gmd-2019-156: responses to reviewer comments

We thank the anonymous reviewers and the editor for carefully reading the manuscript and for providing
the very valuable comments. We address the comments one by one below. The reviewer comments are
pasted verbatim below in italics, and the author responses to these comments can be found immediately
under the comments, starting “A:”. These are followed by “Changes to manuscript:” sections, where the
line numbers refer to the diff file unless stated otherwise. Line numbers in the “A:” sections generally refer to
the old version of the manuscript. Line numbers in the “Changes to manuscript” section refer to line numbers
in the diff file.

Anonymous Referee #1

This manuscript describes a model to analyze large spatio-temporal data. Although analyzing remote sensing
data of enormous sizes is no double important and challenge, the manuscript fails to describe the model and
its computation details and properties sufficiently or clearly. Please see below my comments that are not
necessarily ordered chronologically or by importance:

A: We thank the reviewer for this sincere assessment. To clarify the text and improve readability, we
have restructured and rewritten large parts of the manuscript. This includes almost all of Sect. 2 (Methods),
where the text has also been expanded in many places to more explicitly explain the technical details, with
an emphasis on the requests made by Anonymous Referee #1. To aid the reader with the large number of
different symbols in the manuscript (some of which were changed for clarity) we have added a full page list of
symbols to help the reading. To illustrate the basic capabilities of satGP better, especially to those readers
who are not so familiar with Gaussian process regression, we have added a short application to synthetic
WACCM-generated ozone data, so that the reader can compare satGP output and uncertainties to the true
underlying field, and appreciate that satGP is not a CO2-specific tool. We also fixed a few inaccuracies and
minor bugs in the code, which lead to an increase in the version number of the software, from 0.1 to 0.1.2.
Figures 1-2 and 8-10 were redone with this newest version of satGP.

1. This manuscript suggest using the mean function of a particular form when analyzing OCO-2 data:
m(x; 8,0) = f(z';6(x*))B(x®) This mean function is not a linear form of unknown parameters {6(z*), B(x*)},
noting that they are both dependent (i.e., varying) across locations. I find the description on how to estimate
0(z®) and B(z®) extremely confusing.

e In Lines 10-20 of Page 6, it states that 5 will be estimated using the formula of generalized least squared
as given in Equation (6), and § will be calibrated, but no explanation is given on how & will be calibrated.
In addition, the authors did not explain the dimension of the matrices F' and K in Equation (6). Are
they large so that K= or (FTK—'F)~! difficult to compute?

Al: First, in the earlier manuscript version we mention that we find a point estimate for the § parameters
before calibrating 8 with generalized least squares, and that we then still one more time calibrate the §
parameters. We agree that the wording could be better, and we now clarify the alternating optimization
in the sentence under (7) for the revised manuscript, adding that we use optimization algorithms for
the task. We also give a reference to a later section for the full description of the procedure. Second,
the reviewer is right about that the matrices are too large for direct inversion. For this reason the full
size of the matrix K, and by extension the computing the dense matrices mentioned above would be
prohibitively expensive. In our work the size of K is up to order of 10% x 108, and such matrices would
not fit to any computer’s memory. Changes to manuscript: p. 7 1. 15, p. 8 L. 17-18, p.8 1. 19-24
(and the full section 2.3.2)



e How is B(z®) estimated for a location xz*? For a location x*,test without data/observation, can we

A2:

A3:

A4:

A5:

A6:

estimate B(x®, test) and how?

The B* is estimated via the Markov Random Field, by fitting the parameters to match the mean
function to local observations, and by conditioning on the parameter values at neighboring spatial
locations. When there is no data nearby, the values of the parameters will be determined by prior
values (if any — we use a flat prior) and the parameters at neighboring nodes in the MRF. We agree
that the description in Section 2.4 is at the moment not very clear, and we will describe the calibration
procedure more clearly in the revised version. Changes to manuscript: We have added section 2.3.2
detailing learning 3 and ¢ for a given location, diff p. 13, last line — p. 15 1. 7.

Although the authors have included Section 2.4 on learning f(x®) as a Markov random field, this section
is not connected to other parts of the manuscript but only adds confusion. It is unclear what the authors
meant by modeling 8(x*) as a Marko random field. Does this mean that the authors no longer use
Equation (6) to estimate B(x®)? What are the assumptions of this Markov random field (MRF)? What
are the parameters in this MRK and how is this MRK fitted?

(Line numbers here refer to the old version of the manuscript) The 8 parameters are still computed with
equations (6) and (7), but in addition to just computing a mean field approximation, we condition each
vertex by the neighbors. This also imposes some smoothness on the posterior field of the g parameters
and regularizes the problem. The fitting procedure was actually described on p. 8 1. 6-11 and in the
caption of figure 2. Additionally, the conditioning on the neighbors was briefly explained in the text
around p. 7 . 27 - p. 8 I. 2. However, we agree that this description could be made clearer, and for
this reason we have rewritten section 2.4 adding a lot of previously missing detail. Regarding the
parameters of the MRF, the MRF is over the 8 parameters, and for the § parameters we only obtain
point estimates by fitting the parameters before and after obtaining the local 5 values (amounting to
a very short alternating optimization of 5 and §). The smoothness of the fitting is controlled by the
dscale parameter mentioned on p. 26 1. 12-15, and of course also by the covariance kernel used, which
affects the observation selection. The MRF is fitted according to the procedure described in the caption
of figure 2. We realize that even though how the fitting is exactly done is not so critical for how the a
posteriori Gaussian process fields look like, this procedure should be more carefully explained, and not
in a figure caption. We will integrate the description in the rewritten section 2.4. (now 2.3) Changes
to manuscript: The motivation behind the Markov Random Field paradigm is now explained in a
separate subsection, 2.3.1, and learning the pointwise estimates, along with conditioning on neigbors,
is now explained in the new section 2.3.2. The assumptions of the MRF are discussed first on p.12
1.9-10 and then on p.12 1.20-24. Spatial order of learning the graph is now explained on p.13 1.1-4, and
elsewhere in that section.

It is also confusing how the parameters 6(x®) are estimated.

The fitting of the § parameters is carried out by optimizing them when computing the MRF as was
explained on p. 8 1. 12-18. While we think that the procedure was described in the text, it could
have been worded better, and we will do our best to also clarify this part of the text. Changes to
manuscript: The § parameter fitting has been included in the new section 2.3.2, particularly in the
procedure p. 14 1.11 - p.15 1.3.

Line 1/ of Page 8: “ . . . finding B with Eq. (9) and (10), ..." Is this a typo? Should it be Eq. (6)
and (7)?

Yes, this is a typo, this has been fixed.

Page 8 Line 15: The objective function Z?zl(m(xl,;ﬁy,é,,) — ;)% + > ireon(0 — §;)% and the opti-
mization procedure are poorly explained. It should be noted that the mean function m(-;-,-) involved &
and B. It is very confusing how or why this function is used to estimate 0 or B individually or both of
them jointly, and why it should be used this way.

This part of the text describes fitting the phase-shift parameters §, also mentioned above. For the
“why” question, it is mentioned in the text that the nonlinear parameters cannot be calibrated the



same way the [ parameters are dealt with. The first term blindly fits the mean function to data,
while the second term imposes smoothness on the d-field. For simplicity and speed we don’t use a
dense error covariance matrix for the first term (as in ordinary least squares as opposed to generalized
least squares), since for the § parameters we are not interested in uncertainties. This is a modeling
choice with which we aim to satisfy two objectives: first, to get reasonable estimates of the J field
(for total column CO2 we expect that the spatial variation of the phase parameter should be be
smooth) so that we do not end up fitting noise, and second, to perform this without the need to handle
covariances in the optimization. While taking to account observation covariances by computing e.g.
(m(zy; By, 6,) — V)T K=Y (m(zy; By, 6,) — 1) instead of plain squared error in the first term would be
possible, we do not think that would really improve the fit for the § parameters: this can be verified
by e.g. looking at Fig. 1, which we have updated to show the fit to the actual observations instead
of the daily means. Looking at that figure, it is clear that the phase shift § parameters are correctly
estimated. For this reason we are not concerned about the effect of this compromise to the precision of
our mean function. Last, we’d like to emphasize that the covariances are properly accounted for when
finding the 8 parameters, so this compromize only affects the § parameters.

The “how” part of the question was addressed in the comments above in Al, A3, and A4. We will still
add a note about how the graph structure could be solved with algorithms such as generalized belief
propagation, implementation of which is not yet included in satGP. This is future work that we hope
to find time for at some point.

As a final note we’d like to point out that the form of the mean function is generally data set specific,
and it is the task of the modeler to understand the mean behaviour of the field before learning the GP
parameters. While other data sets may require different, perhaps more complicated, mean function
formulations, it is also possible to supply the mean function to satGP directly as an array. Changes
to manuscript: Optimization procedure is now explained much more carefully (p.14 1.11 - p.15 1.3).
We also now mention the mean function in that section (p. 14 1. 5) to remind the reader of the context.
Generalized belief propagation is mentioned as a possible future inference algorithm for the MRF on
p-13 1.7

2. The notations in this manuscript are very confusing overall. For example, the authors sometimes use
B(%) and later use B,. The covariance parameters are even more confusing. There are l,l., and l; . Even
the definition of I is not consistent: It is originally stated I C {x®, 2}, but later used as I = STorl = S,
and I = ST . Also, the authors used Ayear i Equation (11) and stated Ayear is the duration of one year,
does this mean Ayear = 3657 Similarly, in Equation (15), the authors used Aperioa ; is it 365 as well?

AT: First, we agree that using both 5(z*) and 5, may be confusing. We use v to refer to a generic vertex
on a graph, whereas we used B(z°) on p. 7 1. 22 to underline that the 8 parameters are space-dependent.
We have removed this latter notation and explain the connection of the 5, to the spatiality of the problem
better.

Second, regarding the different ¢ variables, we’ll do our best to make the notation more consistent. The
reviewer is correct to point out that more clarity is needed. We have made the notation more consistent and
added these to a table of symbols.

Third, regarding the index set notation with the letter I, we agree that this is not optimal, and that the
notation is not consistent (there is e.g. both ST and Igr etc.). We have now made the notation consistent
and no longer needlessly give the I variables as arguments of the covariance functions. We also explain this
notation in the table of symbols.

Fourth, the Ayear vS. Aperiod Was an intentional discrepancy: we use a period length of one year for the
OCO-2 data (this is a modeling choice) but for instance the now-added WACCM example uses also 1.5 and
2 year periods. We have therefore removed the Ay, notation altogether. Changes to manuscript: We
added a full-page table explaining the most often used symbols and their dimensions, p.11. We explain the
I-related symbols on p.15 1.18-19,21-22, and also in the table of symbols. The /-symbols are clarified, e.g.
p.151.18,20,25-26. The notation Aye,, has been removed. We now use £ to emphasize that an equation is a
definition.

3. The authors suggest the multi-scale covariance function given in Equation (18): k(z,2';0) = 6(z, 2" )02+
kper(z,2';0,Is) + kn(x, 25 0) + kexp(z,2'5:6, 1 + ST) + kw(x,2";0,1).



e First, I am not sure multi-scale is an accurate way to describe this covariance function. I feel this

AS:

A9:

A10:

All:

function is to add different types of covariance functions together, but these components not necessarily
differ in terms of scales.

It is true that the combined covariance function works by adding different covariance functions together.
However, how we decided to call the combined covariance function had a lot to do with the intended use
of satGP: in the OCO-2 case we are in particular interested in finding the different length scales in the
data induced by both spatial sparsity and underlying processes. Furthermore, remote sensing data often
describes data from processes that involve different various characteristic length scales, as presented
in e.g. figure 9. While we could of course call the full kernel “multi-component”, we would rather like
to emphasize that we are specifically interested in the different length scales. Note, that even if the
kernel components are of different types, they still may describe processes at different length scales.
A non-multiscale kernel would arise in a situation, where a kernel utilizes, say, an exponential and a
periodic kernel component with the same length scale parameters. Such usage, while possible, would
likely be slightly unusual. For this reason we’d like to keep the terminology that we currently have. We
will, however, add a note that the kernel could also be called “multi-component”, and briefly explain the
reasoning behind the multi-scale name. Changes to manuscript: We mention that multi-component
could be an alternative name, p.18 1.6-9.

The authors did not explain clearly the component kW (x,x20;0,I). Although Equation (16) states it
is equal to kexp(xw,zly; 0", ST), the authors fail to explain xw or the quantifies in Equation (17)
especially, 1, 1t Iy , and 1L , and how these parameters are chosen/estimated.

We agree that this explanation is not adequate. We now clarify how the rotated kernels function and
rephrase this part of the text to improve clarity. As with other covariance kernels, also these parameters
may be found by maximum likelihood. This procedure is outlined in Section 2.7, but we will add a
note that it applies also to the wind-informed kernel parameters. Changes to manuscript: We have
rewritten the section explaining the wind kernels, p.16 1.17 - p. 17 1.15, and we now explicitly give
formulas for z,, and £ and £, and explicitly list /; and £ in the parameters of ky,. We explain that
the p parameters may be learned like the other parameters (p.20 1.17)

What will happen if there are missing data in wind velocity?

In case of OCO-2 (and with many other products), the wind data is included with the data files. The
satGP code also includes running a Gaussian process for the wind data (and the output can then be
utilized with k). Wind data may also be read from an external file. We will add a note about these
capabilities in the text. Changes to manuscript: We now mention how wind data may be read in
and that it is a required input for ky,, p.17 1.13-15.

Why isn’t there an I involved in the Matérn component kyr(-, ;)¢

Yes, there should of course be. However, we decided instead to remove the I arguments from all the
kernels, since changing the dimensions over which the covariance functions work requires changing the
code. Changes to manuscript: We have removed the I arguments from kernels in equations 14-17,
p-15-16.

