the Air Korea NO2 data, and are then used to prepare the ICs via the DA for 381 

more accurate ozone and NO2 predictions. Currently, such corrections of the observed NO2 382 

mixing ratios are being standardized with more sophisticated year-long NO2 measurements. 383 

After the corrections of the NO2 measurement artifacts, more evolved schemes of ozone and 384 

NO2 predictions will be possible in the future. As shown in Fig. 7, about a 20% reduction 385 

(average fraction of non-NO2 mixing ratios in the observed NO2 mixing ratios) was made for 386 

these demonstration runs (Jung et al., 2017).  387 

Another practical issue is now discussed. Although the assimilation with the 388 

observed NO2 mixing ratios can enhance the accuracy of the predictions of the daytime ozone 389 

mixing ratios, the nighttime ozone mixing ratios tend to be consistently over-predicted in the 390 

aggregated plot of the ozone mixing ratios at the observation sites (see Fig. 7). This is 391 

believed to be caused by underestimation of the mixing layer height (MLH). Figure 8 shows a 392 
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comparison between lidar-measured MLH (black dashed line) and WRF-calculated MLH 393 

(with the option of the Yonsei University (YSU) planetary boundary layer scheme) (Hong et 394 

al., 2006; see red line). As shown in Fig. 8, the nocturnal lidar-measured MLH is about two 395 

times higher than the nocturnal WRF-calculated MLH as measured at a lidar site inside the 396 

campus of Seoul National University (SNU) in Seoul. This is a common and well-defined 397 

phenomenon in East Asia. Such underestimated MLH in the model tends to compress the 398 

ozone molecules within the mixing layer during the nighttime, which leads to consistently 399 

over-predicted nocturnal ozone mixing ratios.  400 

 Although the correct predictions of the daytime ozone mixing ratios are substantially 401 

more important, it is also worth trying to achieve correct predictions of the nocturnal ozone 402 

mixing ratios. Correct predictions of the nocturnal ozone mixing ratios strongly depend on 403 

the correct estimation of the MLH. Currently, efforts are being made in two directions. First, 404 

a modified MLH (or PBL) scheme in the meteorological model is currently being studied. 405 

The other area of study is that the WRF-calculated MLH can be “bias-corrected” to match the 406 

observed MLHs in the interface (MCIP) between a MET model (e.g., WRF) and a CTM 407 

model (e.g., CMAQ). These efforts are now underway as well. 408 

In this work, the aerosol composition (such as EC, OA, sulfate, nitrate, and 409 

ammonium) was further compared with the composition observed at the super-sites shown in 410 

Fig. 9. As shown in Fig. 9, agreement was observed between the DA RUN and observations 411 

for all of the major PM constituents. Again, this is another strong capability of our system for 412 

predicting not only particle mass, but also the “chemical composition” of particulate matters.  413 

 414 

3.1.2. Spatial distribution  415 
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Figure 10 shows the spatial distributions of PM and chemical species throughout the 416 

entire period of the KORUS-AQ campaign over the Seoul Metropolitan Area (SMA). 417 

Noticeable improvements are observed to have been achieved in the spatial distributions by 418 

applying the ICs into the CMAQ model simulations, particularly for PM10 (Fig. 10a), PM2.5 419 

(Fig. 10b), and CO (Fig. 10c). As shown in Fig. 10, the under-predicted concentrations of 420 

PM10, PM2.5, and CO were adjusted to concentrations closer to the observations. In case of 421 

SO2 (see Fig. 10d), the DA RUN produced better agreement with the observations than the 422 

BASE RUN, but there were still under-predicted SO2 concentrations over the northeastern 423 

part of the SMA.  424 

By contrast, relatively lower ozone mixing ratios from the DA RUN against the 425 

BASE RUN were found in the southwestern part of the SMA (see Fig. 10e). Due to the 426 

nonlinear relationship between NOx and O3, high mixing ratios (or emissions) of NOx in the 427 

SMA can lead to depletion of ozone. In these runs, the precursors of ozone such as NOx and 428 

VOCs were excluded in the preparation of the ICs for CMAQ model simulations. Again, this 429 

is because the Air Korea NO2 mixing ratios are contaminated by several reactive nitrogen 430 

species, so the data cannot be directly used in the assimilation procedures. In case of VOCs, a 431 

limited number of datasets is available in South Korea for the DA. Improvements in the 432 

prediction of ozone mixing ratios can be achieved when the NO2 mixing ratios are corrected 433 

and a sufficient number of VOCs data (possibly from satellite data in the future) is available.   434 

 435 

3.1.3. Statistical analysis 436 

In order to achieve better understanding of the performances of the DA RUN, 437 

analyses of statistical variables such as index of agreement (IOA), Pearson’s correlation 438 
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coefficient (R), root mean square error (RMSE), and mean bias (MB) were conducted using 439 

observations from the Air Korea stations for PM10, PM2.5, CO, SO2, and O3 (see Fig. 11). 440 

Definitions of the statistical variables are given in Appendix A.  441 

After the applications of the ICs, both RMSE and MB became lower, while the 442 

correlation coefficient became higher for the entire predictions. In addition, it was found that 443 

the differences between the BASE RUN and the DA RUN tended to diminish as the 444 

prediction time progressed. The results of the statistical analysis are listed in Table 1. The 445 

results of the DA RUN were reasonably consistent with the observations for PM10 (IOA = 446 

