
gmd-2019-156: responses to reviewer comments

We thank the anonymous reviewers and the editor for carefully reading the manuscript and for providing
the very valuable comments. We address the comments one by one below. The reviewer comments are
pasted verbatim below in italics, and the author responses to these comments can be found immediately
under the comments, starting “A:”. These are followed by “Changes to manuscript:” sections, where the
line numbers refer to the diff file unless stated otherwise. Line numbers in the “A:” sections generally refer to
the old version of the manuscript. Line numbers in the “Changes to manuscript” section refer to line numbers
in the diff file.

Anonymous Referee #1
This manuscript describes a model to analyze large spatio-temporal data. Although analyzing remote sensing
data of enormous sizes is no double important and challenge, the manuscript fails to describe the model and
its computation details and properties sufficiently or clearly. Please see below my comments that are not
necessarily ordered chronologically or by importance:

A: We thank the reviewer for this sincere assessment. To clarify the text and improve readability, we
have restructured and rewritten large parts of the manuscript. This includes almost all of Sect. 2 (Methods),
where the text has also been expanded in many places to more explicitly explain the technical details, with
an emphasis on the requests made by Anonymous Referee #1. To aid the reader with the large number of
different symbols in the manuscript (some of which were changed for clarity) we have added a full page list of
symbols to help the reading. To illustrate the basic capabilities of satGP better, especially to those readers
who are not so familiar with Gaussian process regression, we have added a short application to synthetic
WACCM-generated ozone data, so that the reader can compare satGP output and uncertainties to the true
underlying field, and appreciate that satGP is not a CO2-specific tool. We also fixed a few inaccuracies and
minor bugs in the code, which lead to an increase in the version number of the software, from 0.1 to 0.1.2.
Figures 1-2 and 8-10 were redone with this newest version of satGP.

1. This manuscript suggest using the mean function of a particular form when analyzing OCO-2 data:
m(x;β, δ) = f(xt; δ(xs))β(xs) This mean function is not a linear form of unknown parameters {δ(xs), β(xs)},
noting that they are both dependent (i.e., varying) across locations. I find the description on how to estimate
δ(xs) and β(xs) extremely confusing.

• In Lines 10-20 of Page 6, it states that β will be estimated using the formula of generalized least squared
as given in Equation (6), and δ will be calibrated, but no explanation is given on how δ will be calibrated.
In addition, the authors did not explain the dimension of the matrices F and K in Equation (6). Are
they large so that K−1 or (FTK−1F )−1 difficult to compute?

A1: First, in the earlier manuscript version we mention that we find a point estimate for the δ parameters
before calibrating β with generalized least squares, and that we then still one more time calibrate the δ
parameters. We agree that the wording could be better, and we now clarify the alternating optimization
in the sentence under (7) for the revised manuscript, adding that we use optimization algorithms for
the task. We also give a reference to a later section for the full description of the procedure. Second,
the reviewer is right about that the matrices are too large for direct inversion. For this reason the full
size of the matrix K, and by extension the computing the dense matrices mentioned above would be
prohibitively expensive. In our work the size of K is up to order of 108× 108, and such matrices would
not fit to any computer’s memory. Changes to manuscript: p. 7 l. 15, p. 8 l. 17-18, p.8 l. 19-24
(and the full section 2.3.2)
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• How is β(xs) estimated for a location xs? For a location xs,test without data/observation, can we
estimate β(xs, test) and how?

A2: The βs is estimated via the Markov Random Field, by fitting the parameters to match the mean
function to local observations, and by conditioning on the parameter values at neighboring spatial
locations. When there is no data nearby, the values of the parameters will be determined by prior
values (if any – we use a flat prior) and the parameters at neighboring nodes in the MRF. We agree
that the description in Section 2.4 is at the moment not very clear, and we will describe the calibration
procedure more clearly in the revised version. Changes to manuscript: We have added section 2.3.2
detailing learning β and δ for a given location, diff p. 13, last line – p. 15 l. 7.

• Although the authors have included Section 2.4 on learning β(xs) as a Markov random field, this section
is not connected to other parts of the manuscript but only adds confusion. It is unclear what the authors
meant by modeling β(xs) as a Marko random field. Does this mean that the authors no longer use
Equation (6) to estimate β(xs)? What are the assumptions of this Markov random field (MRF)? What
are the parameters in this MRK and how is this MRK fitted?

A3: (Line numbers here refer to the old version of the manuscript) The β parameters are still computed with
equations (6) and (7), but in addition to just computing a mean field approximation, we condition each
vertex by the neighbors. This also imposes some smoothness on the posterior field of the β parameters
and regularizes the problem. The fitting procedure was actually described on p. 8 l. 6-11 and in the
caption of figure 2. Additionally, the conditioning on the neighbors was briefly explained in the text
around p. 7 l. 27 - p. 8 l. 2. However, we agree that this description could be made clearer, and for
this reason we have rewritten section 2.4 adding a lot of previously missing detail. Regarding the
parameters of the MRF, the MRF is over the β parameters, and for the δ parameters we only obtain
point estimates by fitting the parameters before and after obtaining the local β values (amounting to
a very short alternating optimization of β and δ). The smoothness of the fitting is controlled by the
dscale parameter mentioned on p. 26 l. 12-15, and of course also by the covariance kernel used, which
affects the observation selection. The MRF is fitted according to the procedure described in the caption
of figure 2. We realize that even though how the fitting is exactly done is not so critical for how the a
posteriori Gaussian process fields look like, this procedure should be more carefully explained, and not
in a figure caption. We will integrate the description in the rewritten section 2.4. (now 2.3) Changes
to manuscript: The motivation behind the Markov Random Field paradigm is now explained in a
separate subsection, 2.3.1, and learning the pointwise estimates, along with conditioning on neigbors,
is now explained in the new section 2.3.2. The assumptions of the MRF are discussed first on p.12
l.9-10 and then on p.12 l.20-24. Spatial order of learning the graph is now explained on p.13 l.1-4, and
elsewhere in that section.

• It is also confusing how the parameters δ(xs) are estimated.

A4: The fitting of the δ parameters is carried out by optimizing them when computing the MRF as was
explained on p. 8 l. 12-18. While we think that the procedure was described in the text, it could
have been worded better, and we will do our best to also clarify this part of the text. Changes to
manuscript: The δ parameter fitting has been included in the new section 2.3.2, particularly in the
procedure p. 14 l.11 - p.15 l.3.

• Line 14 of Page 8: “ . . . finding β̂ with Eq. (9) and (10), ..." Is this a typo? Should it be Eq. (6)
and (7)?

A5: Yes, this is a typo, this has been fixed.

• Page 8 Line 15: The objective function
∑n
j=1(m(xν ;βν , δν) − ψj)2 +

∑
j′∈∂ν(δν − δj′)2 and the opti-

mization procedure are poorly explained. It should be noted that the mean function m(·; ·, ·) involved δ
and β. It is very confusing how or why this function is used to estimate δ or β individually or both of
them jointly, and why it should be used this way.

A6: This part of the text describes fitting the phase-shift parameters δ, also mentioned above. For the
“why” question, it is mentioned in the text that the nonlinear parameters cannot be calibrated the
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same way the β parameters are dealt with. The first term blindly fits the mean function to data,
while the second term imposes smoothness on the δ-field. For simplicity and speed we don’t use a
dense error covariance matrix for the first term (as in ordinary least squares as opposed to generalized
least squares), since for the δ parameters we are not interested in uncertainties. This is a modeling
choice with which we aim to satisfy two objectives: first, to get reasonable estimates of the δ field
(for total column CO2 we expect that the spatial variation of the phase parameter should be be
smooth) so that we do not end up fitting noise, and second, to perform this without the need to handle
covariances in the optimization. While taking to account observation covariances by computing e.g.
(m(xν ;βν , δν)− ψj)TK−1(m(xν ;βν , δν)− ψj) instead of plain squared error in the first term would be
possible, we do not think that would really improve the fit for the δ parameters: this can be verified
by e.g. looking at Fig. 1, which we have updated to show the fit to the actual observations instead
of the daily means. Looking at that figure, it is clear that the phase shift δ parameters are correctly
estimated. For this reason we are not concerned about the effect of this compromise to the precision of
our mean function. Last, we’d like to emphasize that the covariances are properly accounted for when
finding the β parameters, so this compromize only affects the δ parameters.

The “how” part of the question was addressed in the comments above in A1, A3, and A4. We will still
add a note about how the graph structure could be solved with algorithms such as generalized belief
propagation, implementation of which is not yet included in satGP. This is future work that we hope
to find time for at some point.

As a final note we’d like to point out that the form of the mean function is generally data set specific,
and it is the task of the modeler to understand the mean behaviour of the field before learning the GP
parameters. While other data sets may require different, perhaps more complicated, mean function
formulations, it is also possible to supply the mean function to satGP directly as an array. Changes
to manuscript: Optimization procedure is now explained much more carefully (p.14 l.11 - p.15 l.3).
We also now mention the mean function in that section (p. 14 l. 5) to remind the reader of the context.
Generalized belief propagation is mentioned as a possible future inference algorithm for the MRF on
p.13 l.7

2. The notations in this manuscript are very confusing overall. For example, the authors sometimes use
β(s) and later use βν . The covariance parameters are even more confusing. There are l, lc, and lI . Even
the definition of I is not consistent: It is originally stated I ⊂ {xs, xt}, but later used as I = STorI = S,
and I = ST . Also, the authors used ∆year in Equation (11) and stated ∆year is the duration of one year,
does this mean ∆year = 365? Similarly, in Equation (15), the authors used ∆period ; is it 365 as well?

A7: First, we agree that using both β(xs) and βν may be confusing. We use ν to refer to a generic vertex
on a graph, whereas we used β(xs) on p. 7 l. 22 to underline that the β parameters are space-dependent.
We have removed this latter notation and explain the connection of the βν to the spatiality of the problem
better.

Second, regarding the different ` variables, we’ll do our best to make the notation more consistent. The
reviewer is correct to point out that more clarity is needed. We have made the notation more consistent and
added these to a table of symbols.

Third, regarding the index set notation with the letter I, we agree that this is not optimal, and that the
notation is not consistent (there is e.g. both ST and IST etc.). We have now made the notation consistent
and no longer needlessly give the I variables as arguments of the covariance functions. We also explain this
notation in the table of symbols.

Fourth, the ∆year vs. ∆period was an intentional discrepancy: we use a period length of one year for the
OCO-2 data (this is a modeling choice) but for instance the now-added WACCM example uses also 1.5 and
2 year periods. We have therefore removed the ∆year notation altogether. Changes to manuscript: We
added a full-page table explaining the most often used symbols and their dimensions, p.11. We explain the
I-related symbols on p.15 l.18-19,21-22, and also in the table of symbols. The `-symbols are clarified, e.g.
p.15 l.18,20,25-26. The notation ∆year has been removed. We now use , to emphasize that an equation is a
definition.

3. The authors suggest the multi-scale covariance function given in Equation (18): k(x, x′; θ) = δ(x, x′)σ2
x+

kper(x, x
′; θ, IS) + kM (x, x′; θ) + kexp(x, x′; θ, I + ST ) + kW(x, x′; θ, I).
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• First, I am not sure multi-scale is an accurate way to describe this covariance function. I feel this
function is to add different types of covariance functions together, but these components not necessarily
differ in terms of scales.

A8: It is true that the combined covariance function works by adding different covariance functions together.
However, how we decided to call the combined covariance function had a lot to do with the intended use
of satGP: in the OCO-2 case we are in particular interested in finding the different length scales in the
data induced by both spatial sparsity and underlying processes. Furthermore, remote sensing data often
describes data from processes that involve different various characteristic length scales, as presented
in e.g. figure 9. While we could of course call the full kernel “multi-component”, we would rather like
to emphasize that we are specifically interested in the different length scales. Note, that even if the
kernel components are of different types, they still may describe processes at different length scales.
A non-multiscale kernel would arise in a situation, where a kernel utilizes, say, an exponential and a
periodic kernel component with the same length scale parameters. Such usage, while possible, would
likely be slightly unusual. For this reason we’d like to keep the terminology that we currently have. We
will, however, add a note that the kernel could also be called “multi-component”, and briefly explain the
reasoning behind the multi-scale name. Changes to manuscript: We mention that multi-component
could be an alternative name, p.18 l.6-9.

• The authors did not explain clearly the component kW (x, x0; θ, I). Although Equation (16) states it
is equal to k exp(xW , x

′
W ; θW , ST ), the authors fail to explain xW or the quantifies in Equation (17)

especially, l, lt, l‖ , and l⊥ , and how these parameters are chosen/estimated.

A9: We agree that this explanation is not adequate. We now clarify how the rotated kernels function and
rephrase this part of the text to improve clarity. As with other covariance kernels, also these parameters
may be found by maximum likelihood. This procedure is outlined in Section 2.7, but we will add a
note that it applies also to the wind-informed kernel parameters. Changes to manuscript: We have
rewritten the section explaining the wind kernels, p.16 l.17 - p. 17 l.15, and we now explicitly give
formulas for xw and `‖ and `⊥, and explicitly list `t and ` in the parameters of kw. We explain that
the ρ parameters may be learned like the other parameters (p.20 l.17)

• What will happen if there are missing data in wind velocity?

A10: In case of OCO-2 (and with many other products), the wind data is included with the data files. The
satGP code also includes running a Gaussian process for the wind data (and the output can then be
utilized with kw). Wind data may also be read from an external file. We will add a note about these
capabilities in the text. Changes to manuscript: We now mention how wind data may be read in
and that it is a required input for kw, p.17 l.13-15.

• Why isn’t there an I involved in the Matérn component kM (·, ·; ·)?

A11: Yes, there should of course be. However, we decided instead to remove the I arguments from all the
kernels, since changing the dimensions over which the covariance functions work requires changing the
code. Changes to manuscript: We have removed the I arguments from kernels in equations 14-17,
p.15-16.

• For the exponential component, the definition given in Equations (12) and (13) are not clear. At least
there are two ways to define this component:

k exp(x, x0; θ, IST ) = τ2 exp

(
−
∣∣∣∣x− x′lST

∣∣∣∣γ)
or

k exp(x, x0; θ, IST ) = τ2 exp

(
−

∣∣∣∣∣xs − xs
′

ls

∣∣∣∣∣
γs)

exp

(
−

∣∣∣∣∣xt − xt
′

lt

∣∣∣∣∣
γt)

dependent on whether the spatial and temporal components share the scale or exponent parameters. I
don’t know what the authors have used, and there is no justification of their choice.
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A12: Each dimension has its own scale length parameter. This is what the subindex c in the sum and also
in the term `c in (13) refers to. The sum is over the dimensions in the set I, and while we think this is
quite clearly presented, we will still try to clarify. This means that the second version listed above is
what is being used, with the caveat that the exponents γ are the same. If needed, this restriction can
of course be quite easily lifted by modifying the code. For the OCO-2 experiments the exponent 2 was
used. Changes to manuscript: We try to explain the notation better, p. 15 l.16-27. We underline
that the dimensions are independent and have separate length scale parameters, p.15 l.24-25. We have
changed the notation to contain less subscripts, e.g. ξγ`I ⇒ ξγI in equation 13.

• The authors need to provide a better description of these components in the covariance function and
explain why they are identifiable based on their formulations and definitions. Also, it is necessary to
clarify whether some parameters are the same or vary across these components, such as τ2 , γ, and l.

A13: We now clarify that parameters such as τ are different for each kernel component. They can be found
from the data, as was shown in the OCO-2 case. Of course the reviewer is correct that parameters of
an arbitrary set of kernels would not necessarily be identifiable. However, what set of kernel compo-
nents are chosen, is up to the modeler and depends on the data used. In the synthetic experiments
we show that length scales of even three kernel components are recoverable, even though some param-
eters were slightly overestimated. We did perform additional tests, according to which parameters of
two-component kernels are recoverable without such overestimation. We will add a comment on the
modeler’s role in picking the set of kernel components, underline that the synthetic studies verify the
identifiability of the parameters, and furthermore do our best to improve the description of the kernels
in general. Changes to manuscript: We clarify that the parameters differ over the different kernel
components, by subscripting the parameter vectors θ, p. 15 l.28, p.16 l.1,8,22, that γ is shared across
dimensions, p.15 l. 25, and that ` parameters are different for each dimension (p.15 l.24-25). We state
that the combined covariance parameter vector is now called θ, (p.18 l.2). We have added a note about
the modeler’s role in modeling the data (p.18 l.3-4). We have added a simple one-kernel synthetic
example, Sect. 4.2, which shows that the techniques used for learning mean function and covariance
function parameters produce very good-looking fields, and that the uncertainties are what should be
expected, implying that the method for finding the covariance parameters is able to converge to a
well-performing parameter estimate. (p.26 last line - p.29 l.8).

4. I find Sections 2.6 and 2.7 quite difficult to understand. It seems that the authors use local kriging,
that is, using a subset of data close to a prediction location x∗ to estimate the covariance parameters and to
make prediction.

A14: This is correct. We use a set of hyperspheres in the space of the inputs x, within which we fit the ker-
nel parameters. Changes to manuscript: We have significantly expanded and revised/rephrased/rewritten
both of these sections to improve readability.

Furthermore, it appears that the authors use different subsets of data to estimate the components in the
covariance function. Why not using a single subset data to estimate the entire covariance function? Or, were
the authors trying to avoid identifiability issue by using different data sets to estimate different covariance
components? If a subset of data are used, I assume the size of this chosen subset is not too large, but why
is there a need to use a block diagonal matrix K̃ as in Equation (22)? This approximation is not clearly
explained, neither is Eref in Equation (22). 2 ?

A15: We use the same subset of data to fit all the components at once, otherwise we could hardly claim
that the parameters we choose are somehow optimal or correct. The sequentiality of the observation selection
is due to something different: when we choose the (one and only) set of observations for fitting covariance
parameters, we need to pick them so that all the (expected) length scales are represented in the data set. For
instance, if the length scales are 10 kilometers and 1000 kilometers, we need to include both local dense data,
and data from further away: if for instance we only include the closest observations, we don’t really have
leverage to say much about the behavior over longer length scales. We would like to point out more generally,
that parameter identifiability is conditional on the data, so with some data (for instance with only one or
zero observations) there will always be identifiability issues. While we think that we actually do explain what
Eref is on p. 12 l. 24, we agree that the description is short, and that the block-diagonality is explained only
implicitly (or not at all). We will clarify these points and include a better description of the K̃ matrices in
the revised manuscript.
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Changes to manuscript: We underline that we use a single data set (p. 18 l.22-23). We now clarify the
block-diagonality and the relationship between K and K̃ in the text (p.20 l.24-30) We also disambiguated
the notation in (new) Sect. 2.6 and added a short algorithm (figure 4) to describe the observation selection.
We mention that the Eref is a set of random points from the domain (p. 20 l.12-13)

Moreover, in Equation (19), should it be > σmin rather than < σmin?
A16: This is definitely true and has now been fixed.
5. The authors mentioned the nearest neighbor Gaussian process, but did not cite the reference corre-

spondingly.
A17: Thank you for pointing this out, we have now added a proper reference. Changes to manuscript:

Added reference, p.4 l.9
6. It is unclear where or why MCMC is needed and how it is implemented (prior specification etc.). The

authors described optimization in Section 2 and also in the first paragraph of Page13. However, later in Page
17, the authors stated that MCMC is used instead. Section 2 does not describe MCMC.

A18: While learning the mean function parameters β and δ utilizes optimization with the BFGS algorithm,
covariance parameters are learned using MCMC. The likelihood for learning the covariance parameters is noisy
due to the observations selected changing with changing parameter values. For this reason optimization
algorithms tend to get stuck in local minima. This was actually mentioned on p. 17 l. 4-5 (old version of
MS). We do mention that an Adaptive Metropolis implementation is included in the code, and that that can
be used for finding the parameters (p. 13 l. 1-5). It is true that the priors are not described. We use flat
priors, and will add information about them in the text in sections 4.1 and 4.4. We will also add a short
description of MCMC to section 2.7. Changes to manuscript: MCMC and the motivation and its relation
to optimization are now explained in more detail on (diff) p.21 l.4-17

7. It should be Matérn covariance function, instead of Matern.
A19: This has been fixed.

Anonymous Referee #2
A20: We thank Anonymous Referee #2 for appreciating our work. (No corrections or clarifications were
requested.)

Executive Editor Comment
. . .Therefore please provide the satGP v0.1 code or provide the reasons why the code can not be made publicly
available in your revised submission to GMD.

A21: We received the approval for open-sourcing satGP today from MIT, and will include the source code
of the newest version as a supplement to the final manuscript version, after first adding the license headers
and copyright notices.
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Abstract. Satellite remote sensing provides a global view to processes on Earth that has unique benefits compared to measurements

made
::::::
making

::::::::::::
measurements on the ground. The

:
,
::::
such

::
as

:
global coverage and the enormous amounts of data produced come,

however, with the price of
::::::::
enormous

::::
data

:::::::
volume.

:::
The

::::::
typical

:::::::::
downsides

:::
are

:
spatial and temporal gaps and less than perfect

:::::::::
potentially

:::
low data quality. Meaningful statistical inference from such data requires overcoming these problems and that calls

for developing efficient
:::::::::
developing

:::::::
efficient

:::
and

::::::
robust computational tools.5

We design and implement a computationally efficient multi-scale Gaussian process (GP) software package, satGP, geared

towards remote sensing applications. The software is designed to be able to handle problems of enormous sizes and is

able to compute marginals and sample from a random process with at least over hundred million observations.
:::
the

:::::::
random

::::
field

::::::::::
conditioning

:::
on

::
at

::::
least

:::::::::
hundreds

::
of

:::::::
millions

::
of

::::::::::::
observations.

::::
This

::
is

::::::::
achieved

::
by

::::::::::
optimizing

:::
the

::::::::::
computation

:::
by

::::
e.g.

::::::::::::
randomization

:::
and

:::::::
splitting

:::
the

:::::::
problem

::::
into

::::::
parallel

:::::
local

::::::::::
subproblems

::::::
which

::::::::::
aggressively

::::::
discard

::::::::::::
uninformative

::::
data.

:
10

The
::
We

:::::::
describe

:::
the

:
mean function of the Gaussian process is described by approximating marginals of a Markov random

field (MRF). For covariance functions, Matern
::::::::
Variability

:::::::
around

:::
the

:::::
mean

::
is

:::::::
modeled

::::
with

::
a
:::::::::
multi-scale

::::::::::
covariance

::::::
kernel,

:::::
which

::::::
consist

::
of

:::::::
Matérn, exponential, and periodic kernels are utilized in a multi-scale kernel setting to describe the spatial

heterogeneity present in data. We further
::::::::::
components.

:::
We

::::
also demonstrate how winds can be used to inform the covariance

kernel formulation
:::::::::
covariances

::::::
locally. The covariance kernel parameters are learned by calculating an approximate marginal15

maximum likelihood estimateand this is utilized to verify
:
,
:::
and

:
the validity of

:::
both

:
the multi-scale approach

:::
and

:::
the

:::::::
method

::::
used

::
to

::::
learn

:::
the

::::::
kernel

:::::::::
parameters

::
is

::::::
verified

:
in synthetic experiments.

For demonstrating the techniques above, data
:::
We

:::::
apply

::::
these

:::::::::
techniques

:::
to

:
a
::::::::
moderate

::::
size

:::::
ozone

::::
data

:::
set

::::::::
produced

::
by

:::
an

::::::::::
atmospheric

::::::::
chemistry

::::::
model,

::::
and

::
to

:::
the

::::
very

::::
large

:::::::
number

::
of

::::::::::
observations

::::::::
retrieved from the Orbiting Carbon Observatory 2

(OCO-2) satelliteis used. The satGP program is released as open source software.20

:::::::
software

::
is

:::::::
released

:::::
under

::
an

:::::
open

:::::
source

:::::::
license.

