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Abstract 28 

For the purpose of providing reliable and robust air quality predictions, an air quality 29 

prediction system was developed for the main air quality criteria species in South Korea (PM10, 30 

PM2.5, CO, O3, and SO2). The main caveat of the system is to prepare the initial conditions (ICs) 31 

of the Community Multi-scale Air Quality (CMAQ) model simulations using observations 32 

from the Geostationary Ocean Color Imager (GOCI) and ground-based monitoring networks 33 

in northeast Asia. The performance of the air quality prediction system was evaluated during 34 

the Korea-United States Air Quality Study (KORUS-AQ) campaign period (1 May–12 June 35 

2016). Data assimilation (DA) of optimal interpolation (OI) with Kalman filter was used in this 36 

study. One major advantage of the system is that it can predict not only particulate matter (PM) 37 

concentrations but also PM chemical composition including five main constituents: sulfate 38 

(SO4
2−), nitrate (NO3

−), ammonium (NH4
+), organic aerosols (OAs), and elemental carbon (EC). 39 

In addition, it is also capable of predicting the concentrations of gaseous pollutants (CO, O3 40 

and SO2). In this sense, this new air quality prediction system is comprehensive. The results 41 

with the ICs (DA RUN) were compared with those of the CMAQ simulations without ICs 42 

(BASE RUN). For almost all of the species, the application of ICs led to improved performance 43 

in terms of correlation, errors, and biases over the entire campaign period. The DA RUN agreed 44 

reasonably well with the observations for PM10 (IOA = 0.60; MB = -13.54) and PM2.5 (IOA = 45 

0.71; MB = -2.43) as compared to the BASE RUN for PM10 (IOA = 0.51; MB = -27.18) and 46 

PM2.5 (IOA = 0.67; MB = -9.9). A significant improvement was also found with the DA RUN 47 

in terms of bias. For example, for CO, the MB of -0.27 (BASE RUN) was greatly enhanced to 48 

-0.036 (DA RUN). In the cases of O3 and SO2, the DA RUN also showed better performance 49 

than the BASE RUN. Further, several more practical issues frequently encountered in the air 50 
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quality prediction system were also discussed. In order to attain more accurate ozone 51 

predictions, the DA of NO2 mixing ratios should be implemented with careful consideration of 52 

the measurement artifacts (i.e., inclusion of alkyl nitrates, HNO3, and PANs in the ground-53 

observed NO2 mixing ratios). It was also discussed that, in order to ensure accurate nocturnal 54 

predictions of the concentrations of the ambient species, accurate predictions of the mixing 55 

layer heights (MLH) should be achieved from the meteorological modeling. Several 56 

advantages of the current air quality prediction system, such as its non-static free parameter 57 

scheme, dust episode prediction, and possible multiple implementations of DA prior to actual 58 

predictions, were also discussed. These configurations are all possible because the current DA 59 

system is not computationally expensive. In the ongoing and future works, more advanced DA 60 

techniques such as the three-dimensional variational (3DVAR) method and ensemble Kalman 61 

filter (EnK) are being tested and will be introduced to the Korean air quality prediction system 62 

(KAQPS). 63 

 64 

Keywords: Air quality prediction; Particulate matter (PM); Geostationary satellite sensor 65 

(GOCI); Air Korea; Data assimilation (DA); Dust episode predictions; NO2 measurement 66 

artifacts  67 
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1. Introduction 68 

Air quality has long been considered an important issue in climate change, visibility, 69 

and public health, and it is strongly dependent upon meteorological conditions, emissions, and 70 

the transport of air pollutants. Air pollutants typically consist of atmospheric particles and gases 71 

such as particulate matter (PM), carbon monoxide (CO), ozone (O3), nitrogen dioxide (NO2), 72 

and sulfur dioxide (SO2). These aerosols and gases play important roles in anthropogenic 73 

climate forcing both directly (Bellouin et al., 2005; Carmichael et al., 2009; IPCC, 2013; Scott 74 

et al., 2014) and indirectly (Bréon et al., 2002; IPCC, 2013; Penner et al., 2004; Scott et al., 75 

2014) in influencing the global radiation budget. Among the various air pollutants, PM and 76 

surface O3 are the most notorious health threats, as has been stated by several previous studies 77 

(Carmichael et al., 2009; Dehghani et al., 2017; Khaniabadi et al., 2017).  78 

With the stated importance of atmospheric aerosols and gases, considerable research 79 

efforts have been made to monitor and quantify their amounts in the atmosphere through 80 

satellite-, airborne-, and ground-based observations as well as chemistry-transport model 81 

(CTM) simulations. In South Korea, the Korean Ministry of the Environment (KMoE) provides 82 

real-time chemical concentrations as measured by ground-based observations for six criteria 83 

air pollutants (PM10, PM2.5, O3, CO, SO2, and NO2) at the Air Korea website 84 

(https://www.airkorea.or.kr). In addition, the National Institute of Environmental Research 85 

(NIER) of South Korea provides air quality predictions using multiple CTM simulations. Air 86 

quality predictions are another crucial element for protecting public health through the 87 

forecasting of high air pollution episodes in advance and alerting citizens about these high 88 

episodes. In this context, reliable and robust air quality forecasts are necessary to avoid any 89 

confusion caused by poor predictions given by CTM simulations.  90 
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 Although there are various datasets representing air quality, limitations remain in the 91 

observations and model outputs. Specifically, observation data are, in general, known to be 92 

more accurate than model outputs, but they have spatial and temporal limitations. These 93 

limitations will be overcome by improving spatial and temporal coverage via future 94 

geostationary satellite instruments such as the Geostationary Environment Monitoring 95 

Spectrometer (GEMS) over Asia, the Tropospheric Emissions: Monitoring of Pollution 96 

(TEMPO) over North America, and the Sentinel-4 over Europe. In addition, the TROPOspheric 97 

Monitoring Instrument (TROPOMI) on board the Copernicus Sentinel-5 Precursor satellite was 98 

successfully launched into low earth orbit (LEO) on 13 October 2017 and are providing 99 

information on the chemical composition in the atmosphere with a higher spatial resolution of 100 

3.5 × 7 km2.  101 

 Unlike observation data, models can provide meteorological and chemical information 102 

without any spatial and temporal data discontinuity, but they do have an issue of inaccuracy. 103 

The major causes of uncertainty in the results of CTM simulations are introduced from 104 

imperfect emissions, meteorological fields, initial conditions (ICs), and physical and chemical 105 

parameterizations in the models (Carmichael et al., 2008). In order to minimize the limitations 106 

and maximize the advantages of observation data and model outputs, there have been numerous 107 

attempts to provide accurate and spatially- as well as temporally- continuous information on 108 

chemical composition in the atmosphere by integrating observation data with model outputs 109 

via data assimilation (DA) techniques.  110 

Although the Korean numerical weather prediction (NWP) carried out by the Korea 111 