0.60; R= 0.40; RMSE = 34.87; MB = -13.54) and PM2.5 (IOA = 0.71; R= 0.53; RMSE = 17. 447 

83; MB = -2.43), as compared to the BASE RUN for PM10 (IOA = 0.51; R= 0.34; RMSE = 448 

40.84; MB = -27.18) and PM2.5 (IOA = 0.67; R= 0.51; RMSE = 19.24; MB = -9.9). In terms 449 

of bias, an improvement was found for CO: MB = -0.036 for the DA RUN and MB = -0.27 450 

for the BASE RUN. Regarding O3 and SO2, the DA RUN showed slightly better 451 

performances than the BASE RUN.  452 

Table 2 presents the results of the statistical analysis at 00:00 UTC when the DA was 453 

conducted, with the results clearly showing how much closer the DA makes the CMAQ-454 

calculated chemical concentrations to the observed concentrations. Collectively, the DA 455 

improved model accuracy by a large degree in terms of R, particularly for PM10 (R: 456 

0.3→0.75; slope: 0.17→0.66) and O3 (R: 0.09→0.61; slope: 0.07→0.42). In addition, for all 457 

species, MB and RMSE decreased significantly with the DA RUN as compared with the 458 

BASE RUN.  459 

 460 

3.2. Sensitivity test of DA time-interval 461 
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3.2.1. AOD 462 

In this section, a sensitivity analysis was conducted with different implementation 463 

time-intervals of the DA (i.e., 24, 6, and 3 hours) for AOD (refer to Fig. 12). As shown in Fig. 464 

12, more frequent implementation of the DA is expected to make the predicted results closer 465 

to the observations. Although the DA RUN with a shorter assimilation time-interval tends to 466 

produce a better prediction, it is not always the most appropriate choice, since the shorter 467 

assimilation time-interval results in increased computational cost. Therefore, an optimized 468 

assimilation time-interval should be found to achieve the best performances from the given 469 

DA system with the consideration of its own computational ability.    470 

 471 

3.2.2. PM and gases 472 

In addition, sensitivity analyses of the developed air quality prediction system to 473 

multiple implementations of the DA with different time-intervals were also investigated for (a) 474 

PM10, (b) PM2.5, (c) CO, (d) SO2, and (e) O3, shown in Fig. 13. Fig. 13 shows a soccer plot 475 

analysis for BASE RUN (blue crosses) and DA RUNs with different DA time-intervals of 24 476 

hours (OI; red circles), two hours (2-hr OI; black diamonds), and one hour (1-hr OI; dark-477 

green triangles). This set of testing was designed based on the fact that the performances are 478 

expected to improve if the DAs are implemented multiple times prior to the actual predictions 479 

at 00:00 UTC. Here, for the 2-hr OI run, the DA was implemented three times a day at 20:00, 480 

22:00, and 00:00 UTC, while for the 1-hr OI run, the DA was implemented at 22:00, 23:00, 481 

and 00:00 UTC. The performances of all of the chemical species excluding ozone improved, 482 

as expected, with DA RUNs with more frequent and longer DA time-intervals (i.e., three-483 

times implementation with a 2-hr time-interval in our cases). In case of ozone, the best 484 
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performance was found for the air quality prediction system with the DA time-interval of 24-485 

hr.  486 

Unsurprisingly, more frequent DAs prior to the actual prediction mode (i.e., before 487 

00:00 UTC in our system) with a longer time-interval (such as 2-hr) will be computationally 488 

costly. There will certainly be a “trade-off” between the precision of air quality prediction and 489 

the computational cost. The system should be designed under the consideration of these two 490 

factors. 491 

 492 

4. Summary and conclusions 493 

In this study, an operational air quality prediction system was developed by preparing 494 

the ICs for CMAQ model simulations using GOCI AODs and ground-based observations of 495 

PM10, CO, ozone, and SO2 during the period of the KORUS-AQ campaign (1 May – 12 June 496 

2016) in South Korea. The major advantages of the developed air quality prediction system 497 

are its comprehensiveness in predicting the ambient concentrations of both gaseous and 498 

particulate species (including PM composition) as well as its powerfulness in terms of 499 

computational cost.  500 

The performances of the developed prediction system were evaluated using ground 501 

in-situ observation data. The CMAQ model runs with the ICs (DA RUN) showed higher 502 

consistency with the observations of almost all of the chemical species, including PM 503 

composition (sulfate, nitrate, ammonium, OA, and EC) and atmospheric gases (CO, ozone, 504 

and SO2), than the CMAQ model runs without the ICs (BASE RUN). Particularly for CO, the 505 

