
Response to Reviewer #1

We like to thank for reviewer for the careful review. Please see our response below.

The paper describes the implementation of the software tool PDAF to a coupled ocean-atmosphere
model. It discusses essentially the general structure of the PDAF software and how the coupling
can be realized on a distributed computing architecture with MPI. While this is interesting, my
main issues with this manuscript are the following 4 points:

1. No actual results of the assimilation system are presented. Only the execution time for
different settings. It is unclear to me what the role of a reviewer can be in this case. I rather
think that the paper should also include the results of such model (see also the following point).

Response: The manuscript was prepared for the particular scope of the Journal
Geoscientific Model Development (GMD) as a technical development study. As
such the manuscript focuses on the technical aspects and the scalability. Discussing
actual data assimilation results would not be in line with the scope. Actually, given
that coupled data assimilation is a young approach, and still challenging, we think
that GMD would not be the right journal to discuss application results of coupled
data assimilation as we would not reach the intended readers. Apart from this, the
scalability was only assessed with short experiments over 10 days (i.e. 10 analysis
cycles). During this time, the assimilation process is in the initial spin-up phase
and the assimilation effect is still small. Significantly longer experiments over a few
months or a year would be required to get significant assimilation results. Given
limited computing resources, we cannot perform full-length scalability experiments.
To respond to the authors recommendation, we have revised the introduction to
better point out the status and challenges of weakly and strongly coupled data as-
similation. This should clarify why here we only discuss experiments with weakly
coupled assimilation.

2. The manuscript mentions different approaches to implement the assimilation in a coupled
system: in a combined state vector spanning the atmospheric and ocean model or separately.
The question about which approach is better is still open and it should not be too difficult to
the authors to check both approaches. This would help also to address the previous point and
add substantially to the scientific value of this paper.

Response: While technically the strongly-coupled data assimilation is not too diffi-
cult, as is actually discussed in the manuscript, the application as such is. Strongly-
coupled data assimilation is a very young approach and there are hardly any papers
on this topic. By now, we know that the plain application of strongly coupled data
assimilation does likely not give optimal results. To this end, we didnt attempt
strongly-coupled DA in this manuscript as the assimilation results are most likely
not representative. This led to the decision to discuss the model binding AWI-CM-
PDAF version 1.0 for weakly coupled data assimilation. This scope is now better
clarified in the manuscript.

3. The different time scales of ocean and atmosphere are not discussed and the assimilation is
done only in the ocean. To really appreciate the effectiveness of the coupling, data should be



assimilated in both the atmosphere and the ocean and the question regarding the assimilation
frequency should be addressed. As usual, the models should be validated against independent
observations.

Response: As mentioned before, following the scope of GMD, the manuscript dis-
cusses the PDAF model binding for a coupled model as a technical development
paper. Discussing application results and the question of the assimilation frequency
would be a different study, which would certainly not suited for GMD.

4. There is too much overlap between this manuscript and previous manuscripts by the same
author concerning the description of PDAF (in particular the memory coupling, general API
structure). I think the author should focus this paper on the coupling aspect and just reference
to elements already published before.

Response: We have revised Section 3 (in particular 3.1 and 3.2) to also discuss the
particularities of coupling PDAF to the coupled model with multiple executables.
For completeness of the manuscript, we prefer to keep aspects like the in-memory
coupling or the added subroutines in the manuscript, even though quite a bit of
these aspects were already discussed in the previous study (Nerger and Hiller 2012).
Even more, aspects like the routine Assimilate PDAF are new, and its discussion is
only possible when also discussing the routines Init parallel PDAF and Init PDAF.

I therefore recommend major revision before this article is published in GMD.

Minor comments:

line 46: tranDAsfers -¿ transfer

Response: corrected

page 6: MPI Communicators: is this discussion not too technical?

Response: Given that the manuscript is submitted to GMD, we think that the de-
gree of technicality is just right (e.g. see also Kurtz et al., 2016). The configuration
of the communicators is actually a core part that makes the online coupled of PDAF
with AWI-CM work.

Section 5: How the system scales for a fixed ensemble size?

Response: For a fixed ensemble size, the scalability is determined by the scalability
of the models (as discussed in our previous papers on PDAF). As this holds likewise
for assimilation with uncoupled and coupled models, we didnt perform systematic
scalability tests on this aspect. We now mention the scalability for a fixed ensemble
size in Sec. 4.1.



Figure 6: the label mentions relative execution times, but the unit on the axis is [s].

Response: corrected



Response to Reviewer #2

We like to thank for reviewer for the careful review. Please see our response below.

The manuscript describes the application of the Parallel Data Assimilation Framework (PDAF)
for coupled data assimilation, with a strong focus on strongly-coupled data assimilation (DA).
An example implementation with a coupled atmosphere-ocean model is described in detail and
the differences to a previous similar application of PDAF as well as to a similar application of
the Data Assimilation Research Testbed are explained and discussed.

While the presented MPI-based implementation for strongly-coupled data assimilation with
PDAF is a logical extension of PDAFs approach for single-component models, it merits publi-
cation as a novel and highly relevant approach in the coupled case. This is well demonstrated
by the comparison to and discussion of the implementations in Kurtz et al. 2016 and Karspeck
et al. 2018.

However, the presented example of data assimilation for the coupled atmosphere-ocean model
AWI-CM seems to fall short of demonstrating strongly-coupled data assimilation. Lines 322 to
330 describe a weakly-coupled assimilation system with coupled forecasts but observations of
and assimilation in the ocean component only. The text explicitly states that ”the assimilation
update is only performed in the ocean compartment” which is confusing after sections 2.2 and
3.3 describe how the model states of ocean and atmosphere components are joined into a single
state vector and how the model codes are extended to realize this technically. Presumably this
experiment could have been realized with less code modifications than mentioned in the text.
While even this setup with ocean-only assimilation into a coupled model demonstrates progress
over data assimilation into a single-component model, the current presentation is unfortunate.

Response: Actually, the model coupling is intended to support both weakly-coupled
and strongly-coupled data assimilation. For the version 1.0 of the model binding
AWI-CM-PDAF, we have focused on the realization of the weakly-coupled data
assimilation. This is the case discussed in Section 4. The code modifications are
actually the same for weakly- and strongly-coupled DA because in either case one
needs to modify the model parallelization to enable the ensemble integration and
the initialization of the ensemble. As we dont assimilate in the atmosphere, one
could have omitted the call to Assimilate PDAF in ECHAM, but this is a minor
difference.
We have now revised the manuscript to make the support for weakly- and strongly-
coupled assimilation more explicit.

I suggest that either the use of the presented example is well justified in the text and its relation
to the previous sections and strongly-coupled DA is explained or that the example is extended
to a strongly-coupled DA experiment. As it appears that large parts of the discussion and
conclusion would still apply to a truly strongly-coupled data assimilation experiment, I would
encourage the authors to aim for this way forward.

Response: We have extended the Introduction to include a discussion on the status
and challenges of weakly and strongly coupled DA. Given that strongly-coupled DA
is a very young approach that is not yet fully established and weakly-coupled DA
by itself has differences to DA in uncoupled models, we think that the focus on the



weakly-coupled DA for the scalability experiment is sufficiently justified. In any
case we expect that the scalability of the strongly coupled DA is very similar ot the
case we have examined. We have extended the discussion to better point this out.

Other minor points/typos:

line 46: transfers instead of tranDAsfers
line 71: introduce EnDA as abbreviation here
line 267: indicated instead of indicted
line 293: called instead of ”are called”
line 355: ”DA coupling” instead of ”DA coupled”
line 386: FESOM-ECHAM instead of FEMOS-ECHAM
Figure 1 caption: ”user-provided” instead of ”used-provided”
Figure 6: relative time should not have units of [s]

Response: We corrected all these minor points and typos.
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Abstract. Data assimilation integrates information from observational measurements with numerical models. When used with

coupled models of Earth system compartments, e.g. the atmosphere and the ocean, consistent joint states can be estimated.

A common approach for data assimilation are ensemble-based methods which use
:::::
utilize

:
an ensemble of state realizations

to estimate the state and its uncertainty. These methods are far more costly to compute than a single coupled model because

of the required integration of the ensemble. However, with uncoupled models, the methods also have been shown to exhibit5

a particularly good scaling behavior. This study discusses an approach to augment a coupled model with data assimilation

functionality provided by the Parallel Data Assimilation Framework (PDAF). Using only minimal changes in the codes of the

different compartment models, a particularly efficient data assimilation system is generated that utilizes parallelization and in-

memory data transfers between the models and the data assimilation functions and hence avoids most of the filter
::
file

:
reading

and writing
:
,
:
and also model restarts during the data assimilation process. The study explains the required modifications of10

the programs on the example of the coupled atmosphere-sea ice-ocean model AWI-CM. Using the case of the assimilation of

oceanic observations shows that the data assimilation leads only
::
to small overheads in computing time of about 15% compared

to the model without data assimilation and a very good parallel scalability. The model-agnostic structure of the assimilation

software ensures a separation of concerns in that the development of data assimilation methods and
:::
can be separated from the

model application.15

Copyright statement. TEXT

1 Introduction

Data assimilation (DA) methods are used to combine observational information with models. A common application is to

apply DA to estimate an initial state that is used to start a forecast system as is common practice at weather and marine fore-

casting centers. The most widely used class of ensemble DA methods are ensemble-based Kalman filters
:::::::
(EnKFs)

:
like the20

local ensemble transform Kalman filter (LETKF, Hunt et al., 2007), the deterministic ensemble Kalman filter (DEnKF, Sakov

and Oke, 2008), or the local error-subspace transform Kalman filter (LESTKF, Nerger et al., 2012). Commonly, the DA is ap-
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plied to separate models simulating e.g. the atmospheric dynamics or the ocean circulation. However, in recent years coupled

models of different Earth system compartments
:::
have

:
become more common. In this case the compartment models frequently

exchange information at the interface of the model domains to influence the integration of the other model compartment. For25

example, in coupled atmosphere-ocean models the flux
:::::
fluxes through the ocean surface are dynamically computed based on

the physical state of both the atmosphere and the ocean and
::
are

:
exchanged in between both compartments. For model initial-

ization
:
,
:
DA should be applied to each of the compartments. Here, the DA can either be performed separately in the different

compartment domains, commonly called weakly-coupled DA, or it can be performed in a joint update, called strongly-coupled

DA. Only strongly coupled DA is expected to provide fully dynamically consistent state estimates. There are also intermediate30

configuration, like a quasi-strongly coupled DA (Laloyaux et al., 2016) or an interface-solver approach(Frolov et al., 2016) ,

both of which are applied in variational

:
A
::::::

recent
::::::::
overview

::
of

::::::::
methods

:::
and

::::::
issues

::
in

:::::::
coupled

:::
DA

::
is

::::::::
provided

::
by

:::::::::::::::::
Penny et al. (2017) .

