
Response to the Editor

Comments to the Author:

I’m sorry for the delay in the decision, but clear disagreement between reviewers (who I thank
for their useful comments) is always a challenge and I’ve been considering what to do for a while.

Thank you for considering our manuscript so carefully. Obviously we had the impression that
performing the technical standard benchmark of scalability testing would be sufficient, even
more as the AWI-CM-PDAF implementation mainly serves as an example for the assimilation
coupling strategy introduced in the manuscript, which should be obvious from the title of the
manuscript.

While GMD is certainly an appropriate venue for the publication of papers describing method-
ologies for data assimilation, it is important that the methods are developed to a sufficiently
advanced degree that their utility can be judged. It is not sufficient to present an idea that
might (or even, that probably will) work. Quoting from the journal guidelines:

”Development and technical papers usually include a significant amount of evaluation against
standard benchmarks, observations, and/or other model output as appropriate.”

Merely showing that the code runs is not enough. Therefore in this instance I agree with Re-
viewer #1 who recommends major revision to include sufficient results from realistic applications
in order that the merits of the system can be adequately judged.

We have now added an example in which we assimilate the sea surface temperature (SST) data
over one year. We discuss the root mean square errors with regard to the assimilated SST
data, but also with independent in situ data provided by the EN4 data set. Please note, that
even before we did not just showed that ’the code runs’ but, from the computing viewpoint, we
carefully examined the scalability, which is a standard benchmark to evaluate compute perfor-
mance. Anyway, now we also show that the assimilation is successful. Actually, there are two
studies (Mu et al. (2020) and Tang et al. (2020)) that already base on the AWI-CM-PDAF
code and demonstrate the successful application of data assimilation into the ocean. However,
these studies don’t discuss the implementation aspect of the data assimilation system, which
is done in the manuscript. Given that Tang et al. (2020) also assimilate SST data (next to
subsurface profile data) and discuss the effect of this assimilation onto the atmosphere we have
not included this aspect into the manuscript and kept our application section to the essential
discussion of root mean square errors.

Please also note that we don’t consider it reasonable to include an experiment with strongly-
coupled data assimilation or the assimilation of atmospheric observations into this manuscript.
In the response to the reviewer we give detailed reasons for this (which partly repeat what we
replied in the previous response).

Response to Reviewer #1

We like to thank the reviewer the comments and persistence with regard to the application
results. The editor has clarified that such results should be included. To this end, we now
discuss assimilation results from an experiment assimilating SST observations over one year.
Please find our detailed response below.

For reference, these are the 3 first main points of my previous review (point 4 has been addressed):

1. No actual results of the assimilation system are presented. Only the execution time for
different settings. It is unclear to me what the role of a reviewer can be in this case. I rather
think that the paper should also include the results of such model (see also the following point).



In the new Section 5 we have now added an application example in which we assimilate the
SST data over one year. We assess the assimilation results computed the root mean square
errors with regard to the assimilated data (where the reduction of RMSEs is necessary) and by
computing RMSEs for the EN4 data set of profile observations from UK MetOffice. This is an
independent data set. The reductions of the RMSE for both temperature and salinity shows
that the assimilation is successful. We also refer to two studies (Mu et al. 2020 and Tang et al.
2020) which both base on the AWI-CM-PDAF code we discuss in the manuscript. We kept the
analysis of the results in Section 5 short to avoid overlaps with Tang et al. (2020), where also
SST data is assimilated.

2. The manuscript mentions different approaches to implement the assimilation in a coupled
system: in a combined state vector spanning the atmospheric and ocean model or separately.
The question about which approach is better is still open and it should not be too difficult for
the authors to check both approaches. This would help also in addressing the previous point
and add substantially to the scientific value of this paper.

We hope that the reviewer agrees that to just ’check both approaches’ would not be scientifically
sound. In particular the very new aspect of strongly-coupled DA is a current research topic,
which cannot just be answered in some subsection of a paper. What would be the value if we
included an experiment with strongly-coupled DA? If the result would not show an improvement
of strongly-coupled DA, this could simply be the reason of insufficient tuning. Likewise, if a
spontaneous experiment shows improvements over the weakly-coupled approach, we would still
not know if the result is representative because this would require careful tuning. To this end,
including an experiment just for completeness might just lead to misleading impressions about
strongly-coupled DA. On the other hand, a detailed study is clearly beyond a manuscript whose
focus is on the technical, i.e. implementation, aspects of the assimilation system.

3. The different time scales of ocean and atmosphere are not discussed and the assimilation is
done only in the ocean. To really appreciate the effectiveness of the coupling, data should be
assimilated in both the atmosphere and the ocean and the question regarding the assimilation
frequency should be addressed. As usual, the models should be validated against independent
observations.

We fully agree that the aspect of the different time scales in the atmosphere and ocean is
a relevant topic for coupled DA. Further, one of course constrains the model best when one
assimilates observations of both the atmosphere and the ocean. However, there is no principal
requirement to assimilate data into both the atmosphere and ocean. For example Kunii et
al. (2017) only assimilate atmospheric observations, while Mu et al. (2020) only assimilate
observations of the ocean and sea ice. These studies show that the assimilation into only one
of the components has a scientific relevance on its own. Because of this we decided to focus
the initial version of the data assimilation code AWI-CM-PDAF 1.0 onto the assimilation into
the ocean. While aimed at the DA into the ocean, the paper describes how the system can
be extended to the assimilation in the atmosphere and for strongly coupled DA. As also many
published studies in GMD show, it is a common approach to develop a software step by step,
assessing these steps scientifically, and also publish such steps. We consider the aspects of
assimilating atmospheric data and of strongly-coupled DA for the future work, while the current
software version 1.0 (and the DA coupling strategy, which is the main focus of the manuscript)
is sufficiently mature for publication.

As described above, we now included an experiment discussing the results obtained from assim-
ilating the SST data validated against independent observations from the EN4 data set. These
results clearly show that the assimilation system works well.

The arguments from the authors, are essentially the following:



A: the authors think that it is enough for GMD to just present run times and presenting actual
results is out-of-scope for GMD
B: only a short experiment (10 days) was conducted
C: it is unclear if the strong assimilation does actually work better than weak-assimilation (with
our present understanding)

Please refer to the full response available at https://www.geosci-model-dev-discuss.net/gmd-
2019-167/gmd-2019-167-AC2.pdf

For me, my 3 major comments are still relevant and within the scope of the journal. They have
not been addressed in this review.

Even so this is a bit redundant, let us shortly comment on A-C:

Regarding A: The new section 5 now includes an application example.
Regarding B: Please see below for the reason why we did run only a set of experiments over 10
days each.
Regarding C: We explained above that a simple strongly-coupled DA experiment as suggested
by the reviewer in the former comment 2 cannot yield a conclusive answer to point C. Strongly-
coupled DA is a research topic that needs careful consideration to be scientifically relevant.

I have checked the 5 papers at the front page (as of 27 November, when I first read the authors
reply) and all present the actual results of the model (as opposed to just run-times). Most of
them also do actually compare the model with observations. Also the paper by Kurtz et al,
2016 published by GMD mentioned by the author and using PDAF, displays the results of a
twin experiment (Figure 6 and Figure 9-12). I am surprised that the authors thinks that this is
out of scope for the journal.

It also unclear why the authors limit their simulation to just 10 days which is very short for
an ocean model at this resolution (from 160 km to 30 km). Most of the fields would remain
fairly constant over that time scale (as also noted by the authors). The authors mentioned
computing resources as a problem, but at the same time, they mentioned that a full year
simulation should be completed in 6.5 hours (requiring 79,000 core-hours). I am left with the
question why the authors tackle this problem before securing the necessary computing resources
to make a meaningful simulation.

The choice for using 10 days was not motivated by insufficient computing resources. It is just
common practice to perform scalability tests only over a period which is sufficiently long for
consistent results. To this end, running scalability experiments over several months or a year
would just be a waste of compute resources. This aspect is now more clearly described in Sec.
4.1 by writing “The length of these experiments is chosen to be long enough so that the execution
time is representative to assess the scalability. However, the assimilation effect will be rather
small for these 10 analysis steps.”

Also, to me it is quite natural that when a new method is introduced or implemented one needs
to show its benefit compared to other techniques.

The benefit is actually discussed in Sec. 5 in accordance with the manuscript’s focus on the
particular strategy to combine the data assimilation with the coupled model model: Compared
to an offline-coupled DA system, the online-coupled DA system presented in the manuscript is
at least 4 times faster. (Note, we didn’t actually code the offline-coupled DA system, but the
benefit in execution time can be quite well estimated as is done in the manuscript.) Also the
system discussed in the manuscript is significantly faster than the system discussed by Karspeck
et al. (2018).

The other points raised in my previous review have been addressed in an adequate manner.



My understanding of the scope of GMD might be wrong (and presenting just run times as
opposed of actual results and not presenting improvements relative to other approaches is ac-
ceptable). If this is the case, then the Editor is invited to correct me.

After the clarification by the reviewer we have now added an example case assimilating SST
data. Please note that already before we presented improvements relative to other approaches.
However, these were aimed at compute performance rather than assimilation performance.
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Abstract. Data assimilation integrates information from observational measurements with numerical models. When used with

coupled models of Earth system compartments, e.g. the atmosphere and the ocean, consistent joint states can be estimated.