DA was able to remarkably improve the model performances, while the BASE RUN 506 

significantly under-predicted the CO concentrations (predicting about one-third of the 507 
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observed values). In case of ozone, both the BASE RUN and DA RUN were in close 508 

agreement with observations. More reliable predictions of ozone mixing ratios will be 509 

achieved via the DA of the observed NO2 mixing ratios and the corrections of model-510 

simulated mixing layer height (MLH). For SO2, the performances of both the BASE RUN 511 

and the DA RUN were somewhat poor. Regarding this issue, more accurate SO2 emissions 512 

are required to achieve better SO2 predictions, and these can be estimated through inverse 513 

modeling using satellite data (e.g., Lee et al., 2011). The adjustments of both ICs and 514 

emissions may be able to improve the performances of the air quality prediction system, and 515 

this will be examined in future studies. 516 

Moreover, the developed air quality prediction system will be upgraded by using the 517 

new observation data that will be retrieved after 2020 from the Geostationary Environment 518 

Monitoring Spectrometer (GEMS) with a high spatial resolution of 7 × 8 km2 as well as a 519 

high temporal resolution of 1-hour over a large part of Asia. In addition, the current DA 520 

technique of the OI with the Kalman filter can also be upgraded with the use of more 521 

advanced DA methods such as variational techniques of 3DVAR and 4DVAR methods, as 522 

well as with the ensemble Kalman filter (EnK) method. These research endeavors are 523 

currently underway.  524 

In conjunction with improving the air quality modeling system, artificial intelligence 525 

(AI)-based air quality prediction systems are also currently being developed in several ways 526 

(e.g., H. S. Kim et al., 2019). Both the CTM-based and AI-based air quality prediction 527 

systems will be combined so as to ultimately enable more accurate air quality forecasts over 528 

South Korea for Korean citizens. This is the ultimate goal of our research. 529 
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Code and data availability. WRF v3.8.1 (doi:10.5065/D6MK6B4K) and CMAQ v5.1 530 

(doi:10.5281/zenodo.1079909) models are both open-source and publicly available. Source 531 

codes for WRF and CMAQ can be downloaded at http://www2.mmm.ucar.edu/wrf/users/ 532 

downloads.html and https://github.com/USEPA/CMAQ, respectively. Data from the KORUS-533 

AQ field campaign can be downloaded from the KORUS-AQ data archive (http://www-534 

air.larc.nasa.gov/missions/korus-aq). Other data were acquired as follows. Ground-based 535 

observation data were downloaded from the Air Korea website (http://www.airkorea.or.kr) for 536 

South Korea and https://pm25.in for China. AERONET data were downloaded from 537 

https://aeronet.gsfc.nasa.gov. All codes related with the air quality prediction system can be 538 

obtained by contacting K. Lee (lkh1515@gmail.com). 539 
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APPENDIX A: FORMULAS FOR STATISTICAL EVALUATION INDICES 556 

The formulas used to evaluate the performances of the operational air quality prediction 557 

system are defined as follows.  558 

 559 

Index Of Agreement (IOA) =  1 −
∑ (M − O)2n

1

∑ (|M − O̅| + |O − O̅|)2n
1

    (A1) 560 

 561 

Correlation Coefficient (R)  =  
1

(n − 1)
∑ ((

O − O̅

σO
) (

M − M̅

σm
))

n

1

    (A2) 562 

 563 

Root Mean Square Error (RMSE)  =  √
∑ (M − O)2n

1

n
    (A3) 564 

 565 

Mean Bias (MB)  =  
1

n
∑(M − O)

n

1

    (A4) 566 

 567 

Mean Normalized Bias (MNB)  =  
1

n
∑ (

M − O

O
)

n

1

× 100 %    (A5) 568 

 569 

Mean Normalized Error (MNE)  =  
1

n
∑ (

|M − O|

O
)

n

1

× 100 %    (A6) 570 

 571 

Mean Fractional Bias (MFB)  =  
1

n
∑

(M − O)

(
M + O

2
)

n

1

× 100 %    (A7) 572 

 573 
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Mean Fractional Error (MFE)  =  
1

n
∑

|M − O|

(
M + O

2 )

n

1

× 100 %     (B8) 574 

 575 

In Eqns. (A1) - (A8), M and O represent the model and observation data, respectively. N is 576 

the number of data points and σ means the standard deviation. The overbars in the equations 577 

indicate the arithmetic mean of the data. The units of RMSE and MB are the same as the unit 578 

of data, while IOA and R are dimensionless statistical parameters.  579 

https://doi.org/10.5194/gmd-2019-169
Preprint. Discussion started: 18 July 2019
c© Author(s) 2019. CC BY 4.0 License.



 

 

28 

 

References 580 

Adhikary, B., Kulkarni, S., Dallura, A., Tang, Y., Chai, T., Leung, L. R., Qian, Y., Chung, C. 581 

E., Ramanathan, V. and Carmichael, G. R.: A regional scale chemical transport modeling 582 

of Asian aerosols with data assimilation of AOD observations using optimal interpolation 583 

technique, Atmospheric Environment, 42(37), 8600–8615, 584 

doi:10.1016/j.atmosenv.2008.08.031, 2008. 585 

Appel, K. W., Roselle, S. J., Gilliam, R. C. and Pleim, J. E.: Sensitivity of the Community 586 

Multiscale Air Quality (CMAQ) model v4.7 results for the eastern United States to 587 

MM5 and WRF meteorological drivers, Geoscientific Model Development, 3, 169–188, 588 