For the exponential component, the definition given in Equations (12) and (13) are not clear. At least
there are two ways to define this component:
)

Yol )

dependent on whether the spatial and temporal components share the scale or exponent parameters. I
don’t know what the authors have used, and there is no justification of their choice.
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A12: Each dimension has its own scale length parameter. This is what the subindex ¢ in the sum and also
in the term ¢, in (13) refers to. The sum is over the dimensions in the set I, and while we think this is
quite clearly presented, we will still try to clarify. This means that the second version listed above is
what is being used, with the caveat that the exponents v are the same. If needed, this restriction can
of course be quite easily lifted by modifying the code. For the OCO-2 experiments the exponent 2 was
used. Changes to manuscript: We try to explain the notation better, p. 15 1.16-27. We underline
that the dimensions are independent and have separate length scale parameters, p.15 1.24-25. We have
changed the notation to contain less subscripts, e.g. §ZI = ¢/ in equation 13.

e The authors need to provide a better description of these components in the covariance function and
explain why they are identifiable based on their formulations and definitions. Also, it is necessary to
clarify whether some parameters are the same or vary across these components, such as 72 , v, and [.

A13: We now clarify that parameters such as 7 are different for each kernel component. They can be found
from the data, as was shown in the OCO-2 case. Of course the reviewer is correct that parameters of
an arbitrary set of kernels would not necessarily be identifiable. However, what set of kernel compo-
nents are chosen, is up to the modeler and depends on the data used. In the synthetic experiments
we show that length scales of even three kernel components are recoverable, even though some param-
eters were slightly overestimated. We did perform additional tests, according to which parameters of
two-component kernels are recoverable without such overestimation. We will add a comment on the
modeler’s role in picking the set of kernel components, underline that the synthetic studies verify the
identifiability of the parameters, and furthermore do our best to improve the description of the kernels
in general. Changes to manuscript: We clarify that the parameters differ over the different kernel
components, by subscripting the parameter vectors 6, p. 15 1.28, p.16 1.1,8,22, that ~ is shared across
dimensions, p.15 1. 25, and that ¢ parameters are different for each dimension (p.15 1.24-25). We state
that the combined covariance parameter vector is now called 6, (p.18 1.2). We have added a note about
the modeler’s role in modeling the data (p.18 1.3-4). We have added a simple one-kernel synthetic
example, Sect. 4.2, which shows that the techniques used for learning mean function and covariance
function parameters produce very good-looking fields, and that the uncertainties are what should be
expected, implying that the method for finding the covariance parameters is able to converge to a
well-performing parameter estimate. (p.26 last line - p.29 1.8).

4. I find Sections 2.6 and 2.7 quite difficult to understand. It seems that the authors use local kriging,
that is, using a subset of data close to a prediction location x* to estimate the covariance parameters and to
make prediction.

A14: This is correct. We use a set of hyperspheres in the space of the inputs x, within which we fit the ker-
nel parameters. Changes to manuscript: We have significantly expanded and revised /rephrased /rewritten
both of these sections to improve readability.

Furthermore, it appears that the authors use different subsets of data to estimate the components in the
covariance function. Why not using a single subset data to estimate the entire covariance function? Or, were
the authors trying to avoid identifiability issue by using different data sets to estimate different covariance
components? If a subset of data are used, I assume the size of this chosen subset is not too large, but why
is there a need to use a block diagonal matriz K as in Equation (22)¢? This approzimation is not clearly
explained, neither is Er.r in Fquation (22). 2 ¢

A15: We use the same subset of data to fit all the components at once, otherwise we could hardly claim
that the parameters we choose are somehow optimal or correct. The sequentiality of the observation selection
is due to something different: when we choose the (one and only) set of observations for fitting covariance
parameters, we need to pick them so that all the (expected) length scales are represented in the data set. For
instance, if the length scales are 10 kilometers and 1000 kilometers, we need to include both local dense data,
and data from further away: if for instance we only include the closest observations, we don’t really have
leverage to say much about the behavior over longer length scales. We would like to point out more generally,
that parameter identifiability is conditional on the data, so with some data (for instance with only one or
zero observations) there will always be identifiability issues. While we think that we actually do explain what
E,crison p. 12 1. 24, we agree that the description is short, and that the block-diagonality is explained only
implicitly (or not at all). We will clarify these points and include a better description of the K matrices in
the revised manuscript.



Changes to manuscript: We underline that we use a single data set (p. 18 1.22-23). We now clarify the
block-diagonality and the relationship between K and K in the text (p-20 1.24-30) We also disambiguated
the notation in (new) Sect. 2.6 and added a short algorithm (figure 4) to describe the observation selection.
We mention that the E,¢f is a set of random points from the domain (p. 20 1.12-13)

Moreover, in Equation (19), should it be > Oy rather than < oy ?

A16: This is definitely true and has now been fixed.

5. The authors mentioned the nearest neighbor Gaussian process, but did not cite the reference corre-
spondingly.

A17: Thank you for pointing this out, we have now added a proper reference. Changes to manuscript:
Added reference, p.4 1.9

6. It is unclear where or why MCMC is needed and how it is implemented (prior specification etc.). The
authors described optimization in Section 2 and also in the first paragraph of Pagel3. However, later in Page
17, the authors stated that MCMC' is used instead. Section 2 does not describe MCMC.

A18: While learning the mean function parameters 8 and ¢ utilizes optimization with the BFGS algorithm,
covariance parameters are learned using MCMC. The likelihood for learning the covariance parameters is noisy
due to the observations selected changing with changing parameter values. For this reason optimization
algorithms tend to get stuck in local minima. This was actually mentioned on p. 17 1. 4-5 (old version of
MS). We do mention that an Adaptive Metropolis implementation is included in the code, and that that can
be used for finding the parameters (p. 13 1. 1-5). It is true that the priors are not described. We use flat
priors, and will add information about them in the text in sections 4.1 and 4.4. We will also add a short
description of MCMC to section 2.7. Changes to manuscript: MCMC and the motivation and its relation
to optimization are now explained in more detail on (diff) p.21 1.4-17

7. It should be Matérn covariance function, instead of Matern.

A19: This has been fixed.

Anonymous Referee 72

A20: We thank Anonymous Referee #2 for appreciating our work. (No corrections or clarifications were
requested.)

Executive Editor Comment

... Therefore please provide the satGP v0.1 code or provide the reasons why the code can not be made publicly
available in your revised submission to GMD.

A21: We received the approval for open-sourcing satGP today from MIT, and will include the source code
of the newest version as a supplement to the final manuscript version, after first adding the license headers
and copyright notices.
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Abstract. Satellite remote sensing provides a global view to processes on Earth that has unique benefits compared to measurements

made-making measurements on the ground—Fhe-, such as global coverage and the-erormots-ameunts-of-data-produced-come;
however,-with-the-priee-of-enormous data volume. The typical downsides are spatial and temporal gaps and less-thanperfeet
potentially low data quality. Meaningful statistical inference from such data requires overcoming these problems and that-ealls
for-developing-effieient-developing efficient and robust computational tools.

We design and implement a computationally efficient multi-scale Gaussian process (GP) software package, satGP, geared

towards remote sensing applications. The software is designed—to—be-able to handle problems of enormous sizes and is

able-to compute marginals and sample from

field conditioning on at least hundreds of millions of observations. This is achieved by optimizing the computation by e.g.

randomization and splitting the problem into parallel local subproblems which aggressively discard uninformative data.
The-We describe the mean function of the Gaussian process is-deseribed-by approximating marginals of a Markov random

ions-_the random

field (MRF). Ferecovariancefanetions;MaternVariability around the mean is modeled with a multi-scale covariance kernel
which consist of Matérn, exponential, and periodic kernels-are-utilized-in-a-multi-scale-kernel-setting-to-deseribe-the-spatial

heterogenetty presentin-data—Wefurther-components. We also demonstrate how winds can be used to inform the-eovariance
kernelHormulationcovariances locally. The covariance kernel parameters are learned by calculating an approximate marginal

maximum likelihood estimateand-this-is-utilized-to-verify-, and the validity of both the multi-scale approach and the method
used to learn the kernel parameters is verified in synthetic experiments.

For demenstrating the techniques-above-data-We apply these techniques to a moderate size ozone data set produced by an
atmospheric chemistry model, and to the very large number of observations retrieved from the Orbiting Carbon Observatory 2
(0CO-2) satelliteisused. The satGP 1S ased-as 3 :

software is released under an open source license.

Copyright statement.
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1 Introduction

Climate change is one of the most important eurrent-present-day global environmental challenges;—to-the-point-where-it-is

awing-constant-widespread-attention-even-in-mainstream-media. The underlying reason is the-anthropogenic carbon emis-
sions: i . . According to the Intergovernmental Panel on Climate Change, carbon dioxide

(CO2) has eurrently-the strongest effect on warming the planet of the well-mixed greenhouse gases, with the radiative forcing

Several instruments orbiting the Earth produce enormous quantities of data;-which-are-proeessed-toremote sensing data, used
to compute local estimates of CO2 by-solving-a-complicated-inverse-problem(Crisp-et-al;-2642)-These-and other atmospheric

constituents by solving complicated inverse problems, and further processed to e.g. gridded data products and flux estimates
Cressie, 2018). These instruments include the Greenhouse gases Observing SATellite (GOSAT) from Japan (Yokota et al.,

2009), which-has-been-operational since January 2009, the OCO-2 from NASA (Crisp et al., 2012), launched in July 2014,
and the Chinese TanSat (Yi et al., 2018), which-was-launched in December 2016. GOSAT-2 was launched in October 2018saw
the-tauneh-of GOSAT-2, and in May 2019 the OCO-3 instrument (Eldering et al., 2019) was taken to the International Space
Station. In addition to the CO2-measuring instruments, also other types of data are produced by remote sensing. For instance
the European TROPOspheric Monitoring Instrument (TROPOMI) produces measurements of nitrogen dioxide, formaldehyde,
carbon monoxide, aerosols, methane, and ozone.

Common denominators among most non-gridded remote sensing data sets include :-a large number of observations, global
coverage but small area observed at any given time, sensitivity to prevailing weather conditions and cloud cover, unknown
and/or unreported error covariances, and predetermined positioning that rules out freely observing at a given time and location.

These shortcomings can be partly remedied with

There are two key advances in this work. First, we describe the
computational approaches that allow satGP to tackle remote-sensing related spatial statistics problems of enormous sizes. Sec-
ond, computational-methods-tha ow-the-solution-ofproblems-of such-secales-are-introduced—Third,-we present formulations of
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a multi-scale covariance function and mean-function-formulations;some-a space-dependent mean function, types of which we

have not seen used in the remote sensing community;

with-the XCO2-datafrom-the- OCO-2sateHite. We also show how these functions can be efficiently learned from data.

Several-interestingRelated to this work, several kriging studies have been published before in the context of satellite
measurements-of remotely sensed CO2. Zeng et al. (2013) analyzed the variability of CO2 in both space and time over China
produeing-and produced monthly maps from GOSAT data with slightly over 10000 observations. Nguyen et al. (2014) used
a four times larger set of observations with Kalman Smoothing in a reduced dimension with GOSAT and the Atmospheric
InfraRed Sounder (AIRS) data from NASA. A map of atmospheric carbon dioxide derived from GOSAT data was presented
at the higher resolution of 1x1.25 degrees in space and 6 days in time by Hammerling et al. (2012). In another publication by

the same authors, synthetic OCO-2 observations were considered with the same spatial resolution.

A-More recently Zeng et al. (2017) presented a global dataset derived from GOSAT was-presented-byZeng-et-al(2017);

with-the-spatiotempeoral-with the spatio-temporal resolution of three days and one degree, and this study evaluated also the
temporal trend of the XCO2. The results were validated against both-observations from the Total Carbon Column Observing

Network (TCCON) and against modeling results from CarbonTracker and the-Goddard Earth Observmg System with atmo-
spheric chemistry (GEOS-Chem). Thi -
deseribe-Tadic et al. (2017) described a moving window block kriging algorithm to introduce time dependence into a GOSAT-

based XCO2 map construction process using a quasi-probabilistic screening method for subsampling observations, thin-

ning the data for computational reasons. Other recent studies have also contained analyses of OCO-2 data —Fer-example—

Zammit-Mangionetal(2018)present— for example Zammit-Mangion et al. (2018) presented fixed rank kriging (FR¥K)-re-

sults based on OCO-2 data using a 16-day moving window. Fheresults-again-In many of these studies, the obtained CO?2 fields
appear very smooth.

ed-Applications to remote sensing data

have also resulted in publications more focused on methods. Ma and Kang (2017) described a “fused” Gaussian process, com-
bining a graphical model with a Gaussian process and applying that to sea surface temperature data. Anether—interesting

another computationally sophisticated application, Zammit-Mangion et al. (2015) simultaneously modeled both flux fields and
concentrations using a bivariate spatiotemperal-moedelutilizing-spatio-temporal model with Hamiltonian Monte Carlo (Neal,
2011) for sampling the posterior. However;-due-Due to computational challenges the feotprint-area-is-spatial area investigated

in this work was very small.

FeﬁevefeefnmgFor Gaussian processes, various approaches have been studied to overcome the difficulties posed by
large numbers

—amounts of data. For instance, Lindgren et al. (2011) pro-
vide an explicit link between some random fields arising as solutions to certain stochastic partial differential equations and
Markov random fields. A recent review of Vecchia-type approximations (Vecchia, 1988) is given by (Katzfussetal;2048)-

and-Katzfuss et al. (2018), and Heaton et al. (2018) presents a comparison of the performance of several recently developed
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methodsis-givenby-Heaton-et-al(2018);spatial statistics methods with applications to MODIS-data-data from the Moderate-resolution

imaging spectroradiometer (MODIS). The difficulty of ordering the observations for effective inference with Gaussian pro-
cesses, especially as the dimension of the inputs grows, is underlined-discussed by Ambikasaran et al. (2016).