Copyright statement.
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1 Introduction

Climate change is one of the most important current
:::::::::
present-day

:
global environmental challenges, to the point where it is

drawing constant widespread attention even in mainstream media. The underlying reason is the anthropogenic carbon emis-

sions: among the well-mixed greenhouse gases
:
.
:::::::::
According

::
to

:::
the

:::::::::::::::
Intergovernmental

:::::
Panel

::
on

:::::::
Climate

:::::::
Change, carbon dioxide

(CO2) has currently the strongest effect on warming the planet
:
of

:::
the

::::::::::
well-mixed

::::::::::
greenhouse

::::
gases, with the radiative forcing5

of ca.
:
1.68 W m−2 according to the latest IPCC report

::

−2
:
(IPCC, 2013).

The resulting global interest in atmospheric carbon along with technological advances has resulted in several CO2-measuring

satellites continuously monitoring the Earth and producing

::::::
Several

::::::::::
instruments

::::::
orbiting

:::
the

:::::
Earth

:::::::
produce enormous quantities of data, which are processed to

::::::
remote

::::::
sensing

:::::
data,

::::
used

::
to

:::::::
compute local estimates of CO2 by solving a complicated inverse problem (Crisp et al., 2012). These

:::
and

::::
other

:::::::::::
atmospheric10

::::::::::
constituents

::
by

:::::::
solving

::::::::::
complicated

::::::
inverse

:::::::::
problems,

:::
and

::::::
further

:::::::::
processed

::
to

:::
e.g.

:::::::
gridded

::::
data

::::::::
products

:::
and

::::
flux

::::::::
estimates

::::::::::::
(Cressie, 2018)

:
.
:::::
These

::::::::::
instruments

:
include the Greenhouse gases Observing SATellite (GOSAT) from Japan (Yokota et al.,

2009), which has been operational since January 2009, the OCO-2 from NASA
:::::::::::::::
(Crisp et al., 2012), launched in July 2014,

and the Chinese TanSat (Yi et al., 2018), which was launched in December 2016.
::::::::
GOSAT-2

::::
was

:::::::
launched

::
in

:
October 2018saw

the launch of GOSAT-2, and in May 2019 the OCO-3 instrument
::::::::::::::::::
(Eldering et al., 2019) was taken to the International Space15

Station. In addition to the CO2-measuring instruments, also other types of data are produced by remote sensing. For instance

the European TROPOspheric Monitoring Instrument (TROPOMI) produces measurements of nitrogen dioxide, formaldehyde,

carbon monoxide, aerosols, methane, and ozone.

Common denominators among most non-gridded remote sensing data sets include : a large number of observations, global

coverage but small area observed at any given time, sensitivity to prevailing weather conditions and cloud cover, unknown20

and/or unreported error covariances, and predetermined positioning that rules out freely observing at a given time and location.

These shortcomings can be partly remedied with computational statistics. The many steps of producing carbon flux estimates

from readings produced by satellites are summarized by e.g. Cressie (2018). In this work a tool to solve one of those steps, the

production of gridded level 3 data sets with uncertainties from pointwise level 2 column integrated dry air CO2 mole fraction

(XCO2) data, is introduced. Even though we demonstrate the capabilities of the softwarewith OCO-2 data, the methods are not25

constrained by the quantity of interest observed.

:::::::::
techniques

::::
from

::::::::::::
computational

::::::::
statistics,

::::
such

::
as

:::::
those

:::::::::::
implemented

::
in

:::
the

:::::
satGP

::::::::
software,

:::::
which

::::
this

:::::
paper

:::::::::
introduces.

The purpose of this manuscript is four-fold. First, to introduce satGP, a fast computer program that estimates Gaussian

process covariance and mean function parameters from data, computes posterior marginal distributions, and samples from

GP priors and posteriors conditioning on over hundred million observations in situations where several hundred million30

marginals need to be computed. While lots of advances have recently been made in the field, we are not aware of any

literature or software solving problems of quite this scale so far.
:::::
There

::
are

::::
two

:::
key

::::::::
advances

::
in

:::
this

:::::
work.

:::::
First,

:::
we

:::::::
describe

:::
the

:::::::::::
computational

::::::::::
approaches

:::
that

:::::
allow

:::::
satGP

:::
to

:::::
tackle

::::::::::::
remote-sensing

::::::
related

::::::
spatial

:::::::
statistics

::::::::
problems

::
of
:::::::::
enormous

:::::
sizes. Sec-

ond, computational methods that allow the solution of problems of such scales are introduced. Third,
::
we

::::::
present

:::::::::::
formulations

::
of
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:
a
:::::::::
multi-scale

:
covariance function and mean function formulations, some

:
a
::::::::::::::
space-dependent

:::::
mean

::::::::
function,

::::
types

:
of which we

have not seen used in the remote sensing community, are presented. In particular, the multi-scale formulation avoids excessive

smoothing, allowing one to see local effects where observations become available. Fourth, these methods are demonstrated

with the XCO2 data from the OCO-2 satellite
:
.
:::
We

::::
also

:::::
show

:::
how

:::::
these

::::::::
functions

:::
can

:::
be

::::::::
efficiently

:::::::
learned

::::
from

::::
data.

Several interesting
::::::
Related

:::
to

:::
this

::::::
work,

::::::
several

:
kriging studies have been published before in the context of satellite5

measurements of
:::::::
remotely

::::::
sensed

:
CO2. Zeng et al. (2013) analyzed the variability of CO2 in both space and time over China

producing
:::
and

::::::::
produced monthly maps from GOSAT data with slightly over 10000 observations. Nguyen et al. (2014) used

a four times larger set of observations with Kalman Smoothing in a reduced dimension with GOSAT and the Atmospheric

InfraRed Sounder (AIRS) data from NASA. A map of atmospheric carbon dioxide derived from GOSAT data was presented

at the higher resolution of 1×1.25 degrees in space and 6 days in time by Hammerling et al. (2012). In another publication by10

the same authors, synthetic OCO-2 observations were considered with the same spatial resolution.

A
::::
More

::::::::
recently

:::::::::::::::
Zeng et al. (2017)

::::::::
presented

:
a
:
global dataset derived from GOSAT was presented by Zeng et al. (2017),

with the spatiotemporal
:::
with

::::
the

:::::::::::::
spatio-temporal resolution of three days and one degree,

::::
and

:::
this

:::::
study

:::::::::
evaluated

::::
also

:::
the

:::::::
temporal

:::::
trend

::
of

:::
the

::::::
XCO2. The results were validated against both

::::::::::
observations

:::::
from

:::
the Total Carbon Column Observing

Network (TCCON) and
:::::
against

:
modeling results from CarbonTracker and the Goddard Earth Observing System with atmo-15

spheric chemistry (GEOS-Chem). This study evaluated also the temporal trend of the XCO2. Similarly Tadić et al. (2017)

describe
:::::::::::::::
Tadić et al. (2017)

::::::::
described a moving window block kriging algorithm to introduce time dependence into

:
a
:
GOSAT-

based XCO2 map construction process using a quasi-probabilistic screening method for subsampling observations, thin-

ning the data for computational reasons. Other recent studies have also contained analyses of OCO-2 data . For example ,

Zammit-Mangion et al. (2018) present
:
–
::::

for
:::::::
example

::::::::::::::::::::::::::
Zammit-Mangion et al. (2018)

:::::::
presented

:
fixed rank kriging (FRK) re-20

sults based on OCO-2 data using a 16-day moving window. The results again
:
In

:::::
many

::
of

:::::
these

::::::
studies,

:::
the

::::::::
obtained

::::
CO2

:::::
fields

appear very smooth.

An interesting approach is presented by Ma and Kang (2017), who describe a fused
:::::::::::
Applications

::
to

::::::
remote

:::::::
sensing

::::
data

::::
have

:::
also

:::::::
resulted

::
in

:::::::::::
publications

::::
more

:::::::
focused

::
on

::::::::
methods.

::::::::::::::::::
Ma and Kang (2017)

:::::::
described

::
a
::::::
“fused”

:
Gaussian process, com-

bining a graphical model with a Gaussian process and applying that to sea surface temperature data. Another interesting25

approach for atmospheric trace gas inversion is presented by Zammit-Mangion et al. (2015), who simultaneously model
::
In

::::::
another

:::::::::::::
computationally

:::::::::::
sophisticated

::::::::::
application,

::::::::::::::::::::::::::
Zammit-Mangion et al. (2015)

::::::::::::
simultaneously

:::::::
modeled both flux fields and

concentrations using a bivariate spatiotemporal model , utilizing
::::::::::::
spatio-temporal

::::::
model

::::
with

:
Hamiltonian Monte Carlo (Neal,

2011) for sampling the posterior. However, due
::::
Due to computational challenges the footprint area is

:::::
spatial

::::
area

::::::::::
investigated

::
in

:::
this

:::::
work

:::
was

:
very small.30

For overcoming
:::
For

::::::::
Gaussian

:::::::::
processes,

:::::::
various

::::::::::
approaches

::::
have

:::::
been

::::::
studied

:::
to

:::::::::
overcome the difficulties posed by

large numbers of data, various methods have been proposed.
:::::::
amounts

::
of

:::::
data.

:::
For

::::::::
instance,

:
Lindgren et al. (2011) pro-

vide an explicit link between some random fields arising as solutions to certain stochastic partial differential equations and

Markov random fields. A recent review of Vecchia-type approximations (Vecchia, 1988) is given by (Katzfuss et al., 2018)

and
:::::::::::::::::
Katzfuss et al. (2018),

::::
and

:::::::::::::::::
Heaton et al. (2018)

:::::::
presents a comparison of the performance of several recently developed35
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methods is given by Heaton et al. (2018),
:::::
spatial

:::::::
statistics

::::::::
methods with applications to MODIS data

::::
data

::::
from

:::
the

::::::::::::::::
Moderate-resolution

:::::::
imaging

:::::::::::::::
spectroradiometer

::::::::
(MODIS). The difficulty of ordering the observations for effective inference with Gaussian pro-

cesses, especially as the dimension of the inputs grows, is underlined
:::::::
discussed

:
by Ambikasaran et al. (2016).

In this work we describe an approach to solve spatial
:::
the

:::::
satGP

::::::::
program

:::
that

::::::
solves

::::
very

:::::
large

:::::::::::::
spatio-temporal

:
statistics

problems with hundreds of millions of data points. We do this by combining various ideas and techniques that come close to5

those applied in
::
up

::
to

::
at
::::
least

:::
the

:::::
order

::
of

::::
108

::::::::
marginals

::::::::::
conditioned

:::
on

:::
108

:::::::::::
observations.

:::::
While

::::::::
advances

::::
have

:::::::
recently

:::::
been

::::
made

::
in
:::

the
:::::

field,
:::
we

:::
are

:::
not

:::::
aware

:::
of

:::
any

::::::::
literature

::
or

:::::::
software

:::::::
solving

::::::::
problems

::
of

:::::
quite

:::
this

:::::
scale

::
so

:::
far.

::::
The

:::::::::::
effectiveness

:
is
::::::
partly

:::::
based

::
on

::::::::::
combining

::::
ideas

::::::
related

:::
to Vecchia-type and nearest neighbor Gaussian processes while utilizing random

sampling and aggressive pre-filtering of uninformative data
:::::::::::::::
(Datta et al., 2016),

:::
but

::::::
satGP

:::
also

::::::::
employs

::::::
several

::::::::::::
computational

::::
tricks

:::::
such

::
as

::::::::::
subsampling

:::::::::::
observations

:::
and

:::::::
filtering

:::
out

:::::::::::
uninformative

::::
data

::
at

::::::
several

:::::
levels when possible. The presentation of10

the general Gaussian process problem is based on the one given by Santner et al. (2003) and Rasmussen and Williams (2006).

A generic space and time dependent mean function of the Gaussian process is found by solving
:::::::
program

:::::::
includes

:
a
:::::::
flexible

:::::::::::::
implementation

::
for

::::::::::::::
space-dependent

:::::
mean

::::::::
functions

:::
and

::::::::::::::::
space-independent

:::::::::
covariance

::::::
kernels,

::::
and

:::::::
routines

:::
for

:::::::
learning

::::
their

:::::::::
parameters

::::
from

:::::
data.

:::
The

::::::
spatial

::::::::::
dependence

:::
of

:::
the

::::
mean

::::::::
function

::
is

::::::
learned

:::
by

:::::::::
computing

:
marginals of a Markov random

field (MRF). For covariance modeling, a multi-scale covariance kernel formulation is given. The validity of the multi-scale15

approach is established via a synthetic study. Approximate methods to learn the parameters of both the covariance kernel and

the mean function as implemented in satGP are outlined. Additionally, a non-stationary covariance kernel formulation for

utilizing wind data for computation, partly inspired by (Nassar et al., 2017), is proposed.

The
::::::::
covariance

:::::::
function

::
is

::::::::::
constructed

::
in

:
a
::::
way

:::
that

::::::
allows

:::
for

::::::::
describing

:::
the

:::::::
multiple

::::::
natural

::::::
length

:::::
scales

::
in

:::
the

::::
data.

:::::
After

:::::::
learning

:::
the

:::::
model

:::::::::
parameters

:::
the

::::::::
program

::::::::
computes

::::::::
posterior

::::::::
predictive

::::::
fields,

:::
and

::::::::::
realizations

:::
can

:::
be

:::::
drawn

:::::
from

::::
both

:::
the20

:::::::
posterior

:::
and

:::
the

:::::
prior.

:

:::
We

::::::
validate

:::
the

:::::::::
multi-scale

:::::::::
covariance

::::::::
modeling

::::::::
approach

:::
by

:::::::
learning

::
the

:::::::::
covariance

:::::::
function

::::::::::
parameters

::
of

:
a
::::
data

::
set

::::::
drawn

::::
with

:::::
satGP

::::
from

:::
the

::::
prior

::
of

::
a

:::::::::
multi-scale

::::::::
Gaussian

:::::::
process.

::
To

::::::::::
demonstrate

:::
the

::::::::::::
computational

:
capabilities of this early version

satGPare demonstrated in practice by computing
:
,
:::
we

::::::::
computed

:
global XCO2 concentrations for a duration of 1526 days at

0.5◦ spatial and daily temporal resolutionwith XCO2 data from OCO-2 utilizing over ,
:::::::::
amounting

::
to
::::::::::

calculating
:::
350

:::::::
million25

:::::::
marginal

:::::::::::
distributions,

:::::::::::
conditioning

::
on

:
116 million observations. The number of computed marginals is over 350 million. An

:::::
XCO2

:::::::::::
observations

::::
from

:::::::
OCO-2.

::::::
Figure

:
9
:::::
shows

:::
an example of how these results look likeis given by Fig. 9.

:
.
:::
We

:::
also

:::::::
present

:
a
::::::::::::
non-stationary

:::::::::
covariance

::::::
kernel

::::::::::
formulation

:::
that

:::::::
utilizes

::::
wind

::::
data

:::
for

:::::::::::
computation,

:::
and

::::
use

:::
that

:::::::::
covariance

::::::::
function

::::
with

::::::
OCO-2

::::
data.

::::
The

:::::
utility

::
of

:::::
using

:::::
winds

::::
with

:::::
CO2

::::
data

:::
has

::::
been

:::::::::::
demonstrated

::::::
before

::
by

::::
e.g.

::::::::::::::::
Nassar et al. (2017).

:

The key advances of this work are the capability to compute Gaussian process predictions with enormous remote sensing data30

sets, a practical way of learning the multi-scale kernel parameters and mean function parameters from data , and introduction

of the flexible open source software, of which this is a first released version. Describing these developments is approached

from the perspective of how the various parts of computation are implemented in the current version of satGP
::
In

:::::::
addition

::
to

:::
the

::::::
OCO-2

:::::
work

:::
we

::::::::::
demonstrate

:::
the

::::::::::
capabilities

::
of

::::::
satGP

::::
with

::::::::
synthetic

:::::
ozone

::::
data

:::::
from

:::
the

::::::
Whole

::::::::::
Atmosphere

:::::::::::
Community

::::::
Climate

::::::
Model

:::::::::::
(WACCM4)

:::::::::::::::::
(Marsh et al., 2013),

:::::::::
emulating

:::::::::
observing

::::
with

:::
the

:::::::
Global

::::::
Ozone

::::::::::
Monitoring

:::
by

::::::::::
Occultation35
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::
of

::::
Stars

::::::::::
(GOMOS)

:::::::::
instrument

:::::::::::::::::::::::::::::::::::::::
(Bertaux et al., 2004, 2010; Kyrölä et al., 2004)

::
on

:::
the

:::::::
Envisat

:::::::
satellite.

::::::
Using

::::::::
synthetic

::::
data

:::::
allows

:::
us

::
to

:::::::
directly

:::::::
compare

::::::::
Gaussian

:::::::
process

::::::::
posterior

::::::::
estimates

:::
to

::
an

:::::::
exactly

::::::
known

::::::
ground

:::::
truth.

::::
The

::::::::
software

:::::
could

::::::
equally

::::
well

::
be

:::::::
applied

::
to

:::
any

:::::
other

:::::::
observed

:::::::
quantity

:::
of

::::::
interest.

The rest of the manuscript is organized in the following manner: Section 2 describes the methods both generally and as

implemented in satGP. An overview of computation in satGPis given in Sect.
::::::
Section 3 , and Sect.

::::::::
discusses

:::
the

::::::::::::
computational5

:::::
details

::
in

::::::
satGP.

::::::
Section

:
4 presents and discusses simulation results, including a multi-scale synthetic parameter identifiability

studyand two applications to
:
,
::
an

::::::::::
application

::
to

::::::::
synthetic

::::::::::::::::::
WACCM4-generated

::::
data,

::::
and

::::::::::
applications

:::::
using

:
the OCO-2 v9

dataset. In the concluding Sect. 5
::::::
current

:::::::::
limitations

:::
and

:
some possible future directions are briefly mentioned.

2 Methods

In geosciences, kriging (Cressie and Wikle, 2001; Chiles and Delfiner, 2012) is often used for performing spatial statistics10

tasks such as gap-filling or representing data in a grid. The semivariogram models used in kriging are closely related to the

covariance models used in the Gaussian process formalism (Santner et al., 2003; Rasmussen and Williams, 2006; Gelman

et al., 2013), where instead of learning the variogram model from the data, a form of a covariance function is prescribed and

its parameters learned
:::::::
estimated.

Intuitively, one would like
::::
With

::::::::
Gaussian

:::::::::
processes,

:::
we

::::
want

:
to learn properties of a spatio-temporal surface from some15

observational data of some quantity of interest. To each point in space and time corresponds a Gaussian distribution of that

quantity, whose mean and variance can be calculated by solving a local regression problemat each desired point. This can also

be crudely thought about as optimally .
::::
This

::
is
:::::::

closely
::::::
related

::
to

:
solving a spatio-temporal interpolation problem when the

observations have Gaussian errors.

The underlying theory related to
:::::
theory

:::
of Bayesian statistics, Gaussian processes, and Markov random fields

:::
that

::
is

::::
used

::
in20

:::
this

::::
work

:
is well known and therefore

::::
many

::
of

:::
the

:
the novel aspects in this section have to do with the computational methods

and modifications that are presented, such as observation selection schemes in Sect.
:
2.5 or approximate marginal maximum

likelihood computation in Sect. 2.6. These modifications trade precision for tractability, but in a way that the results still remain

valid
:::
tries

:::::::::
minimize

:::
the

:::
loss

:::
in

:::::::
accuracy. Due to the size of the problem

:::::
desire

::
to

:::
be

::::
able

::
to

:::::
solve

::::
very

::::
large

::::::::
problems, some

sacrifices need to be made in order to be able to obtain any solution.25

This section goes through the Gaussian process formalism , and
:::
and

:::::::
presents

:
both generic and the satGP-specific forms of

mean and covariance functionsare described. This is followed by discussion of how observation selection is carried out
:::
for

::::::
solving

::::
local

:::::::::::
subproblems

:
and how model parameters are learned.

:::
The

::::::::::
presentation

:::
of

:::
the

::::::
general

::::::::
Gaussian

::::::
process

::::::::
problem

:
is
:::::
based

:::
on

:::::::::::::::::
Santner et al. (2003)

:::
and

:::::::::::::::::::::::::::
Rasmussen and Williams (2006).

::::::::::
Commonly

::::
used

:::::::
notation

::
is

::::
listed

:::
in

::::
Table

::
1.
:

2.1 Gaussian process regression30

A Gaussian process is a stochastic process, which can be thought of as an infinite-dimensional Gaussian distribution in that

the joint distributions
:
of

:::
the

:::::::
process

:
at any finite set A of space-time points are multivariate normal. We denote the vector of
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these points
:::::
points

::
in

:::
the

:::::::::::::
spatio-temporal

:::::::
domain by x ∈ Rqand underline that they contain both space and time components.

In this work q = 3, even though this restriction can be overcome if needed, and satGP does have limited support for space-only

problems.

The Gaussian process
:
,
::
or

::::::::
Gaussian

:::::::
random

::::
field,

:
is denoted by

Ψ(x)∼GP(m(x;β),k(x,x′;θ)), (1)5

where m : Rq→ R and k : Rq2→ R are respectively
::::::::::::
k : Rq×q→ R

:::
are

:
the mean and covariance functions of the process

parameterized by hyperparameter vectors β ∈ Rnβ and θ ∈ Rnθ . Note, that with these functions x and x′ refer to coordinates

of a single location in the spatio-temporal domain, while below it may also refer to multiple locations, depending on context.

The function m above is called the drift in kriging literature, and the expected value of the process in areas
::::::
regions

:
with no

data will tend to the value of the mean functionin that area
:::
this

:::::
mean

:::::::
function. It is chosen to reflect the deterministic patterns10

in the data, and these choices
::
the

::::::::
particular

::::
form

::::::
picked

::
to

::::::
model

::
m

:::
will

:
also affect how the function k and parameters θ in Eq.

(1) need to be chosen
:::::::
specified. With inadequate modeling of the mean function, the obtained uncertainty estimates

:::::::::
uncertainty

:::::::
estimates

::::::::
obtained

::::
with

::::::::
Gaussian

::::::
process

:::::::::
regression may end up being unnecessarily large. For instance linear trends, constant

factors, seasonal and other periodic fluctuations should be included
:
in

::
m

:
if they are known. An example of what is used with

the OCO-2 data is shown later in Eq. (11).15

The covariance function k(x,x′;θ) controls the smoothness of the draws ψ from Ψ. The parameter vector θ typically contains

at least one scale parameter ` and a parameter controlling the maximum covariance τ2. The ` parameters correspond to the

length scales of the random fluctuations of the realizations around the mean function, and the τ parameters describe the

amplitude of that fluctuation. The functions m and k are fully described in Sect. 2.2 and 2.4, respectively. Additional practical

guidelines are given in Appendix A.20

In what follows
:
, the domain Rq 3 x is divided into two disjoint parts, one of which, X train ⊂ Rq , contains the part

:
is

:::
the

:::
set

::
of

:::::::::
coordinates

:::::
xobs
i ,

:
where observation data (training data) was

::::
were measured, and another one, X test = Rq\X train, where

observations were not made. Any x ∈ X test is below called
::::::::::::::::
X test , Rq\X train,

::::::
denotes

:::
its

:::::::::::
complement.