2010. 589 

Bellouin, N., Boucher, O., Haywood, J. and Reddy, M. S.: Global estimate of aerosol direct 590 

radiative forcing from satellite measurements, Nature, 438(7071), 1138–1141, 591 

doi:10.1038/nature04348, 2005. 592 

Bréon, F.-M., Tanré, D. and Generoso, S.: Aerosol Effect on Cloud Droplet Size Monitored 593 

from Satellite, Science, 295(5556), 834–838, doi:10.1126/science.1066434, 2002. 594 

Byun, D. and Schere, K. L.: Review of the Governing Equations, Computational Algorithms, 595 

and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) 596 

Modeling System, Appl. Mech. Rev, 59(2), 51–77, doi:10.1115/1.2128636, 2006. 597 

Byun, D. W. and Ching, J. K. S.: Science algorithms of the EPA models-3 community 598 

multiscale air quality (CMAQ) modeling system, U.S. Environmental Protection Agency, 599 

EPA/600/R-99/030 (NTIS PB2000-100561)., 1999. 600 

Carmichael, G. R., Sakurai, T., Streets, D., Hozumi, Y., Ueda, H., Park, S. U., Fung, C., Han, 601 

Z., Kajino, M., Engardt, M., Bennet, C., Hayami, H., Sartelet, K., Holloway, T., Wang, 602 

Z., Kannari, A., Fu, J., Matsuda, K., Thongboonchoo, N. and Amann, M.: MICS-Asia II: 603 

The model intercomparison study for Asia Phase II methodology and overview of 604 

findings, Atmospheric Environment, 42(15), 3468–3490, 605 

doi:10.1016/j.atmosenv.2007.04.007, 2008. 606 

Carmichael, G. R., Adhikary, B., Kulkarni, S., D’Allura, A., Tang, Y., Streets, D., Zhang, Q., 607 

Bond, T. C., Ramanathan, V., Jamroensan, A. and Marrapu, P.: Asian Aerosols: Current 608 

and Year 2030 Distributions and Implications to Human Health and Regional Climate 609 

Change, Environ. Sci. Technol., 43(15), 5811–5817, doi:10.1021/es8036803, 2009. 610 

Chemel, C., Sokhi, R. S., Yu, Y., Hayman, G. D., Vincent, K. J., Dore, A. J., Tang, Y. S., Prain, 611 

H. D. and Fisher, B. E. A.: Evaluation of a CMAQ simulation at high resolution over the 612 

UK for the calendar year 2003, Atmospheric Environment, 44(24), 2927–2939, 613 

doi:10.1016/j.atmosenv.2010.03.029, 2010. 614 

Choi, M., Kim, J., Lee, J., Kim, M., Park, Y.-J., Jeong, U., Kim, W., Hong, H., Holben, B., 615 

Eck, T. F., Song, C. H., Lim, J.-H. and Song, C.-K.: GOCI Yonsei Aerosol Retrieval 616 

(YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign, Atmos. 617 

https://doi.org/10.5194/gmd-2019-169
Preprint. Discussion started: 18 July 2019
c© Author(s) 2019. CC BY 4.0 License.



 

 

29 

 

Meas. Tech., 9(3), 1377–1398, doi:10.5194/amt-9-1377-2016, 2016. 618 

Choi, M., Kim, J., Lee, J., Kim, M., Park, Y.-J., Holben, B., Eck, T. F., Li, Z. and Song, C. H.: 619 

GOCI Yonsei aerosol retrieval version 2 products: an improved algorithm and error 620 

analysis with uncertainty estimation from 5-year validation over East Asia, Atmos. Meas. 621 

Tech., 11(1), 385–408, doi:10.5194/amt-11-385-2018, 2018. 622 

Chung, C. E., Ramanathan, V., Carmichael, G., Kulkarni, S., Tang, Y., Adhikary, B., Leung, L. 623 

R. and Qian, Y.: Anthropogenic aerosol radiative forcing in Asia derived from regional 624 

models with atmospheric and aerosol data assimilation, Atmos. Chem. Phys., 10(13), 625 

6007–6024, doi:10.5194/acp-10-6007-2010, 2010. 626 

Collins, W. D., Rasch, P. J., Eaton, B. E., Khattatov, B. V., Lamarque, J.-F. and Zender, C. S.: 627 

Simulating aerosols using a chemical transport model with assimilation of satellite 628 

aerosol retrievals: Methodology for INDOEX, J. Geophys. Res., 106(D7), 7313–7336, 629 

doi:10.1029/2000JD900507, 2001. 630 

Dehghani, M., Keshtgar, L., Javaheri, M. R., Derakhshan, Z., Conti, O., Gea, Zuccarello, P. 631 

and Ferrante, M.: The effects of air pollutants on the mortality rate of lung cancer and 632 

leukemia, Molecular Medicine Reports, 15(5), 3390–3397, 2017. 633 

Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, 634 

C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., 635 

Wiedinmyer, C., Baughcum, S. L. and Kloster, S.: Description and evaluation of the 636 

Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model 637 

Dev., 3(1), 43–67, doi:10.5194/gmd-3-43-2010, 2010. 638 

Foley, K. M., Roselle, S. J., Appel, K. W., Bhave, P. V., Pleim, J. E., Otte, T. L., Mathur, R., 639 