:::
By

::::
now

:::
the

:::::::
weakly

:::::::
coupled

::::::::::
assimilation

:
is
:::
the

::::::::
common

::::::
choice

::
for

::::::::::
assimilation

::::
into

:::::::
coupled

::::::
models

:::
and

::::::
recent

::::::
studies

:::::
assess

:::
the

:::::
effect

::
of

::::
this

::::::::::
assimilation

::::::::
approach.

:::
For

:::::::::::::::
atmosphere-ocean

:::::::
coupled

:::::::
models,

:::::::
different

::::::
studies

:::::
either

:::::::::
assimilated

:::::::::::
observations

::
of

:::
one

:::::::::::
compartment

::::
into

:::
the35

:::::::
observed

:::::::::::
compartment

::::
(e.g.

:::::::::::::::::::::::::::::::::::::::::::::::::::
Lea et al. (2015); Kunii et al. (2017); Guiavarc’h et al. (2019) )

::
or

::::::::::
observations

::
of

::::
each

:::::::::::
compartment

:::
into

:::
the

::::::::::::
corresponding

:::
one

::::
(e.g.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Zhang et al. (2007); Liu et al. (2013); Han et al. (2013); Chang et al. (2013); Karspeck et al. (2018); Browne et al. (2019) ).

:::
The

:::::::
research

::::::::
question

:::::::::
considered

::
in

::::
these

::::::
studies

::
is

::::::
usually

::
to
::::::
which

:::::
extent

:::
the

::::::::::
assimilation

::::
into

:
a
:::::::
coupled

:::::
model

::::
can

:::::::
improve

:::::::::
predictions

::
in

::::::::::
comparison

:::
to

:::
the

::::::::::
assimilation

::::
into

:::::::::
uncoupled

:::::::
models.

::::::
Partly

:::
the

:::::::::
mentioned

::::::
studies

:::::
used

::::
twin

:::::::::::
experiments

::::::::::
assimilating

:::::::
synthetic

:::::::::::
observations

::
to

:::::
assess

:::
the

::::
DA

:::::::
behavior.

:
40

:::::::
Strongly

:::::::
coupled

:::
DA

::
is

:
a
:::::
much

:::::::
younger

::::::::
approach,

:::::
which

::
is

:::
not

:::
yet

::::
well

:::::::::
established.

:::::
Open

::::::::
questions

:::
for

:::::::
strongly

:::::::
coupled

:::
DA

::
are

:::
for

:::::::
example

::::
how

::
to
:::::::
account

:::
for

:::
the

:::::::
different

::::::::
temporal

:::
and

::::::
spatial

:::::
scales

::
in

:::
the

::::::::::
atmosphere

:::
and

:::
the

::::::
ocean.

:::::::
Strongly

:::::::
coupled

:::
DA

::
is

::::::::::
complicated

::
by

:::
the

::::
fact

:::
that

:::
DA

:::::::
systems

:::
for

:::
the

:::::
ocean

:::
and

::::::::::
atmosphere

::::
have

::::::
usually

:::::
been

::::::::
developed

:::::::::
separately

:::
and

:::::
often

:::
use

:::::::
different

:::
DA

::::::::
methods.

:::
For

::::::::
example,

:::::::::::::::::::::::
Laloyaux et al. (2016) used

:
a
:::
3D

:::::::::
variational

::::
DA

::
in

:::
the

:::::
ocean,

:::
but

:::
4D

:::::::::
variational

::::
DA

::
in

:::
the

::::::::::
atmosphere.

::::
The

:::::::::::
methodology

::::
lead

::
to

::
a
::::::::::::
quasi-strongly

:::::::
coupled

::::
DA.

::::::::::::::::::::::::
Frolov et al. (2016) proposed

:::
an

:::::::::::::
interface-solver45

:::::::
approach

:::
for

::::::::::
variational data assimilation methods. A current overview of methods and issues in coupled DA is provided

by Penny et al. (2017) . ,
::::::
which

:::::
leads

::
to

:
a
:::::::::

particular
:::::::
solution

:::
for

:::
the

::::::::
variables

:::::
close

::
to

:::
the

:::::::::
interface.

:::::::
Strongly

:::::::
coupled

::::
DA

:::
was

:::::::
applied

::
by

::::::::::::::::::
Sluka et al. (2016) in

:
a
::::
twin

::::::::::
experiment

:::::
using

::
an

::::::
EnKF

::::
with

::::::::::
dynamically

::::::::
estimated

::::::::::
covariances

::::::::
between

:::
the

:::::::::
atmosphere

:::
and

::::::
ocean

:
in
::
a
::::::::::::
low-resolution

::::::
coupled

::::::
model.

:::
For

:::::::
coupled

:::::::::::::::::::
ocean-biogeochemical

::::::
models,

:::::::::::::::::::::
Yu et al. (2018) discussed

:::::::
strongly

:::::::
coupled

:::
DA

::
in
:::

an
::::::::
idealized

::::::::::::
configuration.

:::::::
Further,

::::::::::::::::::::::::::
Goodliff et al. (2019) discussed

:::
the

:::::::
strongly

:::::::
coupled

::::
DA

:::
for

::
a50

::::::
coastal

::::::::::::::::::
ocean-biogeochemical

:::::
model

::::::::::
assimilating

::::
real

::::::::::
observations

::
of

:::
sea

::::::
surface

:::::::::::
temperature.

::::
This

:::::
study

::::::
pointed

::
to

:::
the

::::::
further

::::::::::
complication

:::
of

:::
the

:::::
choice

::
of

:::::::
variable

::::::
(linear

::
or

::::::::::
logarithmic

::::::::::::
concentrations

:::
for

:::
the

:::::::::::::
biogeochemical

::::::::::::
compartment)

:::
for

:::::::
strongly

::::::
coupled

:::::::::::
assimilation.

Ensemble-based Kalman
:::::
filters, but also the nonlinear particle filters, can be formulated to work entirely on state vectors. A

state vector is the collection of all model fields at all model grid points in form of a vector. When one computes the observed55

part of the state vector, applying the so-called observation operator
::::::::::
’observation

::::::::
operator’, one needs to know how a field is

stored in the state vector. However, the core part of the filter, which computes the corrected state vector
:::
(the

::::::::
so-called

::::::::
’analysis

2



:::::
state’)

:
taking into account the observational information

:
,
:
does not need to know how the state vector is constructed. This

property is also important for coupled DA, where the state vector will be distributed over different compartments, like the

atmosphere and the ocean. DA60

The possibility to implement most parts of a filter algorithm in a generic model-agnostic way has motivated the implemen-

tation of software frameworks for ensemble DA. While the frameworks use very similar filter methods, they differ strongly

in the strategy how the coupling between model and DA software is achieved. As described by Nerger et al. (2012) one can

distinguish between offline and online DA coupling. In offline-coupled DA one uses separate programs for the model and the

assimilation and performs the data transfer between both through disk files. In online-coupled
:::::
online

::::::
coupled

:
DA one performs65

in-memory data transfer, usually by parallel communication, and hence avoids the use of disk files. In addition, online-couped

DA avoids the need to stop and restart a model for the DA. The Data Assimilation Research Testbed (DART, Anderson et al.,

2009) uses file tranDAsfers
:::::::
transfers

:
and separate programs for the ensemble integration and the filter analysis step, which are

run consecutively. The framework ‘Employing Message Passing Interface for Researching Ensembles’ (EMPIRE, Browne and

Wilson, 2015) uses parallel communication between separate programs for model and DA. However, these
:::::
These programs are70

run in parallel and the information transfer is performed through the parallel communication, which avoids data transfers using

files. The Parallel Data Assimilation Framework (PDAF, Nerger et al., 2005, 2012, http://pdaf.awi.de) supports both online-

and offline-coupled
:::::
online

:::
and

::::::
offline

:::::::
coupled DA. For the online coupled DA, PDAF also uses parallel communication. How-

ever, in contrast to EMPIRE, the model
::::::
usually is augmented by the DA functionality, i.e., model and DA are compiled into a

joint program.75

For coupled ensemble DA in hydrology, Kurtz et al. (2016) have coupled PDAF with the coupled terrestrial model system

TerrSysMP. To build the system
:
, a wrapper was developed to perform the online-coupling of model and DA software. The study

shows that the resulting assimilation system is highly scalable and efficient. Karspeck et al. (2018) have discussed a coupled

atmosphere-ocean DA system. They apply the DART software and apply
:::::::
perform

::::::
weakly

:::::::
coupled

::::
DA

:::::
using two separate

ensemble-based filters for the ocean and atmosphere, which produce restart files for each model compartment. These are then80

used to initialize the ensemble integration of the coupled model.

Here, we discuss a strategy to build an online-coupled DA system for coupled models on the example of the coupled

atmosphere-ocean model AWI-CM. The strategy enhances the one discussed in Nerger et al. (2012) for an ocean-only model.

The previous strategy is modified for the coupled DA and applied to the two separate programs for the atmosphere and ocean,

which together build the coupled model AWI-CM (Sidorenko et al., 2015). The required modifications to the model source85

codes consist essentially in adding four subroutine calls, which .
:::::
Three

::
of

:::::
these

::::::::::
subroutines

::::
calls connect the models to the DA

functionality provided by PDAF,
:::::
while

:::
the

::::::
fourth

:
is
:::::::
optional

::::
and

:::::::
provides

::::::
timing

:::
and

:::::::
memory

::::::::::
information. With this strategy,

a wrapper that combines the compartment model into a single executable as used by Kurtz et al. (2016) , can be avoided.
:::
We

::::::
discuss

:::
the

:::::::
strategy

:::
for

::::
both

:::::::
weakly

:::
and

:::::::
strongly

:::::::
coupled

::::
DA

:::
but

::::::
assess

:::
the

::::::
parallel

:::::::::::
performance

::::
only

:::
for

:::::::
weakly

:::::::
coupled

:::
DA

::::
into

:::
the

:::::
ocean,

::::::
which

::
is

::::::::
supported

::
in
:::
the

:::::
code

::::::
version

::::::::::::::
AWI-CM-PDAF

:::::
V1.0.