::::::
Points

::
in

:::::
X test

:::
are

::::::
denoted

:::
by

:::
x∗

:::
and

::::::
called

:
test input

:::::
inputs as is often done in the GP literature, and these points are generally denoted by

x∗
:::::::
Gaussian

:::::::
process

::::::::
literature.25

In practice marginals of the random function Ψ in Eq. (1) or samples ψ from it are evaluated (computed) only at a finite

set of points. Let ψobs ∈ Rn denote a vector of observations — synthetic or real —
:::::::::::
Observations generated by the Gaussian

process at locations xobs ∈ Rn×q . Given a set of functions fi for constructing the mean function, the matrix with elements

fi(xj ;δ(x
s
j)) corresponding to locations xj with regression coefficients β(xs

j) is denoted by F (x). For a single input, instead

of F (x) the notation f : Rq→ Rnβ is used, and with that, f(x∗) = [f1(x∗), . . . ,fnβ (x∗)]T . The joint distribution of the field30

at observed locations is then given by

ψobs ∼N
(
F (xobs)β,K)

)
,
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where the covariance matrixK is defined by its elementsKi,j = k(xobs
i ,xobs

j ;θ).
::::::::::::::::
{xobs

i : i= 1, . . . ,n}
:::
are

:::::::
denoted

::
by

:::::::::
ψobs
i ∈ R,

:::
and

:::
the

:::::
vector

::
of
:::
all

::::
ψobs
i ::

is
::::::
written

:::::
ψobs.

:::::
These

:::::::::::
observations

::::
may

::
be

:::::
either

::::::::
synthetic

::
or

::::
real.

:

For the mean function , in this work
::
m

::
in

:::
Eq.

:
(1) a specific form

:
,

m(x;β,δ) = f(x;δ)Tβ(x)≡ f̃(xt;δ(xs))Tβ(xs), (2)

is used , where the superindexes s and t
::
in

:::
this

::::::
work.

:::
The

::::::::::::
superindexes

:
s
::::
and

:
t
:
refer to the spatial and temporal parts of5

the generic coordinate x, respectively, and δ(xs)
:::
and

::
δ are auxiliary parameters which are potentially space-dependent. The

purpose of the function f̃ is purely illustrative, showing that given the parameters δ, the function
::::
right

::::
hand

::::
side

:::::
with

:::
the

:::::::
function

:̃
f
::
is
::
to

::::::::
underline

::::
that f does not depend

::::::
depends

:
on the spatial part of x , and similarly

::::
only

:::
via

:::
the

::::::::::::::
space-dependent

:
δ
::::::::::
parameters,

::::
and that the β parameters do not depend on xt

:
,
:::
the

::::::::
temporal

::::
part

::
of

::
x.

::::
The

::::::::
temporal

::::::::
evolution

:::
of

:::
the

:::::
mean

:::::::
function

::
is

::
in

:::
this

::::::::
particular

:::::
form

:::::::::
determined

::::
only

:::
by

:::
the

:::::::
function

:::::::::::::::::::::::::::::
f(x;δ) , [f1(x;δ), . . . ,fnβ (x;δ)]T ,

:::
and

:::
for

::::
each

::
fi:::::

there
::
is10

:
a
::::::::::::::
space-dependent

::::::::
regression

:::::::::
coefficient

:::
βi. This

:::
The

:::::::::
parameter

::::::
vectors

::
δ
:::::::
contains

::::::::::::::
space-dependent

::::::::::
parameters

:::
that

::::::
affect

:::
the

::::
form

:::
of

:::
any

:::
of

:::
the

::
fi::

in
::

a
::::
way

::::
that

::::::
cannot

::
be

:::::::
modeled

:::::
with

:::
the

::
β

::::::::::
coefficients

::
in

:::
the

:::::::::
functional

::::
form

:::
of

:::
Eq.

:
(2)

:
.
:::
The

::::::
length

:::
of

::::
these

::::::::::::::
space-dependent

::::::::
δ-vectors

::
is
::::
nδ .

:::::
Given

:::
the

:::::::::
parameters

::
δ

::
for

:::
all

:::
the

:::::
inputs

::
in

::::
xobs

::::
and

:
a
:::
set

::
of

::::::::
functions

::
fi:::

for
::::::::::
constructing

:::
the

:::::
mean

::::::::
function,

:::
we

:::::
define

::::::
matrix

:::::::::
F ∈ Rn×nβ

:::::
with

:::::::
elements

:::::::::::::::
Fij = fi(x

obs
j ;δ),

:::::
where

:::
the

::
δ

:
is
::::
now

:::::::
specific

::
to

:::
the

:::::::
location

::::
xobs
i .

:
15

:::
The definition ofm

::::
above

:
is very general and can describe in practice a large number of realistic scenarios. However

::::::::::
Nonetheless,

the form of Eq.
:
(2) imposes the strong assumption of separation of space and time in that the β and δ parameters do not depend

on time. The explicit form of functions fi used to model the OCO-2 data are given below in Sect.2.2
::::
2.2.

:::
The

:::::::::
covariance

::::::::
function

::::::::
k(x,x′;θ)

:::::::
controls

:::
the

::::::::::
smoothness

:::
of

:::
the

:::::
draws

::
ψ

:::::
from

::
Ψ.

::
It
:::::::
outputs

:::
the

::::
prior

:::::::::
covariance

:::
of

:::
the

::::::
random

::::::::
variables

::
at

::
x
::::
and

:::
x′.

:::
The

:::::::::
parameter

::::::
vector

::
θ

:::::::
typically

::::::::
contains

::
at

::::
least

::::
one

:::::
scale

::::::::
parameter

::̀::::
and

:
a
:::::::::
parameter

::
τ20

:::::::::
controlling

:::
the

:::::::::
maximum

::::::::::
covariance,

:::
τ2.

::::
The

::̀:::::::::
parameters

::::::::::
correspond

::
to

:::
the

::::::
length

::::::
scales

::
of

:::
the

:::::::
random

::::::::::
fluctuations

:::
of

::
the

::::::::::
realizations

:::::::
around

:::
the

:::::
mean

::::::::
function,

:::
and

:::
the

::
τ
:::::::::
parameters

::::::::
describe

:::
the

:::::::::
amplitude

::
of

::::
that

:::::::::
fluctuation.

:::
By

::::::::
defining

:::
the

:::::::::
covariance

:::::
matrix

::::::::::
K ∈ Rn×n

::::
with

::::::::
elements

:::::::::::::::::::
Ki,j = k(xobs

i ,xobs
j ;θ),

:::
the

::::
joint

::::::::::
distribution

::
of

:::
the

::::
field

::
at
::::::::
observed

::::::::
locations

::
is

::::
given

:::
by

Ψobs ∼N (Fβ,K)) .
:::::::::::::::::

(3)25

::::::
Explicit

::::::
forms

::
of

::::::::
functions

::
m

::::
and

:
k
:::
are

::::::::
described

::
in
:::::

Sect.
:::
2.2

:::
and

::::
2.4,

:::::::::::
respectively.

:::::::::
Additional

:::::::
practical

:::::::::
guidelines

:::
are

:::::
given

::
in

::::::::
Appendix

::
A.

Bayesian statistics is a standard paradigm for analyzing data and uncertainties, and it is also widely used in geosciences

(Rodgers, 2000; Gelman et al., 2013). From the vantage point it provides, given
:::::
Given the observed data Ψobs = ψobs at some

finite set of points xobs, the object of interest of the
:::::::
Bayesian

:
inference problem in this work is the joint posterior distribution30

of the Gaussian process and the parameters,

p(ψ,β,δ,θ|ψobs) =
p(ψobs|ψ,β,δ,θ)p(ψ|β,δ,θ)p(β,δ,θ)

p(ψobs)
, (4)

7



where p(ψ|β,δ,θ) is the Gaussian process prior and p(β,δ,θ) is a prior on the Gaussian process hyperparameters. This

calculation
:
In

::::
this

::::::::
particular

::::::::
equation

::
β

::::
and

:
δ
::::::::

actually
::::::
denote

:::::::
spatially

:::::::
varying

:::::::::::::
hyperparameter

::::::
fields.

::::
The

:::::::::
calculation

:::
in

:::
Eq. (4) is not generally tractable for a huge number of inputs x, but posterior estimates of the GP, p(ψ|ψobs, β̂, δ̂, θ̂), can be

calculated
::
for

::
a
:::::
finite

::
set

:::
of

:::::
inputs

:
by conditioning on parameter point estimates θ̂, β̂, and δ̂. The first of these

:::::::::
covariance

::::::::
parameter

:::::::
estimate

::
θ̂ may be found by minimizing some loss function L, described5

θ̂ =
::

arg min
::::::

θ L(θ),
:::::

(5)

::::::::
described

::::::::
explicitly below in Sect.2.6,

θ̂ =arg minθ L(θ),

and for the second
:::
2.6.

::::::
Given

:
a
:::::

point
:::::::
estimate

:::
of

:::
the

:::::::::
parameters

::
θ
:::
and

:::
δ,

:::
the

:
β̂
::::::::::

parameters
::::
have

:
a closed-form expression,

given a point estimate of the parameters θ and δ, is given by10

E[β|Ψobs = ψobs,θ,δ] = (FTK−1F )−1FTK−1ψobs

V[β|Ψobs = ψobs,θ,δ] = (FTK−1F )−1.

E
:

[β|Ψobs = ψobs,θ,δ
:::::::::::::::

]= (FTK−1F )−1FTK−1ψobs

::::::::::::::::::::::::
(6)

Cov[β|Ψobs = ψobs,θ,δ] = (FTK−1F )−1,
:::::::::::::::::::::::::::::::::::

(7)15

:::::::
provided

::::
that

::
the

::::::::::::::
space-dependent

::
δ

:::
and

::
β

:::::::::
parameters

:::
do

:::
not

::::::
change

:::::::
between

:::
the

:::::
inputs

::
in

:::::
xobs.

::::
This

::::::::::
requirement

::::::
implies

::::
that

::
the

:::::::
solution

:::::
must

::
be

:::::
found

::::::
locally.

::::::::
Because

::
the

::::::
matrix

::
K

::::
here

::
is
::::::::
generally

:
a
:::::
dense

::::::
matrix

::
of

::::
size

:::::
n×n,

::::::
where

:
n
::
is
:::
the

:::::::
number

::
of

:::::::::::
observations,

:::
and

:::::
since

:
n
::::
may

:::
be

::::::::
extremely

:::::
large,

:::::
direct

::::::::
inversion

::
of

::::
this

:::::
matrix

::
is
::
in

:::::::
practice

::::::::::
impossible.

The δ parameters can be found approximately by finding
::
are

::::::
found

::::::::::::
approximately

::
in

:::
this

:::::
work

::
by

::
a

::::::::
three-step

:::::::
process:

::::
first

a point estimate of parameters β and δ before computing Eq.
:
is

::::::::
computed

:::::
using

:::
an

::::::::::
optimization

:::::::::
algorithm,

::::::
second,

::::::::::
parameters20

:
β
:::
are

:::::::::::
re-computed

:::
by

:::
Eq.

:
(6) , and by re-calibrating

::::
given

:::
the

:::::::
estimate

:::
of δ alone after

:::
from

::::
the

:::
first

::::::
stage,

:::
and

:::::
third,

:::
the

::
δ

:::::::::
parameters

:::::
alone

:::
are

:::::::::::
re-calibrated

::
by

:::::::::::
optimization

:::::
using

:::
the

:::::
newly

::::::
found

::
β

:::::::::
parameters. In practice this

::::::::
procedure

:
produces

stable results with the OCO-2 data, and for pathological data sets , repeated alternating optimization of the parameters may be

performed.
:::
The

:::::::::
calibration

:::::::
process

::
is

::::::::
described

::
in

:::::
more

:::::
detail

::
in

::::
Sect.

:::::
2.3.2.

:

Even though a full posterior distribution of the parameters is not obtained this way, the solution of the Gaussian process itself25

is Bayesian in that the posterior marginals at each x
::
x∗

:
are found by conditioning on the observations. In the satGP software,

the space-dependent β and δ parameters are fitted first, and any learning of the covariance parameters is done only after that.

For prediction in the context of Gaussian random functions, the properties of multivariate normal distributions are exploited

for calculating marginals of the random field Ψ at any set of points x.
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:::::
inputs.

:
The posterior distribution p(ψ∗|ψobs, θ̂, β̂) of the Gaussian process at a finite set of test inputs

:::::
some

:::
test

::::
input

:
x∗ can,

given point estimates β̂ and θ̂, be modeled according to Eq.
:
(3) with Ψ∗

Ψobs

∼N
f(x∗)T

F

 β̂,
 K(x∗,x∗) K(x∗,xobs)

K(xobs,x∗) K(xobs,xobs)

 , (8)

where Ψ and x have
::
the

::::::
vector

::
of

:::::
inputs

::::
has been divided into two parts -

:
– one for the test inputs

::::
input

:
x∗, and the other one

for the observations xobs. The predictive distribution
:::::::
notation

::::::::::
K(x∗,xobs)

:::::
refers

:::
to

:::
the

:::
first

::::
row

::::::
(minus

:::
the

::::
first

:::::::
element)

:::
of5

::
the

::::::::::
covariance

:::::
matrix

::::
with

::::::::
elements

:::::::::::::::::::::::
K(x∗,xobs)j = k(x∗,xobs

j ),
:::
and

:::
the

::::::
matrix

::
in

:::
the

:::::
lower

::::
right

::::::
corner,

::::::::::::
K(xobs,xobs)

::
is

:::
the

::::
same

::
as

::::::
matrix

::
K

:::
in

:::
e.g.

:::
Eq.

:
(3)

:
.
:::
The

:::::::
random

:::::::
variable at x∗ can then be written as Ψ∗|β̂, θ̂ ∼N (µ∗,Σ∗), where its moments

::::
mean

::::
and

:::::::::
covariance are given by

µ∗ = f(x∗)T β̂+K(x∗,xobs)K(xobs,xobs)−1(ψobs−Fβ̂) (9)

and10

Σ∗ =K(x∗,x∗)−K(x∗,xobs)K(xobs,xobs)−1K(xobs,x∗), (10)

and where the covariance Σ∗ is the Schur complement of K(x∗,x∗).

2.2 Overview and objectives of satGP

The satGP program is meant to be a general purpose Gaussian process toolbox with emphasis on applicability to large

remote sensing datasets.It features a selection of covariance kernels and routines for learning space-dependent mean function15

parameters and covariance parameters from data.With a given set of parameters, it computes posterior marginals and uncertainties

at the spatial resolution desired by the user, or generates samples from the process.Drawing samples from the prior is also

supported, and this can be utilized for devising synthetic data experiments to study the identifiability of the GP covariance

kernel parameters. This section goes through these capabilities and relevant computational details. Since the softwere is applied

in Sect. 4 to OCO-2 data, details pertaining to that particular case are included for illustration
:::
The

::::::::
formulas

::
in

:::
Eq.

:::
(8)

:
-
:::
Eq.

:::
1020

::::
work

::::::
equally

::::
well

:::::
when

:::
the

:::
x∗

:::::::
contains

:::::
more

::::
than

:::
one

:::
test

:::::
input.

::::::::
However,

:::
as

::
of

::::
now,

::
in

:::::
satGP

:::::
these

::::::::
equations

:::
are

::::::
solved

:::
for

:::::
single

:::
test

:::::
input

::
at

:
a
:::::
time.

:::::
When

:::::::::
computing

:::
Ψ∗

:::::
with

::::
these

::::::::
formulas,

::::::
satGP

::::
uses

::::::::::
observations

:::::
close

::
to

:::
x∗

::::
(see

::::
Sect.

::::
2.5),

::::
and

::
the

::::::
values

::
of

::
β

:::
and

::
δ

::::::::
calibrated

::
at

:::
x∗s.

2.2 Mean functions in satGP

The
:::::::
Equation

:::
(2)

::::
gives

:::
the

:
most general mean function form available in satGPis given by Eq. (2). The functions fi above are25

user-defined and, for ease of use,
:::::
satGP

::::::::
includes functionality for using a zero mean function, a spatially independent mean

function, and an arbitrary gridded array of valuesare available. The specific forms of fi used for the OCO-2 experiments in

9



Figure 1. Mean function m with components of f
:
fi:given by Eq.

:
(11). The solid lines give

:::
show

:
the mean function value

::
for

::::
each

:::
day,

fitted to local data
::
the

::::::
XCO2

:::::::::
observations, and

:::::
marked

:::
by the corresponding daily means are shown as dotsof the same color. The fit is not

perfect at all times due to e.g. smoothness constraints of the field, but it works well as the Gaussian process
:::::
OCO-2

:
mean function

:::::
results

:::
are

:::::::
discussed

::
in

::::
Sect.

::
4.4.

Sect.4 are given by
:
4
:::
are

:

f1(x) = sin
(

2πxt∆−1
period + δ

)
f2(x) = cos

(
4πxt∆−1

period + δ
)

f3(x) = 1

f4(x) = xt


(11)

where ∆year is
:::::::
∆period ::

is
::
for

:::::::
OCO-2 the duration of one year, and δxs

:
δ is a space-dependent phase shift. The function f1 fits

the summer-winter cycle, and f2 fits the semiannual cycle. It is assumed that these
::
for

:::
any

:::::
given

::
x,

:::
f1 :::

and
:::
f2 can be modeled

with the same δxs δ
:
parameters. The constant term is given by f3, and f4 gives the slow global trend. The

::
As

::
an

::::::::
example

::
of

:::
the5

::::
local

::::::::
behavior,

:::
Fig.

::
1
:::::
shows

:::
the

:::::
mean

:::::::
function

:
fit to the global

:::::::
observed

:::::
local

::::
daily

:
mean values of XCO2 from OCO-2 can be

seen in Fig.1
:::
for

::::::
several

::::::::
locations.

::::
The

:::::::::
WACCM4

:::::
ozone

:::::
study

::
in
:::::
Sect.

:::
4.2

:::::
added

::::
two

:::::
more

::::::::
functions

::
f5::::

and
::
f6::::::

similar
::
to

:::
f1

:::
and

:::
f2,

:::
but

::::
with

:::::::
different

:::::::
∆period:::::::::

parameters.

2.3 Learning β(xs) as a Markov random field
:::
the

::::::
spatial

:::::::::::
dependence

::
of

::
β

When not
::::
satGP

::
is
:::
not

:::::
used

:::
for learning GP covariance parameters or generating synthetic training sets, the finite set of test10

inputs x∗ for GP calculation is taken in satGP to be a grid with predefined geographical and temporal extents and resolution.

Solving the GP marginalization and sampling problems then amounts to solving Eq.
:
(9) and (10) at each corresponding space-

time point. Since e.g. sources, sinks and timing of seasons are local, the mean function should be different from one spatial

grid point to another. This is achieved by modeling the β(xs)
:
β parameters as a Markov random field, which are often used

in geophysics as a computational tool to solve large spatial statistics or inference problems. In practice what follows explains15

how the spatial dependence can be resolved using computational statistics. The MRF imposes the condition that neighboring
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Table 1.
:::
Most

:::::::::
commonly

::::
used

::::::
notation

::::::
related

::
to

:::::
inputs

:::
and

:::::::::::::
mean/covariance

:::::::
functions

::
in

::::
Sect.

:
2
::::

and
::
the

:::::::
Markov

::::::
random

::::
field

::
in

::::
Sect.

::::
2.3.1.

:::
The

::::::
second

::::::
column

::::
gives

:::
the

::
set

::
in

:::::
which

::
the

::::::
symbol

:::::::
belongs,

::
or

::
in

::::
some

:::
case

:::
the

::
set

::::
that

::
the

::::::
symbol

::
is

:
a
:::::
subset

::
of.

::::
The

::::::
domain

:::
sets

:
in
:::
the

::::::
second

:::::
column

:::
are

::::::
defined

::
as

::::::::::::::::::
Dlat , [latmin, latmax],:::::::::::::::::::

Dlon , [lonmin, lonmax], :::::::
Dt , R+,

:::
and

:::::::::::::::::::::::
D ,Dlat×Dlon×Dt ⊂ Rq ,

:::
and

::
V

:::::
denotes

:::
the

:::
set

::
of

::::
nodes

::
in

:::
the

::::
graph

::::::::
described

:
in
::::
Sect.

:::::
2.3.1.

:::::
Symbol

: :
∈
: ::::::

Meaning

:
x
: ::

D
:::::
Generic

:::::::::::
spatio-temporal

:::::::
coordinate

::::
vector

:

::
xt

::
Dt: ::::::

Temporal
:::
part

::
of

:::::::
coordinate

::::
vector

::
x,
:::::::::
implemented

::
as

:::::
seconds

::::
since

:::
1970

:

::
xs

::::
Rq−1

:::::
Spatial

:::
part

:
of
:::::
generic

::::::::
coordinate

:
x,
::
in

:::::
practice

:::::::::::::
xs = [xlat,xlon]T

:

:::
xlat

:::
Dlat: ::::::::

North-south
:::::::
component

::
of
:::::::
coordinate

:::::
vector

:
x
::
as

:::::
defined

::
by

:::::
variable

::::
area

::
in

:::
Table

::
2

:::
xlon

: ::::
Dlon ::::::

East-west
::::::::

component
::
of

:::::::
coordinate

::::
vector

::
x

:
as
:::::
defined

::
by

::::::
variable

:::
area

:
in

::::
Table

:
2

::
xij

: :::::::::
Dlat×Dlon :::::

Spatial
:::::
location

::::::::::
corresponding

:
to
:::
ith

:::::
latitude

:::
and

::
jth

:::::::
longitude

::
in

::
the

::::
satGP

:::::
regular

:::
grid

::
x∗

::
Rq

: ::::::
Gaussian

:::::
process

:::
test

::::
input

:
–
::
the

:::::::::::
spatio-temporal

:::::
location

::::
where

:::
the

::
GP

::
is

::::::
evaluated

:

:::
xobs

: ::::
Rn×q

: :::::
Matrix

:
of
::::::::
space-time

::::::
locations

::::
where

::
the

::
n
::::::::
observations

::
in

::::
ψobs

:::
were

::::
made

:

:
β
: :::

Rnβ
: ::::

Mean
::::::
function

::::::::
coefficients,

::
see

::
m

:::::
below.

:::
May

::
be

:::::::::::
space-dependent.

::
βν :::

Rnβ
: :

β
::::::::
coefficients

::
for

:::
the

::::
spatial

::::::
location

:::::::::
corresponding

::
to

::::
graph

:::
label

::
ν
:
in
:::

the
::::
MRF

:::
βij

:::
Rnβ

: :
β
::::::::
coefficients

::
at

:::
grid

:::
point

:::
xij

::
in

::
the

::::
satGP

::::::::::::
latitude-longitude

:::
grid

::
βV: :::::

Rnβ×V
: :

β
::::::::
coefficients

::
for

::
all

:::
grid

:::::
points

:
in
:::
the

::::
satGP

::::::::::::
latitude-longitude

:::
grid

:
δ

:::
Rnδ

: :::::::::::
Space-dependent

::::
mean

::::::
function

:::::::
parameters

:::
that

:::::
cannot

::
be

:::::
learned

::
via

:::
Eq. (6)

:::
and (7)

::
δν :::

Rnδ
: :

δ
:::::::
parameters

:::
for

::
the

:::::
spatial

:::::
location

::::::::::
corresponding

:
to
::::
graph

::::
label

:
ν
::
in

::
the

::::
MRF

::
δV :::::

Rnδ×V
: :

δ
::::::::
coefficients

::
for

::
all

:::
grid

::::
points

::
in

::
the

:::::
satGP

:::::::::::
latitude-longitude

:::
grid

:
θ

:::
Rnθ

: :::::::
Covariance

::::::
function

::::::::
parameters

:
of
::
all

:::
the

:::::::
subkernels

::
of

::
the

:::::::
multi-scale

:::::
kernel

:::
θ(·) :::::

R
nθ(·)

:::::::
Covariance

::::::
function

::::::::
parameters

:
of
:::
the

::::::
subkernel

::
in

::
the

::::::
subindex

:::
(·)

:
I

:
-

:::
The

::
set

::
of

::
all

::::::::::
spatial/temporal

::::::
indexes

::
for

:::
each

::
x;

:::
size

::
of

::
|I|

:
is
::::::
therefore

::
q.