Sarwar, G., Young, J. O., Gilliam, R. C., Nolte, C. G., Kelly, J. T., Gilliland, A. B. and 640 

Bash, J. O.: Incremental testing of the Community Multiscale Air Quality (CMAQ) 641 

modeling system version 4.7, Geosci. Model Dev., 3(1), 205–226, doi:10.5194/gmd-3-642 

205-2010, 2010. 643 

Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A. and 644 

Huang, X.: MODIS Collection 5 global land cover: Algorithm refinements and 645 

characterization of new datasets, Remote Sensing of Environment, 114(1), 168–182, 646 

doi:10.1016/j.rse.2009.08.016, 2010. 647 

Generoso, S., Bréon, F.-M., Chevallier, F., Balkanski, Y., Schulz, M. and Bey, I.: Assimilation 648 

of POLDER aerosol optical thickness into the LMDz-INCA model: Implications for the 649 

Arctic aerosol burden, J. Geophys. Res., 112(D2), D02311, doi:10.1029/2005JD006954, 650 

2007. 651 

Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I. and Geron, C.: Estimates of 652 

global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and 653 

Aerosols from Nature), Atmospheric Chemistry and Physics, 6(11), 3181–3210, 2006. 654 

https://doi.org/10.5194/gmd-2019-169
Preprint. Discussion started: 18 July 2019
c© Author(s) 2019. CC BY 4.0 License.



 

 

30 

 

Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K. and 655 

Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 656 

(MEGAN2.1): an extended and updated framework for modeling biogenic emissions, 657 

Geosci. Model Dev., 5(6), 1471–1492, doi:10.5194/gmd-5-1471-2012, 2012. 658 

Heald, C. L., Jacob, D. J., Jones, D. B. A., Palmer, P. I., Logan, J. A., Streets, D. G., Sachse, 659 

G. W., Gille, J. C., Hoffman, R. N. and Nehrkorn, T.: Comparative inverse analysis of 660 

satellite (MOPITT) and aircraft (TRACE-P) observations to estimate Asian sources of 661 

carbon monoxide: COMPARATIVE INVERSE ANALYSIS, Journal of Geophysical 662 

Research: Atmospheres, 109(D23), doi:10.1029/2004JD005185, 2004. 663 

Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. 664 

A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I. and Smirnov, A.: 665 

AERONET—A Federated Instrument Network and Data Archive for Aerosol 666 

Characterization, Remote Sensing of Environment, 66(1), 1–16, doi:10.1016/S0034-667 

4257(98)00031-5, 1998. 668 

Hong, S.-Y., Noh, Y. and Dudhia, J.: A New Vertical Diffusion Package with an Explicit 669 

Treatment of Entrainment Processes, Mon. Wea. Rev., 134(9), 2318–2341, 670 

doi:10.1175/MWR3199.1, 2006. 671 

IPCC: Climate Change 2013: The Physical Science Basis. The Fifth Assessment Report of 672 

the Intergovernmental Panel on Climate Change, , Cambridge University Press, 673 

Cambridge, United Kingdom and New York, NY, USA, 2013. 674 

Jung, J., Lee, J., Kim, B. and Oh, S.: Seasonal variations in the NO2 artifact from 675 

chemiluminescence measurements with a molybdenum converter at a suburban site in 676 

Korea (downwind of the Asian continental outflow) during 2015–2016, Atmospheric 677 

Environment, 165, 290–300, doi:10.1016/j.atmosenv.2017.07.010, 2017. 678 

Khaniabadi, Y. O., Goudarzi, G., Daryanoosh, S. M., Borgini, A., Tittarelli, A. and De Marco, 679 

A.: Exposure to PM10, NO2, and O3 and impacts on human health, Environmental 680 

Science and Pollution Research, 24(3), 2781–2789, doi:10.1007/s11356-016-8038-6, 681 

2017. 682 

Khattatov, B. V., Gille, J. C., Lyjak, L. V., Brasseur, G. P., Dvortsov, V. L., Roche, A. E. and 683 

Waters, J. W.: Assimilation of photochemically active species and a case analysis of 684 

UARS data, J. Geophys. Res., 104(D15), 18715–18737, doi:10.1029/1999JD900225, 685 

1999. 686 

Khattatov, B. V., Lamarque, J.-F., Lyjak, L. V., Menard, R., Levelt, P., Tie, X., Brasseur, G. P. 687 

and Gille, J. C.: Assimilation of satellite observations of long-lived chemical species in 688 

global chemistry transport models, J. Geophys. Res., 105(D23), 29135–29144, 689 

doi:10.1029/2000JD900466, 2000. 690 

Lamarque, J.-F., Khattatov, B. V., Gille, J. C. and Brasseur, G. P.: Assimilation of 691 

Measurement of Air Pollution from Space (MAPS) CO in a global three-dimensional 692 

https://doi.org/10.5194/gmd-2019-169
Preprint. Discussion started: 18 July 2019
c© Author(s) 2019. CC BY 4.0 License.