::::
This

::
is
:::::::::
motivated

::
by

:::
the

::::
fact

::::
that

:::::::
strongly90

::::::
coupled

::::
DA

:
is
::::
not

::
yet

::::
well

::::::::::
established

:::
and

::::::
weakly

:::::::
coupled

::::
DA

::
by

:::::
itself

:
is
::
a
::::
topic

::
of
:::::::
current

:::::::
research.

:

3



The remainder of the study is structured as follows: Section 2 discusses ensemble filters and their setup for coupled DA.

The setup of a DA system is described in Section 3. Section 4 discusses the parallel performance of the DA system build by

coupling AWI-CM and PDAF. Implications of the chosen strategy to coupled the model and data assimilation are discussed in

Sec. 5. Finally, conclusions are drawn in Sec. 6.95

2 Ensemble filters

Ensemble DA
:::::::
(EnDA) methods use an ensemble of model state realizations to represent the state estimate (usually the ensemble

mean) and the uncertainty of this estimate given by the ensemble spread. The filters perform two alternating phases: In the

forecast phase the ensemble of model states is integrated with the numerical model until the time when observations are

available. At this time, the analysis step is computed. It combines the information from the model state and the observations100

taking into account the estimated error of both
:::
the

:::
two

:
information sources and computes an updated model state ensemble,

which represents the analysis state estimate and its uncertainty.

The currently most widely used ensemble filter methods are ensemble-based Kalman filters based on the Ensemble Kalman

filter (Evensen, 1994; Houtekamer and Mitchell, 1998; Burgers et al., 1998). When incorporating the observations during the

analysis step, these filters assume that the errors in the state and the observations are Gaussian distributed. This allows to105

formulate the analysis step just using the two leading moments of the distributions, namely the mean and covariance matrix.

Another class of EnDA methods are particle filters (e.g., van Leeuwen, 2009). While particle filters do not assume Gaussianity

of error distributions, they are difficult to use with high-dimensional models because particular adaptions are required to avoid

that the ensemble collapses to a single member due to the so-called ’curse of dimensionality’ (see Snyder et al., 2008). Methods

to make particle filters usable for high-dimension systems were reviewed by van Leeuwen et al. (2019). One strategy is to110

use the observational information already during the forecast phase to keep the ensemble states close to the observations. This

approach requires that some DA functions are already executed during the forecast phase. The realization in the implementation

strategy will be discussed in Sec. 3.2.

2.1 Filter algorithms

To be able to discuss the particularities of coupled DA with respect to ensemble filter, here the error-subspace transform Kalman115

filter (ESTKF, Nerger et al., 2012) is reviewed. The ESTKF is an efficient formulation of the EnKF that has been applied in

different studies to assimilate satellite data into sea-ice ocean models (e.g. Kirchgessner et al., 2017; Mu et al., 2018; Androsov

et al., 2019) and biogeochemical ocean models (e.g. Pradhan et al., 2019; Goodliff et al., 2019).
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2.1.1
:::
The

:
ESTKF

In the analysis step at the time tk, the ESTKF transforms a forecast ensemble X
f

k
of Ne model states of size Nx stored in the120

columns of this matrix into a matrix of analysis states Xa

k
as

X
a

k
= x

f

k
1
T

Ne
+X

f

k

⇣
wk1

T

Ne
+W̃k

⌘
(1)

where xf

k
is the forecast ensemble mean state and 1Ne is a vector of size Ne holding the value one in all elements. Further, wk

is a vector of size Ne which transforms the ensemble mean and W̃ is a matrix of size Ne⇥Ne which transforms the ensemble

perturbations. Below,
:
the time index k is omitted, as all computations in the analysis refer to the time tk.125

The forecast ensemble represents an error-subspace of dimension Ne�1 and the ESTKF computes the ensemble transforma-

tion matrix and vector in this subspace. Practically, one can compute
::::::::
computes an error-subspace matrix by L=X

f
T where

the matrix T is a projection matrix with j =Ne rows and i=Ne � 1 columns defined by

Tj,i: =

8
>>><

>>>:

1� 1
Ne

1
1p
Ne

+1
for i= j,j < Ne

� 1
Ne

1
1p
Ne

+1
for i 6= j,j < Ne

� 1p
Ne

for j =Ne.

(2)

Below, the equations are written using X
f and T rather than L as this leads to a more efficient formulation.130

A model state vector xf and the vector of observations y with dimension Ny are related through the observation operator H

by

y =H
�
x
f
�
+ ✏ (3)

where ✏ is the vector of observation errors, which is
:::
are assumed to be a white Gaussian distributed random process with the

observation error covariance matrix R. For the analysis step, a transform matrix in the error-subspace is computed as135

A
�1 = ⇢(Ne � 1)I+(HX

f
T)TR�1

HX
f
T . (4)

This matrix provides ensemble weights in the error-subspace. The factor ⇢ with 0< ⇢ 1 is called the “forgetting factor”

(Pham et al., 1998) and is used to inflate the forecast error covariance matrix. The weight vector wk and matrix W̃ are now

given by

w : = TA
�
HX

f
T
�T

R
�1

�
y�Hx

f
�
, (5)140

W̃ : =
p
Ne � 1TA1/2

T
T (6)

where A
1/2 is the symmetric square root which is computed from the eigenvalue decomposition USU

T =A
�1 such that

A
1/2 =US

�1/2
U

T . Likewise, A in Eq. (5) is computed as A=US
�1

U
T .

For high-dimensional models a localized analysis is computed following Nerger et al. (2006). Here, each vertical column of

the model grid is updated independently by a local analysis step. For updating a column
:
, only observations within a horizontal145
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influence radius l are taken into account. Thus,
:
the observation operator is local and computes an observation vector within

the influence radius l from the global model state. Further, each observation is weighted according to its distance from the

water column to down-weight observations at larger distances Hunt et al. (2007)
::::::::::::::::
(Hunt et al., 2007) . The weight is applied

by modifying matrix R
�1 in Eqns. (4) and (5). The localization weight for the observations is computed from a correlation

function with compact support given by a 5th-order polynomial with a shape similar to a Gaussian function (Gaspari and Cohn,150

1999). The localization leads to individual transformation weights wk and W̃ for each local analysis domain.

2.2
:::::::::::::

Weakly-coupled
:::::::::
ensemble

:::::::
filtering

::
In

::::::
weakly

:::::::
coupled

::::
DA,

:::
the

::::::
EnKF

::
is

:::::::
applied

::
in

:::
the

:::::::
coupled

::::::
model

::
to

::
a

:::::
single

:::::::::::
compartment

:::
or

:::::::::
separately

::
to

::::::
several

:::
of

:::
the

::::::::::::
compartments.

:::::
Given

:::
that

:::
the

:::::::
analysis

::
is

:::::::
separate

::
for

::::
each

::::::::
involved

:::::::::::
compartment,

:::
the

::::
filter

::
is

::::::
applied

::
as

::
in

:
a
:::::::::::::::::
single-compartment

::::::
model.

::::::
Thus,

::
in

:::::::
practice

::::::
several

::::::
EnKFs

:::::::
compute

:::
the

::::::::
analyses

::::::
updates

::::::::::::
independently

::::::
before

:::
the

::::
next

:::::::
forecast

:::::
phase

::
is

::::::
started155

::::
with

::
the

:::::::
updated

:::::
fields

:::::
from

::
the

::::::::
different

::::::::::::
compartments.

:

2.3 Strongly-coupled ensemble filtering

To discuss strongly-coupled filtering, let us assume a two-compartment system (perhaps the atmosphere and the ocean). Let

xA and xO denote the separate state vector in each compartment. For strongly-coupled DA, both are joined into a single state

vector xC .160

Using the joint forecast ensemble X
f

C
in Eq. (1) of the ESTKF one sees that the same ensemble weights w,W̃ are applied

to both xA and xO. The weights are computed using Eqns. (4) to (6). These equations involve the observed ensemble HX
f

C
,

the observation vector y, and the observstion
::::::::::
observation error covariance matrix R. Thus, for strongly coupled DA, the

updated weights depend on which compartment is observed. If there are observations of both compartments they are jointly

used to compute the weights. If only one compartment is observed, e.g having only ocean observations yO, then we also165

have HX
f

C
= (HX

f )O and the weights are only computed from these observations. Thus, through Eq. (1), the algorithm can

directly update both compartments xA and xO using observations of just one compartment.

An interesting aspect is that when one runs separate assimilation systems for the two compartments with the same filter

methodology, one can compute a strongly-coupled analysis by exchanging only
:::
only

::::::::::
exchanging

:
the parts of y, HX

f , and

R in between both compartments and then initializating
::::::::
initializing

:
the vectors containing observational information from all170

compartments in the assimilation system of each compartment. If there are only observations in one of the compartments,

one can also compute the weights in that compartment and provide them to the other compartment. Given that y and R

are initialized from information that is usually stored in files, one can also let the DA
:::
code

:
coupled into each compartment

model read these data and only exchange the necessary parts of HX
f . While this discussion shows that it is straight forward

:::::::::
technically

::
it

::
is

:::::::::::::
straightforward to apply strongly-coupled DA with these filter methods, one has to account for the model175

parallelization, which is discussed in Section 3.3.
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3 Setup of data assimilation program

This section describes the assimilation framework and the setup of the DA program. First an overview of PDAF is given (Sec.

3.1). The code modifications for online-coupling are described in Sec. 3.2, the modifications of the parallelization are described

in Sec. 3.3. Finally, Sec. 3.4 explains the aspect of the call-back functions.180

:::
The

:::::
setup

:::::
builds

:::
on

:::
that

:::::::
strategy

:::::::::
introduced

::
by

::::::::::::::::::::::
Nerger and Hiller (2013) .

:::::
Here,

:::
the

::::::::
discussion

:::::::
focuses

::
on

:::
the

::::::::::::
particularities

::::
when

:::::
using

::
a

:::::::
coupled

:::::
model

:::::::::
consisting

::
of

:::::::
separate

:::::::::
executable

::::::::
programs

:::
for

::::
each

::::::::::::
compartment.

:::::
While

:::
we

::::
here

::::::::
describe

::::
both

::
the

::::::::
features

:::
for

::::::
weakly

::::
and

:::::::
strongly

:::::::
coupled

::::
DA,

::::::::::::::
AWI-CM-PDAF

:::
in

::::::
version

:::
1.0

:::
is

::::
only

:::::
coded

:::::
with

:::::::::::::
weakly-coupled

::::
DA

:::
into

:::
the

::::::
ocean.