:::
IST :::

⊆ I
:::::::::::
Spatio-temporal

:::
index

:::
set:

::::::::::
corresponding

:
k
:
is
::

a
:::::
function

::
of

::::
space

:::
and

:::
time.

::
IS :::

⊆ I
:::::
Spatial

::::
index

::
set:

::::::::::
corresponding

:
k
::
is

:
a
:::::
function

::
of

::::
space

::::
only.

::
`c,

::::
c ∈ I

:::
R+

:::::::
Covariance

:::::
kernel

::::::::
length-scale

:::::::
parameter

::::
along

:::
axis

:
c

::
`I′: :::::

R+|I′|
:::::::
Covariance

:::::
kernel

::::::::
length-scale

:::::::
parameters

::::
along

::
all

::::::::
dimensions

::
in

:
I′
:

:

ν

: :

V
: :::::::::::::::::::::::::::::::::::::::::::::::::

Label of a specific node of the graph describing the MRF. In Sect. 2.4 ν is a
parameter (∈ R+) used to define the Matérn kernel smoothness parameter.

::
νij

: :
V
: ::::

Label
::
of

::
the

:::
node

::
of
:::
the

::::
graph

:::::::::
corresponding

::
to

::
the

:::::
spatial

:::::
location

::
of

:::
xij

::
∂ν :::

⊆ V
::
Set

::
of

::::
nodes

::
in

::
the

::::
graph

:::
with

::::
edges

::
to
::::
node

:
ν

::
Ψ

:
-

::::::
Random

:::
field

::
of

::
the

::::::
quantity

:
of
:::::
interest

::::
ψobs

::
Rn

: ::::
Values

::
of
:::
the

::::::::
observations

::
of

::
the

:::
field

::
at

::::::
locations

::::
xobs

:
ψ

:::
RD

:::::::
Realization

::
of
:::
the

:::::
random

:::
field

::
Ψ

::::::
k(x,x′)

:
R

:::::::
Covariance

::::::
function

::::
value

::
of

::::
inputs

:
x
:::
and

::
x′

:::::::
m(x;β,δ)

: :
R
: ::::

Mean
::::::
function

:::
value

::
at
:
x
::::
with

:::::::
parameters

:
β
:::

and
::
δ,

::::::::::::::::
m(x;β,δ) = f(x;δ)T β

:

:::::
f(x;δ)

:
R
: ::::

Vector
::
of

::::::
functions

::
to
::::::
construct

:::
the

::::
mean

:::::
function

::
at

:
x
:::
with

::::::::
parameters

:
β
:::
and

:
δ

::
F

:::::
Rn×nβ

: :::::
Matrix

:::
with

::::::::
coefficients

::::::::::::
Fij = fj(x

obs;δ
i )

::
K

::::
Rn×n

: :::::::
Covariance

:::::
matrix

:::
with

::::::
elements

:::::::::::::::
Kij = k(xobsi ,xobsj )
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grid cells should not be too different from each other. How different they are allowed to be is a modeling choice, see Appendix

A.

This MRF is
:::
This

::::::
section

::::::::
describes

::::
how

:::
the

::::::
spatial

::::::::::
dependence

::
is

:::::::
resolved

::
in

:::::
satGP

:::::
using

::::::::::::
computational

::::::::
statistics.

::
In

:::::::
addition

::
to

::::::
solving

:::
this

::::::
spatial

:::::::
problem,

:::
the

::::::::
marginal

::::::::::
distributions

::
of

:::
the

:
β
::::::::::
parameters

::::
need

::
to

::
be

::::::
solved

::
for

::::
each

:::::::::
individual

:::::
vertex.

:::::
Point

::::::::
estimates

:::
of

:::
the

::
δ

:::::::::
parameters,

::::::::::
mentioned

::
in

::::
Sect.

::::
2.1,

:::
are

::::::
found

::
at

:::
the

:::::
same

::::
time

::::
with

:::
the

::
β

::::::::::
parameters.

::::
The5

::::::::
intimately

:::::::::
connected

:::::
spatial

::::
and

::::
local

::::::::
problems

:::
are

::::::::
described

::
in

:::
the

::::::::::
subsections

::::::
below.

2.3.1
:::::
Mean

::::::::
function

:::::::::::
parameters

::
β

:::
are

:::::::::
described

::
as

:
a
::::::::
Markov

:::::::
random

::::
field

:
A
:::::::

Markov
:::::::

random
:::::

field
::
is

:
a
:::::::::::

probabilistic
::::::
model

::::
that

::::::::
describes

:::
the

::::::::::
conditional

::::::::::::
independence

:::::::
structure

:::
in

:
a
:::

set
:::

of
:::::::
random

::::::::
variables.

::
In

:::::
satGP,

:::
an

::::
MRF

::
is
::::
used

::
to
::::::::
describe

::::
how

::
the

::
β
::::::::::
coefficients

::::::
depend

:::
on

::::
each

::::
other

::::::::
spatially.

::::
The

::::
MRF

::::
used

::
in
::::::
satGP

:::::::
assumes,

::::
that

::
in

:::::::
addition

::
to

::::
data,

:::
the

::
β

::::::::::
coefficients

::::
only

::::::
depend

::
on

:::
the

:::::::::
coefficient

::::::
values

::
in

:::
the

::::::::::
neighboring

::::
grid

::::::
points.10

::::::::::
Technically,

:::
the

::::
MRF

::
in
::::::
satGP

::
is an undirected graphical model G = (V,E) (Lauritzen, 1996)

:::::::::
G , (V,E)

::::::::::::::
(Lauritzen, 1996)

:
,

with the set of vertices V = {νij |i= 1 . . .nlat, j = 1 . . .nlon} and edges E = {(νi,j ,νi+1,j)|i= 1 . . .nlat− 1, j = 1 . . .nlon}∪ {(νk,l,νk,l+1)|k = 1 . . .nlat, l = 1 . . .nlon− 1}.
The vertices

::
or

:::::
nodes

::::::::::::::::::::::::::::::
V , {νij |i= 1 . . .nlat, j = 1 . . .nlon}:::

and
:::::
edges

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
E , {(νi,j ,νi+1,j)|i= 1 . . .nlat− 1, j = 1 . . .nlon}∪ {(νk,l,νk,l+1)|k = 1 . . .nlat, l = 1 . . .nlon− 1}.

:::
We

:::
use

::::
both

::
ν

:::
and

:
νij correspond to the mean function parameters

::
to

::::::
denote

:
a
:::::::
generic

:::::
vertex

::
in

::
a
:::::
graph,

::::
and

::
in

:::
the

:::::::
specific

::::
MRF

::::::
setting

:::::
used

::
in

:::::
satGP,

:::::
each

:::
νij

::::::::::
corresponds

:::
to

:::
the

::::::
random

::::::
vector

:
βij at grid point (i, j). This Markov property

::::
After15

::::::
finding

:::
the

:::::::
marginal

:::::::::::
distributions

::
of

:::::
these

::::::
vectors

::
in

:::
the

:::::
graph

:::
the

::::::::
maximum

::
a
::::::::
posteriori

:::::
(MAP)

::::::
values

::
of

:::
βij

:::
are

:::::
used

::
as

:::
the

:::::::::
parameters

::
of

:::
the

:::::
mean

:::::::
function

:::
for

:::
the

:::::
spatial

:::::::
location

::::::::::::
corresponding

::
to

:::
the

:::::
(i, j)

:::::::
element.

:

:::
The

:::
set

::
of
::::::

edges
::
E

::::::
defines

:::
the

:::::::
Markov

::::::::
structure

:::
of

:::
the

::::::
graph,

:::
i.e.

::::
how

:::
the

::
β
::::::::::
coefficients

::
of

::::
the

:::::
nodes

:::::::
depend

::
on

:::::
each

:::::
other.

::::
For

:::
any

::::::::
non-edge

::::::
vertex

:::
νi,j

:::::
there

:::
are

:::::
edges

::
in
::
E
::
to

:::::
east,

:::::
south,

:::::
west,

:::
and

::::::
north,

:::::::
meaning

::::
that

::::
only

::::
these

:::::::::::
neighboring

:::::::
vertices,

:::::::::
collectively

:::::::
denoted

:::
by

:::::::::::::::::::::::
∂νij , {ν ∈ V|(ν,νij) ∈ E},::::::

directly
:::::
affect

:::
the

::::::
vertex.

:::::
More

::::::::::
specifically,

:::
the

:::::::
Markov

:::::::
property20

::::::
defined

:::
by

:::
the

:::
set

::
E implies that the probability of the β -parameters

:::::::::
parameters

:
of latitude i and longitude j is given by

p(νij) =
∫
∂νij

p(νij |∂νij )p(∂νij ), where ∂νij = {ν ∈ V|(ν,νij) ∈ E}
:::::::::::::::::::::::::::
p(βij) =

∫
∂νij

p(νij |∂νij )p(∂νij ),
:::::
where

::
it

::
is

:::::::::
understood

:::
that

:::
νij

:::
and

::::
∂νij::::

refer
:::::::
directly

::
to

:::
the

::::::
random

::::::::
variables,

:::
βij

:::
and

:::
the

::::
joint

::::::::::
distribution

::
of

:::
the

::
β

:::::::::
coefficients

::
of

:::
its

:::::::
adjacent

:::::::
vertices,

::::::::::
respectively.

Since the maximal cliques of this graph are the connected pairs of vertices
:::
The

:::::
satGP

:::::::
program

:::::
needs

::
to

:::::::
compute

:::
the

::::::::
marginal25

::::::::::
distributions

::
of

:::::
each

:::
βij

::
to

:::::
learn

:::
the

::::::::::::::
spatially-varying

:::::
mean

::::::::
function

::::::::::
parameters.

::::
Due

::
to

:::
the

::::::
lattice

:::::::
structure

:::
of

:::
the

:::::
graph,

according to Hammersley and Clifford (1971) the full joint distribution of the graph p(V) factors as
∏

(ν,ν′)∈E
1
Zφ(ν,ν′),

where Z is called a partition function and φ are
:::::::
so-called

:
compatibility functions. One reasonably efficient way to solve

marginals for each vertex in such a graph is to use
::::
This

::::::::
suggests

:::
that

:::
an

::::::::
algorithm

::::
that

::::::
solves

::::
local

:::::::::::
subproblems

:::::
could

:::
be

::::
used.

::::
One

:::::::
possible

::::::
choice

::
is

:
the variable elimination algorithm, which is an exact standard algorithm suitable for undirected30

graphs of moderate size. To make the computation faster, satGP currently uses a modified version to compute
::::::
modifies

::
it
:::
by

:::::::::
computing each diagonal in the graph

:
,
::::::
shown

::
in

::::
Fig.

::
2,

:
in parallel from ν0,0 to νnlat,nlon and back, conditioning each νij

:::
then

:::::
back

::::
from

::::::::
νnlat,nlon

:::
to

::::
ν0,0.

:::::
Each

:::
νij ::

is
::::::::::
conditioned

:
on the previously evaluated vertices in ∂νijwithout introducing

:
,

:::
but the diagonal edges of the reconstituted graph

:::::::
so-called

:::::::::::
reconstituted

:::::
graph

:::
are

:::
not

:::::::::
introduced, as would be normally done.
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The program also
:::::::
normally

:::
be

:::::
done.

:::::
When

:::::::
starting

:::::
again

::::
from

:::
the

::::::
bottom

:::::
right

:::::
corner

:::::
after

:::::::::
computing

::::::::
diagonals

:::::::::
numbered

::::::
1 . . .N ,

:::
the

:::::::::
(N + 1)th

:::::::
diagonal

::
is

:::
not

::::::::::
conditioned

:::
on

:::::::::
previously

::::::::
computed

::::::
nodes.

:::::
Once

:::
the

::::::::
diagonals

::::
nlon:::

and
::::::::::::
N +nlon− 2

:::
that

::::::::::
“sandwich”

:::
the

::::
node

::
ν

::::
from

::::
both

:::::
upper

::::
left

:::
and

:::::
lower

::::
right

:::::
sides

::::
have

::::
been

:::::::::
computed,

:::
the

::::::::
posterior

:::::::::
distribution

:::
of

::
βν:::

—

:::
and

:::
any

:::::
other

:::::
vertex

:::
on

:::
the

::::::::::::::
(N +nlon− 1)th

:::::::
diagonal

:::
—

:::
can

::
be

:::::::::
calculated.

:

:::
The

:::::::::::
modification

::
of

:::
the

:::::::::
algorithm

:::::
loses

:::
the

::::::
ability

::
of

:::
the

:::::
upper

:::::
right

:::
and

::::::
lower

:::
left

:::::::
corners

::
to

:::::::::::
communicate

::::::::::
effectively,5

:::
but

::::
since

:::::
most

::::::
remote

::::::
sensing

::::
data

::::
sets

::::::
contain

::
at

::::
least

:::::
some

:::::::::::
observations

:::
for

::::
some

::::
time

::::::
period

:::
for

::::
most

::::::
nodes,

:::
the

::::::::
far-away

:::::::::
information

::::
does

:::
not

:::::
affect

::::::
results

::
in

:::::
many

:::::::
practical

::::::::
scenarios.

::::::::::
Techniques

::::
such

::
as

:::::::::
generalized

:::::
belief

::::::::::
propagation

::::::::::::::::::::::::::
(Wainwright and Jordan, 2008)

::::
could

:::
be

::::
used

:::
to

:::::
obtain

::
a
:::::
better

:::
fit

::
to

:::
the

:::::
data,

::
in

::::
case

::
a
::::
need

::::::::
emerges

::
to

:::::::
improve

:::
the

::::::
spatial

::::::
fitting

::
of

:::
the

:::::
mean

::::::::
function

::::::::::
coefficients.

:::
The

::::::
results

::::::
should

:::
not

::::::
change

:::
due

::
to

:::::::
changes

::
in

:::
the

::::::::::
user-chosen

::::
grid

:::::::::
resolution,

:::
and

:::
for

:::
this

::::::
reason

:::::
satGP

:
inversely weights10

the edges exponentially according to the distances between the (geographical) coordinates corresponding to the connected

nodes. This rate of exponential decay is user-configurable . The structure of the MRF and the approximate elimination order

are shown in Fig. 2
::
by

:::
the

::::::::
dscale

:::::::::
parameter,

:::
see

::::::::
Appendix

::
A.

ν0,0

∂ν

∂ν ν ∂ν

∂ν

νnlat,nlon

1st 2nd 3rd 4th (nlon)
th

(nlon + 1)th

(nlon + 2)th

(N − 1)th

N th

(N + 1)th

(N + nlon − 3)th

(N + nlon − 2)th

(N + nlon − 1)th

(2N − 4)th

(2N − 3)th

(2N − 2)th

(2N − 1)th

SW

NE

Figure 2. The marginal distribution of vertex ν, p(ν), is conditional only on the neighbors ∂ν1 . . .∂ν4 :
in

::
∂ν:(

:::::::
connected

::
to

:
ν
::::
with red edges)

due to the Markov structure in the pictured lattice graph. Each connected pair is a maximal clique in this particular case. For effective

solving, the vertices on the diagonal dashed lines are computed simultaneously making the algorithm non-exact. The order numbers labeling

the diagonal lines represent an ordering in which the diagonals can be computed in parallel to get all the marginals inO(N) wall time, where

N = nlat +nlon− 1
:::::::::::::::
N , nlat +nlon− 1. The (N +1)th computation

:::::::
Southwest

:::
and

:::::::
northeast

::::::
corners

::
of

:::
the

::::::
domain

:::
are

:::::
labeled

::::
SW

:::
and

::
NE

:
in the corner is not conditioned on already-computed neighbors

::::
graph.

::::
The

:::
final

:::::
values

::
of
:::
the

::::::::
parameters

:::
are

:::::::
obtained

::::
when

::::::::
diagonals

:::
from

:::
N to avoid double counting data

::::::
2N − 1

:::
are

:::::::
computed.

2.3.2
::::::::::
Computing

:::
the

:::::::::
individual

::::::::
posterior

:::::::::
marginals

:::::::::::::
p(βν |ψobs,θ)

:
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::::::
Assume

::::
that

:::
for

:::
the

:::::
vertex

::
ν

::
in

:::
Fig.

::
2

:::
the

::::::::
neighbors

::::::
marked

:::
∂ν::::

have
::::
been

:::::::::
computed.

::::::::::
Computing

:::
the

:::::::
marginal

::::::::::
distribution

::
of

::
β

:::
and

::
an

::::::::
estimate

::
of

:
δ
::
at
::
ν,
:::::::
referred

::
to
::::::
below

::
as

:::
βν :::

and
:::
δν ,

::
is

::::::
carried

:::
out

::
in

::::::
several

:::::
steps.

::::::
These

::::
steps

::::
take

:::::
place

:::::
inside

:::::::
solving

::
the

::::::
spatial

:::::::
problem

:::::::::
described

:::::
above:

:::
the

:::::
steps

:::::
listed

:::::
below

:::
are

:::::::::
computed

:::
for

::::
each

::::::
vertex,

::::::::::::
corresponding

::
to

:
a
::::::

spatial
::::::::
location.

:::
The

:::::::::::
computation

::::
uses

:::::::::
information

:::::
from

:::::::::
previously

::::::::
computed

::::::
points

::
as

::::
prior

:::::::::::
information.

In the particular form
:
of

:::
the

::::::
mean

:::::::
function

::
m

:
used for OCO-2 data in Eq.

:
(11), the phase-shift parameter δ cannot be5

estimated with regression like
::
the

::::
way

:
β

:
is
::::::
found in Eq. (9) and (10). For this reason, the nonlinear space-dependent δ-

parameters are found with an optimization algorithm from the NLOpt package
:::::::::::::
(Johnson, 2014), by default the BFGS algo-

rithm, before finding β̂ with Eq.(9) and (10), and after
::::

(6).
:::::
After obtaining β̂ the δ parameter is

:::::::::
parameters

:::
are

:
re-optimized

given the β̂. For calibrating the δ parameters for vertex
:::
The

:::
full

:::::::::
calibration

:::::::
process

:::
for

:
a
::::::

single
:::::
graph

:::::
node ν , the quantity∑n

j=1(m(xν ;βν , δν)−ψj)2 +
∑
j′∈∂ν(δν − δj′)2 is minimized.Here the

:::::::
proceeds

::
in

:::
the

::::::::
following

:::::::
manner:

:
10

1.
:::::
Select

:::
nν ::::::::::

observations
:::::
ψobs
ν ::

of
:::
the

:::::::::
observable

::::
that

:::
are

:::::
close

::
in

::::::
spatial

:::::::::
covariance

::
to
:::

the
::::

test
:::::
input

:::
x∗,

::
in

::::
this

::::
case

:::
the

:::::
spatial

:::::::
location

::::::::::::
corresponding

::
to

::::::
vertex

::
ν.

:::
The

::::::::
selection

::::::
process

::
is
::::::::
described

::
in
:::::
detail

::
in
:::::
Sect.

:::
2.5.

:

2.
::::
Find

:
a
:::::::::
best-guess

:::
δν ::::

(and
:::
βν ,

:::::
which

::
is
:::
not

:::::
used)

:::
by

:::::::
running

:::
the

:::::
BFGS

:::::::::::
optimization

::::::::
algorithm

::::::::::::::
(Nocedal, 1980)

::
to

::::
find

::
an

::::::::::
approximate

:::::::::
maximum

:
a
:::::::::
posteriori

:::::::
estimate

::
by

:::::::::
computing

:

β̃ν , δ̃ν
::::

= arg min
β,δ

{ nν∑
j=1

(m(xν ;βν , δν)−
::::::::::::::::::::::::::

ψobs
ν

:::
j)

2

::
15

+
∑
ν′∈∂ν

(
(δν − δν′)T (δν − δν′)

::::::::::::::::::::::::

(12)

+(βν −βν′)T (βν −βν′)
)}
.

::::::::::::::::::::::::::::

:::
The

:
first sum runs over the training data selected by the observation selection method described in Sect.2.5

:::
2.5,

::::
and

:::
the

::::::
second

:::
sum

:::::::::
constrains

:::
the

:::::::::
parameter

:::::
values

:::::
close

::
to

:::::
those

::
in

:::
∂ν . This optimization problem is very simple since there

are few β
:::
and/or δ parameters for the individual vertices. The complexity introduced by the interactions described by the20

edges is taken care of by

3.
:::::
Given

:::
δ̃ν ,

::
an

::::::::
estimate

::
of

:::
the

:::
GP

::::::::::
covariance

:::::::::
parameters

::̃
θ

:
–
::::
e.g.

::::
from

::
a
:::::::
previous

::::::::::
simulation

::
or

:
a
::::

best
:::::
guess

::
–
::::
and

:::
the

::::::::::
observations

:::::
ψobs
ν ,

:::::::
compute

::::::::::::::
E[βν |ψobs

ν , θ̃, δ̃ν ]
:::
and

::::::::::::::::
Cov[βν |ψobs

ν , θ̃, δ̃ν ]
:::
via

:::
Eq. (6)

:::
and (7)

:
.
:::::::
Together

:::::
these

::::
give

::::::::::::::
p(βν |ψobs

ν , θ̃, δ̃ν).

::::
Since

::::
this

::::::::::
computation

::::
used

::
a
:::
flat

:::::
prior,

:::
this

::
is,

:::
by

::::::
Bayes’

::::::::
theorem,

::::::::::
proportional

::
to

:::
the

:::::::::
likelihood

::::::::::::::
p(ψobs

ν |βν , θ̃, δ̃ν).
:

4.
::::
Find

:::
the

:::::::
posterior

::::::::
marginal

::::::::::
distribution

::
of

:::
βν ::

by
::::::::
applying

::::::
Bayes’

:::::::
theorem

::::
and

:::::
using

:::
the

::::::::
computed

:::::::::::
distributions

::
at

:::
the25

::::::::::
neighboring

:::::
nodes

::
as

:::
the

::::
prior.

::::
Due

::
to

:::
the

::::::
Markov

::::::::
structure

:::
this

:::::::
becomes

:::::::::::::::::::::::::::::::::::::::::::::::::::::
p(βν |ψobs

ν , θ̃, δ̃ν)∝ p(ψobs
ν |βν , θ̃, δ̃ν)

∏
νij∈∂ν p(β

ij |ψobs
νij , θ̃, δ̃νij ).

:
If
:::
the

::::::
spatial

:::::::
location

::::::::::::
corresponding

::
to

::
ν
::::
does

:::
not

:::::
have

:::
any

::::
data

::
to

::::::
inform

:::
the

::
fit

:::
(if

::::
ψobs
ν ::

is
:
a
::::::::::
zero-length

:::::::
vector),

::::
then

::::::::
parameter

::::::
values

::::
from

:::
∂ν :::

will
:::::::::
determine

:::
the

::
fit.

:
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5.
:::::
Using

:::
the

:::
βν :::::::

obtained
::
at

:::
the

:::::::
previous

:::::
step,

::::::::::
re-optimize

::::
only the approximate elimination algorithm described above

::
δν

:::::::::
parameters

::
as

:::::
above

::
in

::::
step

:::::::
number

::
2.

:::::
Since

::
βν::

is
:::
not

::::::
varied,

:::
the

:::::
term

:::::::::::::::::::
(βν −βν′)T (βν −βν′) ::

in
:::
Eq. (12)

:::::
plays

::
no

::::
role

::::
here.