Meteorological Administration (KMA) employs various DA techniques, almost no previous 112 

efforts have been made to develop a air quality prediction system with DA in South Korea. 113 
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Therefore, in the present study, the air quality prediction system named as Korean Air Quality 114 

Prediction System version 1 (KAQPS v1) was developed by preparing ICs via DA for the 115 

Community Multi-scale Air Quality (CMAQ) model (Byun and Schere, 2006; Byun and Ching, 116 

1999) using satellite- and ground-based observations for particulate matter (PM) and 117 

atmospheric gases such as CO, O3, and SO2. The performances of the system were then 118 

demonstrated during the period of the Korea-United States Air Quality Study (KORUS-AQ) 119 

campaign (1 May – 12 June 2016) in South Korea. 120 

In this study, the optimal interpolation (OI) method with the Kalman filter was applied 121 

in order to develop the air quality prediction system, since this method is still useful and viable 122 

in terms of computational cost and performance. The performance of the method is almost 123 

comparable to that of the three-dimensional variational (3DVAR) method, as shown in Tang et 124 

al. (2017). More complex and advanced DA techniques are currently being and will continue 125 

to be applied to current air quality prediction systems. These works are now in progress.  126 

In addition, this manuscript also discusses several practical issues frequently 127 

encountered in the air quality predictions such as: i) DA of NO2 mixing ratios for accurate 128 

ozone prediction with a careful consideration of measurement artifacts; ii) the issue of the 129 

nocturnal mixing layer height (MLH) for nocturnal predictions; iii) predictions of dust episodes; 130 

iv) the use of non-static free parameters; and v) the influences of multiple implementations of 131 

the DA before the actual predictions.   132 

 The details of the datasets and methodology used in this study are described in Sect. 2. 133 

The results of the developed air quality prediction system are discussed in Sect. 3, and then a 134 

summary and conclusions are given in Sect. 4. 135 

 136 
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2. Methodology 137 

The air quality prediction system was developed using the CMAQ model along with 138 

meteorological inputs provided by the Weather Research and Forecasting (WRF) model 139 

(Skamarock et al., 2008). The ICs for the CMAQ model simulations were prepared via the DA 140 

method using satellite-retrieved and ground-based observations. The performances of the 141 

developed prediction system were evaluated using ground in-situ data. The models, data, and 142 

DA technique are described in detail in the following sections. 143 

2.1 Meteorological and chemistry-transport modeling 144 

2.1.1 WRF model simulations  145 

The WRF model has been developed for providing mesoscale numerical weather 146 

prediction (NWP). It has also been used to provide meteorological input fields for CTM 147 

simulations (Appel et al., 2010; Chemel et al., 2010; Foley et al., 2010; Lee et al., 2016; Park 148 

et al., 2014). In this study, WRF v3.8.1 with the Advanced Research WRF (ARW) dynamical 149 

core was applied to prepare the meteorological inputs for the CMAQ model simulations. 150 

Dynamical and physical configurations for the WRF model simulations were selected as 151 

follows: the Yonsei University (YSU) scheme for planetary boundary layer (Hong et al., 2006); 152 

the WRF single-moment 6-class (WSM6) scheme for the micro-physics (Hong and Lim, 2006); 153 

the Grell-Freitas ensemble scheme for cumulus parameterization (Grell and Freitas, 2014); the 154 

Noah-MP land surface model (Niu et al., 2011; Yang et al., 2011); the rapid radiative transfer 155 

model for Global Circulation Models (RRTMG) for shortwave/longwave options (Iacono et al., 156 

2008); and the revised MM5 scheme for surface layer options (Jiménez et al., 2012). The 157 

National Centers for Environmental Prediction (NCEP) Final (FNL) Operational Global 158 
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Analysis data on 1° × 1° grids were chosen for the ICs and boundary conditions (BCs) for the 159 

WRF simulations. In order to minimize meteorological field errors for the applications of ICs 160 

and BCs to the WRF simulations, the objective analysis (OBSGRID) nudging was conducted 161 

using the NCEP Automated Data Processing (ADP) global upper-air/surface observational 162 

weather data via the Cressman (1959)’s successive correction method. The adjusted 163 

meteorological variables were temperature, geopotential height, relative humidity, and 164 

zonal/meridional winds. 165 

The model domain for the WRF simulations covers Northeast Asia with a horizontal 166 

resolution of 15 × 15 km2, having a total of 223 latitudinal and 292 longitudinal grid cells. The 167 

size of the WRF domain is slightly larger than that of the CMAQ domain, as shown in Fig. 1. 168 

The meteorological data have 27 vertical layers from the surface (1000 hPa) to 50 hPa. The 169 

WRF meteorological fields (e.g., temperature, pressure, wind, humidity, cloud, etc) were then 170 

transformed into the CMAQ-ready format via the Meteorology-Chemistry Interface Processor 171 

(MCIP; Otte and Pleim (2010)) v4.3 which is a software to serve for transforming horizontal 172 

and vertical coordinates while trying to maintain dynamic consistency between WRF and 173 

CMAQ model simulations. 174 

 175 

2.1.2 CMAQ model simulations 176 

The CMAQ v5.1 model was used to estimate the concentrations of the atmospheric 177 

chemical species over the domain, as shown in Fig. 1. The CMAQ domain has 204 latitudinal 178 

and 273 longitudinal grid cells in total, and also has a 15 × 15 km2 horizontal resolution and 27 179 

sigma vertical layers. The CMAQv5.1 model was configured to use. Chemical and physical 180 

configurations for the CMAQ model simulations were selected as follows: SAPRC07tc for the 181 
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gas-phase chemical mechanism (Hutzell et al., 2012); AERO6 for aerosol thermodynamics 182 

(Appel et al., 2013); Euler Backward Iterative (EBI) chemistry solver (Hertel et al., 1993), 183 

which is a numerically optimized photochemistry mechanism solver; M3DRY for dry 184 

deposition velocity (Pleim and Xiu, 2003; Xiu and Pleim, 2001); global mass-conserving 185 

scheme (YAMO & WRF) for horizontal and vertical advection (Colella and Woodward, 1984); 186 

MULTISCALE (Louis, 1979), which is a simple first-order eddy diffusion scheme for 187 

horizontal diffusion; and the Asymmetric Convective Model 2 (ACM2; Pleim, 2007a, 2007b) 188 

for vertical diffusion. 189 

For anthropogenic emissions, KORUS v1.0 emissions (Woo et al., 2012) were used. 190 

The KORUS v1.0 emissions cover almost all of Asia, and are based on three emission 191 

inventories: the Comprehensive Regional Emissions inventory for Atmospheric Transport 192 

Experiment (CREATE) for East Asia excluding Japan; the Model Inter-Comparison Study for 193 

Asia (MICS-Asia) for Japan; and the Studies of Emissions and Atmospheric Composition, 194 

Clouds and Climate Coupling by Regional Surveys (SEAC4RS) for South and Southeast Asia.  195 