::::
This

::
is

:::::::::
motivated

::
by

:::
the

::::
fact

:::
that

:::
the

::::::::::::::
weakly-coupled

:::
DA

::::
into

:
a
:::::::

coupled
:::::::

climate
::::::
model

:::
has

::::::
already

::::::::
different

::::::::
properties

::::
than

:::
DA

:::
in

::
an

:::::::::
uncoupled

::::::
model.

::
In

:::::::::
particular,

:::
the

:::::
initial

::::::
errors

::
in

:::
the

:::::::
coupled

::::::::
AWI-CM

:::
are

:::::
much

:::::
larger

::::
than

::
in

::
a185

::::::::
simulation

:::
of

:::::::
FESOM

:::::
using

::::::::::
atmospheric

:::::::
forcing.

::::::
Mainly

::::
this

:
is
:::::::
because

::
in
::::::::
FESOM

:::
the

::::::
forcing

:::::::::
introduces

::::::::::
information

:::::
about

::
the

:::::::
weather

:::::::::
conditions,

:::::
while

::::::::
AWI-CM

::::
only

:::::::::
represents

:::
the

::::::
climate

:::::
state.

::::
Thus

:::::::
studying

:::::::::::::
weakly-coupled

::::
DA,

:::::
which

::
is
::::
still

::::
used

::
in

::::
most

:::::::::::
applications,

:::
has

:
a
:::::
value

:::
on

::
its

::::
own.

::::::::
Strongly

:::::::
coupled

:::
DA

::::
will

::
be

:::::::::
supported

::
in

:::
the

:::::::::::::
AWI-CM-PDAF

::::::
model

:::::::
binding

::
in

::
the

::::::
future.

:

3.1 Parallel Data Assimilation Framework (PDAF)190

PDAF (Nerger and Hiller, 2013, http://pdaf.awi.de) is free open-source software that was developed to simplify the imple-

mentation and application of ensemble DA methods. PDAF provides a generic framework containing fully implemented and

parallelized ensemble filter and smoother algorithms like the LETKF (Hunt et al., 2007), the ESTKF (Nerger et al., 2012), or

the nonlinear NETF method (Tödter and Ahrens, 2015) and related smoothers (e.g., Nerger et al., 2014; Kirchgessner et al.,

2017). Further,
:
it provides functionality to adapt a model parallelization for parallel ensemble forecasts as well as routines for195

the parallel communicating
::::::::::::
communication

:
linking the model and filters. Like

::::::::
Analogous

:::
to many large-scale geoscientific

simulation models, PDAF is implemented in Fortran and is parallelized using the Message Passing Interface standard (MPI,

Gropp et al., 1994) as well as OpenMP (?)
::::::::::::::
(OpenMP, 2008) . This ensures optimal compatibility with these models, while it is

still usable with models coded, e.g., in the programming language C.

The filter methods are model-agnostic and only operate on abstract state vectors as described for the ESTKF in Sec. 2. This200

allows to develop the DA methods independently from the model and to easily switch between different assimilation methods.

Any operations specific to the model fields, the model grid, or to the assimilated observations are performed in program routines

provided by the user based on existing template routines. The routines have a specified interface and are called by PDAF as

call-back routines, i.e. the model code calls routines of PDAF, which then call the user routines. This call-structure
:::
call

::::::::
structure

is sketched in Fig. 1. Here, an additional yellow ’interface routine’ is used in between the model code and the PDAF library205

routine. This interface routine is used to define parameters for the call to the PDAF library routines, so that these do not need

to be specified on
:
in

:
the model codeand thus

:
.
:::::
Thus,

:
only a single-line call to the

:::
each

:
interface routine is added to the model

code, which keeps the changes to the model code to a minimum.
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The motivation for this call structure is that the call-back routines exist in the context of the model (i.e. the user space) and

can be implemented like model routines. In addition, the call-back routines can access static arrays allocated by the model,210

e.g. through Fortran modules or C header files. For example, this can be used to access arrays holding model fields or grid

information. This structure can also be used in case of an offline-coupling using separate programs for the model and the

analysis step. However, in this case the grid information is not already initialized by the model and has to be initialized by a

separate routine. Using the interfaces and user routines provided by PDAF, it can also be used with models implemented in C

or C++, or can be combined with Python.
::
For

:::::::
coupled

::::::
models

:::::::::
consisting

::
of

:::::::
multiple

:::::::::::
executables,

:::
this

:::
call

::::::::
structure

::
is

::::
used

:::
for215

::::
each

:::::::::::
compartment

::::::
model.

3.2 Augmenting a coupled model for ensemble data assimilation

Here, only the online-coupling for DA is discussed. As described before, the offline-coupling uses separate programs for the

model and the DA program and model restart files to transfer information about the model states between both programs.

::::::::
Generally,

:::
the

:::::
same

:::::
code

:::
for

:::
the

::::
user

:::::::
routines

:::
can

:::
be

::::
used

:::
for

::::::
online

:::
and

::::::
offline

:::::::
coupled

::::
DA.

::::
The

:::::::::
difference

::
is

:::
that

:::
in

:::
the220

:::::
online

::::::::
coupling,

::::::
model

::::::::::
information

::::
like

:::
the

:::::
model

::::
grid

:::
are

:::::::::
initialized

:::
by

:::
the

:::::
model

:::::
code

:::
and

:::::::
usually

:::::
stored

:::
in

:::
e.g.

:::::::
Fortran

:::::::
modules.

::::
For

::::::
offline

:::::::
coupled

:::
DA

::::
one

:::::
could

:::
use

:::
the

:::::
same

:::::::
variable

:::::::
names,

:::
and

:::
the

:::::
same

::::::
names

:::
for

:::
the

::::::::
modules.

:::::
Thus,

::::
one

:::::
would

::::
need

::
to

:::::::::
implement

:::::::
routines

::::
that

:::::::
initialize

:::::
these

::::::::
variables.

:

The strategy to augment a coupled model with DA functionality is exemplified here using the AWI climate model (AWI-

CM, Sidorenko et al., 2015). The model consists of the atmospheric model ECHAM6 (Stevens et al., 2013), which includes225

the land surface model JSBACH, and the finite-element sea-ice ocean model (FESOM, Danilov et al., 2004; Wang et al.,

2008). Both models are coupled using the coupler library OASIS3-MCT (Ocean-Atmosphere-Sea-Ice-Soil coupler - Model

Coupling Toolkit, Valcke, 2013). OASIS3-MCT computes the fluxes between the ocean and the atmosphere and performs the

interpolation between both model grids. The coupled model consists of two separate programs for ECHAM and FESOM,

which are jointly started on the computer so that they can exchange data via the Message Passing Interface (MPI, Gropp et al.,230

1994). OASIS-MCT is linked into each program as a library. For further details on the model, we refer to Sidorenko et al.

(2015).

The online coupling for DA was already discussed in Nerger and Hiller (2013) for an earlier version of the ocean model

used in the AWI-CM. Here, an updated coupling strategy is discussed that requires less changes to the model code.
:::::
While

::
the

:::::::
general

:::::::
strategy

:::
for

:::::
online

::::::::
coupling

::
of

:::
the

::::
DA

::
is

:::
the

::::
same

:::
as

::
in

:::
the

:::::::
previous

::::::
study,

:::
we

:::::
privde

::::
here

::
a
:::
full

::::::::::
description

:::
for235

:::::::::::
completeness.

:::::::
Further,

:::
we

::::::
discuss

:::
the

::::::::::::
particularities

::
of

:::
the

:::::::
coupled

::::::
model.

Figure 2 shows the general program flow and the necessary extension of the code for adding the DA functionality. The

different boxes can, but are not required to be subroutine calls. The figure is valid for any of the two executable programs of

the coupled model system. Without the references to the coupler it would also be valid for a single-compartment model.

The left hand side of Fig. 2 shows the typical flow of a coupled compartment model. Here, at the very beginning of the240

program, the parallelization is initialized (’init. parallelization’). After this step, all involved processes of the program are

active (for the parallelization aspects see Sec. 3.3). Subsequently, the parallelization of the coupler is initialized, and
::::::
OASIS
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::::::
coupler

::::::::
initializes

:::
the

::::::::::::
parallelization

:::
for

:::
the

:::::::
coupled

::::::
model,

::
by

:::::::::
separating

:::
the

::::::::
processes

:::
for

::::::::
ECHAM

:::
and

::::::::
FESOM.

:::::
Thus, after

this point
:
, the coupler can distinguish the different model compartments. Now, the model itself is initialized, e.g. the model grid

for the
::::
each compartment is initialized and the initial fields can be

::
are

:
read from files. Further, information for the coupling245

will be initialized like the grid configuration, which is required by the coupler to interpolate data in between the different

model grids. This completes the model initialization and the time stepping is computed. During the time stepping, the coupler

exchanges the interface information between the different compartments. After the time stepping some post-processing can be

performed, e.g. writing time averages or restart files to disk.

The right hand side of Fig. 2 shows the required additions to the model code as yellow boxes. These additions are calls to250

subroutines that interface between the model code and the DA framework. In this way, only single-line subroutine calls are

added, which might be enclosed in preprocessor checks to allow to activate or deactivate the data-assimilation extension at

compile time. The
::::::::
additions

:::
are

::::
done

:::
in

::::
both

:::
the

:::::
codes

::
of

::::::::
ECHAM

::::
and

:::::::
FESOM.

::::
and

::::
here

:::
we

::::::
discuss

:::::
them

::
in

:::::::
general.

::::
The

added subroutine calls have the following functionality:

– Init_parallel_PDAF: This routine modifies the parallelization of the model. Instead of integrating the state of a single255

model instance (‘model task’), the model is modified to run an ensemble of model tasks. This routine is inserted directly

after the parallelization is started. So all subsequent operations of the program will act in the modified parallelization.

As
:
In

:::
the

:::::::
coupled

::::::
model this routine is executed before the parallelization of the coupler is initialized.

:::
In

:::
this

::::
way

:
also

the coupler will be initialized for an ensemble
::
of

:::::
model

:::::
states.

– Init_PDAF: In this routine the PDAF framework will be initialized. This
:::
The

:
routine is inserted into the model code

:::::
codes260

so that it is executed after all normal model initialization is complete,
:::::::::
completed;

:
thus just before the time-stepping

loop. The routine specifies parameters for the DAor reads them ,
::::::

which
:::
can

:::
be

::::
read

:
from a configuration file. Then,

the initialization routine for PDAF, named ‘PDAF_init’ is called, which performs the PDAF-internal configuration and

allocates the internal arrays, e.g. the array of the ensemble states. Further, the initial ensemble is read from input files. As

this reading is model-specific,
:
it is performed by a user-provided routine , which

:::
that is called by PDAF as a call-back265

routine .
::::
(see

::::
Sec.