A common approach for data assimilation are ensemble-based methods which utilize an ensemble of state realizations to

estimate the state and its uncertainty. These methods are far more costly to compute than a single coupled model because of the

required integration of the ensemble. However, with uncoupled models, the
::::::::
ensemble methods also have been shown to exhibit5

a particularly good scaling behavior. This study discusses an approach to augment a coupled model with data assimilation

functionality provided by the Parallel Data Assimilation Framework (PDAF). Using only minimal changes in the codes of the

different compartment models, a particularly efficient data assimilation system is generated that utilizes parallelization and

in-memory data transfers between the models and the data assimilation functions and hence avoids most of the file reading

and writing, and also model restarts during the data assimilation process. The study explains the required modifications of10

the programs on the example of the coupled atmosphere-sea ice-ocean model AWI-CM. Using the case of the assimilation of

oceanic observations shows that the data assimilation leads only to small overheads in computing time of about 15% compared

to the model without data assimilation and a very good parallel scalability. The model-agnostic structure of the assimilation

software ensures a separation of concerns in that
:::::
which the development of data assimilation methods can be separated from

the model application.15

Copyright statement. TEXT

1 Introduction

Data assimilation (DA) methods are used to combine observational information with models. A common application is to

apply DA to estimate an initial state that is used to start a forecast system as is common practice at weather and marine

forecasting centers. The most widely used class of ensemble DA methods are ensemble-based Kalman filters (EnKFs) like the20

local ensemble transform Kalman filter (LETKF, Hunt et al., 2007), the deterministic ensemble Kalman filter (DEnKF, Sakov

and Oke, 2008), or the local error-subspace transform Kalman filter (LESTKF, Nerger et al., 2012b). Commonly, the DA is
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applied to separate models simulating e.g. the atmospheric dynamics or the ocean circulation. However, in recent years coupled

models of different Earth system compartments have become more common. In this case
:
, the compartment models frequently

exchange information at the interface of the model domains to influence the integration of the other model compartment. For25

example, in coupled atmosphere-ocean models the fluxes through the ocean surface are dynamically computed based on the

physical state of both the atmosphere and the ocean are exchanged in between both compartments. For model initialization, DA

should be applied to each of the compartments. Here, the DA can either be performed separately in the different compartment

domains, commonly called weakly-coupled DA, or it can be performed in a joint update, called strongly-coupled DA. Only

strongly coupled DA is expected to provide fully dynamically consistent state estimates.30

A recent overview of methods and issues in coupled DA is provided by Penny et al. (2017). By now the weakly coupled

assimilation is the common choice for assimilation into coupled models and recent studies assess the effect of this assimilation

approach. For atmosphere-ocean coupled models, different studies either assimilated observations of one compartment into the

observed compartment (e.g. Lea et al. (2015); Kunii et al. (2017); Guiavarc’h et al. (2019)
:::::::::::::::::::::::::::::
Kunii et al. (2017); Mu et al. (2020)

) or observations of each compartment into the corresponding one (e.g. Zhang et al. (2007); Liu et al. (2013); Han et al. (2013); Chang et al. (2013); Karspeck et al. (2018); Browne et al. (2019)35

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Zhang et al. (2007); Liu et al. (2013); Han et al. (2013); Chang et al. (2013); Lea et al. (2015); Karspeck et al. (2018); Browne et al. (2019)

). The research question considered in these studies is usually to which extent the assimilation into a coupled model can im-

prove predictions in comparison to the assimilation into uncoupled models. Partly
:
, the mentioned studies used twin experiments

assimilating synthetic observations to assess the DA behavior.

Strongly coupled DA is a much younger approach, which is not yet well established. Open questions for strongly coupled40

DA are for example how to account for the different temporal and spatial scales in the atmosphere and the ocean. Strongly cou-

pled DA is complicated by the fact that DA systems for the ocean and atmosphere have usually been developed separately and

often use different DA methods. For example, Laloyaux et al. (2016) used a 3D variational DA in the ocean, but 4D variational

DA in the atmosphere. The methodology lead to a quasi-strongly coupled DA. Frolov et al. (2016) proposed an interface-solver

approach for variational data assimilation
::
DA

:
methods, which leads to a particular solution for the variables close to the inter-45

face. Strongly coupled DA was applied by Sluka et al. (2016) in a twin experiment using an EnKF with dynamically estimated

covariances between the atmosphere and ocean in a low-resolution coupled model. For coupled ocean-biogeochemical models,

Yu et al. (2018) discussed strongly coupled DA in an idealized configuration. Further, Goodliff et al. (2019) discussed the

strongly coupled DA for a coastal ocean-biogeochemical model assimilating real observations of sea surface temperature. This

study pointed to the further complication of the choice of variable (linear or logarithmic concentrations for the biogeochemical50

compartment) for strongly coupled assimilation.

Ensemble-based Kalman filters, but also the nonlinear particle filters, can be formulated to work entirely on state vectors. A

state vector is the collection of all model fields at all model grid points in form of a vector. When one computes the observed

part of the state vector, applying the so-called ’observation operator’, one needs to know how a field is stored in the state vector.

However, the core part of the filter, which computes the corrected state vector (the so-called ’analysis state’) taking into account55

the observational information, does not need to know how the state vector is constructed. This property is also important for

coupled DA, where the state vector will be distributed over different compartments, like the atmosphere and the ocean.
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The possibility to implement most parts of a filter algorithm in a generic model-agnostic way has motivated the implemen-

tation of software frameworks for ensemble DA. While the frameworks use very similar filter methods, they differ strongly

in the strategy how the coupling between model and DA software is achieved. As described by Nerger et al. (2012b) one can60

distinguish between offline and online DA coupling. In offline-coupled DA one uses separate programs for the model and the

assimilation and performs the data transfer between both through disk files. In online coupled DA one performs in-memory

data transfer, usually by parallel communication, and hence avoids the use of disk files. In addition, online-couped DA avoids

the need to stop and restart a model for the DA. The Data Assimilation Research Testbed (DART, Anderson et al., 2009) uses

file transfers and separate programs for the ensemble integration and the filter analysis step, which are run consecutively. The65

framework ‘Employing Message Passing Interface for Researching Ensembles’ (EMPIRE, Browne and Wilson, 2015) uses

parallel communication between separate programs for model and DA. These programs are run in parallel and the information

transfer is performed through the parallel communication, which avoids data transfers using files. The Parallel Data Assimila-

tion Framework (PDAF, Nerger et al., 2005, 2012b, http://pdaf.awi.de) supports both online and offline coupled DA. For the

online coupled DA, PDAF also uses parallel communication. However, in contrast to EMPIRE, the model usually is augmented70

by the DA functionality, i.e., model and DA are compiled into a joint program.

For coupled ensemble DA in hydrology, Kurtz et al. (2016) have coupled
::::::::
combined PDAF with the coupled terrestrial model

system TerrSysMP. To build the system, a wrapper was developed to perform the online-coupling of model and DA software.

The study shows that the resulting assimilation system is highly scalable and efficient. Karspeck et al. (2018) have discussed

a coupled atmosphere-ocean DA system. They apply the DART software and perform weakly coupled DA using two separate75

ensemble-based filters for the ocean and atmosphere, which produce restart files for each model compartment. These are then

used to initialize the ensemble integration of the coupled model.

Here, we discuss a strategy to build an online-coupled DA system for coupled models on the example of the coupled

atmosphere-ocean model AWI-CM. The strategy enhances the one discussed in Nerger et al. (2012b) for an ocean-only model.

The previous strategy is modified for the coupled DA and applied to the two separate programs for the atmosphere and ocean,80

which together build the coupled model AWI-CM (Sidorenko et al., 2015). The required modifications to the model source

codes consist essentially in adding four subroutine calls
:
in
:::::

each
::
of

:::
the

::::
two

:::::::::::
compartment

::::::
models. Three of these subroutines

::::::::
subroutine

:
calls connect the models to the DA functionality provided by PDAF, while the fourth is optional and provides timing

and memory information. With this strategy, a wrapper that combines the compartment model into a single executable as used

by Kurtz et al. (2016) can be avoided. We discuss the strategy for both weakly and strongly coupled DA but assess the parallel85

performance only for weakly coupled DA into the ocean, which is supported in the code version AWI-CM-PDAF V1.0. This is

motivated by the fact that strongly coupled DA is not yet well established and weakly coupled DA by itself is a topic of current

research.

The remainder of the study is structured as follows: Section 2 discusses ensemble filters and their setup for coupled DA. The

setup of a DA system is described in Section 3. Section 4 discusses the parallel performance of the DA system build by coupling90

AWI-CM and PDAF.
::::::
Section

::
5
::::::::
examines

:::
the

::::::::::
assimilation

::::::::
behavior

::
of

::
an

::::::::
example

:::::::::
application

::::
with

:::::::::
AWI-CM.

:
Implications of
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the chosen strategy to coupled the model and data assimilation are discussed in Sec. 6. Finally, conclusions are drawn in Sec.

7.

2 Ensemble filters

Ensemble DA (EnDA) methods use an ensemble of model state realizations to represent the state estimate (usually the ensemble95

mean) and the uncertainty of this estimate given by the ensemble spread. The filters perform two alternating phases: In the

forecast phase the ensemble of model states is integrated with the numerical model until the time when observations are

available. At this time, the analysis step is computed. It combines the information from the model state and the observations

taking into account the estimated error of the two information sources and computes an updated model state ensemble, which

represents the analysis state estimate and its uncertainty.100

The currently most widely used ensemble filter methods are ensemble-based Kalman filters based on the Ensemble Kalman

filter (Evensen, 1994; Houtekamer and Mitchell, 1998; Burgers et al., 1998). When incorporating the observations during the

analysis step, these filters assume that the errors in the state and the observations are Gaussian distributed. This allows to

formulate the analysis step just using the two leading moments of the distributions, namely the mean and covariance matrix.