Biogenic emissions were prepared by running the Model of Emissions of Gases and 196 

Aerosols from Nature (MEGAN v2.1; Guenther et al., 2006; 2012) with a grid size identical to 197 

that of the CMAQ model simulations. For the MEGAN simulations, the MODIS land cover 198 

data (Friedl et al., 2010) and improved leaf area index (LAI) based on MODIS datasets (Yuan 199 

et al., 2011) were utilized. Pyrogenic emissions were obtained from the Fire Inventory from 200 

NCAR (FINN; Wiedinmyer et al., 2006, 2011). The lateral BCs for the CMAQ model 201 

simulations were prepared using the global model results of the Model for Ozone and Related 202 

chemical Tracers version 4 (MOZART-4; Emmons et al., 2010) at every 6 hours. The mapping 203 

and re-gridding of the MOZART-4 data were conducted by matching the CMAQ grid 204 
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information.  205 

 206 

2.2 Observation data 207 

2.2.1. Satellite-based observations 208 

A Korean geostationary satellite of Communication, Ocean, and Meteorological 209 

Satellite (COMS) was launched on 26 June in 2010 over the Korean Peninsula. The COMS is 210 

a geostationary orbit satellite and it is stationed at an altitude of approximately 36,000 km at a 211 

latitude of 36°N and a longitude of 128.2°E with a horizontal coverage of 2500 × 2500 km2 212 

(refer to Fig. 1). Among the three payloads of the COMS, Geostationary Ocean Color Image 213 

(GOCI) is the first multi-channel ocean color sensor with visible and near infrared channels. 214 

The GOCI instrument provides hourly spectral images with a spatial resolution of 500 × 500 215 

m2 from 00:30 to 07:30 Coordinated Universal Time (UTC) for eight spectral (6 visible and 2 216 

near-infrared) channels at 412, 443, 490, 555, 660, 680, 745, and 865 nm. 217 

The Yonsei aerosol retrieval (YAER) algorithm for the GOCI sensor was initially 218 

developed by Lee et al. (2010) to retrieve the aerosol optical properties (AOPs) over ocean 219 

areas, and was then improved by expanding to consider non-spherical aerosol optical properties 220 

(Lee et al., 2012). Choi et al. (2016) further extended the algorithm for application to land 221 

surfaces, and the algorithm was referred to as the GOCI YAER version 1 algorithm. With the 222 

GOCI YAER algorithm, hourly Aerosol Optical Depths (AODs) at 550 nm were produced over 223 

East Asia. Choi et al. (2016) compared the retrieved GOCI AODs with other satellite-retrieved 224 

and ground-based observations, and found several errors in the cloud masking and surface 225 

reflectances. These errors were corrected in the recently updated second version of the GOCI 226 

YAER algorithm (Choi et al., 2018), which used the updated cloud masking and more accurate 227 

surface reflectances. In this study, the most recent GOCI AOD products from the GOCI YAER 228 
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version 2 algorithm were used.  229 

 230 

2.2.2. Ground-based observations 231 

In addition to the satellite data, ground-based observations in South Korea and China 232 

were also collected for use in the air quality prediction system for PM and gas-phase pollutants. 233 

The orange, red, and blue dots in Fig. 1 represent the ground-based observation sites in China, 234 

Air Korea, and super-site stations in South Korea, respectively. These observations provide 235 

real-time concentrations of criteria species such as PM10, PM2.5, CO, O3, SO2, and NO2.  236 

Throughout the period of the KORUS-AQ campaign, ground-based observation data 237 

were obtained from 1514 stations in China, 264 Air Korea stations, and seven super-site 238 

stations in South Korea. In this study, 80 % of the ground-based observations in China and Air 239 

Korea stations in South Korea were randomly selected for use in the prediction system. The 240 

other 20 % of the data and super-site observations were used to evaluate the performances of 241 

the developed air quality prediction system. 242 

In addition, AErosol RObotic NETwork (AERONET) AODs were used to conduct an 243 

independent evaluation of the air quality prediction system. AERONET is a federated global 244 

ground-based sun photometer network (Holben et al., 1998). Cloud-screened and quality-245 

assured level 2.0 AODs for the AERONET were used in this study. 246 

 247 

2.3 Air quality prediction system 248 

In the present study, the air quality prediction system was developed by adjusting the 249 

ICs for the CMAQ model simulations based on DA with satellite-retrieved and ground-250 

measured observations. Two parallel WRF-CMAQ model runs were conducted. The first 251 
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experiment that involved adjusting ICs via DA is referred to as DA RUN (see Fig. 2). In order 252 

to evaluate the prediction system, a second experiment, in which the ICs were originated from 253 

the previous CMAQ model simulations without assimilations, was also conducted. This 254 

CMAQ run is referred to as BASE RUN.               255 

 256 

2.3.1. AOD calculations 257 

CMAQ AODs are calculated by integrating the aerosol extinction coefficient (σext) 258 

using the following equation:  259 

 260 

AOD(λ) = ∫ σext(λ) 
z

0
dz                       (1) 261 

 262 

where z represents the vertical height; σext is defined as the sum of the absorption coefficient 263 

(σabs) and the scattering coefficient (σsca); and σabs and σsca can be estimated by Eqns (3) 264 

and (4), respectively, as shown below: 265 

 266 

σext(λ) = σabs(λ) + σsca(λ)                    (2) 267 

σabs(λ) [Mm−1] = ∑ ∑ {(1 − ωij(λ)) ∙ βij(λ) ∙ fij(RH) ∙ [C]ij}
m
j

n
i        (3) 268 

σsca(λ) [Mm−1] = ∑ ∑ {ωij(λ) ∙ βij(λ) ∙ fij(RH) ∙ [C]ij}
m
j

n
i          (4) 269 

 270 

where i and j denote the particulate species and size bin (or particle mode), respectively; ωij(λ) 271 

is the single scattering albedo; βij(λ) is the mass extinction efficiency (MEE) of particulate 272 

species i for the size bin or particle mode j; [C]ij is the concentration of particulate species 273 

including (NH4)2SO4, NH4NO3, black carbon, organic aerosols (OA), mineral dust, and sea-274 
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salt aerosols; RH is the relative humidity; fij(RH) is the hygroscopic factor; and the single 275 

scattering albedo (ω) implies to the fraction (portion) of scattering in the total extinction.  276 

Using Eqns. (2) - (4), AODs were calculated from the aerosol composition and RH. 277 

These have been intensive tests using different β  and f(RH)  values in the following three 278 

previous studies: (1) Chin et al. (2002)’s study with the Goddard Chemistry Aerosol Radiation 279 

and Transport (GOCART) model; (2) Martin et al. (2003)’s study with the GEOS-Chem model; 280 

and (3) Malm and Hand (2007)’s study with the CMAQ model. Lee et al. (2016) tested these 281 

methods, and then found that Chin et al. (2002)’s method reproduced the best results in 282 

estimating AODs at 550 nm over East Asia. On the basis of Lee et al. (2016)’s work, σext was 283 

estimated with the β and f(RH) values suggested by Chin et al. (2002). After that, σext was 284 

integrated with respect to altitude, in order to calculate the AODs. The calculated AODs were 285 

used in the air quality prediction system in order to prepare the ICs for the PM predictions.  286 