::::
3.4).

:
After the framework is initialized, the routine ‘PDAF_get_state’ is called. This routine writes

the information from the initial ensemble into the field arrays of the model. In addition, the length of the initial forecast

phase, i.e. the number of time steps until the first analysis step, is initialized.
:::
For

:::
the

:::::::
coupled

::::::
model,

::::::
‘PDAF_init’

::::
and

::::::
‘PDAF_get_state’

::::
are

:::::
called

::
in

::::
each

::::::::::::
compartment.

::::::::
However,

:::::
some

:::::::::
parameters

:::
are

:::::::
distinct.

::::
For

::::::::
example,

:::
the

::::
time

::::
step

:::
size

::
of

::::::::
ECHAM

::
if

:::::
450s,

:::::
while

:
it
::
is
::::
900s

:::
for

::::::::
FESOM.

::::::
Hence,

:::
the

:::::::
number

::
of

::::
time

:::::
steps

::
in

:::
the

:::::::
forecast

:::::
phase

::
of

:::
one

::::
day270

::
are

::::::::
different

::
in

:::
the

::::::::::::
compartments.

:

– Assimilate_PDAF: This routine is called at the end of each model time step, thus
:
.
:::
For

::::
this,

:
it is inserted into the model

code
:::::
codes

::
of

::::::::
ECHAM

:::
and

:::::::
FESOM

:
at the end of the time stepping loop. It

:::
The

:::::::
routine calls a filter-specific routine of

PDAF that performs
:::::::
computes

:
the analysis step of the selected filter method, for example ‘PDAF_assimilate_lestkf’ for

the localized ESTKF. This routine of PDAF also checks whether all time steps of a forecast phase have been computed.275

Only if this is true, the analysis step is executed , while otherwise the time stepping is continued. If additional operations

9



for the DA are required during the time stepping, like taking into account future observations in case of the advanced

equivalent-weights particle filter (EWPF, van Leeuwen, 2010) or collecting observed ensemble fields during the forecast

phase for a 4-dimensional filtering (Harlim and Hunt, 2007), these are also performed in this filter-specific routine.

:::
For

:::
the

:::::::
coupled

::::::
model,

:::
the

::::::
routine

::
is

:::::
called

::
in

::::
both

::::::::
ECHAM

::::
and

:::::::
FESOM.

:::::
Then,

:::::::
‘PDAF_assimilate_lestkf

:
’
::::
will

:::::
check280

::
for

::::
the

:::::::
analysis

::::
time

:::::::::
according

::
to

:::
the

:::::::::
individual

:::::::
number

::
of

:::::
time

::::
steps

:::
in

:::
the

:::::::
forecast

::::::
phase.

::::
The

:::::::
analysis

::::
step

::::
will

:::
then

:::
be

::::::::
executed

::
in

:::::
each

:::::::::::
compartment

:::::::::
according

::
to

:::
the

::::::::::::
configuration

::
of

:::
the

:::::::::::
assimilation.

:::
In

:::
the

:::::::::::::
implementation

:::
of

:::::::::::::
AWI-CM-PDAF

::::
1.0,

:::
the

:::::::
analysis

::
is

::::
only

:::::::::
performed

::
in

:::::::
FESOM.

:::::
Thus,

:::::
while

:::::::
‘PDAF_assimilate_lestkf

:
’
::
is

:::
also

::::::
called

::
in

::::::::
ECHAM,

::
is

::::
does

:::
not

::::::::
assimilate

::::
any

::::
data.

–
::::::
Finalize_PDAF:

::::
This

::::::
routine

::
is

:::::
called

::
at

:::
the

:::
end

::
of

:::
the

:::::::
program.

::::
The

::::::
routine

:::::::
includes

::::
calls

::
to

:::
the

::::::
routine

::::::
‘PDAF_print_info

:
’,285

:::::
which

::::
print

:::
out

::::::::::
information

:::::
about

:::::::::
execution

::::
times

:::
of

:::::::
different

::::
parts

:::
of

:::
the

::::::::::
assimilation

:::::::
program

::
as

:::::::::
measured

::
by

::::::
PDAF

::
as

::::
well

::
as

::::::::::
information

:::::
about

:::
the

:::::::
memory

:::::::
allocated

:::
by

::::::
PDAF.

Compared to the implementation strategy discussed in Nerger and Hiller (2013), in which the assimilation subroutine is only

called after a defined number of time steps, this updated scheme it allows to perform DA operations during the time stepping

loop. To use this updated scheme, one has to execute the coupled model with enough processors so that all ensemble members290

can be run at the same time. This is nowadays easier than in the past because the number of processor cores is much larger in

current high-performance computers compared to the past.

Apart from the addition subroutine calls, a few changes were required in the source codes of ECHAM, FESOM, and

OASIS-MCT
::::::::::::
OASIS3-MCT which are related to the parallelization. These changes are discussed in Sec. 3.3.

3.3 Parallelization for coupled
:::::::
ensemble

:
data assimilation295

:::
The

:::::::::::
modification

::
of

:::
the

::::::
model

::::::::::::
parallelization

:::
for

::::::::
ensemble

::::
DA

::
is

:
a
::::
core

:::::::
element

::
of
::::

the
:::
DA

::::::
online

::::::::
coupling. Here, the par-

allelization of AWI-CM and the required changed
:::::::
changes for the extension for the DA are described. For FESOM, as a

single-compartment model, the adaption of the parallelization was described by Nerger et al. (2005) and Nerger and Hiller

(2013). A similar parallelization was also described by Browne and Wilson (2015). For the online-coupling of PDAF with

the coupled model TerrSysMP, the setup of the parallelization was described by Kurtz et al. (2016). While for TerrSysMP an300

:
a
:
different coupling strategy was used, the parallelization of the overall system is essentially the same as discussed here for

AWI-CM.
:::
The

::::::::::::
parallelization

:::
for

:::
the

:::
DA

::
is

:::::::::
configured

::
by

:::
the

::::::
routine

::::
init_parallel_pdaf .

:::
In

::::::
general

:::
this

::
is
::
a

:::::::
template

:::::::
routine,

:::::
which

:::
can

:::
be

:::::::
adapted

:::
by

:::
the

::::
user

:::::::::
according

::
to

:::
the

:::::::::
particular

:::::
needs.

:::::::::::
Nonetheless,

:::
by

::::
now

::::
the

::::::
default

:::::
setup

::
in

::::::
PDAF

::::
was

::::::
directly

::::::
usable

::
in

::
all

:::::::::::::::::
single-compartment

::::::
models

:::
to

:::::
which

::::::
PDAF

:::
was

::::::::
coupled.

:::::::::
Compared

::
to

:::
the

::::::
default

:::::
setup

::
in

:::::
PDAF

:::
for

::
a

::::::::::::::::
single-compartment

::::::
model,

:::
we

::::
have

:::::::
adapted

:::
the

::::::
routine

::
to

:::::::
account

::
for

:::
the

::::::::
existence

::
of
::::
two

:::::
model

:::::::::::::
compartments.305

Like other large-scale models, AWI-CM is parallelized using the Massage-Passing
::::::::::::::
Message-Passing Interface standard (MPI,

Gropp et al., 1994). MPI allows to compute a program using several processes with distributed memory. Thus, each process

has only access to the data arrays that are allocated by this process. Data exchanges between processes are performed in form

of parallel communication, i.e. the data is explicitly sent by one process and received by another process. All parallel commu-
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nication is performed within so-called communicators, which are groups of processes. When the parallel region of a program310

is initialized, the communicator MPI_COMM_WORLD is initialized, which contains all processes of the program. In case of

AWI-CM when the two executables for ECHAM and FESOM are jointly started, they share the same MPI_COMM_WORLD ,

so that parallel communication between the processses running ECHAM and those running FESOM is possible. Further com-

municators can be defined by splitting MPI_COMM_WORLD. This is used to define groups of processes both for AWI-CM

and for the extension with PDAF.315

For AWI-CM without data-assimilation extension, the parallelization is initialized by each program at the very beginning.

Then
:
, a routine of OASIS-MCT is called which splits MPI_COMM_WORLD into two communicators: one for ECHAM

(COMM_ECHAM) and one for FESOM (COMM_FESOM). These communicators are then used in each of the compartment

models and together they build one model task that integrates one realization of the coupled model state. MPI_COMM_WORLD

is further used to define one process each for ECHAM and FESOM, which perform the parallel communication to exchange320

flux information. Important is here, that OASIS-MCT is coded to use MPI_COMM_WORLD to define these communicators.

Each of the compartment models then uses its group of processes for all compartment-internal operations. Each model uses

a domain-decomposition, i.e. each process computes a small region of the global domain in the atmosphere or the ocean.

The distribution of the processes is exemplified in Fig. 3(a) for the case of 6 processes in MPI_COMM_WORLD. Here, the

communicator is split into 4 processes for COMM_FESOM (green) and 2 for COMM_ECHAM (blue).325

For the ensemble DA, the parallelization of AWI-CM is modified. Generally, the introduction of the ensemble adds an
:::
one

additional level of parallelization to a model, which allows us to concurrently compute the ensemble of model integrations,

i.e. several concurrent model tasks. In AWI-CM augmented by the calls to PDAF, the routine init_parallel_pdaf modifies the

parallelization. Namely MPI_COMM_WORLD (Note, that for other model another suitable communicator might be split if

not all processes participate in the time stepping as might be the case when, e.g., an OI-server is used that reserves processes330

exclusively for the file operations) is
:
is

:
split into a group of communicators for the coupled model tasks (COMM_CPLMOD),

as exemplified for an ensemble of 4 model tasks in Fig. 3(b) indicted
:::::::
indicated

:
by the different color shading. Subsequently,

OASIS-MCT is used to split
::::
splits

:
each communicator COMM_CPLMOD into a pair COMM_ECHAM and COMM_FESOM

(third line in Fig. 3(b)). To be able to split COMM_CPLMOD, the source code of OASIS-MCT needs to be modified replacing

MPI_COMM_WORLD by COMM_CPLMOD, because OASIS-MCT uses MPI_COMM_WORLD as the basis for the com-335

municator splitting (see also Kurtz et al., 2016, for the required modifications). With this configuration of the communicators,

AWI-CM is able to integrate an ensemble of model states by computing all model tasks concurrently.

Two more communicators are defined
:
in

:::
init_parallel_pdaf for the analysis step in PDAF. Here, a configuration is used that

computes the filter analysis step on the first coupled model task using the same domain-decomposition as the coupled model.