:::
The

:::::
mean

:::::
value

::
of

:::
the

::::::::::
distribution

::
of

::
βν:::::::

coming
:::
out

::::
from

::::
step

::
4

::::::::::
corresponds

::
to

:::
the

:
β̂
::
in
::::
e.g.

:::
Eq.

::
9,

:::::
where

:::
x∗

::::::
would

:::
now

:::::
refer

::
to

:::
the

:::::
spatial

:::::::
location

:::
of

:::::
vertex

::
ν.

:::::::::
Similarly,

::
in

::::
case

::::::
δ-type

:::::::::
coefficients

:::
are

:::::
used,

:::
the

::::::::
functions

::
fi::::

will
::::::
depend

:::
on

:::
the

::::
final

:::
δν5

:::::
values

::::::::
computed

:::
in

:::
step

::
5.
::::
The

:::
full

::::
sets

::
of

::
β

:::
and

::
δ

:::::::::
coefficients

:::
for

:::
all

:::
the

::::::
vertices

::
in
:::

the
::::::
graph

::
are

:::::::
denoted

:::
by

:::
βV :::

and
:::
δV ,

::::
and

::
the

::::
sets

::
of

::::::::
calibrated

::::::
values

:::
are

::::::
written

:::
β̂V:::

and
:::
δ̂V .

2.4 Covariance functions in satGP

The smoothness, amplitude, and length scale
::::
scales

:
of the Gaussian process

::::::::::
realizations are determined by the covariance

kernel used, and this choice much determines how the result of the computation looks like. The satGP program supports several10

different types of covariance function components for forming the full covariance function k in Eq. (1). The options available

reflect the properties that can be expected in remote sensing data – varying smoothness and meridional and zonal length scales,

potential periodicity, and changing the orientation of the data-informed and uninformed axes according to wind speed and

direction. This section lists the available covariance function formulations. For further intuition regarding the parameters, also

see Appendix A. ,
::::
and

::::
other

::::::
forms

:::
may

:::
be

:::::
easily

:::::
added

::
in
:::
the

:::::
code.

:
15

For convenience, let

ξ`I I
γ(x,x′)=,

:

∑
c∈I

∣∣∣∣xc−x′c`c

∣∣∣∣γ = ‖P I(x)−P I(x′)‖γΓ, (13)

where γ > 0 is
:
a

::::::::
parameter

::::::::::
controlling the exponent, I ⊆ {xs,xt}

::::::::
parameters

:::
`c :::

are
:::::
length

:::::
scale

::::::::::
parameters,

::::
and

:
I
:
is a set

of dimensions of the input, with xs referring to latitude and longitude and xt to time. The P I matrix projects x onto in-

dices
::::::::::
/dimensions

::
in

:
I , and Γ is a diagonal covariance matrix with elements `γc ::::::

diagonal
::::::::

elements
:::
`2c , and the notation ‖r‖Γ20

means rTΓ−1r. The
:::::
stands

::::
for

:::::::::

√
rTΓ−1r,

::::::
where

:
r
::

is
:::

an
::::::::
arbitrary

:::::
vector

:::
of

:::
the

::::::::::
appropriate

::::
size.

::::
For

::::::
remote

:::::::
sensing

::::
data

::::
used

::
in

:::
this

:::::
work,

:
space-only variables are denoted IS and

::::
form

:::
the

:::
set

:::::::::::::
IS , {lat, lon},

:::
and

:::
for

:
spatial and temporal variables

together are denoted IST ::
the

:::::::
notation

::::::::::::::::
IST , {lat, lon,t}

::
is

:::::
used.

:::::::
Notation

:::
lat

::::
and

:::
lon

:::::
refer

::
to

:::
the

::::::
spatial

::::::::::
components

::
of

:::
x,

:::::::::
collectively

::::::
earlier

:::::::
referred

::
to

::
as

:::
xs,

:::
and

:
t
:::::
refers

::
to

:::
the

::::::::
temporal

:::::::::
component.

::::
The

::::
form

::
of

::
ξ
::
in

:::
Eq. (13)

::::::
implies

::::
that

::
the

::::::::
different

:::::::::
dimensions

::::
have

:::::::
separate

::::::
length

::::
scale

::::::::::
parameters

::
`.

:::
The

::::::::
exponent

::
γ

::
in

:
ξ
:::
is,

:::::::
however,

::::::
shared

:::::::
between

:::
the

::::::::::
dimensions.

::::
For

:::
the25

::
set

::
of

:::
all

:::::::::::
`-parameters

::::
over

:
a
:::
set

::
I ′

::
of
::::::::::

dimensions
:::
we

:::::
write

:::
`I′ .:::

All
:::
the

:::::::::
covariance

::::::::
functions

::::::
below

::::::
depend

:::
on

:
a
:::::::::
parameter

::
τ ,

:::::
square

::
of

::::::
which

:::::::::
determines

:::
the

:::::::::
maximum

:::::::::
covariance

:::
that

::
is

:::::::
attained

:::::
when

:::::
x= x′.

The exponential family of covariance functions with parameters θ = (γ, l,τ)
:::::::::::::::
θexp , [τ,`IST ,γ]T

:
is defined by the covariance

function

kexp(x,x′;θ,Iexp
::

)=,
:
τ2 exp

(
−ξ`I IST

::

γ(x,x′)

)
. (14)30

The exponent γ controls the smoothness of the samples from the Gaussian process, with γ = 2 yielding infinitely differentiable

realizations.
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The Matérn family of covariance functions, with θ = (ν,`I , τ)
:::::::::::::::
θM , [τ,`IST ,ν]T is given by the covariance

kM(x,x′;θM
:

)=,
:

τ2sν

Γ(ν)2ν−1
Kν(s), (15)

where s= 2
√
νξ1
`I

(x,x′)
::::::::::::::::
s= 2

√
νξ1
IST

(x,x′) and ν controls the smoothness parameter usually denoted by α via α= ν+ q
2 .

The function Kν is the modified Bessel function of the second kind of order ν. With q = 1, the value ν =∞ corresponds to

the squared exponential kernel and ν = 0.5 to the exponential kernel with γ = 1. Despite this similarity between the Matérn5

and exponential kernels, the realizations of the random function from the processes with values 1
2 < ν <∞ do not correspond

to those with the kernel kexp with any value of γ.

A periodic kernel with θ = (τ,`per,θexp)
::::::::::::::::
θper , [τ,`IS , `per]

T
:
is defined in satGP by

kper(x,x
′;θ,Iper

::
)==,

:
τ2exp

−2sin2
(
π
[
xt−xt′
∆period

])
`2per

2

`2per
sin2

::::::

π
:

xt−x′t
∆period
::::::

− ξγ`S 2
IS
:

(x,x′)

 ,. (16)

:::
The

:::::::::
parameter

:::::::
∆period::

is
:::
the

::::::
period

::::::
length,

::::::
which

::
is

::::::::
assumed

::
to

:::
be

::::
well

::::::
known

::
a
:::::
priori

:::
and

::::::::
therefore

::
is

:::
not

:::::::
among

:::
the10

:::::::::
parameters

:::
that

:::
are

:::::::::
calibrated.

::::
The

::::::
second

:::::
term

::
in

:::
the

::::::::
exponent

:::::::
controls

:::
the

::::::
spatial

::::::::::
dependence

:::
via

::::::::::
length-scale

::::::::::
parameters

::
in

:::
`IS ,

:
and the term θexp defines the parameters for the exponential functions ξ, while `per controls the periodic (inter-period)

covariance length. While the periodic kernel is not utilized with the OCO-2 case studies below, it can be a useful tool in many

other situations, such as with OCO-3, which due to not being on a Sun-synchronous orbit will make observations at varying

local times
::::::::
determines

::::
how

:::
far

:::
the

::::::::
temporal

:::::::::
covariance

:::::::
extends,

::::::
modulo

:::::::
∆period.15

An

:::::
satGP

:::::::
contains

:::
an additional covariance function formulation available in satGP is one based on

:::
that

::::::
utilizes

:
local wind

information
::::
when

:::::::::
computing

:::
the

::::::::::
covariances. The underlying rationale is that winds affect how quantities of interest such as

gases in the atmosphere or algae blooms in the surface water spread. Therefore
:::
For

:::
this

::::::
reason, if wind data is available, it is

natural to use it in
::
try

::
to

:::
use

::
it
:::
for

::::::::
inference

::::
with the Gaussian process.20

The
::
We

::::::
define

:::
the

:
wind-informed covariance has parameters θ = (τ,`I ,ρ,w

∗) and is defined by
:::::
kernel

::::
with

::::::::::
parameters

:::::::::::::::::
θw , [τ,`,`t,ρ,w

∗]T
::
by

:

kWw
:

(x,x′;θ,Iw
:

)=,
:
kexp(xWw

:
,x′Ww

:
;θW τ

:
,ST ){`‖

::
, `⊥, `t},2).
::::::::

(17)

:::
The

:::::::::
parameter

:
ρ
:::

in
::
θw:::::::

defines
::::
how

:::::::
strongly

:::
the

:::::::::
magnitude

:::
of

:::
the

::::
wind

::::::
vector

::
at

:::
the

::::
test

:::::
input,

::::::::::::::::
w∗ , [w∗lat,w

∗
lon]T

:::
(the

::::
last

::::::::
parameter

::
in

::::
θw),

::::::
affects

:::
the

:::::
shape

::
of

:::
the

::::::::::
covariance.

:::
The

::::::
kernel

::::
itself

::
is
:::
an

:::::::::
exponential

::::::
kernel,

::::::
where

:::
the

::::::
spatial

::::::::::
components25

::
of

:::
the

::::::
vectors

::
x
::::
and

::
x′

:::
are

::::::::::
transformed

:::
by

:::::
wind

::::
data,

::::
and

:::::
where

:::
the

::::::::::
covariance

::::::
lengths

:::
are

:::::::::::
transformed

::
by

:::::
wind

::::::
speed.

::
A

:::::::::::::
spatio-temporal

:::::
vector

:::::::::::::::
x= [xlat,xlon,xt]

::
is

::::::::::
transformed

:::
by

::::
wind

::
to

:::
the

::::::
vector

:::
xw ::

in
:
a
::::
new

:::::::::
coordinate

::::::
system

::::::::
according

::
to

:

xw ,


(xs−x∗s)Tw‖

(xs−x∗s)Tw⊥

xt

 ,
:::::::::::::::::::::

(18)
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where the difference between xW and x′W is represented using transformed axes parallel
::
xs

:::
and

:::
x∗s

:::
are

:::
the

::::::
spatial

::::::::::
components

::
of

::::::
vectors

::
x

:::
and

:::
x∗,

::::
and

:::::
where

:::
w‖

:::
and

::::
w⊥

:::
are

:::
the

:::
unit

:::::::
vectors

::
in

:::
the

:::::
lat-lon

::::::::::
coordinates

:::::
along

:
and perpendicular to the wind

direction at the test input x∗.

The spatial scaling parameters in Eq. (14) for kW , corresponding to the parallel to wind
:::
(`)

:::::::::
parameters

:::
for

:::
kw,

::::::::::::
corresponding

:::
now

::
to
:::
the

:::::::::
covariance

::::::
scales

::::::
parallel

:
and perpendicular to wind directions

:::
the

::::
wind

::::::::
direction, are given by5

]1 + |w∗|ρ
:::::::

, `⊥ =⊥ ,
:::

`,.

(19)

where w∗ is the wind velocity at the test input x∗ and ρ scales the effect of the wind. The parameter vector for the expo-10

nential kernel θW = (τ,γ,`‖, `⊥, `t,2)
:::
then

::::::::
becomes

::::::::::::::::::::
θexp← [τ,`‖, `⊥, `t,2]T , where the last element denotes the exponent γ

used by the exponential kernel. The resulting covariance ellipses
:
A

:::::::
number

::
of

:::::::
possible

:::::::::
covariance

:::::::
ellipses

:::::::
resulting

:::::
from

:::
the

::::::::::::
transformation

::::::::
procedure

:
are shown in Fig.3 for several wind vectors and values of ρ

:
3.

::::
Some

::::
data

::::
sets,

:::
like

:::::::
OCO-2,

::::::::::
incorporate

x∗

x

x′

ρ = 0

ρ = 1, w∗ = (2, 1)T

ρ = 1, w∗ = (3,−1)T

ρ = 7, w∗ = (3,−1)T

Figure 3. Equicovariance ellipses from the wind-informed kernel with various wind vectors w∗ and values of ρ. The wind values are taken

at the test input x∗, but the covariance function k is evaluated also for each pair of observations x and x′.

::::
wind

::::::::::
information,

::::
and

:::::
satGP

::::
does

::::
have

:::
the

::::::::
capability

:::
of

:::::::
gridding

:::
that

::::
data

:::::
using

::::::
another

::::::::
Gaussian

:::::::
process.

:::::::
Reading

::
in

:::::::
gridded

::::
wind

:::::
data

::::
from

:::::
other

::::::
sources

::
is
::::
also

:
a
:::::::::
possibility.

::::::
Using

:::
kw :::::::

requires
:::
that

:::::
wind

:::
data

::
at
::
is

::::::::
available

::
at

::::
each

:::
x∗.15

The covariance functions used in this work to model Ψ are sums of several kernels - sums of valid Gaussian process kernels

remain valid kernels. The general form of this
:::
the multi-scale kernel

::::
used

::
in

:::::
satGP

:
is given by

k(x,x′;θ) = δx,x′σ
2
x +

nker∑
i=1
::

kper(x,x
′;θ,IS) + kM(x,x′;θ)++kexp(x,x′;θ,IST ) + kW keri

::
(x,x′;θ,Ikeri

::
), (20)

where the first term, which in kriging is called the nugget, contains the observation error variances, and the parameter θ is

understood to be different for each component
:::::
where

::::
each

::::::::::::::::::::
keri ∈ {exp,M,per,w}.

:
20
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:::
The

::::::
kernel

::::::::::
components

::
of

:
a
:::::::::
multi-scale

::::::
kernel

:::
are

::
in

:::
this

:::::
work

:::::
called

:::::::::
subkernels.

::::
The

::::::::
combined

:::
set

::
of

:::::::::
parameters

::
is

:::::::
denoted

::
by

::::::::::::::::::::
θ = [θTker1

, . . . ,θTkernker
]T . Not all kernels

:::::::
subkernel

:::::
types

:
are included in all experiments -

:
– rather, the simulations in Sect.

4 utilize kernels with one to three components. The kernel components of a
::::
What

:::::
those

::::::::::
components

::::::
should

:::
be

:::::::
depends

:::
on

::::
what

:::::
fields

:::
are

::::
being

::::::::
modeled

:::
and

::::
what

:::::
kinds

::
of

:::::::::
correlation

:::::::::
structures

:::
the

:::
user

:::::::
expects

::
to

:::
find

::
in

:::
the

::::
data.

:::::::
Section

:::
4.1

::::::::
discusses

:::::::::::
identifiability

::
of

:::
the

:::::::
different

::::::::
subkernel

::::::::::
parameters

::
of

:::
the multi-scale kernelare below called subkernels.5

::::::
Instead

::
of

::::::
calling

::::::::
k(x,x′;θ)

::
in

:::
Eq.

:
(20)

:
a

:::::::::
multi-scale

::::::
kernel,

:::
the

::::
term

::::::::::::::
multi-component

::::::
kernel

::::
could

::::
also

::
be

:::::
used

::
to

:::::::
describe

::
the

:::::
form.

::::
The

:::::
term

:::::::::::
“multi-scale”

:::::::::
underlines

::::
that

:::
the

:::::::
purpose

::
of

:::
the

:::::::::
combined

:::::
kernel

::
is
:::

to
:::::
model

::::
well

:::::
data,

:::::
which

::::::::
contains

::::::
several

::::::
natural

:::::
length

::::::
scales,

::
as

::::::
remote

::::::
sensing

::::::::
products

::::
often

:::
do.

:::::::::::
Furthermore,

:::
we

::::::
believe

:::
that

:::::::::
combining

:::::::
several

::::::
kernels

::::
with

:::::::
identical

:::::
length

:::::
scale

:::::::::
parameters

::::
does

:::
not

::::::::
represent

::
a

:::::::
common

::::::::
use-case.

2.5 Covariance localization and observation allocation
:::::::
selection

:
for the multi-scale kernel10

Using a large number of observations makes solving the Gaussian process Eq.
:
(9) and (10) untractable

:::::::::
intractable as the cost

of inverting the covariance matrix scales as O(n3
obs). This creates a need for finding approximate solutions while introducing

as little error as possible. In satGP,
:
covariance localization is used to utilize only a subset of observations for computing Eq.

(9) and (10). To do this, a
::::::
control

:::
the

::::::::::
localization

::::::::
behavior

:::
the

::::
user

:::::
needs

:::
to

:::
set

:::
two

::::::::::
parameters:

:::
the

:
maximum subkernel

covariance matrix size κ and
:::
the minimum covariance parameter σ2

minare defined by the user.15

Assume that the multi-scale kernel defined by the user contains nker subkernels. For each test input x∗ and for each subkernel

kl let the set of observations feasible for inclusion in K in Eq.(8) be (6)
:::
and

:
(7)

::
is

Aobs
∗,l =,

:
{ψi ∈ ψobs|kl(xobs

:: i,x
∗)<>

:
σ2

min, ψi /∈Aobs
∗,j ∀j < l}, (21)

where the last condition prevents observations from being added by several subkernels. From these candidate observations,

min(|Aobs
∗,l |,κ) are selected, either greedily selecting the κ observations with highest k(xi,x

∗), or choosing the observations20

uniformly randomly sampling from those training data for which the minimum covariance threshold is exceeded, see Appendix

A for additional details. When |Aobs
∗,l |< κ and l < nker, the parameter

::
In

:::
the

:::
end

:::
we

::::::
select

:
a
:::::
single

:::
set

:::
of

::::::::::
observations

:::::
Aobs
∗

::
for

:::::
each

:::
test

:::::
input

::
by

::::::::::
combining

::::
some

:::
or

::
all

:::
of

:::
the

:::::::::::
observations

:::::::
included

::
in

:::::
each

:::::
Aobs
∗,l .

:::
The

::::::::::
observation

::::::::
selection

::::::::
proceeds

::::::::::
sequentially

:::::::
through

:::
the

:::
list

:::
of

:::::::::
subkernels

:::::::::
according

::
to

:::
the

:::::::::
procedure

::::::::
presented

:::
in

::::
Fig.

::
4.

: ::::::::::
Recomputing

::::
the

::
κ′

:::
for

:::::
each

::::::::
subkernel

::
on

::::
line

:
3
::
of

:::
the

::::::::
algorithm

::::::
allows

:::::::
selecting

:::::
more

::::
than κ will be grown for the next kernel to compensate for the deficit25

by setting κ← κ+ (κ− |Aobs
∗,l |)::::::::::

observations
:::
by

:::::::::
subkernels

::
if
:::
the

::::::::
previous

:::::::::
subkernels

:::
did

::::
not

::::
have

::
κ
:::::::
feasible

:::::::::::
observations

:::::::
available. This is done to allow the full kernel size to grow to nkerκwhen possible.

::
On

::::
line

::
4,

::
the

::::::::::
observation

::::::::
selection

:::::::
operator

:::::::::
S(Aobs

∗,l ,κ
′)
:::::::
chooses

::
κ′

:::::::::::
observations

:::::
from

::::
each

::::
Aobs
∗,l :::::

either
:::::::
greedily

:::
by

::::::
picking

:::
the

:::::::::::
observations

::::
with

::::::
highest

::::::::::
covariance

::::
with

:::
x∗,

::
or

::::::::
randomly

:::
by

::::::::
sampling

::::::::
uniformly

:::::::
without

::::::::::
replacement

:::::
from

:::::
Aobs
∗,l .

::::
Out

::
of

:::::
these

:::
two

::::::::
methods

::::::
random

::::::::
selection

::::::
avoids

:::::::::
observation

::::::
sorting

::::
and

:
is
::::::::
therefore

:::::
faster,

:::::::::
especially

::
if

:
a
::::
huge

:::::::
number

::
of

::::
data

:::
are

::::
near

:::
the

:::
test

:::::
input

:::
x∗.

::::
This

:::::
comes

::
at

:::
the

::::
cost30

::
of

::::::::
producing

::::::
noisier

:::::
fields

::
of

::::::::
marginal

:::::::
posterior

::::::
means.

:::
For

:::::::::
covariance

:::::::::
parameter

:::::::::
estimation

::::::
random

::::::::
selection

:::::
works

::::
well.

::::
See

::::::::
Appendix

::
A

:::
for

::::::::
additional

::::::
details.

:
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Data: Set of feasible observations Aobs
∗,l for each

subkernel, maximum subkernel size κ,
observation selection operator S.

Result: Set Aobs
∗ of observations that are

informative for test input x∗

1 Aobs
∗ ← ∅ ;

2 for i← 1 to nker do

3 κ′ ← iκ− |Aobs
∗ | ;

4 Aobs
∗ ← Aobs

∗ ∪ S(Aobs
∗,i , κ

′);

5 end

Figure 4.
::::::::
Algorithm

:::
for

::::::
selecting

::::::::::
observations

:::
for

::::::
carrying

:::
out

:::::::::
predictions

:
at
:::
test

:::::
input

::
x∗.

::::
The

:::
sets

::::
Aobs
∗ :::

are
::::::
defined

::
by

:::
Eq. (21)

:
,
:::
and

:::
the

::::::
variable

:
κ
::

is
:::
the

::::::::
maximum

:::::::
subkernel

::::
size,

::::
also

::::
listed

::
in
:::::
Table

:
2
:::
and

::::::::
discussed

::
in

::::
Sect.

::
3.

:::
The

:::::::
selection

:::::::
operator

:::::::::
S(Aobs

∗,l ,κ
′)
:::::::
chooses

::
κ′

:::::::::
observations

::::
from

::::
each

::::
Aobs
∗,l ::::

either
:::::::
greedily

::
or

:::::::
randomly.

:

Since the kernels
:::::::::
subkernels are handled sequentially, the order of the different kernels may slightly

::::
their

:::::
order

::::
may affect

which observations are selected due to the exclusion in Eq.
:
(21), and to grow the full kernel to size nkerκ as often as possible,

it is recommended to specify the subkernel with the largest ` parameters as the last one. After selecting all observations for all

kernels
::::::::::
constructing

::::
Aobs
∗ , the covariance matrix K is constructed by evaluating the full covariance function k according to Eq.

(20) for all pairs of selected observations.5

For learning the locally varying parameters
::::::
spatially

:::::::
varying

::
β

:::
and

::
δ
:::::::::
parameters

:::
for

::::
grid

:::::
index

::::
(i, j)

:
in the mean function

with Eq.(6) – (7)
:::
the

:::::::
methods

::
in

:::::
Sect.

::::
2.3.2, the observation selection is performed by disregarding the time component

::
on

:::
the

:::::
inputs, i.e.setting xt

i ← x∗t for all xi ::
by

::::::
setting

:::::::::::
xobs
i

t← xij
t

:::
for

::
all

::::
xobs
i ::

in
:::
the

:::::::
training

:::::
data.