 287 

2.3.2. Data assimilation (DA) 288 

The ground-based observations, together with GOCI-derived AODs, were used to 289 

prepare the ICs for the air quality predictions with the CMAQ model simulations. In order to 290 

achieve this, the following steps were taken: (i) the CMAQ-calculated concentrations of CO, 291 

O3, and SO2 were combined with the concentrations of CO, O3, and SO2 obtained from ground-292 

based observations in South Korea (Air Korea) and China; (ii) the CMAQ-calculated AODs 293 

were assimilated with the GOCI AODs; (iii) the assimilated AODs were converted into PM10; 294 

(iv) the converted PM10 was again assimilated at the surface in South Korea and China; and (v) 295 

after the DA at the surface, the ratios of the assimilated species concentrations to the original 296 

CMAQ-simulated concentrations were applied so as to the adjust vertical profiles of the 297 
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chemical species above the surface. In the air quality prediction system, the DA cycle is 24 298 

hours and the assimilation takes place every day at 00:00 UTC (refer to Fig. 3).  299 

 The optimal interpolation (OI) method with the Kalman filter was chosen in the air 300 

quality prediction system. The OI method was originally used for meteorological applications 301 

(Lorenc, 1986), and has also been used in the assimilations for trace gases (Khattatov et al., 302 

1999, 2000; Lamarque et al., 1999; Levelt et al., 1998). Recently, the OI technique has also 303 

been applied to aerosol fields (Collins et al., 2001; Yu et al., 2003; Generoso et al., 2007; 304 

Adhikary et al., 2008; Carmichael et al., 2009; Chung et al., 2010; Park et al., 2011; Park et al., 305 

2014; Tang et al., 2015, 2017).  306 

Aerosol assimilation using the OI method was first applied by Collins et al. (2001) as 307 

follows: 308 

 309 

τm
′ = τm + 𝐊(τo − 𝐇τm)                         (5) 310 

𝐊 = 𝐁𝐇T(𝐇𝐁𝐇T + 𝐎)−1                         (6) 311 

𝐎 = [(foτo)2 + (εo)2]𝐈                          (7) 312 

𝐁(dx, dz) = [(fmτm)2 + (εm)2]exp [−
dx

2

2lmx
2 ] exp [−

dz
2

2lmz
2 ]             (8) 313 

 314 

where τm
′  , τm , and τo  represent the assimilated products by the OI method, the modeled 315 

values, and the observed values, respectively; 𝐊  is the Kalman gain matrix; 𝐇  is the 316 

observation operator (or forward operator), which is an interpolator from model to observation 317 

space; 𝐁 and 𝐎 are the background and observation error covariance matrices, respectively; 318 

(∙)T denotes the transpose of a matrix; fo is the fractional error in the observation-retrieved 319 

value; εo  is the minimum root mean square error in the observation-retrieved values; 𝐈 320 
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denotes the unit matrix; fm is the fractional error in the model estimates; εm is the minimum 321 

root mean square error in the model estimates; dx  is the horizontal distance between two 322 

model grid points; lmx is the horizontal correlation length scale for the errors in the model; 323 

dz is the vertical distance between two model grid points; and lmz is the vertical correlation 324 

length scale for the errors in the model. In this work, the OI technique was applied for the DA 325 

of atmospheric gaseous species as well as particulate species.  326 

Six free parameters (fm, fo, εm, εo, lmx, and lmz) were used to calculate the error 327 

covariance matrices of the observations and model, the mathematical formalisms of which are 328 

described in Eq. (7) and (8), respectively. Several previous studies have used fixed values for 329 

free parameters (Collins et al., 2001; Yu et al., 2003; Adhikary et al., 2008; Chung et al., 2010). 330 

These runs are called “static” runs. In contrast to those previous studies, “non-static” free 331 

parameters were applied in this study by minimizing the differences between the assimilated 332 

values and observations via an iterative process at each assimilation time step. This non-static 333 

free parameter scheme is possible due to the fact that the OI technique with the Kalman filter 334 

is much less costly in terms of computation time than other DA techniques, such as the 3-D or 335 

4-D variational methods. This is another advantage of using the OI technique in this system. It 336 

typically takes less than 20 minutes with a workstation environment (dual Intel Xeon 2.40 GHz 337 

processor). 338 

   339 

2.3.3. Allocation of the assimilated PM10 & PM2.5 into particulate composition 340 

In the procedure of DA, PM10 was assimilated in this study, because the PM10 data 341 

were more plentiful than PM2.5. The assimilated PM10 then needs to be allocated into the PM 342 

composition for the CMAQ-model prediction runs. In order to achieve this, the differences 343 
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between the assimilated PM10 and background PM10 (∆ PM10) were first calculated. Then, 344 

∆PM2.5 was estimated using the ratios of PM2.5 to PM10 from the background CMAQ model 345 

runs (i.e., ∆PM2.5=∆PM10×PM2.5/PM10). ∆PM2.5 was then allocated to the PM2.5 composition 346 

according to the comparison between two PM2.5 compositions observed at the seven super-sites 347 

and simulated from the CMAQ model runs over South Korea. Both of the compositions are 348 

shown in Fig. 4. In Fig. 4, “PM OTHERS” indicates the remaining particulate matter species 349 

after excluding sulfate, nitrate, ammonium, organic aerosol (OA), and elementary carbon (EC). 350 

The PM OTHERS occupies 25 % of the total PM2.5 observed at super-sites. The other 351 

fraction, ∆PM10×(1-PM2.5/PM10), was also distributed into the coarse-mode particles (PM2.5-10) 352 

as crustal elements.  353 

 354 

3. Results and discussions 355 

The performances of the air quality prediction system were evaluated by comparing 356 

them with ground-based observations from the Air Korea network and super-site stations in 357 

South Korea. Several sensitivity analyses were also conducted in order to assess the influences 358 

of the DA time-intervals on the accuracy of the air quality prediction.  359 

 360 

3.1. Evaluation of the air quality prediction system 361 

3.1.1. Time-series analysis 362 

Figure 5 shows the time-series plots of PM10, PM2.5, CO, O3, and SO2 concentrations 363 

from the BASE RUN and the DA RUN. Here, the observation data (OBS) obtained from the 364 

Air Korea network were compared with the results of the two sets of the CMAQ model 365 

simulations, i.e., (1) BASE RUN and (2) DA RUN. As mentioned previously, 20% of the Air 366 



 

 

17 

 

Korea observations used in the evaluation were randomly selected during the period of the 367 

KORUS-AQ campaign. The other 80 % of the Air Korea data were used in the DA at 00:00 368 