In this work we describe &nﬂppfeaeh%e%e}ve—spaﬂa%the satGP program that solves very large spatio-temporal statistics
problems with

WEWM@@&%%
made in the field, we are not aware of any literature or software solving problems of quite this scale so far. The effectiveness
WMWMV@C&M type and nearest neighbor Gaussian processes while-utilizingrandem
a(Datta et al,, 2016), but satGP also employs several computational
WW&WMWWW possible. Thepfeseﬂ%a&e&ef

tne-program includes a flexible
implementation for space-dependent mean functions and space-independent covariance kernels, and routines for learning their

arameters from data. The spatial dependence of the mean function is learned by computin margmals of a Markov random
field (MRF)

The covariance function is constructed in a way that allows for describing the multiple natural length scales in the data. After
learning the model parameters the program computes posterior predictive fields, and realizations can be drawn from both the
posterior and the prior.

We validate the multi-scale covariance modeling approach by learning the covariance function parameters of a data set drawn
with satGP from the prior of a multi-scale Gaussian process. To demonstrate the computational capabilities of this early version
satGPare-demonstrated-in-practice-by-computing-, we computed global XCO2 concentrations for a duration of 1526 days at
0.5° spatial and daily temporal resolutlonwfh%GQ%dat&#ei%Oee-%mﬂiﬂﬁgeveF WMLW@%
marginal distributions, conditioning on 116 million
XCO2 observations from OCO-2. Figure 9 shows an example of how these results look 11kets—g1veﬂ—by—Fig—¥wWVgglvsng/rvevsgg\

a non-stationary covariance kernel formulation that utilizes wind data for computation, and use that covariance function with
OCO-2 data. The utility of using winds with CO2 data has been demonstrated before by e.g. Nassar et al. (2017).

OCO-2 work we demonstrate the capabilities of satGP with synthetic ozone data from the Whole Atmosphere Communit
Climate Model (WACCM4) (Marsh et al., 2013), emulating observing with the Global Ozone Monitoring by Occultation



10

15

20

25

30

of Stars (GOMOS) instrument (Bertaux et al., 2004, 2010; Kyrold et al., 2004) on the Envisat satellite. Using synthetic data

allows us to directly compare Gaussian process posterior estimates to an exactly known ground truth. The software could
equally well be applied to any other observed quantity of interest.

The rest of the manuscript is organized in the following manner: Section 2 describes the methods both generally and as

implemented in satGP. An-everview-of computation-in-satGPis-givenin-Seet-Section 3 -and-Seet—discusses the computational

details in satGP. Section 4 presents and discusses simulation results, including a multi-scale synthetic parameter identifiability

studyand-two-applications—to—, an application to synthetic WACCM4-generated data, and applications using the OCO-2 v9

dataset. In the concluding Sect. 5 current limitations and some possible future directions are briefly mentioned.

2 Methods

In geosciences, kriging (Cressie and Wikle, 2001; Chiles and Delfiner, 2012) is often-used for performing spatial statistics
tasks such as gap-filling or representing data in a grid. The semivariogram models used in kriging are closely related to the
covariance models used in the Gaussian process formalism (Santner et al., 2003; Rasmussen and Williams, 2006; Gelman
et al., 2013), where instead of learning the variogram model from the data, a form of a covariance function is prescribed and
its parameters learnedestimated.

Intuitively;-one-would-like-With Gaussian processes, we want to learn properties of a spatio-temporal surface from some
observational data of some quantity of interest. To each point in space and time corresponds a Gaussian distribution of that
quantity, whose mean and variance can be calculated by solving a local regression problemateach-desired-point—This-ecan-alse

be-erudely-thought-abeut-as-eptimally-. This is closely related to solving a spatio-temporal interpolation problem when the
observations have Gaussian errors.

The underlying-theory-related-to-theory of Bayesian statistics, Gaussian processes, and Markov random fields that is used in
this work is well known and therefore many of the the novel aspects in this section have to do with the computational methods
and modifications that are presented, such as observation selection schemes in Sect. 2.5 or approximate marginal maximum
likelihood computation in Sect. 2.6. These modifications trade precision for tractability, but in a way that theresults-stilremain
vakidtries minimize the loss in accuracy. Due to the size-of-the-problemdesire to be able to solve very large problems, some
sacrifices need to be made in-erder-to be able to obtain any solution.

This section goes through the Gaussian process formalism ;-and-and presents both generic and the-satGP-specific forms of

mean and covariance functionsare-deseribed. This is followed by discussion of how observation selection is carried out for

solving local subproblems and how model parameters are learned. The presentation of the general Gaussian process problem
is based on Santner et al. (2003) and Rasmussen and Williams (2006). Commonly used notation is listed in Table 1.

2.1 Gaussian process regression

A Gaussian process is a stochastic process, which can be thought of as an infinite-dimensional Gaussian distribution in that

the joint distributions of the process at any finite set A-of space-time points are multivariate normal. We denote the-veetor-of
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these-points-points in the spatio-temporal domain by =z € R?
In this work g = 3, even though this restriction can be overcome if needed, and satGP does have limited support for space-only

problems.

The Gaussian process, or Gaussian random field, is denoted by
U(x) ~ GP(m(x; B), k(x,2;0)), (1)

where m : R? — R and %-R%%— R-arerespeetivelyk : R7”*? — R are the mean and covariance functions of the process
parameterized by hyperparameter vectors 8 € R™# and 6 € R™. Note-that-with-these-funetions—-and-=/refer-to-coordinates

The function m above is called the-drift in kriging literature, and the expected value of the process in areas-regions with no
data will tend to the value of the-mean-funetionin-that-areathis mean function. It is chosen to reflect the deterministic patterns
in the data, and these-cheiees-the particular form picked to model m will also affect how the function k and parameters 6 in Eq.

(1) need to be chosenspecified. With inadequate modeling of the mean function, the ebtained-uncertainty-estimates-uncertainty
estimates obtained with Gaussian process regression may end up being unnecessarily large. For instance linear trends, constant

factors, seasonal and other periodic fluctuations should be included in 1 if they are known. An example of what is used with
the OCO-2 data is shown later in Eq. (11).

In what follows, the domain RY > z is divided into two disjoint parts, one of which, & train — Rq contains-the-partis the set
of coordinates x9"%, where observation data (training data) was-were measured, and another one, A5t =R AU _yhere
observations-were-not made—Any € X'Lis below-eatled- X' = RT\X"™", denotes its complement, Points in X**" are
denoted by z* and called test inputinputs as is often done in the-GP-literature;—and-these-points—are-generally-denoted-by
#Gaussian process literature.
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and the vector of all /9P is written 1)°P%. These observations may be either synthetic or real.
For the mean function ia-this-work-m in Eq. (1) a specific form,

m(x;3,6) = f(x;0)" B(x) = f(a*;6(2))" B(2*), @)

is used ;—wherethe-superindexes—s—and-t-in this work. The superindexes s and t refer to the spatial and temporal parts of
the generic coordinate x, respeetively—and-6{#*}-and ¢ are auxiliary parameters which are petentially-space-dependent. The

purpose of the funetion——is—purely-illustrativeshowing-that-given—the parameters—;thefunetion—right hand side with the
function { is to underline that f deesnot-depend-depends on the spatial part of « ; i nly via the space-dependent

9 parameters, and that the 3 parameters do not depend on x', the temporal part of z. The temporal evolution of the mean
function is in this particular form determined only by the function
a space-dependent regression coefficient f;. Fhis-

The parameter vectors 9 contains space-dependent parameters that affect the form of any of the f; in a way that cannot
be modeled with the  coefficients in the functional form of Eq. (2). The length of these space-dependent d-vectors is 1s.
Given the parameters 9 for all the inputs in 2°* and a set of functions f; for constructing the mean function, we define matrix

F € R"*"5 with elements Fj; bs

2:0)]7, and for each f; there is

obs. §) where the § is now specific to the location 2:°

The definition of m above is very general and can describe in practice a large number of realistic scenarios. HeweverNonetheless,

the form of Eq. (2) imposes the strong assumption of separation of space and time in that the 5 and J parameters do not depend
on time. The explicit form of functions f; used to model the OCO-2 data are given below in Sect.2:2 2.2,

The covariance function k(z,2’;0) controls the smoothness of the draws 1) from W. It outputs the prior covariance of the

random variables at 2 and z’. The parameter vector 6 typically contains at least one scale parameter ¢ and a parameter T
controlling the maximum covariance, 72. The ¢ parameters correspond to the length scales of the random fluctuations of
the realizations around the mean function, and the 7 parameters describe the amplitude of that fluctuation. By defining the

covariance matrix K € R”*™ with elements K; ; = k(9% 2°"; 6

given by

, the joint distribution of the field at observed locations is

B N (FBK)). ®

Bayesian statistics is a standard paradigm for analyzing data and uncertainties, and it is also widely used in geosciences
(Rodgers, 2000; Gelman et al., 2013). From-the-vantage-pointitprovides;given-Given the observed data Wobs — ¢/°Ps at some
finite set of points z°P%, the object of interest of the Bayesian inference problem in this work is the joint posterior distribution

of the Gaussian process and the parameters,

P14, 8,6,0)p(¥1B,6,0)p(8,6,6)

obs) __
p(w,ﬁ,éaowj ) - p(wobs) ’

“)
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where p(1|3,6,60) is the Gaussian process prior and p(3,6,6) is a prior on the Gaussian process hyperparameters. Fhis
Eg. (4) is not generally tractable for a huge number of inputs x, but posterior estimates of the GP, p(p|ap°Ps, B ,S,é), can be
calculated for a finite set of inputs by conditioning on parameter point estimates 6, B, and 4. The first-of-these-covariance
Wmay be found by minimizing some loss function £, deseribed-

6 =arg ming £(6), (5)

AAAL

described explicitly below in Sect.2:6+-

6 =arg ming £(6),

and-for-the seeond- 2.6. Given a point estimate of the parameters @ and 8, the 3 parameters have a closed-form expression,

0518

E[ﬂ‘\IIObS _ wol’;s7 97 5] — (FTKflF)leTKflwobs

y[ﬁ‘\pobs _ ,g/}obs’g’é] — (FTK—lF)fl.
E[ﬁ'wobs ZwObs’e’d]: (FTK_lF)_lFTK_l’L/)ObS (6)
Cov[B|Wo™ =y, 0,0] = (FTK_'F)~", (7)

provided that the space-dependent d and 3 parameters do not change between the inputs in 2°°. This requirement implies that
the solution must be found locally. Because the matrix /s here is generally a dense matrix of size n X n, where 7 is the number
of observations, and since 2 may be extremely large, direct inversion of this matrix is in practice impossible.

The & parameters ean-be-found-approximately by finding-are found approximately in this work by a three-step process: first
a point estimate of parameters 3 and J befere-computingEq:is computed using an optimization algorithm, second, parameters
£ are re-computed by Eg. (6) s-and-by-re-calibrating-given the estimate of o alone-afterfrom the first stage, and third, the 9
parameters alone are re-calibrated by optimization using the newly found 5 parameters. In practice this procedure produces
stable results with the OCO-2 data, and for pathological data sets ;-repeated alternating optimization of the parameters may be
performed. The calibration process is described in more detail in Sect. 2.3.2.

Even though a full posterior distribution of the parameters is not obtained this way, the solution of the Gaussian process itself
is Bayesian in that the posterior marginals at each #-x* are found by conditioning on the observations. In the satGP software,
the space-dependent /3 and § parameters are fitted first, and any learning of the covariance parameters is done only after that.

For prediction in the context of Gaussian random functions, the properties of multivariate normal distributions are exploited

for calculating marginals of the random field W at any set of peints——
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inputs. The posterior distribution p(v)* |1)°b%, 0, 3) of the Gaussian process at a-finite-set-oftestinputs-some test input =™ can,
given point estimates /3 and 6, be modeled according to Eq. (3) with
P+ f(l'* )T

~N
\I/obs F

K(.’ﬂ*,.’ﬂ*) K(.’I}*,.'L'Obs)

B, : ®)
K(x"bs,x*) K(mObS,$ObS)

where ¥-and-z-have-the vector of inputs has been divided into two parts — one for the test inptts-input ™, and the other one
for the observations z°%. The predietive-distributionnotation K (x*,2°%) refers to the first row (minus the first element) of

is the

the covariance matrix with elements K (z*,2°%),; = , and the matrix in the lower right corner, K (z°P8, 2.°Ps

same as matrix K in e.g. Eq. (3). The random variable at 2* can then be written as W*[53,0 ~ A (4", £*), where its moments

mean and covariance are given by

M* _ f(I*)TB-i-K(l‘*,.’L‘Obs)K(.%'Obs,xObs)_l(’L/JObs _ FB) 9)
and
* K(l’*,l‘*) o K(I*,IObS)K(IEObS,ZEObs)ilK(IObS,.T*), (10)

and where the covariance ¥* is the Schur complement of K (x*,z*).

attonThe formulas in Eq. (8) - Eq. 10
work equally well when the 2* contains more than one test input. However, as of now, in satGP these equations are solved for
single test input at a time. When computing V* with these formulas, satGP uses observations close to 2* (see Sect. 2.5), and

the values of § and § calibrated at z”".

2.2 Mean functions in satGP

The-Equation (2) gives the most general mean function form available in satGPis-given-byEg—~2). The functions f; above are
user-defined and, for ease of use, satGP includes functionality for using a zero mean function, a spatially independent mean

function, and an arbitrary gridded array of valuesare-available. The specific forms of f; used for the OCO-2 experiments in
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Figure 1. Mean function m with components of-f—f; given by Eq. (11). The solid lines give-show the mean function value for each day,
fitted to teeat-datathe XCO2 observations, and-marked by the eorresponding-datly-means-are-shown-as-dotsef-the-same-eolor. The fitis-not

erfect-at-all-times-due-to-e-g—smoothness-constraints-of the-field butit-works-well-asthe-Gaussian-proeess-0CO-2 mean function results are

Sect.4-are-given-by- 4 are
fl (l‘) =sin (QWxtA;elriod + 5)

fa(z) = cos (47m:tA1;01riod + 5)

(11)
fa(z)=1
fa(z) ==t
where Ayeari5-Aperiad s for OCO-2 the duration of one year, and 67 is a space-dependent phase shift. The function f fits

the summer-winter cycle, and f fits the semiannual cycle. It is assumed that these-for any given z, f; and f5 can be modeled
with the same ¢z parameters. The constant term is given by f3, and fy gives the slow global trend. The-As an example of the
local behavior, Fig. 1 shows the mean function fit to the global-observed local daily mean values of XCO2 from OCO-2 ean-be
seen—n—FigHor several locations. The WACCM4 ozone study in Sect. 4.2 added two more functions f5; and fg similar to

and but with different Ao arameters.