 

 

31 

 

model, J. Geophys. Res., 104(D21), 26209–26218, doi:10.1029/1999JD900807, 1999. 693 

Lee, C., Martin, R. V., Donkelaar, A. van, Lee, H., Dickerson, R. R., Hains, J. C., Krotkov, N., 694 

Richter, A., Vinnikov, K. and Schwab, J. J.: SO2 emissions and lifetimes: Estimates 695 

from inverse modeling using in situ and global, space-based (SCIAMACHY and OMI) 696 

observations, Journal of Geophysical Research: Atmospheres, 116(D6), 697 

doi:10.1029/2010JD014758, 2011. 698 

Lee, J., Kim, J., Song, C. H., Ryu, J.-H., Ahn, Y.-H. and Song, C. K.: Algorithm for retrieval 699 

of aerosol optical properties over the ocean from the Geostationary Ocean Color Imager, 700 

Remote Sensing of Environment, 114(5), 1077–1088, doi:10.1016/j.rse.2009.12.021, 701 

2010. 702 

Lee, J., Kim, J., Yang, P. and Hsu, N. C.: Improvement of aerosol optical depth retrieval from 703 

MODIS spectral reflectance over the global ocean using new aerosol models archived 704 

from AERONET inversion data and tri-axial ellipsoidal dust database, Atmos. Chem. 705 

Phys., 12(15), 7087–7102, doi:10.5194/acp-12-7087-2012, 2012. 706 

Lee, S., Song, C. H., Park, R. S., Park, M. E., Han, K. M., Kim, J., Choi, M., Ghim, Y. S. and 707 

Woo, J.-H.: GIST-PM-Asia v1: development of a numerical system to improve 708 

particulate matter forecasts in South Korea using geostationary satellite-retrieved aerosol 709 

optical data over Northeast Asia, Geosci. Model Dev., 9(1), 17–39, doi:10.5194/gmd-9-710 

17-2016, 2016. 711 

Levelt, P. F., Khattatov, B. V., Gille, J. C., Brasseur, G. P., Tie, X. X. and Waters, J. W.: 712 

Assimilation of MLS ozone measurements in the global three-dimensional chemistry 713 

transport model ROSE, Geophys. Res. Lett., 25(24), 4493–4496, 714 

doi:10.1029/1998GL900152, 1998. 715 

Lorenc, A. C.: Analysis methods for numerical weather prediction, Q.J.R. Meteorol. Soc., 716 

112(474), 1177–1194, doi:10.1002/qj.49711247414, 1986. 717 

Park, M. E., Song, C. H., Park, R. S., Lee, J., Kim, J., Lee, S., Woo, J.-H., Carmichael, G. R., 718 

Eck, T. F., Holben, B. N., Lee, S.-S., Song, C. K. and Hong, Y. D.: New approach to 719 

monitor transboundary particulate pollution over Northeast Asia, Atmos. Chem. Phys., 720 

14(2), 659–674, doi:10.5194/acp-14-659-2014, 2014. 721 

Park, R. S., Song, C. H., Han, K. M., Park, M. E., Lee, S.-S., Kim, S.-B. and Shimizu, A.: A 722 

study on the aerosol optical properties over East Asia using a combination of CMAQ-723 

simulated aerosol optical properties and remote-sensing data via a data assimilation 724 

technique, Atmos. Chem. Phys., 11(23), 12275–12296, doi:10.5194/acp-11-12275-2011, 725 

2011. 726 

Penner, J. E., Dong, X. and Chen, Y.: Observational evidence of a change in radiative forcing 727 

due to the indirect aerosol effect, Nature, 427(6971), 231–234, doi:10.1038/nature02234, 728 

2004. 729 

https://doi.org/10.5194/gmd-2019-169
Preprint. Discussion started: 18 July 2019
c© Author(s) 2019. CC BY 4.0 License.



 

 

32 

 

Scott, C. E., Rap, A., Spracklen, D. V., Forster, P. M., Carslaw, K. S., Mann, G. W., Pringle, K. 730 

J., Kivekäs, N., Kulmala, M., Lihavainen, H. and Tunved, P.: The direct and indirect 731 

radiative effects of biogenic secondary organic aerosol, Atmos. Chem. Phys., 14(1), 732 

447–470, doi:10.5194/acp-14-447-2014, 2014. 733 

Skamarock, C., Klemp, B., Dudhia, J., Gill, O., Barker, D., Duda, G., Huang, X., Wang, W. 734 

and Powers, G.: A Description of the Advanced Research WRF Version 3, , 735 

doi:10.5065/D68S4MVH, 2008. 736 

Tang, Y., Chai, T., Pan, L., Lee, P., Tong, D., Kim, H.-C. and Chen, W.: Using optimal 737 

interpolation to assimilate surface measurements and satellite AOD for ozone and PM2.5: 738 

A case study for July 2011, Journal of the Air & Waste Management Association, 65(10), 739 

1206–1216, doi:10.1080/10962247.2015.1062439, 2015. 740 

Wiedinmyer, C., Quayle, B., Geron, C., Belote, A., McKenzie, D., Zhang, X., O’Neill, S. and 741 