Because the ESTKF (as any other ensemble Kalman filter)
:

computes a combination of all ensemble members individually340

for each model grid point or for single vertical columns (Eq. 1), the ensemble information from all ensemble members is

collected on the processes of the first model task, keeping the domain decomposition. For collecting the ensemble information,

the communicator COMM_COUPLE groups all processes that compute the same sub-domain in the coupled model. Thus,

all processes that have the same rank index in e.g. COMM_FESOM are grouped in one communicator as shown in line 4
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of Fig. 3(b). Finally, the communicator COMM_FILTER (line 5 of Fig. 3(b)) is defined, which contains all processes of the345

first model task. Note that compared to the single-compartment case discussed in Nerger et al. (2005) and Nerger and Hiller

(2013), the major change is that each model task is split into the communicators COMM_FESOM and COMM_ECHAM,

which are, howeveronly,
:
,
::::
only

:
used for the model integration. In addition, COMM_FILTER includes the processes of both

model compartments of the first model task.

This configuration is used to perform strongly-coupled DA, because it allows the communication between processes for350

sub-domains of ECHAM with processes for
::
of FESOM. In a weakly-coupled application of DA, COMM_FILTER is initial-

ized so that two separate communicators are created, one for all sub-domains of FESOM and another one for all sub-domains

of ECHAM . With this
::
as

::::::
shown

::
in

::::
Fig.

:::
3(c).

:::
In

:::::::
practice

:::
one

::::
can

::::::
achieve

::::
this

:::
by

:::::
using

:::
the

::::::
already

:::::::
defined

:::::::::::::
communicators

::::::
COMM_FESOM

:::
and

:::::::
COMM_ECHAM

:
of

::::::
model

::::
task

::
1.

:::::::
Because

:::::
these

::::
two

:::::::::::::
communicators

:::
are

:::::::::
initialized

::::
after

:::::::::
executing

:::
init_parallel_pdaf ,

::::
one

:::
has

::
to

::::::::
overwrite

:::::::
COMM_FILTER

:::::::::
afterwards

::
in,

::::
e.g.,

::::
init_PDAF.

:::::
With

:::
this

:::::::::::
configuration

:
the assimi-355

lation can be performed independently for both compartments.

3.4 Call-back routines for handling of model fields and observations

The call-back routines are called by PDAF to perform operations that are specific for the model or the observations. The

operations performed in each routine are rather elementary to keep the complexity of the routines low. There are four different

types of routines, which are displayed in Fig. 4:360

– interfacing model fields and state vector (cyan): There are two routines , are called before and after the analysis step.

The first routine writes model fields into the state vector of PDAF, while the second initializes model fields from the state

vector. These routines are executed by all processes that participate in the model integrations .
:::
and

::::
each

:::::::
routine

:::
acts

:::
on

::
its

::::::
process

:::::::::::
sub-domain.

:::
For

:::
the

:::::::
coupled

::::::
model,

::::
there

:::
are

::::::::
different

:::::::
routines

::
for

::::::::
FESOM

:::
and

::::::::
ECHAM.

:

– observation operations
:::::::
handling

:
(orange): These routines perform operations related to the observations. For example,365

a routine provides PDAF with the number of observations, which is obtained by reading the available observations

and counting them. This routine allows PDAF to allocate arrays for the observed ensemble. Another routine is the

implementation
::
of

:::
the observation operator. Here, the routine is provided with a state vector x from the ensemble and has

to return the observed state vector, i.e. H(x).
::
For

:::
the

:::::::
coupled

::::::
model,

:::
the

:::::::
routines

:::
are

:::::::
distinct

::
for

::::::::
FESOM

:::
and

::::::::
ECHAM

::
as,

::::
e.g.,

:::
the

::::::::::
observation

:::::::
operator

:::
for

:::
an

::::::
oceanic

::::::::::
observation

::::
can

::::
only

::
be

:::::::
applied

::
in

:::::::
FESOM.

::::
For

:::::::
strongly

:::::::
coupled

::::
DA,370

::
the

::::::::::
observation

::::::::
operator

::::::
routine

::::::
would

:::
also

:::::::
contain,

:::::::
parallel

:::::::::::::
communication

::::
that

:::
acts

::::::
across

:::
the

:::::::::::::
compartments.

:::::
Thus,

::::
after

::::::::
obtaining

:::
the

:::::::::::
observations

::
in
::

a
::::::::::::
compartment,

::
a

::::::::::::::::
cross-compartment

::::::::::
observation

:::::
vector

:::
is

::::::::
initialized

:::::
using

:::::
MPI

:::::::::::::
communication.

– localization (yellow): The localized analysis described in Sec. 2.1.1 requires several operations, which are provided by

call-back routines. For example, a call-back routine needs to determine the dimension of a local state vector. For a single375

grid point that
:::
this would be the number of variables stored at this grid point. For a vertical column of the model grid, this

would be the number of 3-dimensional model fields times the number of model layers plus the number of 2-dimensional
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model fields (like sea surface height
:
or
:::
sea

:::
ice

::::::::
variables in FESOM). Then, after PDAF allocates the local state ensemble,

a call-back routine is used to fill the local states from the full domain-decomposed state vector (likewise, there is a routine

that writes a local state vector after the local analysis correction into the full state vector). In addition, there is a routine380

that determines the number of observations within the influence radius around the vertical column and a routine to fill

this local observation vector from a full observation vector.

– pre- and post-processing (blue): To give the user access to the ensemble before and after the analysis step, there is a

pre/post-processing routine. Here, one typically computes the ensemble mean and writes it into a file. Further, one could

implement consistency checks, e.g. whether concentration variables have to be positive, and can perform a correction to385

the state variables if this is not fulfilled.

4 Parallel performance of the coupled data assimilation system

4.1 Scalability

To assess the parallel performance of the assimilation system described above, AWI-CM is run here in the same global con-

figuration as described by Sidorenko et al. (2015). The atmosphere uses a horizontal spectral resolution T63 (about 180 km)390

with 47 layers. The ocean model uses an unstructured triangular grid with 46 vertical layers. The horizontal resolution varies

between 160 km in the open ocean, with a refinement to about 45 km in the equatorial region and close to the Antarctic con-

tinent, and 30 km north of 50o N. The models are run with a time step size of 450 seconds for ECHAM and 900 seconds for

FESOM. The coupling by OASIS-MCT is performed hourly.

In the initial implementation
::::::::::::::
AWI-CM-PDAF

:::
1.0, the assimilation update is only performed

:
as

:::::::
weakly

:::::::
coupled

:::
DA

:
in395

the ocean compartment. The state vector for the assimilation is composed of the 2-dimensional sea surface height,
:
and the

3-dimensional model fields temperature, salinity and the three velocity components. The DA with
::
is started on January 1st,

2016 and satellite observations of the sea surface temperature obtained from the European Copernicus initiative (data set

SST_GLO_SST_L3S_NRT_OBSERVATIONS_010_010 available at https://marine.copernicus.eu), interpolated to the model

grid, are assimilated daily. The assimilation is multivariate so that the SST observation influences the full
::::::::::
observations

::::::::
influence400

::
the

::::
full

::::::
oceanic

:
model state vector through the ensemble estimates

::::::::
estimated cross-covariances that are used in the ESTKF. The

initial ensemble was generated using second-order exact sampling (Pham et al., 1998) from the model variability of snap shots

at each 5th day over one year.
::
the

::::::::
ensemble

:::::
mean

::::
was

::
set

::
to
::
a
:::::
model

::::
state

:::
for

:::::::
January

::
1,

::::
2016

:::::
from

:
a
::::::::
historical

:::::::
(climate)

::::
run

::
of

::::::::
AWI-CM.

:
No inflation was required in this experiment, i.e. a forgetting factor ⇢= 1.0 (see Eq. 4) was used.

::::
Even

:::::::
though,

:::
we

::::
only

:::::::
perform

::::::
weakly

:::::::
coupled

:::
DA

::::
here,

:::
we

::::::
expect

::::
that

:::
the

:::::::
compute

:::::::::::
performance

:::::
would

::
be

:::::::
similar

::
in

::::
case

::
of

:::::::
strongly

:::::::
coupled405

:::
DA,

::
as
::
is
:::::::::
explained

::
in

:::
Sec.

:
5.
:

:::
For

:
a
:::::

fixed
::::::::
ensemble

::::
size

:::
but

:::::::
varying

:::::::
number

::
of
:::::::::

processes
:::
for

::::::::
ECHAM

::::
and

:::::::
FESOM,

::::
the

:::::::::
scalability

::
of

:::
the

::::::::
program

::
is

:::::::::
determined

:::
by

:::
the

:::::::::
scalability

::
of

:::
the

::::::
models

::::::::::::::::::::::::::::::
(see, e.g., Nerger and Hiller, 2013) . To access the scalability of the assimilation

system
::
for

:::::::
varying

::::::::
ensemble

::::
size, experiments over 10 days were conducted with varying ensemble sizes between Ne = 2 and
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Ne = 46. The
:::::::::
assimilation

::::::
effect

:::
will

:::
be

:::::
rather

:::::
small

:::
for

:::::
these

::
10

:::::::
analysis

:::::
steps.

:::::::::
However,

:::
the

::::::::::
experiments

:::
are

::::
long

:::::::
enough410

::
to

:::::
assess

:::
the

:::::::::
scalability.

::::
The number of processes for each model task was kept constant at 72 processes for ECHAM and 192

processes for the more costly FESOM. The experiments were conducted on the Cray XC40 system
:::::::
‘Konrad’

:
of the North-

German Supercomputer Alliance (HLRN).

Fig. 5 shows the execution times per model day for different parts of the assimilation program. Shown are the times for

24-hour forecast phases including the time to collect and distribute the ensemble (DA coupling within the communicator415

COMM_COUPLE) for the analysis step. Also shown are the times for the analysis step
::::::
(green), the execution of the pre-/post-

step operations
::::
(red), and the assimilation coupling time

:::
DA

:::::::
coupling

::::
time

::::::
(blue). The crosses show the time for each model

task and separately for the atmosphere and ocean, thus there are 2Ne black and blue crosses for each ensemble size. The blue

and black lines show the maximum execution times. The overall execution time is dominated by the time for
:
to

:
compute the

forecasts. The combined time for the analysis and the pre-
:::
pre/post step operations is only between 4 and 7% of the forecast420

time. For a given ensemble size, the black crosses show that the execution times for the forecast on the different model tasks

varies
:::
vary. In the experiments,

:
the longest forecast time was up to 16% larger than the shortest time, which occurred for

Ne = 24. This variability is partly caused by the time for DA coupling (see discussion below), but also by the fact that the

semi-implicit time stepping of FESOM leads to varying execution times. Further influence have the parallel communication

within each compartment at each time step and the communication for the model coupling by OASIS3-MCT that is performed425

at each model hour. The execution time for these operations will depend
::::::
depends

:
on how the overall program is distributed

over the computer. As the computer is also used by other applications, it is likely that the application is widely spread over

the computer so that even different compute racks are used. This can even lead to the situation that the processors for a single

coupled model task of ECHAM and FESOM, but also a single model instance of ECHAM or FESOM,
:
are not placed close to

each other. If the processors are distant, e.g. in different racks, the communication over the network will be slower than for a430

compact placement of the processors. To this end also the execution time will vary when an experiment for the same ensemble

size is repeated. Nonetheless, repeated experiments showed that the timings in Fig. 5 are representative.