Another class of EnDA methods are particle filters (e.g., van Leeuwen, 2009). While particle filters do not assume Gaussianity105

of error distributions, they are difficult to use with high-dimensional models because particular adaptions are required to avoid

that the ensemble collapses to a single member due to the so-called ’curse of dimensionality’ (see Snyder et al., 2008). Methods

to make particle filters usable for high-dimension systems were reviewed by van Leeuwen et al. (2019). One strategy is to

use the observational information already during the forecast phase to keep the ensemble states close to the observations. This

approach requires that some DA functions are already executed during the forecast phase. The realization in the implementation110

strategy will be discussed in Sec. 3.2.

2.1 Filter algorithms

To be able to discuss the particularities of coupled DA with respect to ensemble filter, here the error-subspace transform Kalman

filter (ESTKF, Nerger et al., 2012b) is reviewed. The ESTKF is an efficient formulation of the EnKF that has been applied in

different studies to assimilate satellite data into sea-ice ocean models (e.g. Kirchgessner et al., 2017; Mu et al., 2018; Androsov115

et al., 2019) and biogeochemical ocean models (e.g. Pradhan et al., 2019; Goodliff et al., 2019).

2.1.1 The ESTKF

In the analysis step at the time tk, the ESTKF transforms a forecast ensemble Xf
k of Ne model states of size Nx stored in the

columns of this matrix into a matrix of analysis states Xa
k as

Xa
k = xf

k1
T
Ne

+Xf
k

(
wk1

T
Ne

+W̃k

)
(1)120
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where xf
k is the forecast ensemble mean state and 1Ne

is a vector of size Ne holding the value one in all elements. Further, wk

is a vector of size Ne which transforms the ensemble mean and W̃ is a matrix of size Ne×Ne which transforms the ensemble

perturbations. Below, the time index k is omitted, as all computations in the analysis refer to the time tk.

The forecast ensemble represents an error-subspace of dimension Ne− 1 and the ESTKF computes the ensemble transfor-

mation matrix and vector in this subspace. Practically, one computes an error-subspace matrix by L=XfT where T is a125

projection matrix with j =Ne rows and i=Ne− 1 columns defined by

Tj,i =


1− 1

Ne

1
1√
Ne

+1
for i= j,j < Ne

− 1
Ne

1
1√
Ne

+1
for i 6= j,j < Ne

− 1√
Ne

for j =Ne.

(2)

Below, the equations are written using Xf and T rather than L as this leads to a more efficient formulation.

A model state vector xf and the vector of observations y with dimension Ny are related through the observation operator H

by130

y =H
(
xf
)
+ ε (3)

where ε is the vector of observation errors, which are assumed to be a white Gaussian distributed random process with obser-

vation error covariance matrix R. For the analysis step, a transform matrix in the error-subspace is computed as

A−1 = ρ(Ne− 1)I+(HXfT)TR−1HXfT . (4)

This matrix provides ensemble weights in the error-subspace. The factor ρ with 0< ρ≤ 1 is called the “forgetting factor”135

(Pham et al., 1998) and is used to inflate the forecast error covariance matrix. The weight vector wk and matrix W̃ are now

given by

w = TA
(
HXfT

)T
R−1

(
y−Hxf

)
, (5)

W̃ =
√
Ne− 1TA1/2TT (6)

where A1/2 is the symmetric square root which is computed from the eigenvalue decomposition USUT =A−1 such that140

A1/2 =US−1/2UT . Likewise, A in Eq. (5) is computed as A=US−1UT .

For high-dimensional models a localized analysis is computed following Nerger et al. (2006). Here, each vertical column of

the model grid is updated independently by a local analysis step. For updating a column, only observations within a horizontal

influence radius l are taken into account. Thus, the observation operator is local and computes an observation vector within the

influence radius l from the global model state. Further, each observation is weighted according to its distance from the water145

column to down-weight observations at larger distances (Hunt et al., 2007). The weight is applied by modifying matrix R−1 in

Eqns. (4) and (5). The localization weight for the observations is computed from a correlation function with compact support

given by a 5th-order polynomial with a shape similar to a Gaussian function (Gaspari and Cohn, 1999). The localization leads

to individual transformation weights wk and W̃ for each local analysis domain.
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2.2 Weakly-coupled ensemble filtering150

In weakly coupled DA, the EnKF is applied in the coupled model to a single compartment or separately to several of the

compartments. Given that the analysis is separate for each involved compartment, the filter is applied as in a single-compartment

model. Thus, in practice several EnKFs compute the analyses updates independently before the next forecast phase is started

with the updated fields from the different compartments.

2.3 Strongly-coupled ensemble filtering155

To discuss strongly-coupled filtering, let us assume a two-compartment system (perhaps the atmosphere and the ocean). Let

xA and xO denote the separate state vector in each compartment. For strongly-coupled DA, both are joined into a single state

vector xC .

Using the joint forecast ensemble Xf
C in Eq. (1) of the ESTKF one sees that the same ensemble weights w,W̃ are applied

to both xA and xO. The weights are computed using Eqns. (4) to (6). These equations involve the observed ensemble HXf
C ,160

the observation vector y, and the observation error covariance matrix R. Thus, for strongly coupled DA, the updated weights

depend on which compartment is observed. If there are observations of both compartments they are jointly used to compute the

weights. If only one compartment is observed, e.g having only ocean observations yO, then we also have HXf
C = (HXf )O

and the weights are only computed from these observations. Thus, through Eq. (1), the algorithm can directly update both

compartments xA and xO using observations of just one compartment.165

An interesting aspect is that when one runs separate assimilation systems for the two compartments with the same filter

methodology, one can compute a strongly-coupled analysis by only exchanging the parts of y, HXf , and R in between both

compartments and then initializing the vectors containing observational information from all compartments in the assimilation

system of each compartment. If there are only observations in one of the compartments, one can also compute the weights

in that compartment and provide them to the other compartment. Given that y and R are initialized from information that is170

usually stored in files, one can also let the DA code coupled into each compartment model read these data and only exchange

the necessary parts of HXf . While this discussion shows that technically it is straightforward to apply strongly-coupled DA

with these filter methods, one has to account for the model parallelization, which is discussed in Section 3.3.

3 Setup of data assimilation program

This section describes the assimilation framework and the setup of the DA program. First an overview of PDAF is given (Sec.175

3.1). The code modifications for online-coupling are described in Sec. 3.2, the modifications of the parallelization are described

in Sec. 3.3. Finally, Sec. 3.4 explains the aspect of the call-back functions.

The setup builds on that
::
the

:
strategy introduced by Nerger and Hiller (2013). Here, the discussion focuses on the particular-

ities when using a coupled model consisting of separate executable programs for each compartment. While we here describe

both the features for weakly and strongly coupled DA, AWI-CM-PDAF in version 1.0 is only coded with weakly-coupled DA180
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into the ocean. This is motivated by the fact that the weakly-coupled DA into a coupled climate model has already different

properties than DA in an uncoupled model. In particular, the initial errors in the coupled AWI-CM are much larger than in a

simulation of FESOM using atmospheric forcing. Mainly this is because in FESOM the forcing introduces information about

the weather conditions, while AWI-CM only represents the climate state. Thus studying weakly-coupled DA, which is still used

in most applications, has a value on its own. Strongly coupled DA will be supported in the AWI-CM-PDAF model binding in185

the future.

3.1 Parallel Data Assimilation Framework (PDAF)

PDAF (Nerger and Hiller, 2013, http://pdaf.awi.de) is free open-source software that was developed to simplify the imple-

mentation and application of ensemble DA methods. PDAF provides a generic framework containing fully implemented and

parallelized ensemble filter and smoother algorithms like the LETKF (Hunt et al., 2007), the ESTKF (Nerger et al., 2012b), or190

the nonlinear NETF method (Tödter and Ahrens, 2015) and related smoothers (e.g., Nerger et al., 2014; Kirchgessner et al.,

2017). Further, it provides functionality to adapt a model parallelization for parallel ensemble forecasts as well as routines

for the parallel communication linking the model and filters. Analogous to many large-scale geoscientific simulation models,

PDAF is implemented in Fortran and is parallelized using the Message Passing Interface standard (MPI, Gropp et al., 1994) as

well as OpenMP (OpenMP, 2008). This ensures optimal compatibility with these models, while it is still usable with models195

coded, e.g., in the programming language C.

The filter methods are model-agnostic and only operate on abstract state vectors as described for the ESTKF in Sec. 2. This

allows to develop the DA methods independently from the model and to easily switch between different assimilation methods.

Any operations specific to the model fields, the model grid, or to the assimilated observations are performed in program routines

provided by the user based on existing template routines. The routines have a specified interface and are called by PDAF as200

call-back routines, i.e. the model code calls routines of PDAF, which then call the user routines. This call structure is sketched

in Fig. 1. Here, an additional yellow ’interface routine’ is used in between the model code and the PDAF library routine. This

interface routine is used to define parameters for the call to the PDAF library routines, so that these do not need to be specified

in the model code. Thus, only a single-line call to each interface routine is added to the model code, which keeps the changes

to the model code to a minimum.205

The motivation for this call structure is that the call-back routines exist in the context of the model (i.e. the user space) and

can be implemented like model routines. In addition, the call-back routines can access static arrays allocated by the model,

e.g. through Fortran modules or C header files. For example, this can be used to access arrays holding model fields or grid

information. This structure can also be used in case of an offline-coupling using separate programs for the model and the

analysis step. However, in this case the grid information is not already initialized by the model and has to be initialized by a210

separate routine. Using the interfaces and user routines provided by PDAF, it can also be used with models implemented in C

or C++, or can be combined with Python. For coupled models consisting of multiple executables, this call structure is used for

each compartment model.
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3.2 Augmenting a coupled model for ensemble data assimilation

Here, only the online-coupling for DA is discussed. As described before, the offline-coupling uses separate programs for the215

model and the DA program and model restart files to transfer information about the model states between both programs.