:::
The

::::::
reason

:::
for

:::
this

:::
is,

:::
that

:::::
since

:::::::
learning

::
the

:::::
mean

:::::::
function

::::::::
amounts

::
to

:::::
fitting

:::::::
spatially

:::::::
varying

::::::::
parameter

::::::
vectors

::
β

:::
and

::
δ,

:::
the

::::
data

::
to

:::::::
perform

:::
the

::
fit

::::::
should

:::
not

::
be

:::::::
selected

:::::
based

::
on

:::::::::
covariance

:::
in

::
the

:::::
time

:::::::
direction

::
as

:::
the

:::::
mean

:::::::
function

::::::
should

::
be

:::::::
equally

::::
valid

::
at

:::
all

:::::
times.10

Observation allocation
:::::::
Selecting

:::
the

:::::::::::
observations could be done also by selecting observations based on values of k instead

of each kl individually, or by other approaches, such as the one presented by Schäfer et al. (2017). However, while
::::
even

::::::
though

the method of observation selection does have an effect on the inferred posterior marginals, the screening property of Gaussian

processes ensures that this effect is not major as long as observational noise is small and the nearest observations are included

in all directions.15

Out of the two methods available in satGP, random selection avoids observation sorting and is therefore faster, especially

if a huge number of data are near the test input x∗. This comes at the cost of producing slightly noisier fields of marginal

posterior means. For covariance parameter estimation random selection works well. The current nearest-neighbor-in-covariance

approach is only one possibility, but is justified by the
:::
The

:
parameter identifiability results in Sect.4.1

:::
4.1

::::
and

:::
the

:::::::::
WACCM4

:::::
results

::
in

:::::
Sect.

:::
4.2

:::::
verify

:::
that

:::
the

:::::::
current

:::::::::::::::::::::::::
nearest-neighbor-in-covariance

::::::::
approach

:::::
works

::
as

::::::::
intended.20
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2.6 Learning the covariance parameters θ

From Eq.(4),
::::
Sect.

:::
2.1 the log marginal likelihood of observations ψobs given a set of parameters θ, β and δ is given by

2logp(ψobs|β,δ,θ) =−‖(ψobs−Fβ)‖K2− log |K| −nobs log(2π), (22)

where the covariance function parameters θ are implicitly in
::::::::
implicitly

::::::::
determine

:
K,

:
and the non-linear

:::::::::::::
space-dependent mean

function parameters in
:
δ
:::::
affect

:::
the

::::::
values

::
in

:
F , for which the shorthand notation F = F (xobs) is used in this section. The5

maximum (marginal) likelihood estimate (MLE) θ̂ of θ can be found via minimizing

L(θ) = ‖(ψobs−F β̂)‖K2 + log |K|+nobs
::

log(2π) (23)

as stated in context of Eq. (5).

In the presence of a huge number of observations, calculating the determinant of the full covariance |K| is not feasible, and

::::::::::
maximizing the log likelihood is approximated with the block diagonal form, resulting in

::
by10

θ̂MLE = arg min
θ

∑
xi∈Eref x∗i∈Eref

:::::

{
‖(ψilocali

:::

obs−Fiβ̂)‖K̃i
2
K̃i
::

+ log |̃Ki|
}
, (24)

where Eref is a set of randomly sampled points from the specified spatio-temporal domain .
:::::::
specified

:::
for

::::
the

::::::::::
experiment,

:::::::::
determined

::
by

:::
the

::::::::::
parameters

::::
area

:::
and

:::::
ndays::

in
:::::
Table

::
2.

::::
The

:
β̂
::::
and

:
δ̂
::::::::::
parameters,

:::
the

::::
latter

::
of
::::::
which

::
is

::::::::
embedded

::
in
:::
F ,

:::
are

:::
the

::::
point

::::::::
estimates

::::::::::::
corresponding

::
to

::::
each

::::
xi∗ ,::::::::::

interpolated
::::
from

:::
the

::::::
values

:::::::
obtained

:::
for

:::
the

:::
full

::::
grid.

::::
The

:::::::::::
optimization

::
in

:::
Eq. (24)

:
is
::::::
carried

::::
out

::::
over

::
all

:::::::::
subkernel

:::::::::
parameters

::::
with

:::::
some

:::::::
caveats:

::::::::
currently

:::
the

::::::::::::::::
smoothness-related

:::::::::
parameter

:
ν
:::
for

:::
the

:::::::
Matérn15

:::::
kernel,

::::
and

:::
the

::::::::
exponent

:
γ
:::
for

:::
the

::::::::::
exponential

::::::
kernel

:::
are

:::
not

:::::::::
calibrated,

:::
and

::::::::
naturally

::::::
neither

:::
are

:::
the

::::
wind

::::
data

:::
w∗

:::::
listed

::
as

::
a

::::::::
parameter

:::
for

:::
the

::::::::::::
wind-informed

:::::::::
covariance

::
–
::::::::
however,

::
the

:::::::::
parameter

::
ρ

:::::::
affecting

::::
that

:::::
kernel

:::
can

:::
be

:::::::
learned.

While the selection of inputs included in Eref has an effect on the obtained parameter estimate, that effect has proven in

simulations to be small. The vector ψobs
i ∈ Rdi contains

::::::
vectors

::::::::::::
ψobs

locali
∈ Rdi ,

:::::
where

::
di::

is
:::
the

:::::::
number

::
of

:::::::::::
observations

::::::
chosen

::
by

:::
the

::::::::::
observation

::::::::
selection

:::::::
method

::
of

:::::
Sect.

:::
2.5

:::
for

:::
test

:::::
input

:::
x∗i ,

:::::::
contain

:
observations closest in covariance to xi, chosen20

according to the observation allocation rules outlined
:::
x∗i ,

::::
each

::
of

:::::
which

::
is
::
a
::::::::
reference

::::
point

::::::::
included

::
in

::::
Eref .::::

The
:::::::
matrices

:::
Fi

::
are

:::
the

::::::::::::
corresponding

::::::::::
F -matrices,

:::
as

::::::::
described in Sect.2.5.

:::
2.1.

:
The last term in Eq. (23) is dropped, since while varying θ in

Eq. (24) changes di, the size of ψobs stays
::::::
number

::
of
:::::
total

::::::::::
observations

::
in

:::
the

:::::::
problem

::::::
should

::::::::::::
fundamentally

::::
stay the same.

:::
The

:::::::::
maximum

::::::::
likelihood

:::::::
estimate

::::::::::::
approximation

::
in
::::
Eq. (24)

::::::
contains

::
a
::::
sum

:::
over

::::::
blocks

::
of

:::::::::::
observations,

::::::
which

:::
can

:::::::
together

::
be

:::::::
thought

::
of

::
as

::
a
:::::::::::::
block-diagonal

::::::::::::
approximation

::
of

:::
the

::::
full

:::::
dense

:::::::::
covariance

:::
for

:::
all

:::::::::::
observations

::
in

:::
all

::::::
ψobs

locali
.
::::
The

::::::
blocks25

::
in

:::
this

:::::::::::::
approximation

:::
are

:::
the

:::::
dense

::::::::::
covariance

:::::::
matrices

::::
K̃i,::::

and
::
in

:::::::
contrast

::
to
::

a
::::
full

:::::
dense

:::
K,

::
in
::::

this
:::::::::::::
approximation

:::
the

::::::::::::::
cross-covariances

:::::::
between

:::::::::::
observations

::
in

::::::
ψobs

locali :::
and

::::::
ψobs

localj
,
:::::
i 6= j,

:::
are

:::
set

::
to

:::::
zero.

::::
This

:
is
:::::
done

::::
even

::
if

:::
the

::::::::
randomly

:::::::
selected

:::::::::::
corresponding

::::::
inputs

:::
x∗i :::

and
:::
x∗j :::

are
:::::
close

::
to

::::
each

:::::
other.

::::
Due

:::
to

:::
the

::::::
O(n3)

:::
cost

:::
of

::::::::
inverting

:::
the

:::::::::
covariance

::::::
matrix,

::::::
which

::
is

::::::
needed

::
for

:::::::
finding

::
the

:::::::::
maximum

:::::::::
likelihood

:::::::
estimate,

:::::
using

:::
the

:::::
block

::::::::::::
approximation

:::::::
provides

:
a
::::::
critical

:::::::::
efficiency

:::::::::::
improvement

::::::
without

:::::
which

::::::::
learning

::
the

::::::::::
covariance

:::::::
function

:::::::::
parameters

:::::
would

::::
not

::
be

:::::::
feasible.

:
30

While this method is suitable for finding point estimates for the parameters θ, the
:::::::
computed

::::::::::::
approximated log-likelihood has

an unknown scaling factor resulting in an unknown multiplicative factor for the variance term in the exponent of the Gaussian
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distribution, and hence information about the true size of the posterior
:::::::::
distribution

:
of the covariance parameters p(θ|ψobs,β,δ)

::::::::::::::
p(θ|ψobs, β̂V , δ̂V) is lost.

The covariance parameter optimization can be performed by using optimization algorithms such as COBYLA or SBPLEX

available in NLOpt (Johnson, 2014). An alternative is to explore
::
By

::::::
default

:
the scaled posterior

::::::::::::::
p(θ|ψobs, β̂V , δ̂V)

::
is

:::::::
explored

:
by

using the Adaptive Metropolis (AM) Markov chain Monte Carlo (MCMC) algorithm (Haario et al., 2001), an implementation5

of which is included in the satGP source code. Using
::::::
MCMC

::::::::
methods

::::::::::::::::
(Gamerman, 1997)

:::
are

::::
used

::
to

:::::
draw

:::::::
samples

:::::
from

:::::::::
probability

::::::::::
distributions

:::::
when

:::::
direct

::::::::
sampling

::
is
:::
not

::::::::
possible,

:::
but

:::
the

:::::::::
likelihood

:::::::
function

:::
can

::::
still

::
be

:::::::::
evaluated.

::::
The

:::::::
samples

::
are

::::::
drawn

:::
by

:::::::::
generating

:
a
:::::::
Markov

:::::
chain

::
of

:::::::::
parameter

::::::
values,

:::::
which

::
is

::
an

::::::::::::
autocorrelated

:::::::
sample

::::
from

:::
the

::::::::
posterior.

::::
The

::::
AM

::::::::
algorithm

::
is

::
an

:::::::
adaptive

:::::::
method

:::
that

::
is

:::::::
efficient

:::
for

:::::
many

:::::::::
real-world

::::::::
sampling

::::::::
situations.

::::
The

::::::::::
observation

:::::::
selection

:::::::::
procedure

::
in

::::
Sect.

:::
2.5

:::::::::
introduces

::::::::::::
discontinuities

::
to

:::
the

::::::::
posterior

::::::::::
distribution

:::
due

::
to

:::::::
selected

:::::::::::
observations

::::::::
changing

:::::
when

:::
the

:::::::::
covariance10

:::::::
function

:::::::::
parameters

:::
are

::::::::
modified.

::::::::::
Computing

::::::::::::::::::
θ̂← E[θ|ψobs, β̂V , δ̂V ]

::::
with

:::::::
MCMC

::
—

:::
i.e.

:::::
using

:::
the

::::::::
posterior

::::
mean

:::
of

:
a
::::::
Monte

::::
Carlo

:::::::
sample

::
—

:::::::
usually

:::::
works

:::::::
around

:::
this

::::::::
noisiness

:::
in

:::
the

:::::::::
likelihood.

:::
On

:::
the

:::::::::
downside,

:::::::
MCMC

::
is

::::::::::::::
computationally

:::::
much

::::
more

::::::::::
demanding

::::
than

::::::
finding

:::
the

:::::::::
maximum

::
a
::::::::
posteriori

::::::::
estimate

::::
with

:::::::::::
optimization,

:::::
since

:::::::
MCMC

::::
may

::::::
require

::::::::::
computing

::
up

::
to

:::::::
millions

::
of

:::::::::
likelihood

::::::::::
evaluations.

::
In

:::
the

::::::
satGP

::::::
context

:::::
using MCMC is feasible since the forward model is just

::::::
simply

:::::::
amounts

::
to sampling from a multivariate normal distribution which is very fast, and also due to that

:
.
:::::::::::
Furthermore, the parameter15

dimension is moderate, even with multiple subkernels,
:::::::
limiting

:::
the

::::
need

::
to

:::::::
generate

:::::::::
extremely

::::
long

::::::
chains.

:::
The

::::::
current

:::::::
version

::
of

:::::
satGP

::::
uses

:
a
:::
flat

:::::
prior

:::::::::
distribution

:::
for

:::
the

:::::::::
covariance

::::::::::
parameters,

::::
with

::::
hard

:::::
limits

:::
on

:::
the

::::::::
parameter

::::::
ranges.

:

:::
The

:::::::
software

::::
also

:::::::
includes

::
a
::::::::
capability

::
to

:::::
learn

:::
the

:::::::::
covariance

:::::::::
parameters

:::::
using

:::::::::::
optimization

:::::::::
algorithms

::::
such

::
as

:::::::::
COBYLA

::
or

::::::::
SBPLEX

:::::::
available

::
in
:::::::
NLOpt.

:::::
These

::::::::
methods

:::
are

:::::
much

:::::
faster

::::
than

:::::::
MCMC,

:::
but

::::
have

:::
the

::::::::
tendency

::
of

::::::
getting

:::::
stuck

::
in

:::::
local

:::::::
minima,

::::::
limiting

:::::
their

::::::::
usefulness.20

3 Overview of Computation

The satGP code is written in C with visualization scripts written in Python and parallellization
::::::::::::
parallelization implemented

with OpenMP directives. The program reads data from netCDF
:::
and

:::
text

:
files and the configuration from a C header file. For

linear algebra ,
:::::
satGP

::::
uses

:
the C interfaces of LAPACK and BLAS, LAPACKE and CBLAS, are utilized and for optimization

tasks , algorithms in
::
and

:::::::::::
optimization

:::::
tasks

:::
are

::::::
carried

::::
out

::::
with

:
the NLOpt libraryare used. The computations are carried25

out
:::::::::
performed in single precision both in order to save memory resources with the largest data setsand also in anticipation

of implementing the covariance function routines in a way that allows computation on graphics processing units,
::::
and

::::
also

::
to

:::::::
improve

::::::::::
performance.

The most important configuration variables are listed in Table 2. The user needs to define whether parameters are learned

or prescribed and whether marginals or samples from the GP are to be computed. The mean and covariance kernel need to30

be
::::::
function

::::
and

:::
the

::::::::::
covariance

:::::
kernel

:::
are

:
defined by initializing corresponding structs with parameters and their limits if

calibration is to be performed. For computing GP marginals or drawing samples from the random process, the geographic and
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Table 2. Most important satGP control variables and high level C structs: first section contains parameters for program logic, second for

domain specification, third for covariance and mean function definition, and last for observation handling. This list is by no means exhaustive

– the configuration file contains lots of variables that can control the program. Some additional tweaking is possible by changing hard-coded

values directly in the source code, such as those listed in Appendix A.

Variable Type Low High Notes

::::::
learn_k int 0 2 (0) Don’t train θ, (1) generate observations and learn θ, (2) learn θ from non-synthetic data.

::::::
learn_m int 0 1 (0) Don’t train local β and δ, (1) find local β and δ as in Sect.2.3.1

:::
2.3.

:::::::
sampling int 0 2 (0) Skip sampling, (1) calculate GP marginals at each grid point, (2) sample from GP.

::::
area char* - - Area definition setting longitude and latitude minimum and maximum values

ndays int 1 ∞ Number of days to be simulated

ω float > 0 180 1-d grid resolution in degrees – small values degrade esp. posterior sampling performance.

nker int 1 10 Number of subkernels kl in k

::
cfc struct* - - Recursive struct pointer defining k1 . . .knker and corresponding θ, see Sect. 2.4.

::
mf struct* - - Struct pointer for defining type of m(·, ·) and associated (initial) β and δ, see Sect. 2.2.

ζtrain float 0 ∞ Determines what fraction of observations
::::::
Fraction

::
of
::::::::::
observations

:::
that are randomly included in ψobs when learning θ,

::
β,

:::
and

:
δ.

ζsample float 0 ∞ Determines what fraction of observations
::::::
Fraction

::
of
::::::::::
observations

:::
that are randomly included in ψobs when

:::::::
sampling 6= 0.

σ2
min float 0 ∞ Discard observation at xi :::

xobsi :
for x∗ if k(xi,x∗)< σ2

min ::::::::::::::
k(xobsi ,x∗)< σ2

min, see Sect.
:
2.5.

nref int 0 ∞ Number of reference points in Eref in Eq.
:
(24) for training θ

nsynthetic int 0 ∞ Number of random locations where synthetic data is generated for training θ

σ2
synthetic float 0 ∞ Variance of Gaussian noise added to synthetic observations

κ int 1 ∞ Maximum subkernel size, values κ > n−1
ker1000 will be slow due to O(κ3) scaling.

temporal extents need to be specified and the mean function and the covariance kernel used must be given. For more details

than is described below, see Appendix A.

For computational efficiency, several
::::::
Several parameters can be tweaked

::
to

:::::::
improve

::::::::::::
computational

:::::::::
efficiency, including

all of those in the second and last sections of Table 2. The first main bottleneck for computing a marginal at x∗ is sorting

the observations for selecting the most informative ones to be used in the covariance matrices, see Sect. 2.5. This requires5

roughlyO(rl logrl+κ logκ) operations , where rl ∝
∏q
i=1 `

l
i ::

for
::::
each

:::::::::
subkernel,

:::::
where

::
rl:is the number of grid locations (test

inputs) x∗i in the spatial
:::
xij

::
in

:::
the

:::::::::::::
spatio-temporal grid such that for the lth subkernel, kl(x∗i ,x

∗)< σ2
min. Here the parameters

:::::::::::::::
kl(x

ij ,x∗)> σ2
min.

::::
For

:::::::::
subkernels

:::
with

::::::
γ = 2,

:::::::::::
rl ∝

∏q
i=1 `

l
i,::::

with `li are the corresponding
:::::::
denoting

:::
the length scale parameters

over all the dimensions of the inputs x– this controls .
::
In

:::::
other

::::::
words,

::
rl :is:::::::::::

proportional the size of the hypersphere inside which

observations are considered for each x∗. The second bottleneck is calculating the Cholesky decompositions of the covariance10

matricesK with costO((nkerκ)3). The cost of calculating the means and variances of the GP in a grid for a set of ntimes points
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on the time axis is therefore given by

cost =O
(
Antimes

ω2

[
(nkerκ)3 +

nker∑
l=1

(rl logrl +κ logκ)

])
, (25)

where A is the grid area in degrees squared and ω is the grid resolution. When the random observation selection method

mentioned in Sect. 2.5 is used, the rl logr in Eq. (25) becomes just rl.

The execution of the program is presented in Fig. 5. The names of the subprograms here deviate from those in the code to5

improve readability.

The function AddToState() reads observations (asynchronously) into a
:::::
state object that tracks the proximity of each

observation to each grid point. Only part of data a
::::
part

::
of

:::
the

:::::::::::
observations is added, and what part, is controlled on l.

::::::::
controlled

::
on

:::
line

:
6 by the parameter ηitrain, which corresponds to the inclusion probability of each observation. This probability depends

on ζtrain in Table 2 via10

ηitrain=
d(xi,xiprev)

ωζtrain
,
d(xobs

i ,xobs
iprev

)

ωζtrain
:::::::::::::

∧ 1, (26)

where d(xi,xiprev
)

::::::::::::
d(xobs

i ,xobs
iprev

) is the Euclidean distance
:
of

:::
the

:::::
point

::
at
:::::
xobs
i ::::

that
::
is

:::::
being

::::::::
proposed

:::
for

:::::::
addition

:
to the

previous added point
:
at

::::::
xobs

previ
and ∧ is the standard notation for minimum. Hence with ζ = 0 , all observations will be

::
all

::::::::::
observations

:::
are

:
added.

For computing the marginals, the spatial domain can be decomposed with Decompose(), line 23, into several spatial15

subdomains (sd) so that arbitrary-size grids can be computed. This makes solving large problems with limited amount of

memory possible, but only works with .

::::::::
sampling

:::
= 2.

::::
This

::::::
option

:
is
::
in
:::::::
practice

:::::
rarely

:::::::
needed,

:::
and

::
it

:::
was

:::
not

::::::
needed

:::
for

:::
the

::::::::::
simulations

::
in

::::
Sect.

::
4. The state object is

emptied by ReInitializeState() which also potentially sets new subdomain extents. Function SampleFromPrior()

actually performs the computations on lines 30-37, but with the set of points x∗i :::::
inputs

::
x∗

:
in a random pattern instead of in a20

grid as is the case in l. 27-38.

The AddSubdomainData() method on l. 29 adds data as on lines 3-9, but only to the current subdomain. After that, the

SelectObservations() method (l.
:
31) carries out selecting the best observations as described in Sect. 2.5. For construct-

ing the set of potential observations, the grid is searched for locations that may have informative observations for the current

test input stored in the
::::
state object. These locations are first ordered into categories with decreasing potential covariance and25

for the best locations, that together hold at least 2κ observations, the covariance function with the test input is evaluated. Out

of these, the κ best are chosen. The factor 2 can be increased for the wind-informed kernel and the value 8 is used in the

demonstration of the wind-informed kernel in Sect.
:
4.8.

The function ComputeMarginal() constructs the covariance matrix K, inverts via the Cholesky decomposition, and

solves Eq.
:
(9) and (10) to find the marginal distribution at any test input x∗. That function returns the negative log likelihood30

and is therefore directly used in learning the covariance parameters θ in FindCovfunCoeffs() on line 18.
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Data: �lelist containing �les with observation data
yi = (µψi

, σ2
ψi
) indexed by location xi, input

variables from Table 2.
Result: Optimized β parameters for mean

function and θ parameters for covariance
kernel, gridded Gaussian process marginal
means and variances or a sample from the
Gaussian process evaluated in a grid.

1 Initialization: Create grid according to area and ω,
de�ne k(x, x′) and m(x, t), initialize state;

2 if learn_m = 1 or learn_k = 2 then

3 for �le in �lelist do
4 D ← ReadData (�le);
5 for (xi, yi) ∈ D do

6 if Bernoulli(ηitrain) then

7 AddToState(state, xi, yi);

8 end

9 end

10 end

11 if learn_m then FindLocalMeanfunCoeffs (state);
12 if learn_k = 1 then

13 ReInitializeState (state, fulldomain);
14 for i← 1 to nsynthetic do

15 (xi, yi)← SampleFromPrior ( );
16 AddToState(state, xi, yi);

17 end

18 end

19 if learn_k 6= 0 then

20 FindCovfunCoeffs (nref)
21 end

22 if not sampling then

23 (nsd, (sdi)
nsd
i=1) ← Decompose(nmax

dom, area, ω);
24 else

25 assert (ngp < nmax
dom);

26 end

27 if sampling then for i← 1 to nsd do

28 ReInitializeState (state, sdi);
29 AddSubdomainData (state, �lelist, sdi, ηsample);
30 for x∗ ∈ sdi do
31 Aobs

∗ ←SelectObservations(state, x∗);
32 µ∗, σ2

∗ ← ComputeMarginal(x∗, Aobs
∗ );

33 if sampling = 2 then

34 ψ̂∗ ← Normal(µ∗, σ2
∗);

35 AddToState(state, x∗,(ψ̂∗, σ2
synthetic))

36 end

37 end

38 end

39 ;

Figure 5. Overview of satGP
:::::::
execution. After initialization data is read for training m and k , after which

:::
and possible MRF computation is

carried out. This is followed by sampling the prior if a synthetic study is performed, and learning the θ parameters controlling k. Gaussian

process marginals are then computed in a grid, potentially by decomposing the domain for large grids. Finally, samples from the GP may be

drawn.
:::
The

:::::
names

::
of

:::
the

::::::::::
subprograms

:::
here

::::::
deviate

::::
from

::::
those

::
in

::
the

::::
code

::
to

:::::::
improve

::::::::
readability.
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The Gaussian process algorithm is an interpolation algorithm when observation noise is zero, and interpolation algorithms

may misbehave when used for extrapolation. In a spatio-temporal large grid, when
::::::::
sampling = 2, i.e. when draws of the

Gaussian process are generated in a regular spatio-temporal grid, computing conditionals based on the previous predictions

would amount to extrapolation if done in order. For this reason, a deterministic sparse ordering is used, which ensures that test

inputs corresponding to simultaneous predictions are far from each other so that their mutual covariance is negligible. For this5

reason conditioning
:::::::::::
Conditioning on already computed values is

:::::::
therefore for the vast majority of GP evaluations interpolation

instead of extrapolation.