2.3 Learning B{=*)-as-a-Markev-randem-field-the spatial dependence of

When not-satGP is not used for learning GP covariance parameters or generating synthetic training sets, the finite set of test
inputs * for GP calculation is taken-in-satGP-te-be-a grid with predefined geographical and temporal extents and resolution.
Solving the GP marginalization and sampling problems then amounts to solving Eq. (9) and (10) at each corresponding space-
time point. Since e.g. sources, sinks and timing of seasons are local, the mean function should be different from one spatial

grid point to another. This is achieved by modeling the #{+%}-3 parameters as a Markov random field;svhich-are-often-used

10



Table 1. Most commonly used notation related to inputs and mean/covariance functions in Sect. 2 and the Markov random field in Sect.
2.3.1. The second column gives the set in which the symbol belongs. or in some case the set that the symbol is a subset of. The domain sets
in the second column are defined as Dyay < [latimin: 1atmax): Dion = [101bin, 100max]: Dy = BT, and D < Digy X Dion X Dy CR?, and V.
denotes the set of nodes in the graph described in Sect. 2.3.1.

z. gy Generic spatio-temporal coordinate vector

zL Dy Temporal part of coordinate vector z, implemented as seconds since 1970

. Rl Spatial part of generic coordinate . in practice 2° = [#!2t, 22T

e Dias. North-south component of coordinate vector z as defined by variable area in Table 2
g LDion. East-west component of coordinate vector & as defined by variable area in Table 2
£ Diag X Doy | Spatial location corresponding to 5 latitude and j°" longitude in the satGP regular grid
z R Gaussian process test input - the spatio-temporal location where the GE is evaluated
oo RoX4 Matrix of space-time locations where the r observations in °"° were made

B. R Mean function coefficients, see m below. May be space-dependent.

By LN B coefficients for the spatial location corresponding to graph label  in the MRE
B8Y. L 3 coefficients at grid point 2/ in the satGP latitude-longitude grid

By Rooxv. B coefficients for all grid points in the satGP latitude-longitude grid

1 RZ Space-dependent mean function parameters that cannot be learned via Eq. (6) and (7)
13 RZ 9 parameters for the spatial location corresponding to graph label v in the MRE

Y RO 3 coefficients for all grid points in the satGP latitude-longitude grid

g L Covariance fanction parameters of all the subkernels of the multi-scale kemnel

i S The set of all spatial/temporal indexes for each z; size of || is therefore ¢.

Locel R Covariance kernel length-scale parameter along axis ¢

L R+ Covariance kernel length-scale parameters along all dimensions in 1/_

» v Label of a specific node of the graph describing the MRF. In Sect. 2.4 vis a

— — parameter (€ R) used to define the Matérn kernel smoothness parameter.

1 S¥ Set of nodes in the graph with edges to node 1

S S Random field of the quantity of interest

el B2 Values of the observations of the field at locations z°7°

Y RZ. Realization of the random field &

k(z,2! R Covariance function value of inputs & and z'

m(z:8.9). R Mean function value at z with parameters 8 and 3, m(x; 3,0) = f(2;9) 8 _
L(&:8) R Nector of functions to construct the mean function at  with parameters § and §

X ROZC Covariance matrix with elements Ky = k(" 29"%)

11



10

15

20

25

30

grid cells should not be too different from each other. How different they are allowed to be is a modeling choice, see Appendix
A.
This-MRF-is-This section describes how the spatial dependence is resolved in satGP using computational statistics.

In addition to solving this spatial problem, the marginal distributions of the 3 parameters need to be solved for each individual

vertex. Point estimates of the ¢ parameters, mentioned in Sect. 2.1, are found at the same time with the 5 parameters. The
intimately connected spatial and local problems are described in the subsections below.

2.3.1 Mean function parameters 3 are described as a Markov random field

A Markov random field is a probabilistic model that describes the conditional independence structure in a set of random
variables. In satGP, an MREF is used to describe how the 3 coefficients depend on each other spatially. The MRF used in satGP

assumes, that in addition to data, the (3 coefficients only depend on the coefficient values in the neighboring grid points.
Technically, the MRF in satGP is an undirected graphical model G—=-4 i 5 L2 W.E (Lauritzen, 1996)

2 141, _

37 .

We use both v and 1/*/ eorre: i s-to denote a generic vertex in a graph, and in the specific
MRE setting used in satGP, each 1"/ corresponds to_the random vector 3/ at grid point (i, ). Fhis-Markev-property-After
finding the marginal distributions of these vectors in the graph the maximum a posteriori (MAP) values of 3/ are used as the
parameters of the mean function for the spatial location corresponding to the (i) element.

The set of edges £ defines the Markov structure of the graph, i.e. how the 3 coefficients of the nodes depend on each
other, For any non-edge vertex v/ there are edges in £ to east, south, west, and north, meaning that only these neighboring
vertices, collectively denoted by 9, = {v € V|(1.1/) & £}, directly affect the vertex. More specifically, the Markov property
defined by the set £ implies that the probability of the  -parameters-parameters of latitude ¢ and longitude j is given by

7\ gl ) 1] 2 7)) — ¥
Jovii v vtI)s ) U4 a

that %/ and O
respectively.

Sinee-the-maximal-cliques-of this-graph-are-the-connected-pairs-of-verticesThe satGP program needs to compute the marginal
distributions of each 3% to learn the spatially-varying mean function parameters. Due to the lattice structure of the graph,
according to Hammersley and Clifford (1971) the full joint distribution of the graph p(V) factors as [],, ,/)ce Lo(v,V),
where Z is called a partition function and ¢ are so-called compatibility functions. One-reasonably-efficient-way-to-—selve
used. One possible choice is the variable elimination algorithm, which is an exact standard algorithm suitable for undirected
graphs of moderate size. To make the computation faster, satGP currently uses-a-modified-version-to-compute-modifies it by
computing each diagonal in the graph, shown in Fig. 2, in parallel from /%0 to p™at:men and backeonditioningeach+1
then back from y™=t™en o 199, Each v, is conditioned on the previously evaluated vertices in Ov'/switheutintrodueing—,

but the diagonal edges of the reconstituted-graphso-called reconstituted graph are not introduced, as would be-normalty-done-

i3 )p(0,5 ), where it is understood

i; refer directly to the random variables, 3% and the joint distribution of the /3 coefficients of its adjacent vertices

12
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The-program-also-normally be done. When starting again from the bottom right corner after computing diagonals numbered
1...N, the (N + 1)*" diagonal is not conditioned on previously computed nodes. Once the diagonals n
that “sandwich” the node v from both upper left and lower right sides have been computed, the posterior distribution of 5, —
and any other vertex on the (N + niq, — 1) diagonal — can be calculated.

The modification of the algorithm loses the ability of the upper right and lower left corners to communicate effectively,

but since most remote sensing data sets contain at least some observations for some time period for most nodes, the far-awa
information does not affect results in man

could be used to obtain a better fit to the data, in case a need emerges to improve the spatial fitting of the mean function

coefficients.

The results should not change due to changes in the user-chosen grid resolution, and for this reason satGP inversely weights

the edges exponentially according to the distances between the (geographical) coordinates corresponding to the connected
nodes. This rate of exponential decay is user-configurable -

are-shewn-inFig-—2by the dscale parameter, see Appendix A.

SW

(2N — 1)t

(2N —2)th

(2N —3)th )

(2N — 4t /

(N + nign — 1)";‘ (N+n|m.; 3 NE

(N + njon — 2)0 (N +1)th

Figure 2. The marginal distribution of vertex v, p(v), is conditional only on the neighbors 8 +——85+in 9, (connected to v with red edges)
due to the Markov structure in the pictured lattice graph. s i i i i i se- For effective

solving, the vertices on the diagonal dashed lines are computed simultaneously making the algorithm non-exact. The order numbers labeling
the diagonal lines represent an ordering in which the diagonals can be computed in parallel to get all the marginals in O(N) wall time, where

NE in the eorne not-conditioned-onalready-computed-neiehbors-graph. The final values of the parameters are obtained when diagonals
from [V to aveid-deuble-counting-data2/V — 1 are computed.

2.3.2 Computing the individual posterior marginals obs g

13

ractical scenarios. Techniques such as generalized belief propagation (Wainwright and Jordan, !
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Assume that for the vertex v in Fig. 2 the neighbors marked J, have been computed. Computing the marginal distribution of 5
and an estimate of 9 at v, referred to below as §, and 9y, is carried out in several steps. These steps take place inside solving
the spatial problem described above: the steps listed below are computed for each vertex, corresponding to a spatial location.

In the particular form of the mean function m used for OCO-2 data in Eq. (11), the phase-shift parameter ¢ cannot be
estimated with regression like-the way 3 is found in Eq. (9) and (10). For this reason, the nonlinear space-dependent J-
parameters are found with an optimization algorithm from the NLOpt package (Johnson, 2014), by default the BFGS algo-
rithm, before finding 3 with Eq.(9)-and-(10)-and-after- (6). After obtaining B the 0 parameter-is-parameters are re-optimized
given the f. alibrati aft ‘ The full calibration process for a single graph node v s-the-quantity
) s ini proceeds in the following manner:

=1 B 7 j €ov

1. Select n, observations 1°P of the observable that are close in spatial covariance to the test input z*, in this case the
spatial location corresponding to vertex . The selection process is described in detail in Sect. 2.5.

2. Find a best-guess ¢,, (and §3,,, which is not used) by running the BEFGS optimization algorithm (Nocedal, 1980) to find
an approximate maximum a posteriori estimate by computin

Ny
By,0,= arg I?in{ Z(m(x,,;ﬂy, o) — 3bsj)2
AN ﬁ, T e dead
J=1

+ ) (6, = 8)" (6, — 6) (12)

v'€dv
+(Bl/ - ﬁu’)T(/BV - BV')) }

The first sum runs over the training data selected by the observation selection method described in Sect.2:5 2.5, and the

second sum constrains the parameter values close to those in J,. This optimization problem is very simple since there
are few  and/or § parameters for the individual vertices. The-complexity-introduced-by-the-interactions-deseribed-by-the
g i j

3. Given §,, an estimate of the GP covariance parameters 6 — e.g. from a previous simulation or a best guess — and the

observations 1°>, compute E[3,[1:5", 0, 8,] and Cov|[8,[1)5", 6, 8, via Eq. (6) and (7). Together these give obs 0 5 ).

Since this computation used a flat prior, this is, by Bayes’ theorem, proportional to the likelihood obs 0.6

4. Find the posterior marginal distribution of 5, by applying Bayes’ theorem and using the computed distributions at the

neighboring nodes as the prior, Due to the Markov structure this becomes p(3,,|1)5°° 0. gy x obs

If the spatial location corresponding to  does not have any data to inform the fit (if 1/°P° is a zero-length vector), then
arameter values from 0,, will determine the fit.
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5. Using the 3, obtained at the previous step, re-optimize only the approximate-elimination-algorithm-deseribed-aboved,
in Eq. (12) plays no role

arameters as above in step number 2. Since

here.

The mean value of the distribution of 3, coming out from step 4 corresponds to the /3 in e.¢. Eq. 9, where z* would now refer

to the spatial location of vertex v. Similarly, in case J-type coefficients are used, the functions f; will depend on the final J,

values computed in step 5. The full sets of 3 and  coefficients for all the vertices in the graph are denoted b and 6y, and

the sets of calibrated values are written B and &y

2.4 Covariance functions in satGP

The smoothness, amplitude, and length seale-scales of the Gaussian process realizations are determined by the covariance

kernel used:

ike. The satGP program supports several
different types of covariance function components for forming the full covariance function k in Eq. (1). The options available
reflect the properties that can be expected in remote sensing data — varying smoothness and meridional and zonal length scales,

potential periodicity, and changing the orientation of the data-informed and uninformed axes according to wind speed and

direction. This section lists the available covariance function formulations—Ferfurtherintuitionregarding-the-parameters;-alse
see-Appendix-A—, and other forms may be easily added in the code.

For convenience, let
/ A
o, (3,2)=2)
cel

where v > 0 is a parameter controlling the exponent %G{z—i—} arameters /.. are length scale parameters, and [ is a set

b

x¢ —l'/c 8l

| =P @) =P, (13)

of dimensions of the input; . The P! matrix projects x onto in-

dices/dimensions in I, and-T is a diagonal covariance matrix with elements— diagonal elements /2, and the notation ||r||r
means—+F="r—The stands for v/7Z0~1r, where r is an arbitrary vector of the appropriate size. For remote sensing data
used in this work, space-only variables MWM@@M%MMSpMiM and temporal variables
together are-denotedFs7the notation sz £ {lat,lon,t} is used. Notation lat and lon refer to the spatial components of .
collectively earlier referred to as a7, and ¢ refers to the temporal component, The form of £ in Eq. (13) implies that the different
dimensions have separate length scale parameters /. The exponent 7 in £ is, however, shared between the dimensions. For the
set of all (-parameters over a set I” of dimensions we write £;/. All the covariance functions below depend on a parameter 7,

square of which determines the maximum covariance that is attained when z = '
The exponential family of covariance functions with parameters #-={~#++}-0gxp, = [7,£;.,.,7]” is defined by the covariance

function

kexp(x,x’;ﬂiiﬂ))i%ﬂ exp <§gllswz"’(x,x/)> . (14)

The exponent y controls the smoothness of the samples from the Gaussian process, with v = 2 yielding infinitely differentiable

realizations.
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The Matérn family of covariance functions, with =770y = [1,£7.,..v]” is given by the covariance

2

A TSV
fWKV(S)a (15)

where s-=2v/p&) {5 = 2y/v€;. , (x,2') and v controls the smoothness parameter usually denoted by « via v = v + §.