Generally, the same code for the user routines can be used for online and offline coupled DA. The difference is that in the

online coupling, model information like the model grid are initialized by the model code and usually stored in e.g. Fortran

modules. For offline coupled DA one could use the same variable names, and the same names for the modules. Thus, one

would need to implement routines that initialize these variables.220

The strategy to augment a coupled model with DA functionality is exemplified here using the AWI climate model (AWI-

CM, Sidorenko et al., 2015). The model consists of the atmospheric model ECHAM6 (Stevens et al., 2013), which includes

the land surface model JSBACH, and the finite-element sea-ice ocean model (FESOM, Danilov et al., 2004; Wang et al.,

2008). Both models are coupled using the coupler library OASIS3-MCT (Ocean-Atmosphere-Sea-Ice-Soil coupler - Model

Coupling Toolkit, Valcke, 2013). OASIS3-MCT computes the fluxes between the ocean and the atmosphere and performs the225

interpolation between both model grids. The coupled model consists of two separate programs for ECHAM and FESOM,

which are jointly started on the computer so that they can exchange data via the Message Passing Interface (MPI, Gropp et al.,

1994). OASIS-MCT is linked into each program as a library. For further details on the model, we refer to Sidorenko et al.

(2015).

The online coupling for DA was already discussed in Nerger and Hiller (2013) for an earlier version of the ocean model230

used in the AWI-CM. Here, an updated coupling strategy is discussed that requires less changes to the model code. While

the general strategy for online coupling of the DA is the same as in the previous study, we privde here a full description for

completeness. Further, we discuss the particularities of the coupled model.

Figure 2 shows the general program flow and the necessary extension of the code for adding the DA functionality. The

different boxes can, but are not required to be subroutine calls. The figure is valid for any of the two programs of the coupled235

model system. Without the references to the coupler it would also be valid for a single-compartment model.

The left hand side of Fig. 2 shows the typical flow of a coupled compartment model. Here, at the very beginning of the

program, the parallelization is initialized (’init. parallelization’). After this step, all involved processes of the program are

active (for the parallelization aspects see Sec. 3.3). Subsequently, the OASIS coupler initializes the parallelization for the

coupled model, by separating the processes for ECHAM and FESOM. Thus, after this point, the coupler can distinguish the240

different model compartments. Now, the model itself is initialized, e.g. the model grid for each compartment is initialized and

the initial fields are read from files. Further, information for the coupling will be initialized like the grid configuration, which

is required by the coupler to interpolate data in between the different model grids. This completes the model initialization and

the time stepping is computed. During the time stepping, the coupler exchanges the interface information between the different

compartments. After the time stepping some post-processing can be performed, e.g. writing time averages or restart files to245

disk.
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The right hand side of Fig. 2 shows the required additions to the model code as yellow boxes. These additions are calls to

subroutines that interface between the model code and the DA framework. In this way, only single-line subroutine calls are

added, which might be enclosed in preprocessor checks to allow to activate or deactivate the data-assimilation extension at

compile time. The additions are done in both the codes of ECHAM and FESOM . and here we discuss them in general. The250

added subroutine calls have the following functionality:

– Init_parallel_PDAF: This routine modifies the parallelization of the model. Instead of integrating the state of a single

model instance (‘model task’), the model is modified to run an ensemble of model tasks. This routine is inserted directly

after the parallelization is started. So all subsequent operations of the program will act in the modified parallelization.

In the coupled model this routine is executed before the parallelization of the coupler is initialized. In this way also the255

coupler will be initialized for an ensemble of model states.

– Init_PDAF: In this routine the PDAF framework will be initialized. The routine is inserted into the model codes so that

it is executed after all normal model initialization is completed; thus just before the time-stepping loop. The routine

specifies parameters for the DA, which can be read from a configuration file. Then, the initialization routine for PDAF,

named ‘PDAF_init’ is called, which performs the PDAF-internal configuration and allocates the internal arrays, e.g. the260

array of the ensemble states. Further, the initial ensemble is read from input files. As this reading is model-specific, it is

performed by a user-provided routine that is called by PDAF as a call-back routine (see Sec. 3.4). After the framework is

initialized, the routine ‘PDAF_get_state’ is called. This routine writes the information from the initial ensemble into the

field arrays of the model. In addition, the length of the initial forecast phase, i.e. the number of time steps until the first

analysis step, is initialized. For the coupled model, ‘PDAF_init’ and ‘PDAF_get_state’ are called in each compartment.265

However, some parameters are distinct. For example, the time step size of ECHAM if 450s, while it is 900s for FESOM.

Hence, the number of time steps in the forecast phase of one day are different in the compartments.

– Assimilate_PDAF: This routine is called at the end of each model time step. For this, it is inserted into the model

codes of ECHAM and FESOM at the end of the time stepping loop. The routine calls a filter-specific routine of PDAF

that computes the analysis step of the selected filter method, for example ‘PDAF_assimilate_lestkf’ for the localized270

ESTKF. This routine of PDAF also checks whether all time steps of a forecast phase have been computed. Only if this

is true, the analysis step is executed while otherwise the time stepping is continued. If additional operations for the DA

are required during the time stepping, like taking into account future observations in case of the advanced equivalent-

weights particle filter (EWPF, van Leeuwen, 2010) or collecting observed ensemble fields during the forecast phase for a

4-dimensional filtering (Harlim and Hunt, 2007), these are also performed in this filter-specific routine. For the coupled275

model, the routine is called in both ECHAM and FESOM. Then, ‘PDAF_assimilate_lestkf’ will check for the analysis

time according to the individual number of time steps in the forecast phase. The analysis step will then be executed

in each compartment according to the configuration of the assimilation. In the implementation of AWI-CM-PDAF 1.0,

the analysis is only performed in FESOM. Thus, while ‘PDAF_assimilate_lestkf’ is also called in ECHAM, is does not

assimilate any data.280
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– Finalize_PDAF: This routine is called at the end of the program. The routine includes calls to the routine ‘PDAF_print_info’,

which print out information about execution times of different parts of the assimilation program as measured by PDAF

as well as information about the memory allocated by PDAF.

Compared to the implementation strategy discussed in Nerger and Hiller (2013), in which the assimilation subroutine is only

called after a defined number of time steps, this updated scheme allows to perform DA operations during the time stepping285

loop. To use this updated scheme, one has to execute the coupled model with enough processors so that all ensemble members

can be run at the same time. This is nowadays easier than in the past because the number of processor cores is much larger in

current high-performance computers compared to the past.

Apart from the addition
::::::::
additional subroutine calls, a few changes were required in the source codes of ECHAM, FESOM,

and OASIS3-MCT which are related to the parallelization. These changes are discussed in Sec. 3.3.290

3.3 Parallelization for coupled ensemble data assimilation

The modification of the model parallelization for ensemble DA is a core element of the DA online coupling. Here, the

parallelization of AWI-CM and the required changes for the extension for the DA are described. For FESOM, as a single-

compartment model, the adaption of the parallelization was described by Nerger et al. (2005) and Nerger and Hiller (2013). A

similar parallelization was also described by Browne and Wilson (2015). For the online-coupling of PDAF with the coupled295

model TerrSysMP, the setup of the parallelization was described by Kurtz et al. (2016). While for TerrSysMP a different cou-

pling strategy was used, the parallelization of the overall system is essentially the same as discussed here for AWI-CM. The

parallelization for the DA is configured by the routine init_parallel_pdaf. In general this is a template routine, which can be

adapted by the user according to the particular needs. Nonetheless, by now the default setup in PDAF was directly usable in all

single-compartment models to which PDAF was coupled. Compared to the default setup in PDAF for a single-compartment300

model, we have adapted the routine to account for the existence of two model compartments.

Like other large-scale models, AWI-CM is parallelized using the Message-Passing Interface standard (MPI, Gropp et al.,

1994). MPI allows to compute a program using several processes with distributed memory. Thus, each process has only access

to the data arrays that are allocated by this process. Data exchanges between processes are performed in form of parallel

communication, i.e. the data is explicitly sent by one process and received by another process. All parallel communication is305

performed within so-called communicators, which are groups of processes. When the parallel region of a program is initialized,

the communicator MPI_COMM_WORLD is initialized, which contains all processes of the program. In case of AWI-CM when

the two executables for ECHAM and FESOM are jointly started, they share the same MPI_COMM_WORLD so that parallel

communication between the processses running ECHAM and those running FESOM is possible. Further communicators can be

defined by splitting MPI_COMM_WORLD. This is used to define groups of processes both for AWI-CM and for the extension310

with PDAF.

For AWI-CM without data-assimilation extension, the parallelization is initialized by each program at the very beginning.

Then, a routine of OASIS-MCT is called which splits MPI_COMM_WORLD into two communicators: one for ECHAM
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(COMM_ECHAM) and one for FESOM (COMM_FESOM). These communicators are then used in each of the compartment

models and together they build one model task that integrates one realization of the coupled model state. MPI_COMM_WORLD315

is further used to define one process each for ECHAM and FESOM, which perform the parallel communication to exchange

flux information. Important is here, that OASIS-MCT is coded to use MPI_COMM_WORLD to define these communicators.

Each of the compartment models then uses its group of processes for all compartment-internal operations. Each model uses

a domain-decomposition, i.e. each process computes a small region of the global domain in the atmosphere or the ocean.

The distribution of the processes is exemplified in Fig. 3(a) for the case of 6 processes in MPI_COMM_WORLD. Here, the320

communicator is split into 4 processes for COMM_FESOM (green) and 2 for COMM_ECHAM (blue).

For the ensemble DA, the parallelization of AWI-CM is modified. Generally, the introduction of the ensemble adds one ad-

ditional level of parallelization to a model, which allows us to concurrently compute the ensemble of model integrations,

i.e. several concurrent model tasks. In AWI-CM augmented by the calls to PDAF, the routine init_parallel_pdaf modi-

fies the parallelization. Namely MPI_COMM_WORLD is split into a group of communicators for the coupled model tasks325

(COMM_CPLMOD), as exemplified for an ensemble of 4 model tasks in Fig. 3(b) indicated by the different color shading.