4 Results and discussion

In this section ,
:::
we

::::::
present

:
several simulation studiesare presented. In the first experiment ,

:
.
:::
The

::::
first

::::::::::
experiment

::::::::
examines

parameter identifiability with the multi-scale kernel is examined with
:::::
using satGP-generated data. After that, the MRF of mean10

function β coefficients is trained with
:::
We

::::
then

::::::::::
demonstrate

::::
how

:::::
satGP

::::::::
posterior

::::::::::
distributions

::::
look

:::
like

:::::::::
compared

::
to

::::
truth

:::::
using

:::::::
synthetic

:::::
ozone

:::::
fields

:::::
from

:::
the

:::::::::
WACCM4

::::::
model.

::::
After

::::
that

:::
we

::::::::::
concentrate

:::
on

::::::::
analyzing

::::::
satGP

::::::
results

::::::::
produced

:::::
using

::::
the OCO-2 data and those fields are then briefly

analyzed.

Based on a
::::
Level

::
2
::::
data.

:::::
First,

:::
we

:::::
learn

:::
the

::::::::::
parameters

::
of

:::
the

:
locally varying mean function of the form in Eq.

:
(2) ,

::
by15

:::::::::
computing

:::
the

:::::
MRF,

:::
and

:::::
those

:::::
fields

:::
are

:::
then

:::::::::
analyzed.

:::
We

::::
then

::::
learn

:
the covariance parameters of the OCO-2 XCO2 spatio-

temporal field are learned
:::
from

::::
data. Knowing both the mean and the covariance functions ,

::::::
allows

::
us

::
to

:::::::
evaluate the Gaussian

process is then solved globally in a grid and
::
we

::::::
present

:
snapshots of the

:::::
global

:
mean and uncertainty fieldsare presented. The

section is concluded by a
::::::::
concludes

:::
by

:::::::::
comparing

::::::::
posterior

::::::::
marginal

:::::
fields

::::::::
generated

:::
by

:::::
using

::::::::::
single-scale

:::
and

::::::::::
multi-scale

::::::
kernels

:::
and

:::
by demonstrating how the wind-informed kernel works. The covariance function parameters are learned from data.20

4.1 Parameter identifiability with the multi-scale kernel

A synthetic study was performed
:::
We

:::::::::
performed

::
a

:::::::
synthetic

:::::
study

:
to confirm the identifiability of the multi-scale covariance

function parameters. For this, sampling
:::
The

::::::::
synthetic

::::
data

::::
was

::::::::
generated

:::
by

:::::
satGP

:::
by

::::::::
sampling

::::
from

:::::::::
zero-mean

:::::::::
processes

::::
with

:::::
known

:::::::::
covariance

::::::::::
parameters

:::
and

:
with a random spatial pattern from the priorwas carried out, adding 1% noise, and then25

estimating the parameters
:
.
::::
The

:::::::::
parameters

:::::
were

::::
then

::::::::
estimated

:
by computing the posterior mean estimates using Adaptive

Metropolis.

The identifiability experiment was performed with various kernels, and the more complex the kernel,
:::::::::
recovering

:::
the

::::
true

:::::::::
parameters

:::
was

:
the more difficult recovering the true parameters

:::
the

::::
more

:::::::
complex

:::
the

::::::
kernel was. With a single Matern

::::::
Matérn,

exponential, or periodic kernel, the parameters could be recovered very easily. This was also true for a combination of expo-30

nential and Matern
:::::
Matérn

:
kernels with a relatively small κ parameter.
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The covariance kernel parameters were still recoverable with a combination of three kernels– Matern ,
:::::::
Matérn with ν = 5

2 ,

exponential, and periodic, but for this, a larger κ was needed – the simulation shown used .
::::
This

:::::
setup

:::::::
required

:::::
using

::
a

:::::
larger

κ= 256. With small κ, some of the parameters had a tendency to end up at the lower boundary, possibly due to effects of the

covariance cutoff on the determinant of the covariance matrix in Eq.
:
(22). Optimization using minimization algorithms such as

Nelder-Mead, COBYLA, or BOBYQA tended to often end up in local minima, and for this reason MCMC was used instead.5

The number of random reference points in Eref in Eq.
:
(24) was set to 12, which was enough to reliably recover parameters

close to the true value.

The parameter limits, true values, and posterior means of the synthetic experiment with three kernels are given in Table 3.

In total 200,000 observations were created in the region between -10 and 10 latitude and -10 and 10 longitude over a period

of four years according to the values
:::
true

:::::
values

::::::::
reported in Table 3. A total of 10 million Metropolis-Hastings iterations were10

carried out
:::::::
MCMC

::::::::
iterations

::::
were

:::::::::
computed

:
to make sure that the posterior covariance stabilized. The posterior, with first

50% of the chain discarded as burn-in, is shown in Fig. 6

Table 3. Lower and upper limits, with true and estimated parameter values. The three-kernel synthetic covariance function parameter esti-

mation problem is already very difficult, here resulting in slight overestimation of the parameters of the smallest kernel.

low high true est est−true
true

τmat 0.05 1 0.5 0.652 0.304

`mat
lat 0.003 0.02 0.007 0.00989 0.413

`mat
lon 0.003 0.02 0.01 0.0135 0.350

`mat
t 1d 14d 7d 8.06d 0.15

τper 0.01 2 1 1.073 0.073

`perlat 0.001 0.04 0.02 0.0207 0.035

`perlon 0.001 0.04 0.02 0.0220 0.1

`per 0.01 0.3 0.1 0.1075 0.075

τ exp 0.5 3 1 0.927 -0.077

`explat 0.005 0.1 0.025 0.0352 0.408

`explon 0.005 0.1 0.04 0.0405 0.0125

`expt 7d 30d 21d 24.83d 0.182

::::
How

::::
well

:::::::::
parameters

::::
can

::
be

:::::::
learned

::::
from

::::
data

::::::::
depends

::::::
always

::
on

:::
the

::::
data

::::
and

:::
the

:::::
exact

::::::::
Gaussian

::::::
process

:::::
form

:::::::
chosen.

:::::
While

:::
the

::::::::::::
identifiability

::::::
studies

:::::::::
presented

::::
here

:::::
show

::::
that

:::
the

:::::::::
parameter

:::::::::
calibration

:::::::::
procedure

::::::
works

:::
and

::::
that

::::::::::
covariance

:::::::::
parameters

:::
are

::::::::::
recoverable

::
in

::
a
::::::::
synthetic

:::::::
settings,

::::::::::::
identifiability

::::::
cannot

::
be

:::::::
always

::::::::
expected.

:::::
Still,

::::
even

::
in

:::::
these

::::::
cases,

:::
the15

::::
MAP

::::::
and/or

::::::::
posterior

::::
mean

::::::::
estimates

::
of
:::
the

::::::::::
covariance

:::::::::
parameters

::::::
should

::::::
provide

:::::
good

::::
point

::::::::
estimates

:::
for

::
θ.

:

4.2
:::::::

Posterior
:::::::::
predictive

:::::::::::
distribution

:::::
from

::::::::
synthetic

:::::::::
WACCM4

::::::
ozone

::::
data
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Figure 6. Scaled MCMC posteriors from a synthetic study showing identifiability of
::::
where

:::
data

::::
was

:::::::
generated

::::
with

:
a
:::::::::
multi-scale

:::::::
Gaussian

::::::
process.

:::
The

:::::
figure

::::::::::
demonstrates

::::
that

::::
even

::::
with

::::
three

:::::::::
subkernels, multi-scale Gaussian process kernel parameters

::
can

:::
be

:::::::
recovered. On

:::
The lower left ,

:::
part

:::::
shows the pairwise marginal distributions are shown

::
of

::
the

:::::::::
parameters, with

:::
and

:
the black crosses denoting

:::::
denote

:::
the

true
::::::::
parameter values. The axis labels are on the left and below the figure. On

:::
The

:
upper right ,

::::::
triangle

:::::
shows

:
sample correlations are

shown
::::::
between

::
the

:::::::::
parameters

::::
from

:::
the

::::
chain, with axis labels on the left and on the top. Small within-kernel component

::::::::::::
within-subkernel

positive covariances
::::::::
correlations

:
are present. The contours shown include 85% (black), 50% (red)

:
, and 15% (blue) of the posterior mass.
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:
A
::::::::

synthetic
:::::
study

:::::
using

::::::::::::::::::
WACCM4-generated

:::::
ozone

::::
data

::::
was

:::::::::
conducted

::
to

:::::
verify

::::
and

::
to

::::::::
illustrate

:::
that

:::
the

::::::::
methods

::
to

:::::
learn

::
the

::::::
model

::::::::::
parameters

::
β,

::
δ,
::::
and

::
θ

:::::::
produce

:
a
:::::::

realistic
::::

GP
:::::::::
regression

:::::
model

::::
that

::::
then

::::::::
produces

:::::::
credible

::::::::
posterior

:::::::::
predictive

:::::
fields.

::
In

:
a
::::::::
synthetic

::::::
setting

:::
the

:::::
mean

::::::
values

::
of

:::
the

:::::::
posterior

:::::::::
predictive

::::::::::
distributions

::::::
should

:::
be

::::
close

::
to

:::
the

::::
true

:::::
fields,

::::
and

:::
the

:::::::::::
discrepancies

:::::::
between

:::
the

::::::
ground

::::
truth

::::
and

:::
the

:::::::
predicted

:::::
fields

:::::
need

::
to

::
be

::::::::::
explainable

::
by

:::
the

::::::::
predicted

::::::::
marginal

:::::::::::
uncertainties.

:::
The

::::
role

::
of

:::
this

::::
part

::
in

::
the

:::::
study

::
is

::
to

::::
give

::
an

:::::::
example

::
of

::::
how

::
a

:::::::
Gaussian

:::::::
process

::::::::
predictive

::::::::
posterior

::::
field

::::::::
produced

::::
with

:::::
satGP5

::::::::
compares

::::
with

:::
the

:::::::::
underlying

:::
true

:::::
field.

:::
The

:::::::::
WACCM4

:::::
model

::
is

::
an

::::::::::
atmospheric

::::::::::
component

::
of

:::
the

::::::::::
Community

::::
Earth

:::::::
System

:::::
Model

::::
from

::::::
NCAR

:::::::::::::::::
(Hurrell et al., 2013)

:
,
::::::
capable

::
of

::::::::::::::
comprehensively

::::::::::
representing

::::::::::
atmospheric

:::::::::
chemistry

:::
and

::::::::
modeling

:::
the

:::::::::
atmosphere

:::
up

::
to

:::::::::::
thermosphere.

::::::::::::::::::
WACCM4-generated

:::::
ozone

::::
data

:::
for

:::
the

:::::
years

::::::::::
2002-2003,

::::
with

::
a

:::::::::::::::
latitude-longitude

:::
grid

:::::::::
resolution

:::
of

::::::::::
1.9◦× 2.5◦,

:::
88

::::::
vertical

::::::
levels

:::::
going

::
up

:::
to

::::::
roughly

::::
140

:::
km,

::::
and

::::
with

:::
an

::::::
internal

::::
time

::::
step

::
of

:::
30

::::
min,

:::::
were

::::
used

::
as

::::::
ground

:::::
truth

:::
and

::
to
::::::::
generate

::::::::
synthetic

:::::::::::
observations.10

::::
Since

:::
the

::::::
model

:::
was

:::::
used

::
for

:::::::::
generating

::::::::
synthetic

::::::::::::::
two-dimensional

::::
data,

:
a
:::::::
specific

::::::::::
atmospheric

::::::
sigma

:::::
hybrid

:::::::
pressure

:::::
level

::
of

:::::::
3.7 k Pa

::::
was

:::::::
selected.

:::::
Ozone

::::
data

::
at

::::::::::::
approximately

::::
400

:::::::
locations

:::::
were

:::::::
sampled

::::
daily

::::
over

::
a

:::::::
two-year

::::::
period

::
in

:
a
:::::::
random

::::::
pattern

::::
from

:::
the

:::::::
domain

::
of

:::
the

:::::::::
experiment

::
to
:::::
learn

:::
the

:::::::::
parameters

:::
of

:::
the

:::::
mean

:::
and

:::::::::
covariance

:::::::::
functions.

::::
The

::::::
training

::::
data

:::
set

::::
was

::::
then

::::::::
generated

:::
by

::::::::::
interpolating

::
to

:::::
these

:::::
points

:::::
from

:::
the

::::::::
simulated

:::::::::
WACCM4

:::::
data.

::::
This

::::::::
sampling

::::::::
procedure

::::::::::
corresponds

::
to
:::::::

creating
:::

on
:::::::
average15

:::
one

::::::::::
observation

::::
daily

:::
for

::::
each

::::::::::::
12.5◦× 12.5◦

:::::::::::::::
longitude-latitude

::::::
square.

:::::
Using

::::
these

:::::
data,

:::
the

::::
mean

::::::::
function

:::::::::
parameters

::::
were

:::::
fitted

::::::
locally

:::::
using

:::
the

::::::
method

::
in

:::::
Sect.

:::::
2.3.1,

:::::::
utilizing

:::
the

::::::::
functions

::
fi

::
in

:::
Eq. (11)

:
,
:::
but

::::
with

:::
two

:::::::::
additional

:::::
terms

::
f5:::

and
:::
f6,

:::::
which

:::::
were

::::::
similar

::
to

::
the

:::
f1 :::

and
::
f2::::::

except
:::
for

:::::::
different

:::::::
∆period :::::::::

parameters

:::
and

:::::
phase

::::
shift

::::::::::
parameters

::
δ,

:::
that

:::::
were

:::::
shared

::::::::
between

::::
these

:::
f5:::

and
:::
f6 ::::

only.
::::::
These

::::::::
functions

::::
were

::::
used

:::
to

:::::
model

:::::::::
periodical

:::::::
behavior

::::
with

::
2
:::
and

::::
1.5

::::
year

::::::
period

:::::::
lengths.

:::
The

::::::::::
covariance

:::::::
function

:::::::::
parameters

:::
of

:
a
::::::

kernel
:::::::::
consisting

::
of

::
a
:::::
single

:::::::
Matérn20

:::::
kernel,

::::
Eq. (15),

::::
were

:::::::
learned

:::::
using

:::
the

::::::::::
approximate

:::::::::
maximum

::::::::
likelihood

:::::::::
technique

::::::::
described

::
in

::::
Sect.

:::
2.6

:::::
with

:::
data

:::::
from

:::
the

:::
first

:::::
year.

:::
The

:::::::::
parameter

::
ν

::::
used

:::
for

:::
the

:::::
kernel

::::
was

::

5
2 .

::::
The

:::::::::::
optimization

:::
was

:::::::
carried

:::
out

::::
with

:::::::
MCMC

:::
and

:::
the

::::::::
posterior

:::::
mean

:::::::
estimate

::
of

:::
the

:::::::::
covariance

::::::::::
parameters

:::
was

:::::::
selected

:::
for

::
θ̂.
::::
The

::::::
values

::
of

:::
the

:::::::::
covariance

::::::::::
parameters

:::::::
obtained

:::::
were

:::::::::
τ = 0.589,

::::::::::
`lat = 0.143,

::::::::::::
`lon = 0.225,

:::
and

::::::::::::::::::
`t = 2 d 16 h 15 min.

::::
That

::::
`lon ::

is
:::::
larger

::::
than

:::
`lat::::::

echoes
:::
the

:::::::
OCO-2

:::::
results

:::::::::
presented

::::
later

::
in

::::
Table

::
4.
:

25

:::
For

:::::::::
computing

:::
the

:::::::
posterior

::::::::
predictive

:::::::::::
distributions,

:::
the

:::::::::::
observational

::::
data

::::
ψobs

::::
were

:::::::
sampled

:::::
from

::
the

:::::::::
WACCM4

::::::::::
simulations

:
at
::::::::
locations

::::::
closest

::
in

:::::
space

::::
and

::::
time

::
to

:::::
where

:::
the

::::::::
GOMOS

:::::::::
instrument

:::::
made

::::::::::::
measurements

::::::
during

::
its

::::
first

::::
year

::
of

:::::::::
operation.

::
No

:::::
noise

::::
was

:::::
added

:::
to

::::
these

:::::::::::
observations.

::::
The

::::::::
posterior

::::::::
predictive

::::::::::
distribution

::::
was

::::::::
computed

:::
for

::::
one

:::
full

:::::
year,

:::
and

:::
he

::::
total

::::::
number

::
of
:::::::::::

observations
:::::
used

:::
was

:::::::
39538.

:::
The

::::::
reason

:::
for

::::::
using

:::::::
different

::::::
spatial

:::::::
patterns

:::
for

:::::::
learning

::::
the

:::::
model

::::::::::
parameters

:::
and

:::
for

:::::::
running

:::
the

::::::::
Gaussian

::::::
process

:::::::::
regression

::::
was

::::
that

::::
with

:::
this

:::::::
choice,

:::
the

::::::
quality

::
of

:::
the

:::
fit

::
of

:::
the

:::::
mean

::::
and

:::::::::
covariance30

:::::::
functions

::::
was

:::
not

:::::::::
dependent

::
on

:::
the

::::::
spatial

:::::::
location,

::::
and

::::::::
therefore,

::
if

:::::
major

::::::
spatial

:::::::::::
discrepancies

:::::::
between

:::
the

::::::
ground

::::
truth

::::
and

::
the

::::::::
posterior

:::::::::
predictive

:::::
fields

:::
had

::::::::
emerged,

:::::
those

:::::
could

:::::
then

::::
have

::::
been

:::::::::
attributed

::
to

:::
the

::::::::
GOMOS

::::::::
sampling

::::::
pattern

::::
used

:::
to

:::::::
generate

:::
the

:::::::
synthetic

:::::::::::
observations

:::::
ψobs.

:::
The

::::::::
marginal

::::::::
posterior

::::::::
predictive

:::::::::::
distributions

:::::
were

::::::::
computed

::::::::
globally

::
in

::
a

:::::::
uniform

::::
grid

::::
with

:::
the

:::::::::
resolution

::
of

::::
2.5◦

:::
in

:::::::
east-west

::::::::
direction

::::
and

::::
1.9◦

::
in

:::
the

::::::::::
north-south

:::::::
direction

::::::::
between

:::::::
78.63◦S

:::
and

::::::::
78.63◦N

:::
and

:::::
daily

::::
over

:::
the

:::::
period

:::::
from

:::
Jan

::
635
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::::
2002

::
to

:::
Jan

::
5

:::::
2003,

::::::
totaling

::::::
around

:::::
4.384

::::::
million

:::::::::
marginals

::
in

:::
the

::::::::
predictive

::::::::
posterior.

::::
The

:::
one

::::
year

::::
long

::::::::::
computation

::::
took

:::
19

:::
min

:::
18

:
s
::
on

::
a
::::::::
relatively

:::
fast

::::
Intel

::::::::
i7-8850H

::::::
laptop

:::::
CPU.

:::::
Figure

::
7
::::::
shows

:::
the

::::::
ground

::::
truth

:::::
from

:::::::::
WACCM4

::::
with

::::
the

:::::
mean

::::
field

:::
and

::::::::::::
corresponding

::::::::
marginal

:::::::::::
uncertainties

::::::::
obtained

::::
from

:::::
satGP

:::
for

:::::
Dec.

:
2
:::::
2002.

::::
The

:::::::
ground

::::
truth

:::
and

::::
the

::::::::
estimated

:::::
fields

:::
are

::::
very

:::::::
similar,

:::
and

:::
the

::::::::::
uncertainty

::
is

::::::
higher

:::::
when

::::
there

:::
are

:::
no

::::::::::
observations

:::::::
nearby.

:::
The

::::::::
posterior

:::::
mean

::::
field

::::::
retains

::
a

::
lot

:::
of

:::
fine

:::::
detail

:::::
from

:::
the

::::::
ground

::::
truth

::::
and

::
is

:::
not

::::::
overly5

::::::::
smoothed

::
or

:::::
sharp,

::::::::::
suggesting

:::
that

:::
the

:::::::::
covariance

:::::::::
parameter

:::::::::
calibration

:::::::::
procedure

:::
has

:::::
found

::
a
::::::::::::::
well-performing

:::::::
estimate

:::
for

::
the

::::::::::
covariance

:::::::::
parameters

::
θ.

::::
The

:::::::
smallest

:::::::
reported

:::::::::::
uncertainties

:::
are

:::::
close

::
to

::::
zero,

:::
as

::::
they

::::::
should,

::::
due

::
to

::::
lack

::
of

::::::::::
observation

::::
error.

:

Figure 7.
:::::
Ozone

::::
field

:::::
mixing

:::::
ratios

::
at

:::::::
3.7 k Pa

::
for

::::
Dec.

::
2

::::
2002.

:::::
Panel

::
(a)

:::::
shows

:::
the

:::::::
simulated

::::::
ground

::::
truth

:::
from

:::::::::
WACCM4,

:::
(b)

:
is
:::
the

:::
GP

::::::
posterior

:::::
mean,

:::
and

:::
(c)

::::
gives

:::
the

:::::::
posterior

:::::::
predictive

::::::::::
uncertainties.

::
A

:::::
single

:::::
Matérn

:::::
kernel

::::
was

::::
used.

::
In

::
(b)

:::
the

:::::
larger

:::::
circles

::::
with

::
the

:::::
white

::::
edges

:::
are

:::::::::
observations

::::
from

::::
Dec.

::
2,

:::
and

::
the

::::::
smaller

:::::
circles

:::::
stand

::
for

::::::::::
observations

::::
from

:::
Dec.

::
1
:::
and

::::
Dec.

:
3.

4.3 The OCO-2 v9 data

The simulations with real
:::::::::::
non-synthetic remote sensing data utilize

:::
use the v9 data from the OCO-2 satellite. The OCO-210

satellite was launched in 2014, and it orbits the Earth on a Sun-synchronous orbit (Crisp et al., 2012; O’Dell et al., 2012)
:
,
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:::::::::
completing

:::::
14.57

::::::::::
revolutions

::::::
around

::::::
Earth

::
in

::::
one

:::
day. The footprint area of each measurement is roughly 1.29 by 2.25

kilometers
::::::::::
1.29× 2.25

::::
k m2, but the data is very sparse in time and in space. The satellite completes 14.57 revolutions around

Earth overpasses in one day. In the presence of clouds, the satellite is not able to produce measurements, and this poses a

challenge for areas with persistent cloud covers, such as Northern Europe in the winter.

The present work utilizes
:::
uses

:
the XCO2 data, its reported uncertainties, associated coordinate information, and zonal and5

meridional wind speeds that are contained in the data files. Only observations flagged good are used, and
:::
The

::::
time

::::::
period

:::::::::
considered

::
is

::::
from

:::::
Sept.

::
6

::::
2014

::
to

:::::
Nov.

::
10

:::::
2018

::::
and

:::
we

:::
use

::::
only

:::::::::::
observations

::::::
flagged

:::
as

:::::
good,

::
of

::::::
which there are in total

116489342 such observations for the time period considered.
::::::::::
116489342.