UTC. For the forecast hours from 01:00 to 23:00 UTC, all of the ground observations (254 Air 369 

Korea and seven super-site stations) were used to evaluate the performances of the developed 370 

air quality prediction system. As shown in Fig. 5, we achieved some improvements in the 371 

prediction performances by applying the ICs to the CMAQ model simulations. The BASE 372 

RUN significantly under-predicted PM10, PM2.5, and CO while the DA RUN produced 373 

concentrations that were more consistent with the observations than those of the BASE RUN. 374 

 In case of CO, the observed CO mixing ratios were about three times higher than those 375 

from the BASE RUN. These large differences are well known, and have been attributed to the 376 

underestimated emissions of CO (Heald et al., 2004). However, when the DA was applied, the 377 

predictions of the CO mixing ratios improved. Similarly, the performances of the PM10 and 378 

PM2.5 predictions improved with the application of the DA. Unlike PM10, PM2.5, and CO, the 379 

O3 mixing ratios and its diurnal trends from both the BASE RUN and DA RUN tend to be well-380 

matched with the observations. By contrast, the poorest performances of the BASE RUN and 381 

the DA RUN were shown for SO2.  382 

In addition, a dust event took place between 6 May and 8 May. This event is captured by 383 

the DA RUN (check red peaks in Fig. 5(a) and (b)), while the BASE RUN cannot capture this 384 

dust event. This demonstrates the capability of the current system to possibly predict dust 385 

events in South Korea. In the DA RUN, dust information is provided into the CMAQ model 386 

runs through both/either GOCI AOD and/or ground PM observations measured along the dust 387 

plume tracks.       388 
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The effectiveness of the DA with prediction time was also analyzed by calculating the 389 

aggregated average concentrations of atmospheric species (see Figs. 6, 7, and 9). Fig. 6 depicts 390 

the CMAQ-calculated average concentrations of PM10, PM2.5, CO, and SO2 against the Air 391 

Korea observations. Our air quality prediction system re-generated relatively well-matched 392 

concentrations for PM10, PM2.5, and CO from the DA RUN.  393 

 Figure 7 shows the case of ozone from the DA RUN by assimilating CMAQ outputs 394 

with Air Korea-observed (a) O3 mixing ratios, and (b) both O3 and NO2 mixing ratios for a 395 

preliminary test run. The ozone mixing ratios from the DA RUN in Fig. 7(a) were reasonably 396 

consistent with the observations at 00:00 UTC, but disagreed with those between 04:00 and 397 

09:00 UTC (13:00 and 18:00 KST), when solar insolation is the most intense. This may be 398 

attributed to the chemical imbalances between ozone production and ozone destruction (or 399 

titration). However, if CMAQ NO2 was assimilated with ground-based observations in South 400 

Korea (Air Korea) and China, the predicted ozone mixing ratios became substantially closer to 401 

the observations, as shown in Fig. 7(b). This is clearly due to the fact that NOx is an important 402 

precursor of ozone. In the prediction of the ozone mixing ratios, both 1-hr peak ozone (around 403 

15:00 KST) and 8-hr averaged ozone mixing ratios (between 9:00 and 17:00 KST) are 404 

important. Fig. 7 clearly shows that the prediction accuracies of both the ozone mixing ratios 405 

were improved after the DA of NO2 mixing ratios.   406 

Although the DA for NO2 provided better ozone predictions, one should take caution 407 

in using the NO2 observations. The NO2 mixing ratios measured at Air Korea sites are known 408 

to be contaminated by other nitrogen gases such as nitric acid (HNO3), peroxyacetyl nitrates 409 

(PANs), and alkyl nitrates (ANs), since the Air Korea NO2 mixing ratios are measured through 410 

a chemiluminescent method with catalysts of gold or molybdenum oxide at high temperatures. 411 
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These are known to be “NO2 measurement artifacts” (Jung et al., 2017), which is one of the 412 

reasons that the DA of NO2 was not shown in Fig. 6. The NO2 mixing ratios are corrected from 413 

the Air Korea NO2 data, and are then used to prepare the ICs via the DA for more accurate 414 

ozone and NO2 predictions. Currently, such corrections of the observed NO2 mixing ratios are 415 

being standardized with more sophisticated year-long NO2 measurements. After the corrections 416 

of the NO2 measurement artifacts, more evolved schemes of ozone and NO2 predictions will 417 

be possible in the future. As shown in Fig. 7, about a 20% reduction (average fraction of non-418 

NO2 mixing ratios in the observed NO2 mixing ratios) was made for these demonstration runs 419 

(Jung et al., 2017).  420 

Another practical issue is now discussed. Although the assimilation with the observed 421 

NO2 mixing ratios can enhance the accuracy of the predictions of the daytime ozone mixing 422 

ratios, the nighttime ozone mixing ratios tend to be consistently over-predicted in the 423 

aggregated plot of the ozone mixing ratios at the observation sites (see Fig. 7). This can be 424 

caused by underestimated NO2 mixing ratios and thus not enough nighttime ozone titration. As 425 

aforementioned, reliable NO2 prediction via the correction of the NO2 measurement artifacts 426 

will be made in the future. Another possible reason of the over-predicted ozone mixing ratios 427 

during the nighttime can be underestimation of the mixing layer height (MLH). Figure 8 shows 428 

a comparison between lidar-measured MLH (black dashed line) and WRF-calculated MLH 429 

(with the option of the Yonsei University (YSU) planetary boundary layer scheme by Hong et 430 

al. (2006); see red line). As shown in Fig. 8, the nocturnal lidar-measured MLH is about two 431 

times higher than the nocturnal WRF-calculated MLH as measured at a lidar site inside the 432 

campus of Seoul National University (SNU) in Seoul. Such underestimated MLH in the model 433 

tends to compress the ozone molecules within the mixing layer during the nighttime, which 434 
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leads to consistently over-predicted nocturnal ozone mixing ratios. Based on this discrepancy 435 

shown in Fig. 8, more intensive comparison study is being carried out by comparing lidar-436 

measured MLH with model-calculated MLH at multiple sites in South Korea. 437 

In this work, the aerosol composition (such as EC, OA, sulfate, nitrate, and ammonium) 438 

was further compared with the composition observed at the super-sites shown in Fig. 9. As 439 

shown in Fig. 9, agreement was observed between the DA RUN and observations for all of the 440 

major PM constituents. Again, a strong capability of our DA system is to improve the 441 

predictions of the aerosol composition.  442 

 443 

3.1.2. Spatial distribution  444 

Figure 10 shows the spatial distributions and bias of PM and chemical species 445 

throughout the entire period of the KORUS-AQ campaign over the Seoul Metropolitan Area 446 

(SMA). Noticeable improvements are observed to have been achieved in the spatial 447 

distributions by applying the ICs into the CMAQ model simulations, particularly for PM10 (Fig. 448 