Subsequently, OASIS-MCT splits each communicator COMM_CPLMOD into a pair COMM_ECHAM and COMM_FESOM

(third line in Fig. 3(b)). To be able to split COMM_CPLMOD, the source code of OASIS-MCT needs to be modified replacing

MPI_COMM_WORLD by COMM_CPLMOD, because OASIS-MCT uses MPI_COMM_WORLD as the basis for the com-

municator splitting (see also Kurtz et al., 2016, for the required modifications). With this configuration of the communicators,330

AWI-CM is able to integrate an ensemble of model states by computing all model tasks concurrently.

Two more communicators are defined in init_parallel_pdaf for the analysis step in PDAF. Here, a configuration is used that

computes the filter analysis step on the first coupled model task using the same domain-decomposition as the coupled model.

Because the ESTKF (as any other ensemble Kalman filter) computes a combination of all ensemble members individually

for each model grid point or for single vertical columns (Eq. 1), the ensemble information from all ensemble members is335

collected on the processes of the first model task, keeping the domain decomposition. For collecting the ensemble information,

the communicator COMM_COUPLE groups all processes that compute the same sub-domain in the coupled model. Thus,

all processes that have the same rank index in e.g. COMM_FESOM are grouped in one communicator as shown in line 4

of Fig. 3(b). Finally, the communicator COMM_FILTER (line 5 of Fig. 3(b)) is defined, which contains all processes of the

first model task. Note that compared to the single-compartment case discussed in Nerger et al. (2005) and Nerger and Hiller340

(2013), the major change is that each model task is split into the communicators COMM_FESOM and COMM_ECHAM,

which are, however, only used for the model integration. In addition, COMM_FILTER includes the processes of both model

compartments of the first model task.

This configuration is used to perform strongly-coupled DA, because it allows the communication between processes of

ECHAM with processes of FESOM. In a weakly-coupled application of DA, COMM_FILTER is initialized so that two separate345

communicators are created, one for all sub-domains of FESOM and another one for all sub-domains of ECHAM as shown in

Fig. 3(c). In practice one can achieve this by using the already defined communicators COMM_FESOM and COMM_ECHAM

of model task 1. Because these two communicators are initialized after executing init_parallel_pdaf, one has to overwrite
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COMM_FILTER afterwards in, e.g., init_PDAF. With this configuration the assimilation can be performed independently for

both compartments.350

3.4 Call-back routines for handling of model fields and observations

The call-back routines are called by PDAF to perform operations that are specific for the model or the observations. The

operations performed in each routine are rather elementary to keep the complexity of the routines low. There are four different

types of routines, which are displayed in Fig. 4:

– interfacing model fields and state vector (cyan): There are two routines called before and after the analysis step. The first355

routine writes model fields into the state vector of PDAF, while the second initializes model fields from the state vector.

These routines are executed by all processes that participate in the model integrations and each routine acts on its process

sub-domain. For the coupled model, there are different routines for FESOM and ECHAM.

– observation handling (orange): These routines perform operations related to the observations. For example, a routine

provides PDAF with the number of observations, which is obtained by reading the available observations and counting360

them. This routine allows PDAF to allocate arrays for the observed ensemble. Another routine is the implementation

of the observation operator. Here, the routine is provided with a state vector x from the ensemble and has to return the

observed state vector, i.e. H(x). For the coupled model, the routines are distinct for FESOM and ECHAM as, e.g., the

observation operator for an oceanic observation can only be applied in FESOM. For strongly coupled DA, the observation

operator routine would also contain , parallel communication that acts across the compartments. Thus, after obtaining365

the observations in a compartment, a cross-compartment observation vector is initialized using MPI communication.

– localization (yellow): The localized analysis described in Sec. 2.1.1 requires several operations, which are provided by

call-back routines. For example, a call-back routine needs to determine the dimension of a local state vector. For a single

grid point this would be the number of variables stored at this grid point. For a vertical column of the model grid, this

would be the number of 3-dimensional model fields times the number of model layers plus the number of 2-dimensional370

model fields (like sea surface height or sea ice variables in FESOM). Then, after PDAF allocates the local state ensemble,

a call-back routine is used to fill the local states from the full domain-decomposed state vector (likewise, there is a routine

that writes a local state vector after the local analysis correction into the full state vector). In addition, there is a routine

that determines the number of observations within the influence radius around the vertical column and a routine to fill

this local observation vector from a full observation vector.375

– pre- and post-processing (blue): To give the user access to the ensemble before and after the analysis step, there is a

pre/post-processing routine. Here, one typically computes the ensemble mean and writes it into a file. Further, one could

implement consistency checks, e.g. whether concentration variables have to be positive, and can perform a correction to

the state variables if this is not fulfilled.
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4 Parallel performance of the coupled data assimilation system380

4.1 Scalability

To assess the parallel performance of the assimilation system described above, AWI-CM is run here in the same global con-

figuration as described by Sidorenko et al. (2015). The atmosphere uses a horizontal spectral resolution T63 (about 180 km)

with 47 layers. The ocean model uses an unstructured triangular grid with 46 vertical layers. The horizontal resolution varies

between 160 km in the open ocean, with a refinement to about 45 km in the equatorial region and close to the Antarctic con-385

tinent, and 30 km north of 50o N. The models are run with a time step size of 450 seconds for ECHAM and 900 seconds for

FESOM. The coupling by OASIS-MCT is performed hourly.

In the initial implementation AWI-CM-PDAF 1.0, the assimilation update is only performed as weakly coupled DA in

the ocean compartment. The state vector for the assimilation is composed of the 2-dimensional sea surface height, and

the 3-dimensional model fields temperature, salinity and the three velocity components. The DA is started on January 1st,390

2016 and satellite observations of the sea surface temperature obtained from the European Copernicus initiative (data set

SST_GLO_SST_L3S_NRT_OBSERVATIONS_010_010 available at https://marine.copernicus.eu), interpolated to the model

grid, are assimilated daily. The assimilation is multivariate so that the SST observations influence the full oceanic model state

vector through the ensemble estimated cross-covariances that are used in the ESTKF. The initial ensemble was generated using

second-order exact sampling (Pham et al., 1998) from the model variability of snap shots
:::::::
snapshots

:
at each 5th day over one395

year. the ensemble mean was set to a model state for January 1, 2016 from a historical (climate) run of AWI-CM. No inflation

was required in this experiment, i.e. a forgetting factor ρ= 1.0 (see Eq. 4) was used. Even though, we only perform weakly

coupled DA here, we expect that the compute performance would be similar in case of strongly coupled DA, as is explained in

Sec. 6.

For a fixed ensemble size but varying number of processes for ECHAM and FESOM, the scalability of the program is400

determined by the scalability of the models (see, e.g., Nerger and Hiller, 2013). To access the scalability of the assimilation

system for varying ensemble size, experiments over 10 days were conducted with varying ensemble sizes between Ne = 2 and

Ne = 46. The
:::::
length

:::
of

::::
these

::::::::::
experiments

::
is
::::::
chosen

::
to

:::
be

::::
long

::::::
enough

::
so

::::
that

:::
the

::::::::
execution

::::
time

::
is

:::::::::::
representative

::
to
::::::
assess

:::
the

:::::::::
scalability.

::::::::
However,

:::
the assimilation effect will be rather small for these 10 analysis steps. However, the experiments are long

enough to assess the scalability. The number of processes for each model task was kept constant at 72 processes for ECHAM405

and 192 processes for the more costly FESOM. The experiments were conducted on the Cray XC40 system ‘Konrad’ of the

North-German Supercomputer Alliance (HLRN).

Fig. 5 shows the execution times per model day for different parts of the assimilation program. Shown are the times for

24-hour forecast phases including the time to collect and distribute the ensemble (DA coupling within the communicator

COMM_COUPLE) for the analysis step. Also shown are the times for the analysis step (green), the execution of the pre-/post-410

step operations (red), and the DA coupling time (blue). The crosses show the time for each model task and separately for the

atmosphere and ocean, thus there are 2Ne black and blue crosses for each ensemble size. The blue and black lines show the

maximum execution times. The overall execution time is dominated by the time to compute the forecasts. The combined time
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for the analysis and the pre/post step operations is only between 4 and 7% of the forecast time. For a given ensemble size, the

black crosses show that the execution times for the forecast on the different model tasks vary. In the experiments, the longest415

forecast time was up to 16% larger than the shortest time, which occurred for Ne = 24. This variability is partly caused by

the time for DA coupling (see discussion below), but also by the fact that the semi-implicit time stepping of FESOM leads to

varying execution times. Further influence have the parallel communication within each compartment at each time step and

the communication for the model coupling by OASIS3-MCT that is performed at each model hour. The execution time for

these operations depends on how the overall program is distributed over the computer. As the computer is also used by other420

applications, it is likely that the application is widely spread over the computer so that even different compute racks are used.

This can even lead to the situation that the processors for a single coupled model task of ECHAM and FESOM, but also a

single model instance of ECHAM or FESOM, are not placed close to each other. If the processors are distant, e.g. in different

racks, the communication over the network will be slower than for a compact placement of the processors. To this end
:
,
:
also

the execution time will vary when an experiment for the same ensemble size is repeated. Nonetheless, repeated experiments425

showed that the timings in Fig. 5 are representative.
:::::::
Likewise

::::::::::
experiments

:::
in

:::
the

::::
new

::::::::::::
supercomputer

:::::::
system

:::::
‘Lise’

:::
of

:::
the

:::::
HLRN

:::::::
showed

:::::::
similar

:::::::
timings,

::::::
though

:::
the

:::::::
forecast

:::::
time

::::
was

:::::::
reduced

::
to

:::::
about

:::
27

:::::::
seconds

:::
per

::::
day

::::::::
compared

:::
to

:::::
about

:::
35

::::::
seconds

::::::
shown

::
in

::::
Fig.