The variation of the forecast time when the ensemble size is changed is mainly caused by the varying time for the DA

coupling. When the time for the DA coupled
:::::::
coupling is subtracted from the forecast time, the variability is much reduced as

the black dashed line shows. The variability in dependence on the ensemble size is better visible when the execution time is435

normalized relative to the time for Ne = 2 as is displayed in Fig. 6. The forecast time including DA coupling fluctuates and

increases by up to 8% for the largest ensemble with Ne = 46 (black line). In contrast, the forecast time without DA coupling

only increases by about 3.5% (black dashed line). The time for the DA coupling (blue line) varies by a factor of 2.
:::
2.5.

:
This large

variation is due to the fact that here the communication happens in the communicators COMM_COUPLE, which are much

wider spread
:::::
spread

:::::
much

:::::
wider over the computer than the communicators for each

::::::
coupled

:
model task (COMM_CPLMOD)440

as is visible in Fig. 3. However, even though the number of ensemble states to be gathered and scattered in the DA coupling

communication
::::::::::::
communication

:::
for

:::
the

::::
DA

:::::::
coupling

:
varies between 2 and 46, there is no obvious systematic increase in the

execution time. In particular, for Ne = 40 the execution time is almost identical to that of Ne = 2.
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Further variation in dependence on the ensemble size is visible for the pre-/post-step operations (red line). This variation is

mainly due to the operations for writing the ensemble mean state into a file. In contrast, the analysis step shows the most
:
a445

systematic time increase. The time for computing the analysis for Ne = 46 is about seven times as long as for Ne = 2. This

is expected from the computational complexity of the LESTKF algorithm (see Vetra-Carvalho et al., 2018). However, also the

LESTKF performs MPI communication for gathering the observational information from different process domains. When

repeating experiments with the same ensemble size we found a variation of the execution time for the analysis step of up to

10%.450

4.2 Performance tuning

To obtain the scalability discussed above important optimization steps have been performed. First, it is important that each

coupled model instance is, as far as possible, placed compactly in the computer. Second, one has to be carefully consider the

disk operations performed by the ensemble of coupled model tasks.

For the first aspect, one has to adapt the run script. The coupled model is usually started with a command line like455

mpirun �np NO fesom.x : �np NA echam.x

(or any other suitable starter for an MPI-parallel program) such that FESOM and ECHAM are run using NO and NA processes,

respectively. For the DA one could simply change this by replacing NO by Ne ⇥NO and NA by Ne ⇥NA to provide enough

processes to run the ensemble.
::::
This

::
is

::::::::
analogous

:::
to

:::
the

:::::::
approach

:::::
used

:::::
when

::::::
running

::
a
::::::::::::::::
single-compartment

:::::::
model. However,

changing the command line in this way will first place all MPI tasks for the FESOM ensemble in the computer followed by460

all MPI tasks for the ECHAM ensemble. Accordingly, each ocean model will be placed distant from the atmospheric model

to which it is coupled. Using this execution approach, the time for the forecasts discussed above increased by a factor of four,

when the ensemble size was increased from 2 to 46. For a more efficient execution, one has to ensure that the ocean-atmosphere

pairs are placed close to each other. This is achieved with a command line like

mpirun �np NO fesom.x : �np NA echam.x : �np NO fesom.x : �np NA echam.x . . .465

which contains as many FEMOS-ECHAM
:::::::::::::::
FESOM-ECHAM

:
pairs as there are ensemble members. With this approach, the

time increase of the forecast was reduced to
::::
about 40% for the increase from Ne = 2 to Ne = 46.

For the second issue regarding disk operations, one has to take into account that the direct outputs written by each coupled

ensemble task are usually not relevant when the assimilation focusses
:::::::
because

:::
the

::::::::::
assimilation

::::::
focuses

:
on the ensemble mean

state. To this end, one generally wants to deactivate the outputs written by the individual models and replace them by outputs470

written by the pre-/post-step routine called to
::
by

:
PDAF. If the model does not allow to fully switch off the file output, it usually

helps to set the output interval of a model to a high value (e.g. a year for a year-long assimilation experiments). However, in

case of AWI-CM this strategy still resulted in conflicts of the input/output operations so that the models from the different

ensemble tasks tried to write into the same files, which serialized these operations and increased the execution time. To this

end
:::::
avoid

::::
these

::::::::
conflicts it helped to distribute the execution of the different ensemble tasks to different directories, e.g.475

mpirun �np NO 01/fesom.x : �np NA 01/echam.x : �np 02/NO fesom.x : �np NA 02/echam.x . . .

combined with a prior operation in the run script to generate the directories and distribute the model executables and input
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files. This distribution avoids that two model tasks write into the same file and improves the performance of the ensemble DA

application. In this configuration, the performance results of Sec. 4.1 were obtained. Another benefit of separate execution

directories is that ensemble restarts can be easily realized. Given that each model task write its own restart files in a separate480

directory, a model restart is possible from these files without any adaptions to the model code. Note, that the approach of

separate directories is also possible for the ensemble DA in case of a single (uncoupled) model like a FESOM-only simulation

using atmospheric forcing data as e.g. applied by Androsov et al. (2019).

5 Discussion

The good scalability of the assimilation system allows to perform an assimilation experiment over one full year with daily485

assimilation in about 6.5 hours, corresponding to about 79,000 core-hours. As such the system is significantly faster than

the coupled ensemble DA application by Karspeck et al. (2018), who reported to complete one year in 3 to 6 weeks with an

ensemble of 30 states and about one million core-hours per simulation year. However, both systems are not directly comparable.

Karspeck et al. (2018) used atmospheric and ocean models with 1� resolution. Thus the atmosphere had a higher resolution

than used here, while the ocean resolution was comparable to the coarse FESOM resolution in the open ocean, which was then490

regionally refined. Given that both model compartments in AWI-CM scale to larger processor numbers than we used for the

DA experiment, we expect that the DA into AWI-CM with ECHAM at a resolution of T127
:::
(i.e.

::::
about

::::
1�) could be run at

a similar execution time as for T63 given that a higher number of processors would be used. Further Karspeck et al. (2018)

applied the DA also in the atmosphere, while here only oceanic data was assimilated. Given that the atmospheric analysis step

would
:::::::
typically be applied after each 6th hour, the time for the DA coupling and the analysis steps would increase. However,495

we don’t expect that a single atmospheric analysis step would require significantly more time than the ocean DA so that due

to the parallelization the overall run time should not increase by more than 10-20%.
::::::
Further,

:::
we

:::::
expect

::
a
::::::
similar

:::::::::
scalability

::
in

:::
case

:::
of

:::::::
strongly

:::::::
coupled

::::
DA.

:::
The

::::::
major

::::::
change

:::
for

:::::::
strongly

:::::::
coupled

:::
DA

::
is

::
to

::::::::::::
communicate

:::
the

::::::::::
observations

::
in
::::::::

between
:::
the

:::::::::::
compartments

::
as
:::::::::
mentioned

::::::
above.

::::
This

:::::::::::::
communication

::::
will

::::
only

::
be

:::::
small

::::
part

::
of

:::
the

:::::::
analysis

::::
time.

:

Important for the online-coupled assimilation system is that there is obviously no significant time required for re-distributing500

the model field (i.e. the time for the DA coupling discussed in Sec. 4.1). Furthermore there is no transpose of the ensemble

array to be performed, which was reported to be costly by Karspeck et al. (2018). Here, the implementation of the analysis

step uses the same domain-decomposition as the models and hence only the full ensemble for each process sub-domain has to

collected by the DA coupling. Thus, only up to 46 processes communicate with each other in this step.

The online-coupled assimilation system avoids any need for frequent model restarts. Actually, the initial model startup of505

AWI-CM took about 95 seconds and the finalization of the model with writing restart files tool another 15 seconds. Thus,

these operations take about 3.3 times longer than integrating the coupled model for one day. If the DA would be performed

in a separate program coupled to AWI-CM through files these operations would be required each model day. In addition, the

assimilation program would also need to read these restart files and write new restart files after the analysis step. Assuming
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that these observations take about 15 seconds, like the finalization of the coupled model, the execution time would increase by510

a factor of 4 for offline-coupled DA compared to online-coupled DA.

The code structure using interface routines inserted into the model code and case-specific call-back routines makes the

assimilation framework highly flexible. Further, the abstraction in the analysis step
:
, which uses only state and observation

vectors without accounting for the physical fields allows one to separate the development of advanced DA algorithms from

the development of the model. Thusas ,
::
a separation of concerns is ensured, which is mandated for efficient development of515

complex model codes and their adaptions to modern computers (Lawrence et al., 2018). The separation allows that, as soon as

a new DA method is implemented, all users with their variety of models can use this method by updating the PDAF library.

To ensure compatibility of different versions of the library, the interfaces to the PADF
:::::
PDAF routines are kept unchanged.

However for a new filter , like the nonlinear ensemble transform filter (NETF, Tödter and Ahrens, 2015) , additional call-back

routines might be required, e.g. a routine to compute the likelihood of an ensemble according to the available observations520

::
in

::::
case

::
of

:::
the

::::::::
nonlinear

::::::::
ensemble

::::::::
transform

:::::
filter

::::::::::::::::::::::::::::::
(NETF, Tödter and Ahrens, 2015) or

:
a
:::::::
particle

::::
filter. The abstraction in the

analysis step and the model-agnostic code structure also allow to apply the assimilation framework independent of the specific

research domain. E.g. applications of PDAF with a geodynamo model (Fournier et al., 2013) or hydrological applications

(Kurtz et al., 2016) have been published.

The example here, uses a parallelization so that the analysis step is computed using the first model task and the same domain525

decomposition as the model. Other parallel configurations are possible. E.g., one could compute the analysis step not only using

the processes of model task 1, but for processes of several or all model tasks. This could be done by either using a different

::::
finer domain-decomposition than in the model integrations, or by e.g. distributing different model fields onto the processes.