10a), PM2.5 (Fig. 10b), and CO (Fig. 10c). As shown in Fig. 10, the under-predicted 449 

concentrations of PM10, PM2.5, and CO were adjusted to concentrations closer to the 450 

observations. In case of SO2 (see Fig. 10d), the DA RUN produced better agreement with the 451 

observations than the BASE RUN, but there were still under-predicted SO2 concentrations over 452 

the northeastern part of the SMA.  453 

By contrast, relatively lower ozone mixing ratios from the DA RUN against the BASE 454 

RUN were found in the southwestern part of the SMA (see Fig. 10e). Due to the nonlinear 455 

relationship between NOx and O3, high mixing ratios (or emissions) of NOx in the SMA can 456 

lead to depletion of ozone. In these runs, the precursors of ozone such as NOx and VOCs were 457 
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excluded in the preparation of the ICs for CMAQ model simulations. Again, this is because the 458 

Air Korea NO2 mixing ratios are contaminated by several reactive nitrogen species, so the data 459 

cannot be directly used in the assimilation procedures. In case of VOCs, a limited number of 460 

datasets is available in South Korea for the DA. Improvements in the prediction of ozone 461 

mixing ratios can be achieved when the NO2 mixing ratios are corrected and a sufficient 462 

number of VOCs data (possibly from satellite data in the future) is available.   463 

 464 

3.1.3. Statistical analysis 465 

In order to achieve better understanding of the performances of the DA RUN, analyses 466 

of statistical variables such as index of agreement (IOA), Pearson’s correlation coefficient (R), 467 

root mean square error (RMSE), and mean bias (MB) were conducted using observations from 468 

the Air Korea stations for PM10, PM2.5, CO, SO2, and O3 (see Fig. 11). Definitions of the 469 

statistical variables are given in Appendix A.  470 

After the applications of the ICs, both RMSE and MB became lower, while the 471 

correlation coefficient became higher for the entire predictions. In addition, it was found that 472 

the differences between the BASE RUN and the DA RUN tended to diminish as the prediction 473 

time progressed. The results of the statistical analysis are listed in Table 1. The results of the 474 

DA RUN were reasonably consistent with the observations for PM10 (IOA = 0.60; R= 0.40; 475 

RMSE = 34.87; MB = -13.54) and PM2.5 (IOA = 0.71; R= 0.53; RMSE = 17. 83; MB = -2.43), 476 

as compared to the BASE RUN for PM10 (IOA = 0.51; R= 0.34; RMSE = 40.84; MB = -27.18) 477 

and PM2.5 (IOA = 0.67; R= 0.51; RMSE = 19.24; MB = -9.9). In terms of bias, an improvement 478 

was found for CO: MB = -0.036 for the DA RUN and MB = -0.27 for the BASE RUN. 479 

Regarding O3 and SO2, the DA RUN showed slightly better performances than the BASE RUN.  480 
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Table 2 presents the results of the statistical analysis at 00:00 UTC when the DA was 481 

conducted, with the results clearly showing how much closer the DA makes the CMAQ-482 

calculated chemical concentrations to the observed concentrations. Collectively, the DA 483 

improved model accuracy by a large degree in terms of R, particularly for PM10 (R: 0.3→0.75; 484 

slope: 0.17→0.66) and O3 (R: 0.09→0.61; slope: 0.07→0.42). In addition, for all species, MB 485 

and RMSE decreased significantly with the DA RUN as compared with the BASE RUN.  486 

 487 

3.2. Sensitivity test of DA time-interval 488 

3.2.1. AOD 489 

In this section, a sensitivity analysis was conducted with different implementation 490 

time-intervals of the DA (i.e., 24, 6, and 3 hours) for AOD (refer to Fig. 12). As shown in Fig. 491 

12, more frequent implementation of the DA is expected to make the predicted results closer 492 

to the observations. Although the DA RUN with a shorter assimilation time-interval tends to 493 

produce a better prediction, it is not always the most appropriate choice, since the shorter 494 

assimilation time-interval results in increased computational cost. Therefore, an optimized 495 

assimilation time-interval should be found to achieve the best performances from the given DA 496 

system with the consideration of its own computational ability.    497 

 498 

3.2.2. PM and gases 499 

In addition, sensitivity analyses of the developed air quality prediction system to 500 

multiple implementations of the DA with different time-intervals were also investigated for (a) 501 

PM10, (b) PM2.5, (c) CO, (d) SO2, and (e) O3, shown in Fig. 13. Fig. 13 shows a soccer plot 502 

analysis for BASE RUN (blue crosses) and DA RUNs with different DA time-intervals of 24 503 
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hours (OI; red circles), two hours (2-hr OI; black diamonds), and one hour (1-hr OI; dark-green 504 

triangles). This set of testing was designed based on the fact that the performances are expected 505 

to improve if the DAs are implemented multiple times prior to the actual predictions at 00:00 506 

UTC. Here, for the 2-hr OI run, the DA was implemented three times a day at 20:00, 22:00, 507 

and 00:00 UTC, while for the 1-hr OI run, the DA was implemented at 22:00, 23:00, and 00:00 508 

UTC. The performances of all of the chemical species excluding ozone improved, as expected, 509 

with DA RUNs with more frequent and longer DA time-intervals (i.e., three-times 510 

implementation with a 2-hr time-interval in our cases). In case of ozone, the best performance 511 

was found for the air quality prediction system with the DA time-interval of 24-hr.  512 

Unsurprisingly, more frequent DAs prior to the actual prediction mode (i.e., before 513 

00:00 UTC in our system) with a longer time-interval (such as 2-hr) will be computationally 514 

costly. There will certainly be a “trade-off” between the precision of air quality prediction and 515 

the computational cost. The system should be designed under the consideration of these two 516 

factors. 517 

 518 

4. Summary and conclusions 519 

In this study, the air quality prediction system was developed by preparing the ICs for 520 

CMAQ model simulations using GOCI AODs and ground-based observations of PM10, CO, 521 

ozone, and SO2 during the period of the KORUS-AQ campaign (1 May – 12 June 2016) in 522 

South Korea. The major advantages of the developed air quality prediction system are its 523 

comprehensiveness in predicting the ambient concentrations of both gaseous and particulate 524 

species (including PM composition) as well as its powerfulness in terms of computational cost.  525 
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The performances of the developed prediction system were evaluated using near-526 

surface in-situ observation data. The CMAQ model runs with the ICs (DA RUN) showed higher 527 

consistency with the observations of almost all of the chemical species, including PM 528 

composition (sulfate, nitrate, ammonium, OA, and EC) and atmospheric gases (CO, ozone, and 529 

SO2), than the CMAQ model runs without the ICs (BASE RUN). Particularly for CO, the DA 530 

was able to remarkably improve the model performances, while the BASE RUN significantly 531 

under-predicted the CO concentrations (predicting about one-third of the observed values). In 532 

case of ozone, both the BASE RUN and DA RUN were in close agreement with observations. 533 