::
5.

The variation of the forecast time when the ensemble size is changed is mainly caused by the varying time for the DA

coupling. When the time for the DA coupling is subtracted from the forecast time, the variability is much reduced as the black430

dashed line shows. The variability in dependence on the ensemble size is better visible when the execution time is normalized

relative to the time forNe = 2 as is displayed in Fig. 6. The forecast time including DA coupling fluctuates and increases by up

to 8% for the largest ensemble with Ne = 46 (black line). In contrast, the forecast time without DA coupling only increases by

about 3.5% (black dashed line). The time for the DA coupling (blue line) varies by a factor of 2.5. This large variation is due

to the fact that here the communication happens in the communicators COMM_COUPLE, which are spread much wider over435

the computer than the communicators for each coupled model task (COMM_CPLMOD) as is visible in Fig. 3. However, even

though the number of ensemble states to be gathered and scattered in the communication for the DA coupling varies between

2 and 46, there is no obvious systematic increase in the execution time. In particular, for Ne = 40 the execution time is almost

identical to that of Ne = 2.

Further variation in dependence on the ensemble size is visible for the pre-/post-step operations (red line). This variation is440

mainly due to the operations for writing the ensemble mean state into a file. In contrast, the analysis step shows a systematic

time increase. The time for computing the analysis for Ne = 46 is about seven times as long as for Ne = 2. This is expected

from the computational complexity of the LESTKF algorithm (see Vetra-Carvalho et al., 2018). However, also the LESTKF

performs MPI communication for gathering the observational information from different process domains. When repeating

experiments with the same ensemble size we found a variation of the execution time for the analysis step of up to 10%.445
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4.2 Performance tuning

To obtain the scalability discussed above important optimization steps have been performed. First, it is important that each

coupled model instance is, as far as possible, placed compactly in the computer. Second, one has to carefully consider the disk

operations performed by the ensemble of coupled model tasks.

For the first aspect, one has to adapt the run script. The coupled model is usually started with a command line like450

mpirun −np NO fesom.x : −np NA echam.x

(or any other suitable starter for an MPI-parallel program) such that FESOM and ECHAM are run usingNO andNA processes,

respectively. For the DA one could simply change this by replacing NO by Ne×NO and NA by Ne×NA to provide enough

processes to run the ensemble. This is analogous to the approach used when running a single-compartment model. However,

changing the command line in this way will first place all MPI tasks for the FESOM ensemble in the computer followed by455

all MPI tasks for the ECHAM ensemble. Accordingly, each ocean model will be placed distant from the atmospheric model

to which it is coupled. Using this execution approach, the time for the forecasts discussed above increased by a factor of four,

when the ensemble size was increased from 2 to 46. For a more efficient execution, one has to ensure that the ocean-atmosphere

pairs are placed close to each other. This is achieved with a command line like

mpirun −np NO fesom.x : −np NA echam.x : −np NO fesom.x : −np NA echam.x . . .460

which contains as many FESOM-ECHAM pairs as there are ensemble members. With this approach, the time increase of the

forecast was reduced to about 40% for the increase from Ne = 2 to Ne = 46.

For the second issue regarding disk operations, one has to take into account that the direct outputs written by each coupled

ensemble task are usually not relevant because the assimilation focuses on the ensemble mean state. To this end, one generally

wants to deactivate the outputs written by the individual models and replace them by outputs written by the pre-/post-step465

routine called by PDAF. If the model does not allow to fully switch off the file output, it usually helps to set the output interval

of a model to a high value (e.g. a year for a year-long assimilation experiments). However, in case of AWI-CM this strategy still

resulted in conflicts of the input/output operations so that the models from the different ensemble tasks tried to write into the

same files, which serialized these operations and increased the execution time. To avoid these conflicts it helped to distribute

the execution of the different ensemble tasks to different directories, e.g.470

mpirun −np NO 01/fesom.x : −np NA 01/echam.x : −np 02/NO fesom.x : −np NA 02/echam.x . . .

combined with a prior operation in the run script to generate the directories and distribute the model executables and input files.

This distribution avoids that two model tasks write
:::::
writes

:
into the same file and improves the performance of the ensemble

DA application. In this configuration, the performance results of Sec. 4.1 were obtained. Another benefit of separate execution

directories is that ensemble restarts can be easily realized. Given that each model task write its own restart files in a separate475

directory, a model restart is possible from these files without any adaptions to the model code. Note, that the approach of

separate directories is also possible for the ensemble DA in case of a single (uncoupled) model like a FESOM-only simulation

using atmospheric forcing data as e.g. applied by Androsov et al. (2019).
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5
::::::::::
Application

::::::::
Example

::::::::::
Applications

::::::
based

::
on

:::
the

::::::::::::::
AWI-CM-PDAF

::::
1.0

::::
code

:::
are

::::::::::::::
Mu et al. (2020)

:
,
:::::
where

:::
the

:::::
focus

::
is
:::

on
:::
the

::::::
effect

::
on

::::
sea

:::
ice,

::::
and480

::::::::::::::
Tang et al. (2020)

:
,
::::
who

::::::
discuss

:::
the

:::::::
reaction

::
of

:::
the

::::::::::
atmosphere

::
on

::::::::::
assimilating

:::::
ocean

:::::::::::
observations.

:

::::
Here,

:::
we

::::::::::
demonstrate

:::
the

:::::::::::
functionality

::
of

:::
the

::::
data

::::::::::
assimilation

::::::
system

::
in

:::
an

:::::::::
experiment

::::::::::
assimilating

::::
SST

::::
data

::::
over

:::
the

::::
year

:::::
2016.

:::
An

::::::::
ensemble

::
of

::
46

:::::
states

::
is
:::::
used,

::::::
which

:
is
:::

the
:::::::::

maximum
::::
size,

:::::
used

::
in

:::
the

::::::::
scalability

::::::::::
experiment

::::::::
discussed

::::::
above.

::::
The

::::::::::
assimilation

:
is
:::::::::
performed

::::
with

:
a
::::::::::
localization

::::::
radius

::
of

:::
500

:::
km

:::::
using

:::
the

:::::::
regulated

::::::::::
localization

:::::::
function

:::
by

:::::::::::::::::
Nerger et al. (2012a)

:
.
:::
The

:::::
same

::::
SST

:::::::::::
observations

::
as

::
in

::::
Sec.

:::
4.1

:::
are

:::::::::::
assimilated,

:::::
which

:::
are

::::::
treated

:::
as

::
in

::::::::::::::
Tang et al. (2020)

:
.
::::
The

::::::::
resolution

:::
of

:::
the485

::::::::::
observations

::
is

::::
0.1o

:::
and

::::::
hence

:::::
higher

::::
than

::::
the

::::::::
resolution

::
of

:::
the

::::::
model

::
in

:::::
most

:::::::
regions.

:::::
Since

:::
the

:::::
model

::::
grid

::
is

:::::::::::
unstructured

::::
with

::::::
varying

:::::::::
resolution,

::::::::::::::::
super-observations

:::
are

:::::::::
generated

::
by

:::::::::
averaging

::::
onto

:::
the

::::::
model

::::
grid.

::::
The

::::::::::
observation

::::
error

::::::::
standard

:::::::
deviation

:::
for

:::
the

:::::::::::
assimilation

:::
was

:::
set

::
to

::::::
0.8oC

:::
and

:::::::::::
observations

:::::
whose

:::::::::
difference

:::::
from

:::
the

::::::::
ensemble

:::::
mean

:
is
:::::

more
::::
than

::::
two

:::::::
standard

::::::::
deviations

:::
are

::::::::
excluded

::::
from

:::
the

:::::::::::
assimilation.

::::
This

:::::::
approach

::::::::
excludes

:::::
about

::::
22%

::
of

:::
the

::::::::::
observations

::
at

:::
the

:::::
initial

::::
first

::::::
analysis

:::::
step.

:::
The

:::::::
number

::
of

::::::::
excluded

::::::::::
observations

::::::
shrinks

::::::
during

:::
the

::::::
course

::
of

:::
the

::::::::::
assimilation

:::
and

::::
after

::::
one

:::::
month

::::
less

::::
than490

:::
5%

::
of

:::
the

::::
days

:::::::::::
observations

:::
are

::::::::
excluded.

::::
The

::::::::::
assimilation

::::::
further

::::::::
excludes

::::::::::
observations

::
at
::::
grid

::::::
points

:::
for

:::::
which

:::
the

::::::
model

:::::::
contains

:::
sea

:::
ice

::::::
because

::
of

:::
the

:::::::::
mis-match

::
of

:::
the

:::::::
satellite

::::
data

::::::::::
representing

:::::::
ice-free

:::::::::
conditions,

:::::
while

:::
ice

::
is

::::::
present

::
on

::::::::
modeled

:::::
ocean

:::::::
surface.

::::
Two

::::::::::
experiments

:::
are

::::::::::
performed:

:::
The

::::::::::
experiment

::::::
FREE

::::
runs

:::
the

::::::::
ensemble

:::::::
without

::::::::::
assimilating

:::::::::::
observations

::::
while

:::
the

::::::::::
experiment

:::::::
DA-SST

::::::::::
assimilates

::
the

::::
SST

:::::
data.