The function K, is the modified Bessel function of the second kind of order v. With ¢ = 1, the value v = oo corresponds to

]{?M(Q?,.’IJI,HM)E

the squared exponential kernel and v = 0.5 to the exponential kernel with v = 1. Despite this similarity between the Matérn
and exponential kernels, the realizations of the random function from the processes with values % < v < 0o do not correspond

to those with the kernel key, with any value of ~.

A periodic kernel with #-={+4s e t-Oper = [T, 1. Lyer| T is defined in satGP by

a2 :l?t—.'L‘t/
2sin <7r {Apmod 2 .. ot ot e (o.) 16)
L T Sesl ’ )
2 22 Aperiod A -

“per per

/. A2
kper(xax voiper):i’r exp

The parameter A, .ioq 1S the period length, which is assumed to be well known a priori and therefore is not among the
arameters that are calibrated. The second term in the exponent controls the spatial dependence via length-scale parameters

leeal-timesdetermines how far the temporal covariance extends, modulo A, criod-
An-

satGP contains an additional covariance function fermulation-available-in-satGP-is-one-based-on-that utilizes local wind
information when computing the covariances. The underlying rationale is that winds affect how quantities of interest such as

gases in the atmosphere or algae blooms in the-surface water spread. FhereforeFor this reason, if wind data is available, it is
natural to use-itin-try to use it for inference with the Gaussian process.

The-We define the wind-informed covariance
Oy 2 1.0, 0. p.w*]T b

k&vg(-’”a -'17/§ eiy)f%kexp(mmvgv x/ﬂyg; ﬂfn@{gﬂ ’%}72)' (17)

kernel with parameters

The parameter p in 0y, defines how strongly the magnitude of the wind vector at the test input, w* £ [w*, w* 17 (the last
arameter in 0,,), affects the shape of the covariance. The kernel itself is an exponential kernel, where the spatial components
of the vectors x and z’ are transformed by wind data, and where the covariance lengths are transformed by wind speed. A

lat ,.lon .t

is transformed by wind to the vector x,, in a new coordinate system according to

Ty = (2% —2*%)Twt |, (18)
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where the

2% and x*° are the spatial components

of vectors x and z*, and where w/ and w are the unit vectors in the lat-lon coordinates along and perpendicular to the-wind
direction at the test input x*.

The spatial scaling para {) parameters for k., correspondin

now to the covariance scales parallel and perpendicular to wind-direetionsthe wind direction, are given by

L+ w'lo,  £-=y 2e,

19)

—The parameter vector for the expo-

nential kernel 9—(7—%—4—&—2—) hen becomes Oy < [7, 4.0 . 4+, 2]T, where the last element denotes the exponent -y

used by the exponential kernel.

transformation procedure are shown in Fig.

s-A number of possible covariance ellipses resulting from the

3. Some data sets, like OCO-2, incorporate

Figure 3. Equicovariance ellipses from the wind-informed kernel with various wind vectors w™ and values of p. The wind values are taken

at the test input z*, but the covariance function k is evaluated also for each pair of observations x and z’.

wind information, and satGP does have the capability of gridding that data using another Gaussian process. Reading in gridded

wind data from other sources is also a possibility. Using k., requires that wind data at is available at each x*.

The covariance functions used in this work to model ¥ are sums of several kernels - sums of valid Gaussian process kernels
remain valid kernels. The general form of this-the multi-scale kernel used in satGP is given by

Nker
k(z,2';0) = 0y 002+ kaer(m,x’; 0,1s) + km(z,2";0)++kexp (2,230, Is7) + kaf’N” (x,2'; eilie,{i)’ (20)

i=1

~~

where the first term, which in kriging is called the nugget, contains the observation error variances, and the-parameter6-is
understood-to-be-differentforeach-compeonentwhere each ker; € {exp,M,per,w}.
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The kernel components of a multi-scale kernel are in this work called subkernels. The combined set of parameters is denoted
MM Not all kernels-subkernel types are included in all experiments — rather, the simulations in Sect.
4 utilize kernels with one to three components. Fhe-kernel-components-of-a-What those components should be depends on
what fields are being modeled and what kinds of correlation structures the user expects to find in the data. Section 4.1 discusses
identifiability of the different subkernel parameters of the multi-scale kernelare-below-called-subkernels.

Instead of calling k(x, 2'; 0) in Eq. (20) a multi-scale kernel, the term multi-component kernel could also be used to describe
the form. The term “multi-scale” underlines that the purpose of the combined kernel is to model well data, which contains
several natural length scales, as remote sensing products often do. Furthermore, we believe that combining several kernels with
identical length scale parameters does not represent a common use-case.

2.5 Covariance localization and observation alleeation-selection for the multi-scale kernel

Using a large number of observations makes solving the Gaussian process Eq. (9) and (10) untractable-intractable as the cost

3

of inverting the covariance matrix scales as O(n2,

). This creates a need for finding approximate solutions while introducing
as little error as possible. In satGP, covariance localization is used to utilize only a subset of observations for computing Eq.
(9) and (10). To de-this;a-control the localization behavior the user needs to set two parameters: the maximum subkernel
covariance matrix size x and the minimum covariance parameter o2 are-defined-by-the-user.

Assume that the multi-scale kernel defined by the user contains ny., subkernels. For each test input z* and for each subkernel

k; tet-the set of observations feasible for inclusion in K in Eq.(8)-be- (6) and (7) is
ATT =2 {0 € Y (2, 2t ) <20t Ui ¢ ATV <1}, @n

where the last condition prevents observations from being added by several subkernels. From-these-candidate-observations;

Afor-additional-details—When-{A2PH<-and-+<ner the-parameterIn the end we select a single set of observations A
for each test input by combining some or all of the observations included in each AS"". The observation selection proceeds
sequentially_through the list of subkernels according to the procedure presented in Fig. 4. Recomputing the r” for each

by-setting+~<—r—+{r—fA5*Jobservations by subkernels if the previous subkernels did not have r feasible observations
available. This is done to allow the full kernel size to grow to ny; < when possible. On line 4, the observation selection operator

S Aobs

2*, or randomly by sampling uniformly without replacement from A°°. Qut of these two methods random selection avoids
observation sorting and is therefore faster, especially if a huge number of data are near the test input 2*. This comes at the cost

of producing noisier fields of marginal posterior means. For covariance parameter estimation random selection works well. See
Appendix A for additional details.

k') chooses ' observations from each A°Ps either greedily by picking the observations with highest covariance with
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Data: Set of feasible observations A‘:}}S for each

subkernel, maximum subkernel size x,
observation selection operator S.
Result: Set A°" of observations that are
informative for test input x*
A% ()
for i + 1 to ny do
K ik — | A% ;
ACPs < AP U S( A K);

*,0 9
end

(S N VN

Figure 4. Algorithm for selecting observations for carrying out predictions at test input *. The sets A" are defined by Eq. (21), and the

/

variable k is the maximum subkernel size, also listed in Table 2 and discussed in Sect. 3. The selection operator S(A°% chooses &’

observations from each A°%® either greedily or randomly.

Since the kernels-subkernels are handled sequentially, the-order-of-the-differentkernels-may-shightly-their order may affect

which observations are selected due to the exclusion in Eq. (21), and to grow the full kernel to size nye,+ as often as possible,
it is recommended to specify the subkernel with the largest £ parameters as the last one. After seleeting-all-ebservationsfor-alt
kernelsconstructing A9, the covariance matrix K is constructed by evaluating the full covariance function k according to Eq.
(20) for all pairs of selected observations.

For learning the loeally—varying-parameters-spatially varying 3 and § parameters for grid index (4, j) in the mean function

with Eq(6)—(7)the methods in Sect. 2.3.2, the observation selection is performed by disregarding the time component on the

obs?t obs

inputs, 1e%fﬁﬂga“§—<—7&fefﬂ}kﬁ by setting £9°° < 2% for all 9" in the training data. The reason for this is, that since
learning the mean function amounts to fitting spatially varying parameter vectors 3 and ¢, the data to perform the fit should not

be selected based on covariance in the time direction as the mean function should be equally valid at all times.
Observation-aloeation-Selecting the observations could be done also by-seleeting-observations-based on values of k instead

of each k; individually, or by other approaches, such as the one presented by Schifer et al. (2017). However, while-even though
the method of observation selection does have an effect on the inferred posterior marginals, the screening property of Gaussian

processes ensures that this effect is not major as long as observational noise is small and the nearest observations are included

in all directions.

‘The parameter identifiability results in Sect.4-+ 4.1 and the WACCM4
results in Sect. 4.2 verify that the current nearest-neighbor-in-covariance approach works as intended.
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2.6 Learning the covariance parameters 6

From E¢:4);-Sect. 2.1 the log marginal likelihood of observations 1°> given a set of parameters 6, 3 and d is given by
210gp(1°|8,6,0) = —|(v°* — FB) | i —log | K| = nopslog(2), (22)

where the covariance function parameters ¢ are-implieithy-in-implicitly determine /, and the non-linear space-dependent mean

function parameters in-0 affect the values in F’; s et . The
maximum (marginal) likelihood estimate (MLE) 6 of 6 can be found via minimizing
L(0) = | (¢°" = FB)|| i +log | K| + ngps log(2r) (23)

as stated in context of Eq. (5).

In the presence of a huge number of observations, calculating the determinant of the full covariance | K| is not feasible, and

maximizing the log likelihood is approximated with-the-block-diagonal-form;resulting by

OyvLg = arg min Z
[

J7'L€Ercf% {”(wilg/c\a}li()bs - Fzé)”f(ij?’ +10g]7(i|} ’ (24)

where E.. is a set of randomly sampled points from the speeified-spatio-temporal domain —specified for the experiment

determined by the parameters area and 7,4, in Table 2. The 3 and & arameters, the latter of which is embedded in F', are the

is carried out over all subkernel parameters with some caveats: currently the smoothness-related parameter v for the Matérn
kernel, and the exponent 7y for the exponential kernel are not calibrated, and naturally neither are the wind data w” listed as a
parameter for the wind-informed covariance — however, the parameter p affecting that kernel can be learned.

While the selection of inputs included in F..¢ has an effect on the obtained parameter estimate, that effect has proven in
simulations to be small. The mM%MMM‘?&MM%@MW
by the observation selection method of Sect. 2.5 for test input x;, contain observations closest in covariance to w#;;-chesen
are the corresponding F'-matrices, as described in Sect.2:5- 2.1. The last term in Eq. (23) is dropped, since while varying ¢ in
Eq. (24) changes d;, the size-of 12" staysnumber of total observations in the problem should fundamentally stay the same.

The maximum likelihood estimate approximation in Eq. (24) contains a sum over blocks of observations, which can together
be thought of as a block-diagonal approximation of the full dense covariance for all observations in all ¥:%%, . The blocks

in this approximation are the dense covariance matrices /;, and in contrast to a full dense /K, in this approximation the

obs

i, are set to zero. This is done even if the randomly selected
3

cross-covariances between observations in ¥°b®

*

inputs ’

needed for finding the maximum likelihood estimate, using the block approximation provides a critical efficiency improvement

without which learning the covariance function parameters would not be feasible.
While this method is suitable for finding point estimates for the parameters 6, the computed approximated log-likelihood has

and 27 are close to each other. Due to the O(n?) cost of inverting the covariance matrix, which is

an unknown scaling factor resulting in an unknown multiplicative factor for the variance term in the exponent of the Gaussian

20



10

15

20

25

30

distribution, and hence information about the true size of the posterior distribution of the covariance parameters RS

(04 By dy) is lost.

available in NLOpt Johnson; 2014)- An-alternative is to-explore By default the scaled posterior p(6]4°%, By, dy) is explored by
using the Adaptive Metropolis (AM) Markov chain Monte Carlo (MCMC) algorithm (Haario et al., 2001), an implementation
of which is included in the satGP source code. Using-MCMC methods (Gamerman, 1997) are used to draw samples from
probability distributions when direct sampling is not possible, but the likelihood function can still be evaluated. The samples
are drawn by generating a Markov chain of parameter values. which is an autocorrelated sample from the posterior. The AM
algorithm is an adaptive method that is efficient for many real-world sampling situations. The observation selection procedure
in Sect. 2.5 introduces discontinuities to the posterior distribution due to selected observations changing when the covariance
Carlo sample — usually works around this noisiness in the likelihood. On the downside, MCMC is computationally much
more demanding than finding the maximum a posteriori estimate with optimization, since MCMC may require computing.
up to millions of likelihood evaluations. In the satGP context using MCMC is feasible since the forward model isjustsimply

amounts to sampling from a multivariate normal distribution which is very fast;-and-alse-dueto-that-, Furthermore, the parameter

dimension is moderate, even with multiple subkernels, limiting the need to generate extremely long chains. The current version
of satGP uses a flat prior distribution for the covariance parameters, with hard limits on the parameter ranges.
The software also includes a capability to learn the covariance parameters using optimization algorithms such as COBYLA

3 Overview of Computation

The satGP code is written in C with visualization scripts written in Python and parallellization-parallelization implemented
with OpenMP directives. The program reads data from netCDF and text files and the configuration from a C header file. For
linear algebra ;-satGP uses the C interfaces of LAPACK and BLAS, LAPACKE and CBLAS, are-utilized-and-for-optimization
tasks—-algorithms—in-and optimization tasks are carried out with the NLOpt libraryare-tused. The computations are earried
out-performed in single precision beth-in order to save memory resources with the largest data setsand-alse-in-anticipation
of-implementing-the-covariance-functionroutines-in-a-way-that-allows-computation-on-graphies-proeessing-units, and also to
improve performance.