More reliable predictions of ozone mixing ratios will be achieved via the DA of the observed 534 

NO2 mixing ratios and the corrections of model-simulated mixing layer height (MLH). For SO2, 535 

the performances of both the BASE RUN and the DA RUN were somewhat poor. Regarding 536 

this issue, more accurate SO2 emissions are required to achieve better SO2 predictions, and 537 

these can be estimated through inverse modeling using satellite data (e.g., Lee et al., 2011). 538 

The adjustments of both ICs and emissions may be able to improve the performances of the air 539 

quality prediction system, and this will be examined in future studies. 540 

Moreover, the developed air quality prediction system will be upgraded by using the 541 

new observation data that will be retrieved after 2020 from the Geostationary Environment 542 

Monitoring Spectrometer (GEMS) with a high spatial resolution of 7 × 8 km2 as well as a high 543 

temporal resolution of 1-hour over a large part of Asia. In addition, the current DA technique 544 

of the OI with the Kalman filter can also be upgraded with the use of more advanced DA 545 

methods such as variational techniques of 3DVAR and 4DVAR methods, as well as with the 546 

ensemble Kalman filter (EnK) method. These research endeavors are currently underway.  547 
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In conjunction with improving the air quality modeling system, artificial intelligence 548 

(AI)-based air quality prediction systems are also currently being developed in several ways 549 

(e.g., Kim et al., 2019). Actually, Kim et al. (2019) developed an AI-based PM prediction 550 

system based on a deep recurrent neural network (RNN) in South Korea. The AI-based 551 

prediction system was optimized by iterative model trainings with the inputs of ground-552 

observed PM10, PM2.5, and meteorological fields including wind speed, wind direction, relative 553 

humidity, and precipitation. The AI-based prediction system showed better performances at the 554 

several sites than the CMAQ model simulations. However, it works only for the observation 555 

sites in South Korea where ground-based observations are available. By taking advantages of 556 

both the CTM-based air quality prediction and the AI-based prediction systems, both systems 557 

will be eventually combined so as to create a more accurate hybrid air quality prediction system 558 

over South Korea. This will be the ultimate goal of the series of our research works. 559 

 560 

Code and data availability. WRF v3.8.1 (doi:10.5065/D6MK6B4K) and CMAQ v5.1 561 

(doi:10.5281/zenodo.1079909) models are both open-source and publicly available. Source 562 

codes for WRF and CMAQ can be downloaded at http://www2.mmm.ucar.edu/wrf/users/ 563 

downloads.html and https://github.com/USEPA/CMAQ, respectively. Data from the KORUS-564 

AQ field campaign can be downloaded from the KORUS-AQ data archive (http://www-565 

air.larc.nasa.gov/missions/korus-aq). Other data were acquired as follows. Ground-based 566 

observation data were downloaded from the Air Korea website (http://www.airkorea.or.kr) for 567 

South Korea and https://pm25.in for China. AERONET data were downloaded from 568 

https://aeronet.gsfc.nasa.gov. All codes related with the air quality prediction system can be 569 
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obtained by contacting K. Lee (lkh1515@gmail.com). NCL (2019; doi:10.5065/D6WD3XH5) 570 

was used to draw the figures. 571 
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APPENDIX A: FORMULAS FOR STATISTICAL EVALUATION INDICES 588 

The formulas used to evaluate the performances of the air quality prediction system are 589 

defined as follows.  590 

 591 

Index Of Agreement (IOA) =  1 −
∑ (M − O)2n

1

∑ (|M − O̅| + |O − O̅|)2n
1

    (A1) 592 

 593 

Correlation Coefficient (R)  =  
1

(n − 1)
∑ ((

O − O̅

σO
) (

M − M̅

σm
))

n

1

    (A2) 594 

 595 

Root Mean Square Error (RMSE)  =  √
∑ (M − O)2n

1

n
    (A3) 596 

 597 

Mean Bias (MB)  =  
1

n
∑(M − O)

n

1

    (A4) 598 

 599 

Mean Normalized Bias (MNB)  =  
1

n
∑ (

M − O

O
)

n

1

× 100 %    (A5) 600 

 601 

Mean Normalized Error (MNE)  =  
1

n
∑ (

|M − O|

O
)

n

1

× 100 %    (A6) 602 

 603 

Mean Fractional Bias (MFB)  =  
1

n
∑

(M − O)

(
M + O

2 )

n

1

× 100 %    (A7) 604 

 605 
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Mean Fractional Error (MFE)  =  
1

n
∑

|M − O|

(
M + O

2 )

n

1

× 100 %     (B8) 606 

 607 

In Eqns. (A1) - (A8), M and O represent the model and observation data, respectively. N is the 608 

number of data points and σ means the standard deviation. The overbars in the equations 609 

indicate the arithmetic mean of the data. The units of RMSE and MB are the same as the unit 610 

of data, while IOA and R are dimensionless statistical parameters. 611 

  612 
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 865 

Figure 1. Domains of GOCI sensor (dark green line) and CMAQ model simulations (blue line). 866 

Red-colored dots denote the locations of Air Korea sites in South Korea. Orange-colored dots 867 

represent the locations of ground-based observation stations in China. Blue stars show the 868 

locations of seven super-sites in South Korea. During the KORUS-AQ campaign, observation 869 

data were obtained from 1514 stations in China as well as 264 Air Korea and seven super-site 870 

stations in South Korea. NCL (2019) was used to draw this figure. 871 

872 
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 873 

Figure 2. Schematic diagram of the Korean air quality prediction system developed in this 874 

study. The initial conditions (ICs) of the CMAQ model simulations are prepared by assimilating 875 

CMAQ outputs with satellite-retrieved and ground-measured observations. The data process 876 

for preparing the ICs is shown in the box with gray-dashed lines.  877 
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 878 

Figure 3. Schematic diagram of the Korean air quality prediction system for particulate matter 879 

(PM) and gas-phase pollutants. The data assimilation (DA) cycle is 24 hours for both PM and 880 

gas-phase pollutants such as CO, O3, and SO2. The DA of NO2 is excluded in the current study, 881 

the reason for which is discussed in the text.  882 



 

 

39 

 

 883 

Figure 4. Average PM2.5 composition (a) observed at the super-site stations and (b) simulated 884 

by the CMAQ model during the KORUS-AQ campaign. The averaged PM2.5 measured from 885 

the super-sites and calculated from the CMAQ model simulations over the period of the 886 

KORUS-AQ campaign are 28 µg/m3 and 19.9 µg/m3, respectively. The mass of organic 887 

aerosols (OAs) was calculated by multiplying organic carbon mass by 1.6.  888 
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 889 

Figure 5. Time-series plots of hourly (a) PM10, (b) PM2.5, (c) CO, (d) SO2, and (e) O3 890 

concentrations at 264 Air Korea stations. Black open circles (OBS) represent the observed 891 

concentrations. Blue and red lines show the results simulated from the BASE RUN and DA 892 