:::::
Figure

::
7

:::::
shows

::::
root

:::::
mean

::::::
square

::::
error

:::::::
(RMSE)

:::
of

::
the

::::
SST

:::
in

:::
the

:::::::
analysis

:::
step

::::
with

:::::::
respect

::
to

:::
the

:::::::::
assimilated

:::::::::::
observations495

:::
over

:::::
time.

:::::
Given

::::
that

:::
the

::::
SST

::::::::::
observations

:::
are

::::::::::
assimilated

::
it

:
is
::

a
::::::::
necessary

::::::::
condition

:::
for

:::
the

:::
DA

:::
to

:::::
reduce

:::
the

::::::::
deviation

:::::
from

::::
these

:::::::::::
observations.

:::
At

:::
the

::::::
initial

:::::::
analysis

::::
time

::::
(i.e.

::::
after

:::
24

::::::
hours),

::::
the

::::::
RMSE

::
is

:::::
about

::::::
1.2oC.

::
In

::::
the

:::
free

::::
run,

::::
the

::::::
RMSE

:::::::
increases

::::
first

::
to

:::::
about

::::::
1.4oC

:::
and

:::::::
reaches

::::::
nearly

:::::
1.6oC

:
a
::::

the
:::
end

::
of

:::
the

:::::
year.

::::
The

::::::::::
assimilation

::
in

::::::::
DA-SST

:::::::
strongly

:::::::
reduces

::
the

::::::
RMSE

::::::
during

:::
the

::::
first

:::
two

:::::::
months.

::::::
During

::::
this

:::::
initial

::::::::
transient

:::::
phase,

:::
the

::::::
RMSE

::
is

:::::::
reduced

::
to

:::::
about

:::::::
0.45oC.

::::::::::
Afterwards,

::
the

::::::
RMSE

:::::::
remains

::::::
nearly

::::::::
constant,

:::::
which

::
is

:
a
::::::
typical

::::::::
behavior.

:::
On

:::::::
average

::::
over

:::
the

::::
year

:::::
2016,

:::
the

::::::
RMSE

::
in

:::
the

::::::::::
experiment500

:::::::
DA-SST

::
is

::::::
0.51oC,

:::::
while

::
it
::
is

::::::
1.38oC

:::
for

:::
the

:::
free

::::
run.

:

::
To

:::::::
validate

:::
the

::::::::::
assimilation

::::
with

::::::::::
independent

:::::::::::
observations,

::::::::::
temperature

:::
and

::::::
salinity

:::::::
profiles

::::
from

:::
the

::::
EN4

::::
data

::
set

:::::::::
(EN4.2.1)

::
of

:::
the

:::
UK

::::::::
MetOffice

:::::::::::::::::
(Good et al., 2013)

::
are

:::::
used.

::::
This

::::::::
collection

::
of

::
in

:::
situ

::::
data

:::::::
contains

:::::
about

:::::
1000

::
to

::::
2000

:::::::
profiles

:::
per

:::
day

::
at

:::::
depths

:::::::
between

:::
the

:::::::
surface

:::
and

::::
5000

:::
m

:::::
depth.

::::::
Figure

:
8
::::::
shows

:::
the

::::::
RMSE

::
of

:::
the

:::::::::
experiment

::::::::
DA-SST

::::::
relative

::
to

:::
the

::::::
RMSE

:::
for

::
the

::::
free

::::
run.

:::::
Hence

::::::
values

:::::
below

::::
one

:::::::
indicate

::::::::::::
improvements.

:::
For

:::
the

::::::::::
temperature

::
a

::::::
gradual

:::::::::::
improvement

::
is
::::::
visible

::::::
during

:::
the505

:::
first

::::
100

::::
days.

::::
The

:::::
error

::::::::
reduction

:::::
reach

:::::
about

::::
40%

::::::
during

:::
the

::::
year.

:::
On

:::::::
average,

:::
the

::::::
RMSE

::
is
:::::::
reduced

:::
by

::::
14%

::::
from

:::::::
1.85oC

::
to

::::::
1.40oC.

::::
The

::::::::
variations

:::
in

:::
the

::::::
RMSE,

:::
e.g.

:::
the

::::::::
elevated

:::::
values

::::::
around

::::
day

:::
250

:::
are

::::
due

::
to

:::
the

:::::::
varying

:::::::
coverage

::::
and

:::::::
location

::
of

:::
the

::::::
profiles

::
in

:::
the

::::
EN4

::::
data

:::
set.

::::
For

:::
the

::::::
salinity

:::
the

:::::
effect

::
of

:::
the

:::
DA

::
is

::::::
lower.

:::::
While

:::
the

::::::
RMSE

::
of

:::
the

::::::
salinity

::::
first

::::::::
increases

:::::
during

:::
the

::::
first

::::::
month,

::
it
::
is

:::::::
reduced

:::::
from

:::
day

:::
60,

:::
but

:::::
until

:::
day

::::
140

::
it

::
is

:::::::::
sometimes

:::::
larger

::::
than

::
at

:::
the

::::::
initial

::::
time.

::::::
Partly

:::
the

:::::
RMSE

::
is
:::::::
reduced

::
by

:::
up

::
to

::::
23%

::
at

:::
day

::::
144.

:::
On

:::::::
average

::::
over

::
the

::::
full

::::
year

::
of

:::
the

:::::::::
experiment,

:::
the

::::::
RMSE

::
of

:::::::
salinity

::
is

::::::
reduced

:::
by510

:::::
5.6%.

::::
This

::::::
smaller

:::::
effect

:::
on

:::
the

::::::
salinity

::
is

::::::::
expected

::::::
because

:::::
there

:::
are

::
no

::::::
strong

::::::::::
correlations

:::::::
between

:::
the

::::
SST

:::
and

:::
the

:::::::
salinity

:
at
::::::::
different

::::::
depths.

::::
The

:::::::::::
improvements

:::
of

:::
the

:::::
model

:::::
fields

::
by

:::
the

::::
DA

::
of

::::
SST

::
is

::::::
mainly

::::::
located

::
in

:::
the

:::::
upper

:::::
200m

::
of

:::
the

::::::
ocean.
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:::
For

:::
the

::::::::::
temperature

:::
the

::::::
RMSE

::
is

:::::::
reduced

::
by

::::::
15.2%

::
in

:::
the

:::::
upper

::::::
200m,

:::
but

::::
only

:::::
3.0%

:::::
below

::::::
200m.

::::
This

::
is

::::
also

::
an

::::::::
expected

:::::
effect

::::::
because

:::
the

::::::::::
correlations

:::::::
between

::::
SST

::::
and

:::::::::
subsurface

::::::::::
temperature

:::
are

::::::
largest

::
in

:::
the

:::::
mixed

:::::
layer

::
of

:::
the

:::::
ocean.

:

6 Discussion515

The good scalability of the assimilation system allows to perform an assimilation experiment
:::
the

::::::::::
assimilation

:::::::::
experiment

:::
of

:::
Sec.

::
5 over one full year with daily assimilation in about 6.5

::::::
slightly

:::
less

::::
than

::
4 hours, corresponding to about 79

::
53,000 core-

hours. As such the system is significantly faster than the coupled ensemble DA application by Karspeck et al. (2018), who

reported to complete one year in 3 to 6 weeks with an ensemble of 30 states and about one million core-hours per simulation

year. However, both systems are not directly comparable. Karspeck et al. (2018) used atmospheric and ocean models with520

1◦ resolution. Thus the atmosphere had a higher resolution than used here, while the ocean resolution was comparable to

the coarse FESOM resolution in the open ocean, which was then regionally refined. Given that both model compartments in

AWI-CM scale to larger processor numbers than we used for the DA experiment, we expect that the DA into AWI-CM with

ECHAM at a resolution of T127 (i.e. about 1◦) could be run at a similar execution time as for T63 given that a higher number

of processors would be used. Further Karspeck et al. (2018) applied the DA also in the atmosphere, while here only oceanic525

data was assimilated. Given that the atmospheric analysis step would typically be applied after each 6th hour, the time for the

DA coupling and the analysis steps would increase. However, we don’t expect that a single atmospheric analysis step would

require significantly more time than the ocean DA so that due to the parallelization the overall run time should not increase

by more than 10-20%. Further, we expect a similar scalability in case of strongly coupled DA. The major change for strongly

coupled DA is to communicate the observations in between the compartments as mentioned above. This communication will530

only be small part of the analysis time.

Important for the online-coupled assimilation system is that there is obviously no significant time required for re-distributing

the model field (i.e. the time for the DA coupling discussed in Sec. 4.1). Furthermore there is no transpose of the ensemble

array to be performed, which was reported to be costly by Karspeck et al. (2018). Here, the implementation of the analysis

step uses the same domain-decomposition as the models and hence only the full ensemble for each process sub-domain has to535

collected by the DA coupling. Thus, only
:::::
groups

::
of

:
up to 46 processes communicate with each other in this step.

The online-coupled assimilation system avoids any need for frequent model restarts. Actually, the initial model startup of

AWI-CM took about 95 seconds and the finalization of the model with writing restart files tool another 15 seconds. Thus,

these operations take about 3.3 times longer than integrating the coupled model for one day. If the DA would be performed

in a separate program coupled to AWI-CM through files
:
, these operations would be required each model day. In addition, the540

assimilation program would also need to read these restart files and write new restart files after the analysis step. Assuming

that these observations take about 15 seconds, like the finalization of the coupled model, the execution time would increase by

a factor of 4 for offline-coupled DA compared to online-coupled DA.