The most important configuration variables are listed in Table 2. The user needs to define whether parameters are learned
or prescribed and whether marginals or samples from the GP are to be computed. The mean and-ecovariancekernel-need-to
be-function and the covariance kernel are defined by initializing corresponding structs with parameters and their limits if

calibration is to be performed. For computing GP marginals or drawing samples from the random process, the geographic and
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Table 2. Most important satGP control variables and high level C structs: first section contains parameters for program logic, second for
domain specification, third for covariance and mean function definition, and last for observation handling. This list is by no means exhaustive
— the configuration file contains lots of variables that can control the program. Some additional tweaking is possible by changing hard-coded

values directly in the source code, such as those listed in Appendix A.

Variable Type Low High | Notes

learn k int 0 2 (0) Don’t train 6, (1) generate observations and learn 6, (2) learn € from non-synthetic data.
learn_m int 0 1 (0) Don’t train local 3 and 4, (1) find local 8 and ¢ as in Sect.2:3-+2.3.

'sampling int 0 2 (0) Skip sampling, (1) calculate GP marginals at each grid point, (2) sample from GP.

area charx - - Area definition setting longitude and latitude minimum and maximum values

Ndays int 1 ) Number of days to be simulated

w float >0 180 | 1-d grid resolution in degrees — small values degrade esp. posterior sampling performance.

Nker int 1 10 Number of subkernels k; in k

cfc structx - - Recursive struct pointer defining k1 ... kn, . and corresponding 0, see Sect. 2.4.

mf structx - - Struct pointer for defining type of m(-,-) and associated (initial) 5 and d, see Sect. 2.2.

Ctrain float 0 o0 s-Fraction of observations that are randomly included in 1)
Csample float 0 o0 s-what-frae Serve s-Fraction of observations that are randomly included in 1)
o2 float 0 00 Discard observation at :I:ngffmfor x* if MM, see Sect. 2.5.

Nref int 0 00 Number of reference points in Eyef in Eq. (24) for training 0

TNsynthetic int 0 00 Number of random locations where synthetic data is generated for training 6

USymhctic float 0 o0 Variance of Gaussian noise added to synthetic observations

K int 1 0o | Maximum subkernel size, values & > n,_.1000 will be slow due to O(x®) scaling.

temporal extents need to be specified and the mean function and the covariance kernel used must be given. Fer-mere-details

For-computational-effieieney;several-Several parameters can be tweaked to improve computational efficiency, including
all of those in the second and last sections of Table 2. The first main bottleneck for computing a marginal at z* is sorting
the observations for selecting the most informative ones to be used in the covariance matrices, see Sect. 2.5. This requires
roughly O(r;logr; + r:log k) operations -where-r-sc 1 —#-for each subkernel, where 7, is the number of grid locations {test
inputs)= —in-the-spatiabz™/ in the spatio-temporal grid such that for the I*" subkernel, %;{z}52*} <2 Here-the parameters

2%, 2%) > o2, For subkernels with v = 2, r; oc [[7_, £, with ¢! are-theeorresponding-denoting the length scale parameters
over all the dimensions of the inputs z—this-controls-, In other words, r; is proportional the size of the hypersphere inside which
observations are considered for each x*. The second bottleneck is calculating the Cholesky decompositions of the covariance

matrices K with cost O((nkcrn)3). The cost of calculating the means and variances of the GP in a grid for a set of njy,es points
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on the time axis is therefore given by

An imes &=
cost=0 (:}2 [(nker,{)i% + Z (rilogr; + klog n)] ) , (25)

1=1
where A is the grid area in degrees squared and w is the grid resolution. When the random observation selection method
mentioned in Sect. 2.5 is used, the r;log in Eq. (25) becomes just ;.
The execution of the program is presented in Fig. 5. The n¢
Fhe-function AddToState() reads observations (asynchronously) into a state object that tracks the proximity of each

observation to each grid point. Only partof-data-a part of the observations is added, and-what-part-is-centroled-ent-controlled
on line 6 by the parameter 7;,;,, which corresponds to the inclusion probability of each observation. This probability depends

on (irain in Table 2 via

bs bs
T DN s o)
Ntrain— = A 1; (26)
Wgtrain W\Mcig:c\@i/\/n\m

d(z9P%, 29" ) is the Euclidean distance of the point at #°P° that is being proposed for addition to the

previous added point % and A is the standard notation for minimum. Hence with ¢ = 0 -al-observations-will-be-all

where e
observations are added.

For computing the marginals, the spatial domain can be decomposed with Decompose(), line 23, into several spatial
subdomains (sd) so that arbitrary-size grids can be computed. This makes solving large problems with limited amount of
memory possible, but only works with —

sampling= 2. This option is in practice rarely needed, and it was not needed for the simulations in Sect. 4, The state object is
emptied by ReInitializeState() which also potentially sets new subdomain extents. Function SampleFromPrior()
actually performs the computations on lines 30-37, but with the set-of-peints—-inputs 2* in a random pattern instead of in a
grid as is the case in 1. 27-38.

The AddSubdomainData() method on 1. 29 adds data as on lines 3-9, but only to the current subdomain. After that, the
SelectObservations() method (l. 31) carries out selecting the best observations as described in Sect. 2.5. For construct-
ing the set of potential observations, the grid is searched for locations that may have informative observations for the current
test input stored in the state object. These locations are first ordered into categories with decreasing potential covariance and
for the best locations, that together hold at least 2x observations, the covariance function with the test input is evaluated. Out
of these, the  best are chosen. The factor 2 can be increased for the wind-informed kernel and the value 8 is used in the
demonstration ef-the-wind-informed-kernetin Sect. 4.8.

The function ComputeMarginal() constructs the covariance matrix K, inverts via the Cholesky decomposition, and
solves Eq. (9) and (10) to find the marginal distribution at any test input =*. That function returns the negative log likelihood

and is therefore directly used in learning the covariance parameters 6 in FindCovfunCoeffs() on line 18.
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Data: filelist containing files with observation data
Yi = iy, 07,) indexed by location z;, input
variables from Table 2.

Result: Optimized g parameters for mean
function and 6 parameters for covariance
kernel, gridded Gaussian process marginal
means and variances or a sample from the
Gaussian process evaluated in a grid.

1 Initialization: Create grid according to area and w,
define k(x,x') and m(z,t), initialize state;

2 if learn_m =1 or learn_k = 2 then

3 for file in filelist do

4 D «+ ReadData (file);

5 for (z;,y;) € D do

6 if Bernoulli(7,,,) then

7 AddToState (state, z;,y;);

8 end

9 end

10 end

11 if learn m then FindLocalMeanfunCoeffs (state);
12 if learn_k = 1 then

13 ReInitializeState (state, fulldomain);

14 for i <— 1 to ngynihetic do

15 (x:,y;) < SampleFromPrior ();

16 AddToState (state, z;,¥;);

17 end

18 end

19 if learn_k # 0 then

20 | FindCovfunCoeffs (ner)
21 end
22 if not sampling then

23 ‘ (Nsa, (sd;)i2d) + Decompose (N} area, w);
24 else

25 | assert (ng, < np);
26 end
27 if sampling then for i +— 1 to ny do

28 | RelnitializeState (state, sd;);

29 AddSubdomainData (state, filelist, sd;, sample);
30 for 2* € sd; do

31 A% ¢ SelectObservations (state, z*);
32 W, 02 < ComputeMarginal (z*, A°%);
33 if sampling = 2 then

34 @/Z): < Normal(u*,o?);

35 AddToState (state, 2*, (", 02 nihetic))
36 end
37 end

38 end

Figure 5. Overview of satGP execution. After initialization data is read for training m and k -after-which-and possible MRF computation is
carried out. This is followed by sampling the prior if a synthetic stugyis performed, and learning the ¢ parameters controlling k. Gaussian

process marginals are then computed in a grid, potentially by decomposing the domain for large grids. Finally, samples from the GP may be

drawn. The names of the subprograms here deviate from those in the code to improve readability.



10

15

20

25

30

The Gaussian process algorithm is an interpolation algorithm when observation noise is zero, and interpolation algorithms
may misbehave when used for extrapolation. In a spatio-temporal large grid, when sampling -= 2, i.e. when draws of the
Gaussian process are generated in a regular spatio-temporal grid, computing conditionals based on the previous predictions
would amount to extrapolation if done in order. For this reason, a deterministic sparse ordering is used, which ensures that test
inputs corresponding to simultaneous predictions are far from each other so that their mutual covariance is negligible. For-this
reason-conditioning-Conditioning on already computed values is therefore for the vast majority of GP evaluations interpolation

instead of extrapolation.

4 Results and discussion

In this section ;-we present several simulation studiesare-presented—In-the-first-experiment—, The first experiment examines
parameter 1dent1ﬁab111ty with the multi-scale kernel is-examined-with-using satGP-generated data. After-that-the MRF-of-mean
i fied i ith-We then demonstrate how satGP posterior distributions look like compared to truth using
After that we concentrate on analyzing satGP results produced using the OCO-2 data—and-thosefields arethen-briefly
analyzed-—
Based-on—a-Level 2 data, First, we learn the parameters of the locally varying mean function of the form in Eq. (2) +-by
computing the MRF, and those fields are then analyzed. We then learn the covariance parameters of the OCO-2 XCO?2 spatio-

temporal field aretearnedfrom data. Knowing both the mean and the covariance functions ;-allows us to evaluate the Gaussian

process is-thensolved-globally in a grid and we present snapshots of the global mean and uncertainty fieldsare-presented. The

section is-eoneluded-by—a-concludes by comparing posterior marginal fields generated by using single-scale and multi-scale
kernels and by demonstrating how the wind-informed kernel works. The-covariance-funetion-parameters-are-learnedfrom-data-

4.1 Parameter identifiability with the multi-scale kernel

A-synthetie-study-was-performed-We performed a synthetic study to confirm the identifiability of the multi-scale covariance
function parameters. For-this;sampling-The synthetic data was generated by satGP by sampling from zero-mean processes
with known covariance parameters and with a random spatial pattern from the priorwas-earried-out, adding 1% noise;-and-then
estimating-the-parameters—. The parameters were then estimated by computing the posterior mean estimates using Adaptive
Metropolis.

The identifiability experiment was performed with various kernels, and the-mere-complex-—the-kernek-recovering the true

parameters was the more difficult recoveringthe true-parameters-the more complex the kernel was. With a single MaternMatérn,
exponential, or periodic kernel, the parameters could be recovered very easily. This was also true for a combination of expo-

nential and Matern-Matérn kernels with a relatively small » parameter.
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The covariance kernel parameters were still recoverable with a combination of three kernels—Maters-, Matérn with v = 3,

. This setup required using a larger

K = 256. With small x, some of the parameters had a tendency to end up at the lower boundary, possibly due to effects of the

exponential, and periodic

covariance cutoff on the determinant of the covariance matrix in Eq. (22). Optimization using minimization algorithms such as
Nelder-Mead, COBYLA, or BOBYQA tended to often end up in local minima, and for this reason MCMC was used instead.
The number of random reference points in Fyef in Eq. (24) was set to 12, which was enough to reliably recover parameters
close to the true value.

The parameter limits, true values, and posterior means of the synthetic experiment with three kernels are given in Table 3.

In total 200,000 observations were created in the region between -10 and 10 latitude and -10 and 10 longitude over a period

of four years according to the values-true values reported in Table 3. A total of 10 million Metropelis-Hastings-iterations-were
earried-out-MCMC iterations were computed to make sure that the posterior covariance stabilized. The posterior, with first

50% of the chain discarded as burn-in, is shown in Fig. 6

Table 3. Lower and upper limits, with true and estimated parameter values. The three-kernel synthetic covariance function parameter esti-

mation problem is already very difficult, here resulting in slight overestimation of the parameters of the smallest kernel.

est—true
true

70,05 1 0.5 0.652 0.304
et 10.003  0.02 | 0.007 0.00989 0.413
22t 10,003 0.02 | 0.01 0.0135 0.350

lon

et |1 d 14d | 7d 8.06d 0.15
|00l 2 1 1.073 0.073
1 0.001 004 | 002 00207 | 0.035

lat

£ | 0.001  0.04 | 0.02 0.0220 0.1

lon

Lper 0.01 0.3 0.1 0.1075 0.075
TP 0.5 3 1 0.927 -0.077
2P 1 0.005 0.1 | 0.025 0.0352 0.408

lat

7P 10.005 0.1 0.04  0.0405 0.0125

lon

03P 7d 30d 21d 24.83d 0.182

low  high | true est

How well parameters can be learned from data depends always on the data and the exact Gaussian process form chosen.
While the identifiability studies presented here show that the parameter calibration procedure works and that covariance
parameters are recoverable in a synthetic settings, identifiability cannot be always expected. Still, even in these cases, the
MAP and/or posterior mean estimates of the covariance parameters should provide good point estimates for 0.

4.2 Posterior predictive distribution from synthetic WACCM4 ozone data
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Figure 6. Scaled MCMC posteriors from a synthetic study where data was generated with a multi-scale Gaussian

rocess. The figure demonstrates that even with three subkernels, multi-scale Gaussian process kernel parameters can be recovered. O

The lower left --part shows the pairwise marginal distributions are-shownof the parameters, with-and the black crosses deneting-denote the
true_parameter values. The axis labels are on the left and below the figure. ©a-The upper right s-triangle shows sample correlations are
shownbetween the parameters from the chain, with axis labels on the left and on the top. Small within-kernel-component-within-subkernel

positive eovarianees-correlations are present. The contours shown include 85% (black), 50% (red), and 15% (blue) of the posterior mass.
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A synthetic study using WACCM4-generated ozone data was conducted to verify and to illustrate that the methods to learn
the model parameters 3, J, and 6 produce a realistic GP regression model that then produces credible posterior predictive
fields. In a synthetic setting the mean values of the posterior predictive distributions should be close to the true fields, and the
discrepancies between the ground truth and the predicted fields need to be explainable by the predicted marginal uncertainties.
The role of this part in the study is to give an example of how a Gaussian process predictive posterior field produced with satGP.
compares with the underlying true field.

capable of comprehensively representing atmospheric chemistry and modeling the atmosphere up to thermosphere. WACCM4-generated

ozone data for the years 2002-2003, with a latitude-longitude grid resolution of 1.9% x 2.5°, 88 vertical levels going up to
roughly 140 km, and with an internal time step of 30 min, were used as ground truth and to generate synthetic observations.
Since the model was used for generating synthetic two-dimensional data, a specific atmospheric sigma hybrid pressure level of
3.7 k Pa was selected.