Wynne, K. K.: Estimating emissions from fires in North America for air quality 742 

modeling, Atmospheric Environment, 40(19), 3419–3432, 743 

doi:10.1016/j.atmosenv.2006.02.010, 2006. 744 

Wiedinmyer, C., Akagi, S., Yokelson, R., Emmons, L., Al-Saadi, J., Orlando, J. and Soja, A.: 745 

The Fire INventory from NCAR (FINN): A High Resolution Global Model to Estimate 746 

the Emissions from Open Burning, Geoscientific Model Development, 625–641, 2011. 747 

Yu, H., Dickinson, R. E., Chin, M., Kaufman, Y. J., Holben, B. N., Geogdzhayev, I. V. and 748 

Mishchenko, M. I.: Annual cycle of global distributions of aerosol optical depth from 749 

integration of MODIS retrievals and GOCART model simulations, J. Geophys. Res., 750 

108(D3), 4128, doi:10.1029/2002JD002717, 2003. 751 

Yuan, H., Dai, Y., Xiao, Z., Ji, D. and Shangguan, W.: Reprocessing the MODIS Leaf Area 752 

Index products for land surface and climate modelling, Remote Sensing of Environment, 753 

115(5), 1171–1187, doi:10.1016/j.rse.2011.01.001, 2011.  754 

https://doi.org/10.5194/gmd-2019-169
Preprint. Discussion started: 18 July 2019
c© Author(s) 2019. CC BY 4.0 License.



 

 

33 

 

 755 

Figure 1. Domains of GOCI sensor (dark green line) and CMAQ model simulations (blue 756 

line). Red-colored dots denote the locations of Air Korea sites in South Korea. Orange-757 

colored dots represent the locations of ground-based observation stations in China. Blue stars 758 

show the locations of seven super-sites in South Korea. During the KORUS-AQ campaign, 759 

observation data were obtained from 1514 stations in China as well as 264 Air Korea and 760 

seven super-site stations in South Korea. 761 
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 763 

Figure 2. Schematic diagram of the Korean air quality prediction system developed in this 764 

study. The initial conditions (ICs) of the CMAQ model simulations are prepared by 765 

assimilating CMAQ outputs with satellite-retrieved and ground-measured observations. The 766 

data process for preparing the ICs is shown in the box with gray-dashed lines.  767 
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 768 

Figure 3. Schematic diagram of the Korean air quality prediction system for particulate 769 

matter (PM) and gas-phase pollutants. The data assimilation (DA) cycle is 24 hours for both 770 

PM and gas-phase pollutants such as CO, O3, and SO2. The DA of NO2 is excluded in the 771 

current study, the reason for which is discussed in the text.  772 
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 773 

Figure 4. Average PM2.5 composition (a) observed at the super-site stations and (b) simulated 774 

by the CMAQ model during the KORUS-AQ campaign. The averaged PM2.5 measured from 775 

the super-sites and calculated from the CMAQ model simulations over the period of the 776 

KORUS-AQ campaign are 28 µg/m3 and 19.9 µg/m3, respectively. The mass of organic 777 

aerosols (OAs) was calculated by multiplying organic carbon mass by 1.6.  778 
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 779 

Figure 5. Time-series plots of hourly (a) PM10, (b) PM2.5, (c) CO, (d) SO2, and (e) O3 780 

concentrations at 264 Air Korea stations. Black open circles (OBS) represent the observed 781 

concentrations. Blue and red lines show the results simulated from the BASE RUN and DA 782 

RUN over South Korea, respectively. 783 
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 784 

Figure 6. Aggregated average concentrations of (a) PM10, (b) PM2.5, (c) CO, and (d) SO2 at 785 

264 Air Korea stations over the KORUS-AQ campaign period. Open black circles denote the 786 

observations obtained from 264 Air Korea stations in South Korea. Blue and red lines 787 

represent the predicted concentrations from the BASE RUN and DA RUN, respectively. The 788 

DA was conducted at 00:00 UTC every day throughout the KORUS-AQ campaign period.  789 
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 790 

Figure 7. Comparison of CMAQ-simulated O3 mixing ratios (BASE RUN with blue lines 791 

and DA RUN with red lines) with O3 mixing ratios from Air Korea stations (open black 792 

circles). DA RUN was carried out by assimilating CMAQ outputs with Air Korea 793 

observations using (a) only O3 mixing ratios and (b) both O3 and NO2 mixing ratios. 794 

795 
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 796 

Figure 8. Comparison of WRF-simulated mixing layer height (MLH) (denoted by blue-797 

dashed line) with lidar-measured MLH (denoted by open black circles) at Seoul National 798 

University (SNU) in Seoul. KST stands for Korean standard time.  799 
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 800 

Figure 9. Aggregated average concentrations of (a) PM10, (b) PM2.5, (c) OC, (d) EC, (e) 801 

sulfate, (f) nitrate, and (g) ammonium as predicted by CMAQ model during the period of the 802 

KORUS-AQ campaign. The others are the same as those shown in Fig. 7, except for the fact 803 

that the observation data used here were obtained from the seven super-site stations in South 804 

Korea. 805 
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 806 

Figure 10. Spatial distributions of (a) PM10, (b) PM2.5, (c) CO, (d) SO2, and (e) O3 over Seoul 807 