These alternative parallelization strategies are, however, more complex to implement
:::
and

:::::
hence

:::
not

:::
the

::::::
default

::
in
::::::

PDAF. A

further alternativewould be ,
::::::
which

::
is

::::::
already

:::::::::
supported

::
by

::::::
PDAF,

::
is
:
to dedicate a set of processes for the analysis step. In530

this case, the DA coupling would communicate all ensemble members to these separate processes. However, these processes

would idle during the forecast phase. To this end,
:
separating the processes for the analysis step would mainly be a choice if

the available memory on the first model task is not sufficient to execute the analysis step. However, also
::::
Also in this case, the

distribution of the analysis step over several model
:::::::::
processors would reduce the required memory.

::
For

:::
the

:::::::
parallel

:::::::::::
configuration

::
of

::::::::::::::
AWI-CM-PDAF

::
in

:::
Fig.

::
3,
::

a
::::::::
particular

:::::
order

::
of

:::
the

::::::::
processes

::
is
::::::::
assumed.

::::
This

:::::
order

:::::::::
originates

::::
from

:::
the

::::::
startup

:::::::::
procedure535

::
of

::::
MPI

:::
and

::
is
::::::::::
determined

:::
by

:::
the

::::::::
command

::::
line

:::::
which

::::
start

:::
the

::::::::
program.

:::::
Thus,

:::
for

:::::
other

:::::::
models

:::
one

:::::
might

:::::
need

:
a
::::::::
different

:::::
setup,

:::::
which

::::
can

::::::
usually

:::
be

:::::::
obtained

:::
by

::::
only

:::::::::
modifying

::::
the

::::::
routine

:::
init_parallel_pdaf

:
.
:::::::
Further,

:::
the

::::::
default

:::::::
version

::
of

::::
this

::::::
routine

::::
splits

:::
the

:::::::::::::
communicator

::::
MPI_COMM_WORLD

:
.
::::::::
However,

:::
for

::::
other

:::::::
models

:
a
::::::::
different

::::::
suitable

:::::::::::::
communicator

:::::
might

::
be

::::
split

::
if

:::
not

::
all

::::::::
processes

:::::::::
participate

:::
in

::
the

:::::
time

:::::::
stepping.

::::
This

::::
can

::
be

:::
the

::::
case

::::::
when,

:::
e.g.,

:::
an

::::::::
OI-server

::
is

::::
used

::::
that

:::::::
reserves

::::::::
processes

:::::::::
exclusively

:::
for

:::
the

:::
file

:::::::::
operations.

:::
To

::::::
provide

::::::::
flexibility

::
to
:::::
adapt

::
to

::::
such

::::::::::::
requirements,

:::
the

::::::
routine

:::
init_parallel_pdaf540

:
is
::::::::
compiled

::::
with

:::
the

::::::
model

:::
and

::
is

:::
not

::::
part

::
of

:::
the

::::
core

:::::::
routines

::
of

:::
the

:::::
PDAF

:::::::
library.

While the fully-parallel execution of the assimilation program is very efficient, it is limited by the overall job size allowed

on the computer. The maximum ensemble size was here limited by the batch job size of the used computer. The model used

in the example here can scale even further than e.g. the 192 processes used for FESOM and 72 processes for ECHAM. Thus,
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using the same computer, one could run a larger ensemble with less processes per model and accordingly a larger run time,545

or a smaller ensemble with less run time. The number of processes should be set so that the requirements on the ensemble

size for a successful assimilation can be fulfilled. Nonetheless, the ensemble DA is computationally demanding and for larger

applications, one might need to obtain a compute allocation at larger computing sites, like national compute centers.

6 Conclusions

This study discussed the parallel data assimilation framework (PDAF) and its use to create a coupled data assimilation program550

by augmenting the model code
::::
code

::
of
::

a
:::::::
coupled

:::::
model

:
and using in-memory data transfers between the model and the data

assimilation software. The implementation strategy was exemplified for the coupled ocean-atmosphere model AWI-CM for

which two separate programs for the ocean and atmosphere where augmented. However, the strategy can be easily used for

other model systems consisting of a single or multiple executables.

The implementation of a DA system based on PDAF consist in augmenting the model codes with calls to routines of the555

assimilation framework. These routines modify the parallelization of the model system, so that it becomes an ensemble model.

Further, the ensemble is initialized and the analysis step of the data assimilation can be executed at any time without restarting

the model. Operations to transfer between model fields and the abstract state vector of the assimilation, and the observation

handling are performed in case-specific routines. These routines are executed as call-back routines and can be implemented

like routines of the numerical model, which should simplify their implementation.560

Numerical experiments with daily assimilation of sea surface temperature observations into the AWI-CM showed an ex-

cellent scalability when the ensemble size is increased. This resulted in an overhead of only
:::::
which

::::
was,

:::::::::
depending

:::
on

:::
the

::::::::
ensemble

::::
size,

::::
only

:::
up

::
to

:
15% in computing time compared to the model without assimilation functionality. The execution

time of the coupled ensemble data assimilation program was dominated by the time to compute the ensemble integrations in

between the time instances at which the observations are assimilated. This excellent scalability resulted from avoiding disk565

operations by keeping the ensemble information in memory and exchanging it through parallel communication during the run

time of the program. Care has to be taken that in the coupled model the pairs of atmosphere and ocean model compartments

are placed close to each other in the computer, which can be achieved by specifying these pairs in the command starting the

parallel program. The time to collect this ensemble information before the analysis step and distributing
:
to

::::::::
distribute

:
it after-

wards showed significant variations from run to run. These variations are due to the fact that the large compute application is570

widely spread over processors of the computer. Anyway, no systematic time increase was observed when the ensemble size was

increased and the time was only up to about 6% of the time required for the forecasting. Distributing the different models over

separate directories improved the scalability because it avoided possible conflicts the in file handling which can be serialized

by the operating system of the computer.

PDAF provides a model-agnostic framework for the efficient data assimilation system as well a
:
as

:
filter and smoother575

algorithms. As such it provides the capacity to ensure a separation of concerns between the developments in the model,

observations, and the assimilation algorithms. Functionality to interface between the model, which operates on physical fields,
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and the assimilation code, which only work on abstract state vectors, has to be provided in a case-specific manner by the users

based on code templates. This also holds for the observation handling. While there are typical observational data sets for the

different Earth system compartments, the observation operator links the observations with the model fields on the model grid.580

Thus, the observation operator has to be implemented taking into account the specific character of the model grid like the

unstructured structure of FESOM’s grid.

Code availability. The model-binding for AWI-CM-PDAF 1.0 used in this study is archived at Zenodo (Nerger et al., 2019a) The PDAF

code (version 1.14 was used here), as well as a full code documentation and a usage tutorial are available at http://pdaf.awi.de. The source

code of the coupled AWI-CM model (revision 550 was used) is available from from the SVN repository at https://swrepo1.awi.de/svn/awi-585

cm/trunk@550 (last access: November 2019) and can be downloaded using SVN. The ECHAM6 source code is maintained by the Max

Planck Institute for Meteorology and is freely available to the public (http://www.mpimet.mpg.de/en/science/models/mpi-esm/echam/, Max

Planck Institute for Meteorology, 2019a). External access to the ECHAM6 model is provided through their licensing procedure (http://www.mpimet.mpg.de/en/science/models/license).

Only after registering for using ECHAM6, access to AWI-CM can be granted. The OASIS3-MCT coupler is available for download at

https://portal.enes.org/oasis (ENES Portal, 2011).590

Data availability. The experiments have been performed using the LR mesh of FESOM. For the availability of this configuration, mesh,

and input files see Rackow et al. (2019) . The output files containing the timing information and plotting scripts are available at Zenodo

(Nerger et al., 2019b)
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Figure 1. Call-structure of PDAF. Calls to interface routines (yellow) are inserted to the model code (blue). The interface routines define

parameters for PDAF and call PDAF library routines (green). These library routines call used-provided
::::::::::
user-provided call-back routines.

The model code, interface, and call-back routines operate in the model context and can hence exchange information indirectly, e.g. through

Fortran modules. Likewise, the PDAF library routines share variables.
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Figure 2. General program flow: (left) abstract original program without data assimilation; (right) program augmented for data assimilation.

The blue color marks coupling routines whose parallelization needed to be adapted for the data assimilation. Each of the two coupled

compartment models were augmented in this way.
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(a) MPI communicator structure for AWI-CM Color legend:
0 1 2 3 4 5 MPI_COMM_WORLD COMM_CPLMOD
0 1 2 3 0 1 COMM_FESOM COMM_COUPLE

COMM_ECHAM COMM_FILTER

(b) MPI communicator structure of AWI-CM augmented with PDAF for strongly coupled assimilation
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
0 1 2 3 0 1 0 1 2 3 0 1 0 1 2 3 0 1 0 1 2 3 0 1
0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3
0 1 2 3 4 5

(c) Structure of MPI communicator COMM_FILTER for weakly coupled assimilation
0 1 2 3 0 1

Figure 3. Example configuration of MPI communicators: (a) AWI-CM, (b) AWI-CM with PDAF-extension for ensemble data assimilation.

The colors and lines mark processes that are grouped as a communicator. Different shades of the same color mark the same communicator

type (e.g. four orange communicators COMM_FESOM). For COMM_COUPLE each communicator is spread over the model tasks. The

numbers mark the rank index of a process in a communicator.

PDAF Filter
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Model fields to
state vector

Initialize vector of
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Apply observation
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covariance matrix
(multiply or add) 

Local size of
state vector

State vector
to model fields

Size Ny of vector
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Global to local
ensemble

Number of local
observations

Local to global 
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Local observed
ensemble

Fill local vector of
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observation handling treat localization
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Figure 4. PDAF filter analysis step and related call-back routines provided by the user. there are four types of routines: transfers between

model fields and state vector (cyan), observation handling (orange), treatment of localization (yellow), and pre/post-processing (blue).
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Figure 5. Execution times per model day for varying ensemble sizes for different parts of the assimilation program. The dominating forecast

time includes the ’coupling’ time which results in the time variations.
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Figure 6. Execution times relative to ensemble size 2 for different parts of the assimilation program as a function of the ensemble size. The

fluctuation is the time is caused by parallel communication and file operations. The analysis step shows a systematic time increase
:
,
::::
while

:::
the

:::
time

:::
for

::::::::::
DA-coupling

::::
varies

:::::::
strongly.
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