Ozone data at approximately 400 locations were sampled daily over a two-year period in a random pattern from the domain
of the experiment to learn the parameters of the mean and covariance functions. The training data set was then generated by
interpolating to these points from the simulated WACCM4 data. This sampling procedure corresponds to creating on average
one observation daily for each 12.5° x 12.5° longitude-latitude square.

Using these data, the mean function parameters were fitted locally using the method in Sect. 2.3.1, utilizing the functions f;
in Eg. (11), but with two additional terms f5 and f5, which were similar to the f; and f5 except for different Ay criqq parameters
and phase shift parameters 9, that were shared between these f; and fi only. These functions were used to model periodical
behavior with 2 and 1.5 year period lengths. The covariance function parameters of a kernel consisting of a single Matérmn
kernel, Eq. (15), were learned using the approximate maximum likelihood technique described in Sect. 2.6 with data from the
first year, The parameter v/ used for the kernel was 3. The optimization was carried out with MCMC and the posterior mean
estimate of the covariance parameters was selected for 0. The values of the covariance parameters obtained were 7 = 0.589,

Lrar = 0.143, {15, = 0.225, and ¢, = 2d 16h 15 min. That /4, is larger than /;,; echoes the OCO-2 results presented later in
Table 4.

For computing the posterior predictive distributions, the observational data 1)°® were sampled from the WACCM4 simulations

at locations closest in space and time to where the GOMOS instrument made measurements during its first year of operation.
No noise was added to these observations. The posterior predictive distribution was computed for one full year, and he total
number of observations used was 39538. The reason for using different spatial patterns for learning the model parameters
and for running the Gaussian process regression was that with this choice, the quality of the fit of the mean and covariance
functions was not dependent on the spatial location, and therefore, if major spatial discrepancies between the ground truth and
the posterior predictive fields had emerged, those could then have been attributed to the GOMOS sampling pattern used to
generate the synthetic observations ¢,

The marginal posterior predictive distributions were computed globally in a uniform grid with the resolution of 2.5° in
east-west direction and 1.9° in the north-south direction between 78.63°S and 78.63°N and daily over the period from Jan 6
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2002 to Jan 5 2003, totaling around 4.384 million marginals in the predictive posterior. The one year long computation took 19
min 18 s on a relatively fast Intel 17-8850H laptop CPU.

Figure 7 shows the ground truth from WACCM4 with the mean field and corresponding marginal uncertainties obtained

from satGP for Dec. 2 2002. The ground truth and the estimated fields are very similar, and the uncertainty is higher when

there are no observations nearby. The posterior mean field retains a lot of fine detail from the ground truth and is not overl

smoothed or sharp, suggesting that the covariance parameter calibration procedure has found a well-performing estimate for

the covariance parameters 0. The smallest reported uncertainties are close to zero, as they should, due to lack of observation

error.

(a) Ground truth - simulated WACCM ozone field (mixing ratio)

Figure 7. Ozone field mixing ratios at 3.7 k Pa for Dec. 2 2002. Panel (a) shows the simulated ground truth from WACCM4, (b) is the GP

osterior mean, and (c the posterior predictive uncertainties. A single Matérn kernel was used. In (b) the larger circles with the white

edges are observations from Dec. 2, and the smaller circles stand for observations from Dec. 1 and Dec. 3.

4.3 The OCO-2 v9 data

The simulations with reat-non-synthetic remote sensing data utitize-use the v9 data from the OCO-2 satellite. The-OCO-2
satellite-was launched in 2014, and it orbits the Earth on a Sun-synchronous orbit (Crisp et al., 2012; O’Dell et al., 2012),
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completing 14.57 revolutions around Earth in one day. The footprint area of each measurement is roughly +29-by-2:25
kilometers1.29 x 2.25 km?, but the data is very sparse in time and in space. The-satellite-completes14:57 revolutions-around
Earth-everpasses—in-one-day—In the presence of clouds, the satellite is not able to produce measurements, and this poses a
challenge for areas with persistent cloud covers, such as Northern Europe in the winter.

The present work utilizes-uses the XCO2 data, its reported uncertainties, associated coordinate information, and zonal and

meridional wind speeds that are contained in the data files. Only-ebservationsflagged-good-areused;—and-The time period

considered is from Sept. 6 2014 to Nov. 10 2018 and we use only observations flageed as good, of which there are in total

4.4 Solving the mean function for OCO-2 v9

Selving-Calibrating the mean function from OCO-2 v9 XCO2 data ;-as described in Sect.2:3-}-produces-best- 2.3.1 produces
the estimates for the eoefficients-of Eq—11)-3 and ¢ coefficients shown in Fig. 8. The arameters are the coefficients of
the functions f; in Eg. (11), and ¢ is the phase shift parameter in _f; and f>. The upper left quadrant of Fig. 8 shows the

semiannual seasenality-variability of the XCO2 concentration;-which-. The timing of winter and summer in the Northern and
Southern hemispheres explains the color shift along the equator. The lower left quadrant shows the amplitude of the twice

faster oscillations, and like 31, also 32 shows the highest amplitude oscillations in the boreal region.

The constant term S5 in the upper right quadrant shows the background concentration. Some of the reddest areas such as East
China, both coasts of the United States, Central Europe, and the Persian Gulf stand outaﬁdﬁemareas where
major emission sources are known to exist.

areas-approaches-the-work-ef-Finding local elevated concentrations compared to surrounding areas echoes the observations
made by Hakkarainen et al. (2016), where empirically defined time-integrated local XCO2 anomalies are-were interpreted as

possible emission sources.

The trend component varies only a little spatially, due to CO2 mixing in the atmosphere over time, and for this reason
it is not shown here. The phase shift parameter J is modeled separately, and the field in the lower right quadrant is obtained
by optimization, conditioning on the /3 factors. This partly explains the slightly-different spatial pattern The figure shows how
the phases of the XCO2 annual cycles differ in-— i

-------- 1 was here nstant; as- CO2 over time mixes-inthe atmospherebetween regions, but the.
¢ values need to be interpreted together with the 51 and 3 coefficients.

At high latitudes XCO2 observations from OCO-2 are available only for a short period every year, and the guality of these
measurements is often poorer. For this reason the calibration procedure may yield unrealistic and noisy values close to the

oles, especially for parameters (31 and 5. The obtained parameter values closer than 20° to the northern and southern edges
of the domain were averaged by setting the parameter values at each #'/ to 3 ¢+ 20 1+ B0, where d is the distance to the
edge of the domain in degrees. 5 is the calibrated parameter vector at 2/, and J is the average value of the parameters over
the area where 2/ is located and where averaging is performed. The § parameter was treated similarly. This adjustment was
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done as a post-processing step after finding the mean function coefficients. The main benefit of performing this adjustment is

that the posterior predictive distributions become more realistic in winter at high latitudes when the mean function dominates.

Figure 1 shows time series of the mean function for a variety of locations, verifying that the exact form chosen is able to

describe much of the local variability in XCO2.

Figure 8. Mean values of mean function coefficients that were described as a Markov random field, calculated in a 2° x 2° grid between
85° N and 85° S. The 3; coefficients multiply the f; functions in Eq. (11). Panel (d) shows how the phase parameter ¢ can vary more in the
southern hemisphere where /31 and 32 are small. The mean function and fitted daily means for several locations with the corresponding mean

function parameters are shown in Fig. 1.

4.5 Covariance parameters of the OCO-2 v9 data

The OCO-2 data has several natural length-seales;both-spatially-and-temperallyspatial and temporal length scales. The distance

between adjacent observations is only one to two kilometers in space and some hundredths of a second in time, but the distance
between consecutive orbits is thousands of kilometers in space and several hours in time. On consecutive days the satellite
passes close to the trajectory of the previous day at a distance of tens to three hundred kilometers depending on the latitude.
The Earth has natural temporal diurnal and annual cycles, but since OCO-2 is Sun-synchronous, only the latter matters with
OCO-2 data. Since the annual cycle is already fitted Mep%eular—fefm—eﬁlgy/ﬁgg% the mean function used;Eg-coefficients

S and 5 in Eq. (11) corresponding to the periodic functions , a periodic covariance kernel component is not included;
and-the-data-is-. The OCO-2 data is therefore modeled with a kernel consisting of a larger-scale exponential and smalerseale

Matern-componenta smaller scale Matérn subkernel.

The covariance parameters for the two-component kernel ;-which-are-are given in Table 4. The values used were the median
values from sampling the posterior with MCMC;-are-given-in-Fable-4—With-, When learning the parameters from a data set with
several natural length scales, the posterior may appear multi-modal, with some of the modes only having relatively little mass.

In such a case, the median provides a more robust estimate for the parameters than the mean. The ¢ and éé') parameters of

lon
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the posterior mean were slightly larger, which would result in slower computation. Selecting the median is further justified by
the slight overestimation of some parameters in the synthetic study in Sect. 4.1.

Learning the covariance parameters from OCO-2 v9 data used the following configuration parameters for satGP: (;;ain = 0,
Kk = 256, and n.os = 12. A total of 1.1184 million MCMC iterations were completed, with the first 50% discarded as burn-in
to produce statistics. The reference points were randomly picked from a rectangle with corners at (0°S, 65°E) and (60°N,
145°E). While using the whole globe would have been a principled choice, MCMC requires lots of iterations, and for any

claim of global coverage n,.t would have needed to be much larger.

Table 4. Covariance function parameter values learned from OCO-2 data. First column shows the Matern-Matérn kernel parameters, and
)

lon

the second column the exponential kernel parameters. The length seale-scales along the parallels, £, is much larger than that along the

meridians, fl(ai

(*) = mat () =exp
7O 0.899 2.72
¢ 000513 0.0418
o) 0.0363 0.397

lon

¢ 20h22min  16d 20h 12min

4.6 Posterior predictive distributions of XCO2 from the OCO-2 v9 data

The marginal posterior predictive distribution at test points z*, given by Eq. (9) and (10), were calculated globally in a half-
degree grid between 80°S and 80°N at a-dailty-daily time resolution. The first day of simulation was September 6 2014, and
the last day was November 10 2018, spanning in total 1526 days. For each day, 230400 marginals were computed, resulting
in a collective 351 million inverted covariance matrices. The satGP parameters used were (sample = 0 and k = 256, and the
covariance kernel used was the one learned in Sect. 4.5, with parameters given in Table 4. The simulation time was 25-26 days
on a moderately fast Intel 17-8700K CPU utilizing the available 12 CPU threads and 32 GiB memory.

Glebal-Figures 9 and 10 present global fields of the mean values and marginal uncertaintiesare-presented-inFig—9-and
140, with a subset (to avoid excessive over-drawing) of observations shown as a scatter plot —Fer-this-simulation,a-maximum

d cea o 00-Jem 0°_on-the aqg o g nacifiod for eneedine 1p—ce hino fo ocpe

to-the-pelesin the (a) panels. The (b) parts-of-the-figures-panels show how uncertainty is reduced with the overpass of OCO-2.
This uncertainty reduction diminishes fast due to the Matern-Matérn component of the multi-scale kernel having a very short
length scale parameter in the time dimension. In the upper figures ;-the background color (pestertor-mean-mean of the Gaussian

process posterior) usually matches the observations-—Bue-, but due to observational noise, the GP-posterior mean is not strietly
interpolation;-howevereverywhere an interpolated field.
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(a) Concentration (ppm)
—

Figure 9. Global-XCO2-distribution-XCO2 posterior mean values (a) and their uncertainties (b) on las%daﬁthg/ggﬂ‘wof October 2014. The
most informative observations are shown with the concentrations, with the large white circles being from Gefebef—SJS—t%GMM , medium
circles from one day before or after, and small circles from two days before or after. The OCO-2 utilizes sunlight for retrieval, and-that-which

is why there are very few observations above 60°N. These fields include latitudes up to 85°S and 85°N.

4.7 Comparison of single- and multi-scale kernels with OCO-2 data

Hew-Data from the OCO-2 can be used to demonstrate how the multi-scale kernel formulation affects the predictive posterior
distributionsean-be-demeonstrated-with-6CO-2-data—tnFig—H-. Figure 11 shows posterior marginals from September 15 2644
are-shown-2014. The first row (a-b) contains results from the multi-scale kernel described in Sect. 4.5, and the second row (c-d)
shows fields from only the exponential part of the multi-scale kernel. The parameters of the multi-scale kernel are shown in
Table 4. The bottom row (e-f) contains the difference fields between the first and the second rows. The single-kernel uncertainty
is very low in Fig. 11 (d) since lots of observations fall into regions of high covariance with almost any test input, with the
exception of the Nerthern-northern side of Ireland, which does not have any observations nearby. Since the covariance kernel
parameters were trained for the multi-scale kernel, the parameters used for the single kernel are not the ones describing the
XCO2 field best.

Figure-Panel (a) shows that as intended, the multi-scale approach leads to local enhancements of the XCO2 mean field. Far
from the measurements, the smaller Matera-Matérn kernel no longer reduces the predicted marginal uncertainties, and this
leads to an increase in uncertainty in these areas. Figure (e) shows additional enhancements of the XCO2 mean fields, which

are in this case due to the different maximum covariances between the multi-scale and single-scale kernels.