The code structure using interface routines inserted into the model code and case-specific call-back routines makes the

assimilation framework highly flexible. Further, the abstraction in the analysis step, which uses only state and observation545
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vectors without accounting for the physical fields allows one to separate the development of advanced DA algorithms from

the development of the model. Thus, a separation of concerns is ensured, which is mandated for efficient development of

complex model codes and their adaptions to modern computers (Lawrence et al., 2018). The separation allows that, as soon

as a new DA method is implemented, all users with their variety of models can use this method by updating the PDAF

library. To ensure compatibility of different versions of the library, the interfaces to the PDAF routines are kept unchanged.550

However for a new filter additional call-back routines might be required, e.g. a routine to compute the likelihood of an ensemble

according to the available observations in case of the nonlinear ensemble transform filter (NETF, Tödter and Ahrens, 2015) or

a particle filter. The abstraction in the analysis step and the model-agnostic code structure also allow to apply the assimilation

framework independent of the specific research domain. E.g. applications of PDAF with a geodynamo model (Fournier et al.,

2013)or ,
:

hydrological applications (Kurtz et al., 2016),
:::
ice

::::::
shield

::::::::
modeling

::::::::::::::::::
(Gillet-Chaulet, 2020)

:
,
:::
and

::::::::
volcanic

:::
ash

::::::
clouds555

:::::::::::::::::
(Pardini et al., 2020) have been published.

The example here , uses a parallelization so that
:
in

::::::
which the analysis step is computed using the first model task and the

same domain decomposition as the model. Other parallel configurations are possible. E.g., one could compute the analysis step

not only using the processes of model task 1, but for processes of several or all model tasks. This could be done by either using

a finer domain-decomposition than in the model integrations, or by e.g. distributing different model fields onto the processes.560

These alternative parallelization strategies are, however, more complex to implement and hence not the default in PDAF. A

further alternative, which is already supported by PDAF, is to dedicate a set of processes for the analysis step. In this case,

the DA coupling would communicate all ensemble members to these separate processes. However, these processes would idle

during the forecast phase. To this end, separating the processes for the analysis step would mainly be a choice if the available

memory on the first model task is not sufficient to execute the analysis step. Also in this case, the distribution of the analysis565

step over several processors would reduce the required memory. For the parallel configuration of AWI-CM-PDAF in Fig. 3,

a particular order of the processes is assumed. This order originates from the startup procedure of MPI and is determined by

the command line which start the program. Thus, for other models one might need a different setup, which can usually be

obtained by only modifying the routine init_parallel_pdaf. Further, the default version of this routine splits the communicator

MPI_COMM_WORLD. However, for other models a different suitable communicator might be split if not all processes par-570

ticipate in the time stepping. This can be the case when, e.g., an OI-server is used that reserves processes exclusively for the

file operations. To provide flexibility to adapt to such requirements, the routine init_parallel_pdaf is compiled with the model

and is not part of the core routines of the PDAF library.

While the fully-parallel execution of the assimilation program is very efficient, it is limited by the overall job size allowed

on the computer. The maximum ensemble size was here limited by the batch job size of the used computer. The model used575

in the example here can scale even further than e.g. the 192 processes used for FESOM and 72 processes for ECHAM. Thus,

using the same computer, one could run a larger ensemble with less processes per model and accordingly a larger run time,

or a smaller ensemble with less run time. The number of processes should be set so that the requirements on the ensemble

size for a successful assimilation can be fulfilled. Nonetheless, the ensemble DA is computationally demanding and for larger

applications, one might need to obtain a compute allocation at larger computing sites, like national compute centers.580
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7 Conclusions

This study discussed the parallel data assimilation framework (PDAF) and its use to create a coupled data assimilation program

by augmenting the code of a coupled model and using in-memory data transfers between the model and the data assimilation

software. The implementation strategy was exemplified for the coupled ocean-atmosphere model AWI-CM for which two

separate programs for the ocean and atmosphere where augmented. However, the strategy can be easily used for other model585

systems consisting of a single or multiple executables.

The implementation of a DA system based on PDAF consist in augmenting the model codes with calls to routines of the

assimilation framework. These routines modify the parallelization of the model system, so that it becomes an ensemble model.

Further, the ensemble is initialized and the analysis step of the data assimilation can be executed at any time without restarting

the model. Operations to transfer between model fields and the abstract state vector of the assimilation, and the observation590

handling are performed in case-specific routines. These routines are executed as call-back routines and can be implemented

like routines of the numerical model, which should simplify their implementation.

Numerical experiments with daily assimilation of sea surface temperature observations into the AWI-CM showed an excel-

lent scalability when the ensemble size is increased. This resulted in an overhead which was, depending on the ensemble size,

only up to 15% in computing time compared to the model without assimilation functionality. The execution time of the coupled595

ensemble data assimilation program was dominated by the time to compute the ensemble integrations in between the time in-

stances at which the observations are assimilated. This excellent scalability resulted from avoiding disk operations by keeping

the ensemble information in memory and exchanging it through parallel communication during the run time of the program.

Care has to be taken that in the coupled model the pairs of atmosphere and ocean model compartments are placed close to

each other in the computer, which can be achieved by specifying these pairs in the command starting the parallel program. The600

time to collect this ensemble information before the analysis step and to distribute it afterwards showed significant variations

from run to run. These variations are due to the fact that the large compute application is widely spread over processors of the

computer. Anyway, no systematic time increase was observed when the ensemble size was increased and the time was only

up to about 6% of the time required for the forecasting. Distributing the different models over separate directories improved

the scalability because it avoided possible conflicts the in file handling which can be serialized by the operating system of the605

computer.

PDAF provides a model-agnostic framework for the efficient data assimilation system as well as filter and smoother algo-

rithms. As such it provides the capacity to ensure a separation of concerns between the developments in the model, observations,

and the assimilation algorithms. Functionality to interface between the model, which operates on physical fields, and the as-

similation code, which only work on abstract state vectors, has to be provided in a case-specific manner by the users based on610

code templates. This also holds for the observation handling. While there are typical observational data sets for the different

Earth system compartments, the observation operator links the observations with the model fields on the model grid. Thus, the

observation operator has to be implemented taking into account the specific character of the model grid like the unstructured

structure of FESOM’s grid.
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:::
The

::::::
current

:::::::::::::
implementation

::
of

::::::::::::::
AWI-CM-PDAF

::::
only

:::::::
contains

:::
the

::::::::::
assimilation

:::
into

:::
the

:::::
ocean

::::::::::
component,

:::::
while

::
the

::::::::::
assimilation615

:::
into

:::
the

::::::::::
atmosphere

::
is

:::::::::
technically

:::::::::
prepared.

::::
First

::::::
studies

:::::::::::::::::::::::::::::
(Mu et al., 2020; Tang et al., 2020)

::::
base

::
on

::::
this

:::::::::::::
implementation.

:::
In

:::::
future

::::
work

:::
we

::::
plan

::
to

:::
add

:::
the

::::::::::
assimilation

::
of

::::::::::
atmospheric

:::::::::::
observations,

:::
and

::
to

::::::::
complete

:::
the

:::::::::::::
implementation

::
of

::::::::::::::
strongly-coupled

:::
data

:::::::::::
assimilation,

:::::
which

:::::::
requires

:::
the

::::::::
exchange

::
of

:::::::::::
observations

::
in

:::::::
between

:::
the

:::::
ocean

::::
and

::::::::::
atmosphere.
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Figure 1. Call-structure of PDAF. Calls to interface routines (yellow) are inserted to the model code (blue). The interface routines define

parameters for PDAF and call PDAF library routines (green). These library routines call user-provided call-back routines. The model code,

interface, and call-back routines operate in the model context and can hence exchange information indirectly, e.g. through Fortran modules.

Likewise, the PDAF library routines share variables.
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Figure 2. General program flow: (left) abstract original program without data assimilation; (right) program augmented for data assimilation.

The blue color marks coupling routines whose parallelization needed to be adapted for the data assimilation. Each of the two coupled

compartment models were augmented in this way.
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(a) MPI communicator structure for AWI-CM Color legend:
0 1 2 3 4 5 MPI_COMM_WORLD COMM_CPLMOD
0 1 2 3 0 1 COMM_FESOM COMM_COUPLE

COMM_ECHAM COMM_FILTER

(b) MPI communicator structure of AWI-CM augmented with PDAF for strongly coupled assimilation
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
0 1 2 3 0 1 0 1 2 3 0 1 0 1 2 3 0 1 0 1 2 3 0 1
0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3
0 1 2 3 4 5

(c) Structure of MPI communicator COMM_FILTER for weakly coupled assimilation
0 1 2 3 0 1

Figure 3. Example configuration of MPI communicators: (a) AWI-CM, (b) AWI-CM with PDAF-extension for ensemble data assimilation.

The colors and lines mark processes that are grouped as a communicator. Different shades of the same color mark the same communicator

type (e.g. four orange communicators COMM_FESOM). For COMM_COUPLE each communicator is spread over the model tasks. The

numbers mark the rank index of a process in a communicator.
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Figure 4. PDAF filter analysis step and related call-back routines provided by the user. there are four types of routines: transfers between

model fields and state vector (cyan), observation handling (orange), treatment of localization (yellow), and pre/post-processing (blue).
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Figure 5. Execution times per model day for varying ensemble sizes for different parts of the assimilation program. The dominating forecast

time includes the ’coupling’ time which results in the time variations.

27



0 10 20 30 40 50

ensemble size

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

ti
m

e
 r

e
la

ti
v
e

 t
o

 e
n

s
e

m
b

le
 s

iz
e

 2

Relative execution times

forecast

forecast-couple

prepoststep

0 10 20 30 40 50

ensemble size

0

1

2

3

4

5

6

7

ti
m

e
 r

e
la

ti
v
e

 t
o

 e
n

s
e

m
b

le
 s

iz
e

 2

Relative execution times

couple

analysis

Figure 6. Execution times relative to ensemble size 2 for different parts of the assimilation program as a function of the ensemble size. The

fluctuation is the time is caused by parallel communication and file operations. The analysis step shows a systematic time increase, while the

time for DA-coupling varies strongly.
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