RUN over South Korea, respectively. 893 
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 894 

Figure 6. Aggregated average concentrations of (a) PM10, (b) PM2.5, (c) CO, and (d) SO2 at 895 

264 Air Korea stations over the KORUS-AQ campaign period. Open black circles denote the 896 

observations obtained from 264 Air Korea stations in South Korea. Blue and red lines represent 897 

the predicted concentrations from the BASE RUN and DA RUN, respectively. The DA was 898 

conducted at 00:00 UTC every day throughout the KORUS-AQ campaign period.  899 
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 900 

Figure 7. Comparison of CMAQ-simulated O3 mixing ratios (BASE RUN with blue lines and 901 

DA RUN with red lines) with O3 mixing ratios from Air Korea stations (open black circles). 902 

DA RUN was carried out by assimilating CMAQ outputs with Air Korea observations using 903 

(a) only O3 mixing ratios and (b) both O3 and NO2 mixing ratios. 904 

905 
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 906 

Figure 8. Comparison of WRF-simulated mixing layer height (MLH) (denoted by blue-dashed 907 

line) with lidar-measured MLH (denoted by open black circles) at Seoul National University 908 

(SNU) in Seoul. KST stands for Korean standard time.  909 
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 910 

Figure 9. Aggregated average concentrations of (a) PM10, (b) PM2.5, (c) OC, (d) EC, (e) sulfate, 911 

(f) nitrate, and (g) ammonium as predicted by CMAQ model during the period of the KORUS-912 

AQ campaign. The others are the same as those shown in Fig. 7, except for the fact that the 913 

observation data used here were obtained from the seven super-site stations in South Korea. 914 
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 915 

Figure 10. Spatial distributions (first and second columns) and bias (third and fourth columns) 916 

of (a) PM10, (b) PM2.5, (c) CO, (d) SO2, and (e) O3 over Seoul Metropolitan Area (SMA) for 917 

the entire period of the KORUS-AQ campaign. Colored circles of first and second columns 918 

represent the concentrations of the air pollutants observed at the Air Korea stations in the SMA.  919 

920 
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 921 

Figure 11. Time-series plots of four performance metrics (IOA, R, RMSE, and MB) for (a) 922 

PM10, (b) PM2.5, (c) CO, (d) SO2, and (e) O3 forecasts. The DA was conducted at 00:00 UTC. 923 

The units of RMSE and MB are µg/m3 and ppmv for PM concentrations and for gaseous species, 924 

respectively. The definitions of the four performance metrics are shown in Appendix A. 925 

926 
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 927 

Figure 12. Variations of three performance metrics (R, RMSE, and MB) with time-intervals of 928 

data assimilations. For these tests, the GOCI AODs were used in the DA to update the initial 929 

conditions of the CMAQ model simulations. The results from the three CMAQ model 930 

simulations were compared with AERONET AODs (“ground truth”). The two blue squares 931 

represent the performances from the BASE RUNs and the red squares indicate the 932 

performances from the DA RUNs. The three experiments were carried out with the assimilation 933 

time-intervals of 24, 6, and 3 hours (hr), respectively. Here, the DA RUN with the 24-hr time-934 

interval is referred to as “air quality prediction”, and the DA RUNs with the 6-hr and 3-hr time-935 

interval are referred to as “air quality reanalysis”. 936 

937 
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 938 

Figure 13. Soccer plot analyses for (a) PM10, (b) PM2.5, (c) CO, (d) SO2, and (e) O3. The 939 

CMAQ-predicted concentrations were compared with the Air Korea observations. Blue crosses, 940 

red circles, dark-green triangles, and black diamonds represent the performances calculated 941 

from the BASE RUN, the DA RUNs with the OI system, the 1-hour (hr) OI system, and the 2-942 

hr OI system, respectively.  943 
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Table 1. Statistical metrics from BASE RUN and DA RUN with Air Korea observations over 944 

the entire period of the KORUS-AQ campaign.   945 

 

  

PM
10

 PM
2.5

 CO SO
2
 O

3
 

BASE 

RUN 

DA 

RUN 

BASE 

RUN 

DA 

RUN 

BASE 

RUN 

DA 

RUN 

BASE 

RUN 

DA 

RUN 

BASE 

RUN 

DA 

RUN 

N 101852 65383 101764 101764 101836 

IOA 0.51 0.60 0.67 0.71 0.41 0.51 0.34 0.35  0.69 0.70 

R 0.34 0.40 0.51 0.53 0.28  0.21 0.14 0.15  0.50 0.52 

RMSE 40.8 34.87 19.2 17.83 0.31  0.19 0.0068 0.0066  0.020 0.02 

MB -27.2 -13.54 -9.9 -2.43 -0.27 -0.04 -0.0009 -0.0004  0.003 -0.0024 

ME 30.1 24.20 15.3 13.48 0.27 0.15 0.004 0.0034  0.015 0.015 

MNB -50.0 -18.17 -30.1 5.32 -62.0 3.14 3.1 17.77  48.0 30.22 

MNE 60.7 52.35 62.6 62.77 62.9 40.67  93.1 93.56  70.2 61.34 

MFB -84.3 -41.61 -63.6 -24.41 -94.1 -10.00 -56.4 -40.20  11.1 -0.82 

MFE 91.1 62.32 81.6 60.01 94.9 39.49 91.4 82.91  40.7 40.64 

  946 
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Table 2. Statistical metrics from BASE RUN and DA RUN with Air Korea observations at 947 

00:00 UTC when the DA was conducted during the KORUS-AQ campaign.   948 
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RUN 

DA 

RUN 

BASE 

RUN 

DA 

RUN 

BASE 

RUN 

DA 

RUN 

BASE 

RUN 

DA 

RUN 

BASE 

RUN 

DA 

RUN 

N 1057 695 1024 1007 1043 

IOA 0.48 0.86 0.63 0.74  0.41 0.62 0.36 0.44 0.45 0.75 

R 0.30 0.75 0.46 0.59  0.28 0.43 0.097 0.27 0.09 0.61 

RMSE 47.2 23.92 21.5 18.21  0.35 0.16 0.0061 0.0039 0.023 0.012 

MB -32.2 -5.46 -11.5 2.80  -0.31 -0.01 -0.0019 -0.0009 0.015 0.002 

ME 34.5 16.03 17.2 13.25  0.31 0.12 0.0039 0.0023 0.018 0.009 

MNB -54.9 -0.53 -33.2 26.17  -64.3 9.69 -20.1 7.35 100.4 27.45 

MNE 64.0 36.07 63.1 59.77  64.8 30.69 86.7 55.27 107.8 43.81 

MFB -92.8 -13.38 -67.3 0.56  -98.7 1.81 -75.9 -17.39 43.7 12.16 

MFE 98.8 38.41 84.3 48.30  99.1 27.14 99.9 56.23 52.9 31.53 

 949 