Metropolitan Area (SMA). The concentrations were averaged over the entire period of the 808 

KORUS-AQ campaign. Colored circles represent the concentrations of the air pollutants 809 

observed at the Air Korea stations in the SMA. 810 

811 
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 812 

Figure 11. Time-series plots of four performance metrics (IOA, R, RMSE, and MB) for (a) 813 

PM10, (b) PM2.5, (c) CO, (d) SO2, and (e) O3 forecasts. The DA was conducted at 00:00 UTC. 814 

The units of RMSE and MB are µg/m3 and ppmv for PM concentrations and for gaseous 815 

species, respectively. The definitions of the four performance metrics are shown in Appendix 816 

A. 817 
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 819 

Figure 12. Variations of three performance metrics (R, RMSE, and MB) with time-intervals 820 

of data assimilations. For these tests, the GOCI AODs were used in the DA to update the 821 

initial conditions of the CMAQ model simulations. The results from the three CMAQ model 822 

simulations were compared with AERONET AODs (“ground truth”). The two blue squares 823 

represent the performances from the BASE RUNs and the red squares indicate the 824 

performances from the DA RUNs. The three experiments were carried out with the 825 

assimilation time-intervals of 24, 6, and 3 hours (hr), respectively. Here, the DA RUN with 826 

the 24-hr time-interval is referred to as “air quality prediction”, and the DA RUNs with the 6-827 

hr and 3-hr time-interval are referred to as “air quality reanalysis”. 828 

829 
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 830 

Figure 13. Soccer plot analyses for (a) PM10, (b) PM2.5, (c) CO, (d) SO2, and (e) O3. The 831 

CMAQ-predicted concentrations were compared with the Air Korea observations. Blue 832 

crosses, red circles, dark-green triangles, and black diamonds represent the performances 833 

calculated from the BASE RUN, the DA RUNs with the OI system, the 1-hour (hr) OI system, 834 

and the 2-hr OI system, respectively.  835 
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Table 1. Statistical metrics from BASE RUN and DA RUN with Air Korea observations over 836 

the entire period of the KORUS-AQ campaign.   837 

 

  

PM
10

 PM
2.5

 CO SO
2
 O

3
 

BASE 

RUN 

DA 

RUN 

BASE 

RUN 

DA 

RUN 

BASE 

RUN 

DA 

RUN 

BASE 

RUN 

DA 

RUN 

BASE 

RUN 

DA 

RUN 

N 101852 65383 101764 101764 101836 

IOA 0.51 0.60 0.67 0.71 0.41 0.51 0.34 0.35  0.69 0.70 

R 0.34 0.40 0.51 0.53 0.28  0.21 0.14 0.15  0.50 0.52 

RMS

E 
40.8 34.87 19.2 17.83 0.31  0.19 0.0068 0.0066  0.020 0.02 

MB -27.2 -13.54 -9.9 -2.43 -0.27 -0.04 -0.0009 -0.0004  0.003 -0.0024 

ME 30.1 24.20 15.3 13.48 0.27 0.15 0.004 0.0034  0.015 0.015 

MNB -50.0 -18.17 -30.1 5.32 -62.0 3.14 3.1 17.77  48.0 30.22 

MNE 60.7 52.35 62.6 62.77 62.9 40.67  93.1 93.56  70.2 61.34 

MFB -84.3 -41.61 -63.6 -24.41 -94.1 -10.00 -56.4 -40.20  11.1 -0.82 

MFE 91.1 62.32 81.6 60.01 94.9 39.49 91.4 82.91  40.7 40.64 

  838 
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Table 2. Statistical metrics from BASE RUN and DA RUN with Air Korea observations at 839 

00:00 UTC when the DA was conducted during the KORUS-AQ campaign.   840 

 

  

PM
10

 PM
2.5

 CO SO
2
 O
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BASE 

RUN 

DA 

RUN 

BASE 

RUN 

DA 

RUN 

BASE 

RUN 

DA 

RUN 

BASE 

RUN 

DA 

RUN 

BASE 

RUN 

DA 

RUN 

N 1057 695 1024 1007 1043 

IOA 0.48 0.86 0.63 0.74  0.41 0.62 0.36 0.44 0.45 0.75 

R 0.30 0.75 0.46 0.59  0.28 0.43 0.097 0.27 0.09 0.61 

RMS

E 
47.2 23.92 21.5 18.21  0.35 0.16 0.0061 0.0039 0.023 0.012 

MB -32.2 -5.46 -11.5 2.80  -0.31 -0.01 -0.0019 -0.0009 0.015 0.002 

ME 34.5 16.03 17.2 13.25  0.31 0.12 0.0039 0.0023 0.018 0.009 

MNB -54.9 -0.53 -33.2 26.17  -64.3 9.69 -20.1 7.35 100.4 27.45 

MNE 64.0 36.07 63.1 59.77  64.8 30.69 86.7 55.27 107.8 43.81 

MFB -92.8 -13.38 -67.3 0.56  -98.7 1.81 -75.9 -17.39 43.7 12.16 

MFE 98.8 38.41 84.3 48.30  99.1 27.14 99.9 56.23 52.9 31.53 

 841 
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