33



10

Figure 10. Global-XCO2-distribution-XCO2 posterior mean values (a) and their uncertainties (b) onMJ une +°-2016. While photosyn-
thesis in the Northern Hemisphere is already reducing the carbon dioxide concentrations globally, the observations condition the Gaussian

process to higher mean values than in Fig. 9. In the summer months the uncertainty stays high close to the South Pole. These fields include

latitudes up to 85°S and 85°N.

The total kernel size was kept at 1024 (x = 512 for (a-b) and x = 1024 for (c-d)) in both experiments—Additionatty-, and
thinning and grid resolution parameter values were (sample = 9, and w = 0.5%in-this-ease. The very same observations were
used in-both-easesfor both simulations.

4.8 Wind-informed kernel with OCO-2 data

The wind-informed kernel, Eq. (17), lets local wind data at test input z* rotate and scale the eoordinate-axes-axes along which
the covariance between two points is computed. Modeled winds are included with OCO-2 data, and they can be used to produce
gridded winds that can then be used locally with the computation of each marginal posterior predictive distribution.

The covariance parameters for a single wind kernel were learned by taking the median of an MCMC posterior, similarly as
was done in Sect. 4.5. The resulting parameters were 7 = 2.07, £ = 0.038, and p = 56.7. The variance of p was high, possibly
due to the square root in the current formulation in Eq. (19). For this simulation, ( =1, x = 1024, and w = 0.7, and the
simulation time for the area from (27°N,115°F) to (40° N, 145° E) for the single day was 2.652s (walltime) on the i7-8750H
laptop CPU.

The simulation results are shown in Fig. 12. Low uncertainties shown in blue color on the right spread with the winds, as do

the concentration estimates on the left both due to the high reading in South Korea and the low reading close to Shanghai.
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Figure 11. Comparison of a multi-scale kernel with the two components described in Sect. 4.5 and a single component kernel defined by the
parameters of the exponential kernel. These parameters were given in Table 4. The observations used are the same and are shown in panels
(a) and (c) as circles. The large ones with white borders are observations from the present day, September 15 *2-2014, medium circles are

observations from 14" and 16", and small circles from 13** and 17*".

Optimally the wind-informed kernel should utilize winds that are not recomputed from the observations as was done here
for convenience, but directly from a weather or climate model or from a wind data product. The satGP program contains
configuration options for doing this. The optimal covariance function parameter values are conditional on the wind data, so the

values should be learned separately for each new application and wind data set.

5 5 Conclusions and future work

In this work we have-introduced the first version of a new-fast-fast general purpose Gaussian process software, satGP ¥:0v0.1-
atms-at-being-a-general-purpose-Gaussian-process—toolbox-espeeiatty-meant-2, which is in particular intended to be used
with remote sensing data. The-seftware-solves-the-problems-of-We showed how the program solves spatial statistics problems
of enormous sizes by using a spatially varying mean function, learning-its-parameters-via-computation-of-learned by computing

10 marginals of an MRF, and also-allowslearning-the-parameters-of-the-by using a multi-scale covariance functionusing-either
. parameters of which are found either by using optimization algorithms or with adaptive Markov chain Monte Carlo. On

top—of-these;satGP-allews—to—conduet-We also presented how satGP allows conducting synthetic parameter identification
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Figure 12. (a) GP posterior mean of XCO?2 and (b) its uncertainties with the wind-informed kernel. The area shown contains the Korean
peninsula in the center, China on the left, and Japan on the center-right. The large circles with the white edges are present-day observa-
tions, medium circles are observations from adjacent days, and the smallest ones are observations from two days away. Wind direction
and magnitude are given by the black arrows, and uncertainty is clearly reduced where wind is blowing directly towards or away from the

observations.

studies via-sampling-by sampling from Gaussian process prior and posterior distributions, and this ean-could be done with any
kernel prescribed, including a non-stationary wind-informed kernel. We-are-not-aware-of-open-source remeote-sensing-oriented

software-that-would-provide-thiscombination-of features—ThesatGP-program-was-demonstrated-with-the-enormeus-The features
of satGP were demonstrated first with a small scale synthetic ozone study, and then using the enormous XCO2 data set produced
by the NASA Orbiting Carbon Observatory 2.

There-are-various-Various aspects of satGP thatcould-can be improved in future versions—These-include-addition-of routines

he-multi-seale-kernel, some of which include improving the observation

vartoussateHites-that-measure-€O2-adding support for multivariate models and higher input dimensions, and adding methods
for finding locally stationary model parameters to be able to describe heterogeneous scenes better. Despite all the room for

development, satGP is a useful tool already in its present state, and it may with little additional modeling be used e.g. to fuse
data from different sources, such as GOSAT, GOSAT-2, OCO-2, TANSAT, and the-OCO-3;-would-be-particularly-interesting:

properties of even-larger data-sets, This will enable producing more precise posterior estimates, and with that a more complete
picture of the evolution of for instance the atmospheric carbon dioxide distribution. Such statistically principled products
that incorporate uncertainty information can then be used as a robust backbone for both making policy decisions and further
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Code and data availability. The satGP code is currently available from the corresponding author upon a reasonable request, and we will
release the software under the open source MIT license as a supplement to the final version of this manuscript. The OCO-2 v9 data used is

freely available directly from NASA. The WACCM4 model is available from UCAR as a component of the Community Earth System Model.

Appendix A: Input parameters and variables in satGP

The satGP software by design allows for tets-a lot of flexibility for defining how to model the quantity of interest as a Gaussian

This section goes over those possibilities and some

practical recommendations. The parameters in Table 2 are described in more detail than earlier, along with some other config-

uration variables in the configuration file config. h. Practical-aspects-of defining-mean-funetions-and-covarianee kernels-are
alse-ineluded—Some of the details in this section may change for future versions of satGPthe software.

random field.

Of the four sections in Table 2, the first is obvious, as those parameters control the main logic of satGP. It is recommended
to first learn the mean function, then with that mean function learn the covariance function, and only after that calculate the
means and variances of the Gaussian process with -sampling = 1. The setting -sampling = 2 can be used ¢.g. for illustration
purposes, for-to understanding how the different realizations of the random function would look like, or to generate synthetic
data products.

The —area parameter defines the longitude-latitude extents of the domain where satGP is—wished-to-be-usedperforms the
computations. The strings and the corresponding areas are defined in the beginning of the file gaussian_proc.h, and
can be changed there as needed. Current available areas contain e.g. NorthAmerica, Europe, EastAsia, World, and
TESTAREA.

The parameter n4,ys defines how many days are to be simulated after the starting day. Currently the starting day is hardeoded
hard coded in the code base-to-to be the first day of OCO-2 data. However, if use_daylist# 0 in the configuration file,
a list of days can be used. This list can quite easily generated by modifying a trivial python script create_daylist.py,
which is included with satGP.

The w parameter determines how much spatial detail is resolved when sampling or computing marginals of the random field.
A small value like 0.1 will make computing very expensive, and using such values might be unnecessary when the smallest
covariance subkernel length scale parameters are large. These ¢ parameters are in the scale of distances on the unit ball, and
therefore on the equator an ¢ parameter of 0.05 corresponds to a length scale of around 2.9°, so the w parameter should rarely
be much less than half of that. On the other hand, if the observations are spatially very close to each other and describing local
variation is aimed for, then the £ parameters need-alse-also need to be small. Given computational constraints, larger values or
different -area parameters may need to be used.

In the third section of Table 2, the first parameter ny., denotes the number of subkernels. Even though the hard limit is set at
to 10, in practice this should be between one and three since the parameters of more than three subkernels are not necessarily
reasonably identifiable. More kernels means alse-more computational cost, due to the x parameter, which is the last one in the

table and is discussed later.
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The parameters -and-cfc and mf are not strictly input variables, but C struct pointers that are created based on input variables.
These variables are described in the configuration file, and they amount to choosing the covariance kernels from prescribed
types (e.g. MaternMatérn, exponential, and periodic), and then defining the parameters for those kernels. The best parameters
are those that are learned with -learn_k = 2 when non-synthetic data is used.

Thelearning-Learning the covariance parameters 6 is best performed with MCMC, and the posterior mean and median have
proven to be a-useful values. For unimodal posterior distributions these values are very-eloseusually very close to each other.
The number of MCMC iterations is controlled by the variable mcmc_iters, for which 10° is a large enough value;-and-for
computing-the-tog-likelthood-in-Eq—24);-the-._ The number of reference points 7. in the set Fyqf in Eq. (24) that is used
for computing the log-likelihood can be set to a low value of e.g. number of CPU threads, if at least 12 are available. If with
MCMC the chain gets stuck in local minima, the value of the mcmcs—>scalefactor in the mcmc () function in mcmc . h

may be shrunk, and equally well, if the posterior ends up being flat with respect to many parameters, it may be increased. This

is justified since due to the approximate maximum likelihood method correct scaling factor of the log posterior density is in

any case unknown.
For learning the covariance parameters, parameter limits need to be given. These should correspond to the expected length

scales in the data — e.g. long-range fluctuations with low amplitude, and short-scale variations due to local effects. It is in
practice best if the parameter ranges do not overlap.
If the exponent of the exponential kernel needs to be changed, that needs to be done by changing the exponent variable in

the covfun_dyn () function in the file covariance_functions.h. Similarly, if the order of the Matern-Matérn kernel

needs to be changed, that can be done by changing the variable n in functions covfun_matern52 () and initialize_covfunconf

in that same file.

For constructing the mean function, the configuration file contains the parameter mftype. The possible values are: 0) a
zero mean function is used, 1) a mean function that changes only in time is used, 2) a (time-dependent) field is read in and
used - this can be e.g. the mean value from a previous Gaussian process simulation, and 3) a space and time dependent mean
function is used. The function itself is given as a function pointer to variable mean_function in the configuration file, and
this function needs to be defined somewhere — e.g. in the file mean_functions.h. For the mean function, another variable,
mfcoeff, needs to be set. This is the total number of parameters (5 and ¢ in Eq. (2)) if mftype € {1,3}. If the mean
function parameters are learned, the parameter nnonbetas, the number of mean function non-linear § parameters, needs
to be set to the appropriate value in the function £it_beta_parameters_with_unc () inmean_functions.h. For
global mean function coefficients, the values of those coefficients are given in the configuration file-Additionally;-, where the
parameter limits for learning the space-dependent mean function parameters are setin-the-configurationfilealso set. Finally,
when learning the space-dependent mean function parameters, the smoothness of the field may be controlled by changing
the dscale parameter in the configuration file, and to a lesser extent by modifying the dfmin and dfmax parameters

in function fit_beta_parameters_with_unc () in file mean_functions.h. Another strategy for e.g. producin

smoother mean function coefficient fields is to use high values for (4, and s and large spatial length scale parameters in the
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covariance kernel. Changing the priors for the 3 parameters is done in section2 of fit beta parameters with unc ()

In the last section, the (irain parameter controls data thinning when learning covariance kernel parameters and the Csample
parameter-has-the-same-effeetfor-when—does the same when sampling # 0. How the thinning takes place was explained in the
context of Eq. (26). While with few observations no thinning needs to be done at all, i.e. ¢. may be set to zero, with large data
sets the representability of data may be improved when a coarse grid is used for computation, and also memory bottlenecks may
be avoided. These parameters may be atse-increased if faster execution is required, e-g—for example for debugging purposes.

The o2, parameter controls which observations are not considered at all when computing at a location z*, as described
by Eq. (21). The higher this is, the more data is discarded. Setting o2 to a very low value makes searching for candidate
observations slow, while picking too high a value may make posterior fields look edgy. In practice values between 10~ and
1073 seem to work well. This parameter is not aetuatty-meant to be changed -and-itisfor-thatreason-often, due to which it is
setin create_config () in the file gaussian_proc.h.

The variable ngyninetic defines how many synthetic observations are generated when -learn_k = 1. Very large values are
once again expensive, and instead a smaller -area should rather be used with more moderate values of ngynthetic. Those values
can be in practice up to 105 or more. With very low values, it may be that spatial patterns specified by the prescribed covariance
kernel are not represented appropriately, and therefore values less than 10* should be avoided, except for maybe in settings
setups with only a single subkernel. If Usynthetic is high, parameter identifiability suffers. Varying-this-parameter-could-be-used
are enough large also depends on the maximum covariance parameters of the Gaussian process, given by the 72 parameters in
the formulas of Sect. 2.4.

The last parameter in Table 2, x, defines the maximum subkernel size. The larger this parameter is, the more data is included
for constructing the covariance matrix K, whose Cholesky decomposition needs to be computed to solve the local regression
problem inherent to Gaussian processes. In practice the full kernel size should be kept under 1000, and in order to compute GP
calculations fast, a full kernel size of less than 500 is recommended. However, with a very small number of marginals, values
up to 10* may be experimented with. When ny., 5 < 64, the speed-up due to solving the GP formulas faster decreases, since at
that point computing Cholesky decompositions no longer takes up majority-of-the majority of the computing time. This lower
bound depends on the CPU architecture and the sizes of the various CPU caches.

Whether the observations for computing the local values are chosen at random or greedily is determined by the variable
select_closest in function pick_observations () in file covariance_functions.h. The value used should
normally be non-zero, since with random selection adjacent grid points often do not utilize the best available observations
closest by, leading to noisiness or graininess in the eemputed-posterior mean field.

In addition to the parameters and variables listed here, there are also other parameters in the configuration file and in the code,
even though those should not need to be changed. Any variables that the user might want to tweak are generally accompanied

by at least some comments describing their effects.
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In the current version, the satGP program is run with the script gproc . sh, whose comments describe the various options.
Compiling and running require a modern GCC version (such as version 8) and the meson build system, and additionally all
the needed libraries listed in Sect, 3. The current low version number reflects the fact that as of now, installing and using the

software will require a degree of technical knowledge, including some Python, C, and BASH programming skills.
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