4.4 Solving the mean function for OCO-2 v9

Solving
:::::::::
Calibrating the mean function from OCO-2 v9 XCO2 data , as described in Sect.2.3.1, produces best

:::::
2.3.1

::::::::
produces10

::
the

:
estimates for the coefficients of Eq. (11)

:
β

:::
and

::
δ
::::::::::
coefficients

:
shown in Fig. 8. The

::
βi:::::::::

parameters
::::

are
:::
the

:::::::::
coefficients

:::
of

::
the

:::::::::
functions

::
fi::

in
::::
Eq. (11),

::::
and

::
δ

::
is

:::
the

:::::
phase

::::
shift

:::::::::
parameter

::
in

:::
f1::::

and
:::
f2.

:::
The

:
upper left quadrant

:
of

::::
Fig.

::
8
:
shows the

semiannual seasonality
::::::::
variability

:
of the XCO2 concentration, which

:
.
:::
The

::::::
timing

::
of

::::::
winter

:::
and

:::::::
summer

:::
in

:::
the

:::::::
Northern

::::
and

:::::::
Southern

:::::::::::
hemispheres

:
explains the color shift along the equator. The lower left quadrant shows the amplitude of the twice

faster oscillations, and like β1, also β2 shows the highest amplitude oscillations in the boreal region.15

The constant term β3 in the upper right quadrant shows the background concentration. Some of the reddest areas such as East

China, both coasts of the United States, Central Europe, and the Persian Gulf stand outand are
:
,
:::
and

::::
they

:::
are

::::
also areas where

major emission sources are known to exist. The observation of a local elevated concentration compared to the surrounding

areas approaches the work of
::::::
Finding

::::
local

::::::::
elevated

::::::::::::
concentrations

::::::::
compared

:::
to

::::::::::
surrounding

:::::
areas

::::::
echoes

:::
the

:::::::::::
observations

::::
made

:::
by Hakkarainen et al. (2016), where empirically defined time-integrated local XCO2 anomalies are

::::
were

:
interpreted as20

possible emission sources.

:::
The

:::::
trend

:::::::::
component

:::
β4:::::

varies
::::
only

::
a
::::
little

::::::::
spatially,

:::
due

:::
to

::::
CO2

::::::
mixing

::
in
:::
the

::::::::::
atmosphere

::::
over

:::::
time,

:::
and

:::
for

::::
this

::::::
reason

:
it
::
is

:::
not

::::::
shown

:::::
here. The phase shift

::::::::
parameter

::
δ is modeled separately, and the field in the lower right quadrant is obtained

by optimization, conditioning on the β factors. This partly explains the slightly different spatial pattern. The figure shows how

the phases of the XCO2 annual cycles differ in some regions, such as the Amazon or the Central African rain forests and the25

Sahel. The trend component β4 was here set to be constant, as CO2 over time mixes in the atmosphere
:::::::
between

:::::::
regions,

:::
but

:::
the

:
δ
::::::
values

::::
need

::
to

::
be

:::::::::
interpreted

:::::::
together

:::::
with

::
the

:::
β1:::

and
:::
β2::::::::::

coefficients.
:

::
At

::::
high

:::::::
latitudes

::::::
XCO2

:::::::::::
observations

::::
from

:::::::
OCO-2

:::
are

:::::::
available

::::
only

:::
for

::
a
::::
short

::::::
period

:::::
every

::::
year,

::::
and

:::
the

::::::
quality

::
of

:::::
these

:::::::::::
measurements

::
is
:::::

often
:::::::
poorer.

:::
For

::::
this

:::::
reason

::::
the

:::::::::
calibration

::::::::
procedure

:::::
may

::::
yield

:::::::::
unrealistic

::::
and

:::::
noisy

::::::
values

::::
close

:::
to

:::
the

:::::
poles,

::::::::
especially

:::
for

:::::::::
parameters

:::
β1:::

and
:::
β2.

::::
The

::::::::
obtained

::::::::
parameter

::::::
values

:::::
closer

::::
than

:::
20◦

:::
to

::
the

::::::::
northern

:::
and

::::::::
southern

:::::
edges30

::
of

:::
the

::::::
domain

::::
were

::::::::
averaged

::
by

::::::
setting

:::
the

::::::::
parameter

::::::
values

::
at

::::
each

:::
xij

::
to

::::::::::::::::::
βij ← β̂ijd

20 + (20−d)β
20 ,

::::::
where

:
d
::
is

:::
the

:::::::
distance

::
to

:::
the

::::
edge

::
of

:::
the

::::::
domain

:::
in

:::::::
degrees,

:::
β̂ij

::
is

:::
the

::::::::
calibrated

:::::::::
parameter

:::::
vector

::
at

::::
xij ,

:::
and

::
β

::
is

:::
the

::::::
average

:::::
value

::
of

:::
the

::::::::::
parameters

::::
over

::
the

::::
area

::::::
where

:::
xij

::
is

::::::
located

::::
and

:::::
where

:::::::::
averaging

::
is

:::::::::
performed.

::::
The

:
δ
:::::::::
parameter

:::
was

::::::
treated

:::::::::
similarly.

::::
This

:::::::::
adjustment

::::
was
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::::
done

::
as

:
a
::::::::::::::
post-processing

:::
step

::::
after

:::::::
finding

:::
the

::::
mean

::::::::
function

::::::::::
coefficients.

:::
The

:::::
main

::::::
benefit

::
of

::::::::::
performing

:::
this

:::::::::
adjustment

:::
is,

:::
that

:::
the

::::::::
posterior

::::::::
predictive

::::::::::
distributions

:::::::
become

:::::
more

::::::
realistic

:::
in

:::::
winter

::
at

::::
high

:::::::
latitudes

:::::
when

:::
the

:::::
mean

:::::::
function

:::::::::
dominates.

:

:::::
Figure

::
1
:::::
shows

:::::
time

:::::
series

::
of

:::
the

:::::
mean

:::::::
function

:::
for

::
a
::::::
variety

::
of

:::::::::
locations,

:::::::
verifying

::::
that

:::
the

:::::
exact

::::
form

:::::::
chosen

::
is

::::
able

::
to

:::::::
describe

:::::
much

::
of

:::
the

::::
local

:::::::::
variability

::
in

::::::
XCO2.

Figure 8. Mean values of mean function coefficients that were described as a Markov random field, calculated in a 2◦× 2◦ grid
::::::
between

::::
85◦N

:::
and

:::::
85◦ S. The βi coefficients multiply the fi functions in Eq. (11). Panel (d) shows how the phase parameter δ can vary more in the

southern hemisphere where β1 and β2 are small. The mean function and fitted daily means for several locations with the corresponding mean

function parameters are shown in Fig.
:
1.

4.5 Covariance parameters of the OCO-2 v9 data5

The OCO-2 data has several natural length scales, both spatially and temporally
:::::
spatial

::::
and

:::::::
temporal

::::::
length

:::::
scales. The distance

between adjacent observations is only one to two kilometers in space and some hundredths of a second in time, but the distance

between consecutive orbits is thousands of kilometers in space and several hours in time. On consecutive days the satellite

passes close to the trajectory of the previous day at a distance of tens to three hundred kilometers depending on the latitude.

The Earth has natural temporal diurnal and annual cycles, but since OCO-2 is Sun-synchronous, only the latter matters
::::
with10

::::::
OCO-2

::::
data. Since the annual cycle is already fitted in the particular form of

::
by

::::::
finding the mean function used, Eq.

:::::::::
coefficients

::
β1:::

and
:::
β2 ::

in
:::
Eq. (11)

:::::::::::
corresponding

::
to
:::
the

:::::::
periodic

::::::::
functions

::
f1::::

and
::
f2, a periodic

:::::::::
covariance kernel component is not included,

and the data is
:
.
:::
The

:::::::
OCO-2

::::
data

:
is
::::::::
therefore

:
modeled with a kernel consisting of a larger-scale exponential and smaller scale

Matern component
:
a
::::::
smaller

:::::
scale

::::::
Matérn

::::::::
subkernel.

The covariance parameters for the two-component kernel , which are
:::
are

:::::
given

::
in

:::::
Table

::
4.

:::
The

::::::
values

::::
used

::::
were

:
the median15

values from sampling the posterior with MCMC, are given in Table 4. With .
::::::
When learning the parameters from a data set with

::::::
several natural length scales, the posterior may appear multi-modal, with some of the modes only having relatively little mass.

In such a case, the median provides a more robust estimate for the parameters than the mean. The `(·)lon and `(·)t parameters of
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the posterior mean were slightly larger, which would result in slower computation. Selecting the median is further justified by

the slight overestimation of some parameters in the synthetic study in Sect. 4.1.

Learning the covariance parameters from OCO-2 v9 data used the following configuration parameters for satGP: ζtrain = 0,

κ= 256, and nref = 12. A total of 1.1184 million MCMC iterations were completed, with the first 50% discarded as burn-in

to produce statistics. The reference points were randomly picked from a rectangle with corners at (0◦S, 65◦E) and (60◦N,5

145◦E). While using the whole globe would have been a principled choice, MCMC requires lots of iterations, and for any

claim of global coverage nref would have needed to be much larger.

Table 4. Covariance function parameter values learned from OCO-2 data. First column shows the Matern
::::::
Matérn kernel parameters, and

the second column the exponential kernel parameters. The length scale
::::
scales

:
along the parallels, `(·)lon is much larger than that along the

meridians, `(·)lat.

(·) = mat (·) = exp

τ (·) 0.899 2.72

`
(·)
lat 0.00513 0.0418

`
(·)
lon 0.0363 0.397

`
(·)
t 20h 22min 16d 20h 12min

4.6 Posterior predictive distributions of XCO2 from the OCO-2 v9 data

The marginal posterior predictive distribution at test points x∗, given by Eq. (9) and (10), were calculated globally in a half-

degree grid between 80◦S and 80◦N at a daily
::::
daily

::::
time

:
resolution. The first day of simulation was September 6 2014, and10

the last day was November 10 2018, spanning in total 1526 days. For each day, 230400 marginals were computed, resulting

in a collective 351 million inverted covariance matrices. The satGP parameters used were ζsample = 0 and κ= 256, and the

covariance kernel used was the one learned in Sect. 4.5, with parameters given in Table 4. The simulation time was 25
::
26 days

on a moderately fast Intel i7-8700K CPU utilizing the available 12 CPU threads and 32 GiB memory.

Global
::::::
Figures

::
9
::::
and

::
10

:::::::
present

:::::
global

:
fields of the mean values and marginal uncertaintiesare presented in Fig. 9 and15

10, with a subset (to avoid excessive over-drawing) of observations shown as a scatter plot . For this simulation, a maximum

distance of 1100 km (10◦ on the equator) was specified for speeding up searching for closest observations in the direction

along parallels. This constraint can be seen as discontinuities in uncertainty when no observations are nearby, especially close

to the poles
::
in

:::
the

:::
(a)

:::::
panels. The (b) parts of the figures

:::::
panels

:
show how uncertainty is reduced with the overpass of OCO-2.

This uncertainty reduction diminishes fast due to the Matern
::::::
Matérn

:
component of the multi-scale kernel having a very short20

length scale parameter in the time dimension. In the upper figures , the background color (posterior mean
::::
mean

::
of

:::
the

::::::::
Gaussian

::::::
process

::::::::
posterior) usually matches the observations. Due ,

:::
but

::::
due to observational noise, the GP

:::::::
posterior mean is not strictly

interpolation, however
:::::::::
everywhere

:::
an

::::::::::
interpolated

::::
field.
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Figure 9. Global XCO2-distribution
:::::
XCO2 posterior mean values (a) and their uncertainties (b) on last day

::
the

::::
30th of October 2014. The

most informative observations are shown with the concentrations, with the large white circles being from October 31st 2014
::
the

::::
30th, medium

circles from one day before or after, and small circles from two days before or after. The OCO-2 utilizes sunlight for retrieval, and that
:::::
which

is why there are very few observations above 60◦N.
::::
These

::::
fields

::::::
include

:::::::
latitudes

::
up

::
to

::::
85◦S

:::
and

:::::
85◦N.

4.7 Comparison of single- and multi-scale kernels with OCO-2 data

How
::::
Data

:::::
from

:::
the

::::::
OCO-2

:::
can

:::
be

::::
used

::
to

::::::::::
demonstrate

::::
how

:
the multi-scale kernel formulation affects the predictive posterior

distributionscan be demonstrated with OCO-2 data. In Fig. 11
:
.
:::::
Figure

:::
11

:::::
shows

:
posterior marginals from September 15 2014

are shown.
::::
2014.

:
The first row (a-b) contains results from the multi-scale kernel described in Sect.

:
4.5, and the second row (c-d)

shows fields from only the exponential part of the multi-scale kernel. The parameters of the multi-scale kernel are shown in5

Table 4. The bottom row (e-f) contains the difference fields between the first and the second rows. The single-kernel uncertainty

is very low in Fig. 11 (d) since lots of observations fall into regions of high covariance with almost any test input, with the

exception of the Northern
:::::::
northern

:
side of Ireland, which does not have any observations nearby. Since the covariance kernel

parameters were trained for the multi-scale kernel, the parameters used for the single kernel are not the ones describing the

XCO2 field best.10

Figure
::::
Panel

:
(a) shows that as intended, the multi-scale approach leads to local enhancements of the XCO2 mean field. Far

from the measurements, the smaller Matern
::::::
Matérn

:
kernel no longer reduces the predicted marginal uncertainties, and this

leads to an increase in uncertainty in these areas. Figure (e) shows additional enhancements of the XCO2 mean fields, which

are in this case due to the different maximum covariances between the multi-scale and single-scale kernels.
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Figure 10. Global XCO2-distribution
:::::
XCO2

:
posterior mean values (a) and their uncertainties (b) on

::::
10th

:
of
:

June 1st 2016. While photosyn-

thesis in the Northern Hemisphere is already reducing the carbon dioxide concentrations globally, the observations condition the Gaussian

process to higher mean values than in Fig. 9. In the summer months the uncertainty stays high close to the South Pole.
:::::
These

::::
fields

::::::
include

::::::
latitudes

::
up

::
to
::::
85◦S

:::
and

:::::
85◦N.

The total kernel size was kept at 1024 (κ= 512 for (a-b) and κ= 1024 for (c-d)) in both experiments. Additionally ,
::::
and

:::::::
thinning

:::
and

::::
grid

:::::::::
resolution

::::::::
parameter

::::::
values

:::::
were ζsample = 5, and ω = 0.5◦in this case. The very same observations were

used in both cases
:::
for

::::
both

::::::::::
simulations.

4.8 Wind-informed kernel with OCO-2 data

The wind-informed kernel, Eq. (17), lets local wind data at test input x∗ rotate and scale the coordinate axes
:::
axes

:::::
along

::::::
which5

::
the

:::::::::
covariance

::::::::
between

:::
two

:::::
points

::
is

::::::::
computed. Modeled winds are included with OCO-2 data, and they can be used to produce

gridded winds that can then be used locally with the computation of each marginal posterior predictive distribution.

The covariance parameters for a single wind kernel were learned by taking the median of an MCMC posterior, similarly as

was done in Sect.
:
4.5. The resulting parameters were τ = 2.07, `= 0.038, and ρ= 56.7. The variance of ρ was high, possibly

due to the square root in the current formulation in Eq.
:

(19). For this simulation, ζ = 1, κ= 1024, and ω = 0.7, and the10

simulation time for the area from (27◦N,115◦E) to (40◦N,145◦E) for the single day was 2.652s (walltime) on the i7-8750H

laptop CPU.

The simulation results are shown in Fig. 12. Low uncertainties shown in blue color on the right spread with the winds, as do

the concentration estimates on the left both due to the high reading in South Korea and the low reading close to Shanghai.
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(a) XCO2 (ppm), multiscale kernel (b) Uncertainty (std), multiscale kernel

(c) XCO2 (ppm), larger-scale kernel only (d) Uncertainty (std), larger-scale kernel only 

(e) Difference in XCO2 (ppm) (f) Difference in uncertainty (std)
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Figure 11. Comparison of a multi-scale kernel with the two components described in Sect.
:
4.5 and a single component kernel defined by the

parameters of the exponential kernel. These parameters were given in Table 4. The observations used are the same and are shown in panels

(a) and (c) as circles. The large ones with white borders are observations from the present day, September 15 th 2014, medium circles are

observations from 14th and 16th, and small circles from 13th and 17th.

Optimally the wind-informed kernel should utilize winds that are not recomputed from the observations as was done
::::
here

for convenience, but directly from a weather or climate model
::
or

:::::
from

:
a
:::::

wind
::::
data

:::::::
product. The satGP program contains

configuration options for doing this. The optimal covariance function parameter values are conditional on the wind data, so the

values should be learned separately for each new application and wind data set.

5 Conclusions and future work5

In this work we have introduced the first version of a new fast
:::
fast

::::::
general

:::::::
purpose

:
Gaussian process software, satGP v.0

::
v0.1.

It aims at being a general purpose Gaussian process toolbox, especially meant
::
.2,

::::::
which

::
is

::
in

::::::::
particular

::::::::
intended to be used

with remote sensing data. The software solves the problems of
::
We

:::::::
showed

::::
how

:::
the

:::::::
program

::::::
solves

:::::
spatial

::::::::
statistics

::::::::
problems

::
of

::::::::
enormous

::::
sizes

:::
by

:::::
using

:
a spatially varying mean function, learning its parameters via computation of

::::::
learned

:::
by

:::::::::
computing

marginals of an MRF, and also allows learning the parameters of the
::
by

:::::
using

:
a
:
multi-scale covariance functionusing either10

:
,
:::::::::
parameters

::
of

::::::
which

:::
are

::::::
found

:::::
either

:::
by

:::::
using optimization algorithms or

:::
with

:
adaptive Markov chain Monte Carlo. On

top of these, satGP allows to conduct
:::
We

::::
also

::::::::
presented

::::
how

::::::
satGP

::::::
allows

::::::::::
conducting synthetic parameter identification
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Figure 12. (a) GP posterior mean of XCO2 and (b) its uncertainties with the wind-informed kernel. The area shown contains the Korean

peninsula in the center, China on the left, and Japan on the center-right. The large circles with the white edges are present-day observa-

tions, medium circles are observations from adjacent days, and the smallest ones are observations from two days away. Wind direction

and magnitude are given by the black arrows, and uncertainty is clearly reduced where wind is blowing directly towards or away from the

observations.

studies via sampling
::
by

::::::::
sampling

::::
from Gaussian process prior and posterior distributions, and this can

:::::
could be done with any

kernel prescribed, including a non-stationary wind-informed kernel. We are not aware of open source remote sensing-oriented

software that would provide this combination of features. The satGP program was demonstrated with the enormous
:::
The

:::::::
features

::
of

:::::
satGP

::::
were

:::::::::::
demonstrated

::::
first

::::
with

:
a
:::::
small

::::
scale

::::::::
synthetic

:::::
ozone

:::::
study,

:::
and

::::
then

:::::
using

:::
the

::::::::
enormous

::::::
XCO2 data set produced

by the NASA Orbiting Carbon Observatory 2.5

There are various
::::::
Various

:
aspects of satGP that could

:::
can be improved in future versions. These include addition of routines

for doing model selection to select the components of the multi-scale kernel, ,
:::::
some

::
of

:::::
which

::::::
include

:
improving the observation

selection/thinning scheme for statistical optimality, and finding joint posterior predictive distributions. For the last one, a

multi-grid version can be developed, and this could be potentially useful for flux inversion studies.

The satGP software utilizes various approximations for computational tractability, and the connection between parameters10

such as length scales `, thinning parameter ζ, maximum kernel size κ, and prediction accuracy could be studied further, as well

as changing the grid resolution according to density of observations.

The methodology and code presented can be also used with other data sources.For instance, combining data from the

various satellites that measure CO2,
::::::
adding

::::::
support

:::
for

::::::::::
multivariate

::::::
models

::::
and

:::::
higher

:::::
input

::::::::::
dimensions,

::::
and

:::::
adding

::::::::
methods

::
for

:::::::
finding

::::::
locally

::::::::
stationary

::::::
model

:::::::::
parameters

:::
to

::
be

::::
able

::
to

::::::::
describe

::::::::::::
heterogeneous

::::::
scenes

:::::
better.

:::::::
Despite

:::
all

:::
the

:::::
room

:::
for15

:::::::::::
development,

:::::
satGP

::
is

:
a
::::::
useful

::::
tool

::::::
already

::
in

::
its

:::::::
present

:::::
state,

:::
and

::
it

::::
may

::::
with

::::
little

:::::::::
additional

::::::::
modeling

::
be

::::
used

::::
e.g.

::
to

::::
fuse

:::
data

:::::
from

:::::::
different

:::::::
sources,

:
such as GOSAT, GOSAT-2, OCO-2, TANSAT, and the OCO-3, would be particularly interesting.

That more and more instruments are about to provide data from the orbit in the near future will lead to a need to understand the

properties of even larger data sets.
::::
This

::::
will

::::::
enable

::::::::
producing

:::::
more

::::::
precise

::::::::
posterior

::::::::
estimates,

:::
and

::::
with

::::
that

:
a
:::::
more

::::::::
complete

::::::
picture

::
of

:::
the

::::::::
evolution

:::
of

:::
for

:::::::
instance

::::
the

::::::::::
atmospheric

::::::
carbon

:::::::
dioxide

:::::::::::
distribution.

::::
Such

::::::::::
statistically

:::::::::
principled

::::::::
products20

:::
that

::::::::::
incorporate

:::::::::
uncertainty

::::::::::
information

::::
can

::::
then

::
be

::::
used

:::
as

:
a
::::::
robust

::::::::
backbone

:::
for

::::
both

:::::::
making

:::::
policy

::::::::
decisions

::::
and

::::::
further

:::::::
scientific

:::::::
analysis.
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Code and data availability. The satGP code is currently available from the corresponding author upon a reasonable request, and we will

release the software under the open source MIT license as a supplement to the final version of this manuscript. The OCO-2 v9 data used is

freely available directly from NASA. The WACCM4 model is available from UCAR as a component of the Community Earth System Model.

Appendix A: Input parameters and variables in satGP

The satGP software by design allows for lots
:
a
:::
lot of flexibility for defining how to model the quantity of interest as a Gaussian5

random field. In this section the possibilities are discussed along with some
::::
This

::::::
section

::::
goes

::::
over

:::::
those

::::::::::
possibilities

:::
and

:::::
some

:::::::
practical recommendations. The parameters in Table 2 are described in more detail than earlier, along with some other config-

uration variables in the configuration file config.h. Practical aspects of defining mean functions and covariance kernels are

also included. Some of the details in this section may change for future versions of satGP
:::
the

:::::::
software.

Of the four sections in Table 2, the first is obvious, as those parameters control the main logic of satGP. It is recommended10

to first learn the mean function, then with that mean function learn the covariance function, and only after that calculate the

means and variances of the Gaussian process with
:::::::
sampling = 1. The setting

:::::::
sampling = 2 can be used

:::
e.g. for illustration

purposes, for
::
to understanding how the different realizations of the random function would look like,

:::
or

::
to

:::::::
generate

::::::::
synthetic

:::
data

::::::::
products.

The
::::
area parameter defines the longitude-latitude extents of the domain where satGP is wished to be used

::::::::
performs

:::
the15

:::::::::::
computations. The strings and the corresponding areas are defined in the beginning of the file gaussian_proc.h, and

can be changed there as needed. Current available areas contain e.g. NorthAmerica, Europe, EastAsia, World, and

TESTAREA.

The parameter ndays defines how many days are to be simulated after the starting day. Currently the starting day is hardcoded

::::
hard

:::::
coded

:
in the code base to

:
to

:::
be the first day of OCO-2 data. However, if use_daylist6= 0 in the configuration file,20

a list of days can be used. This list can quite easily generated by modifying a
:::::
trivial

:
python script create_daylist.py,

which is included with satGP.

The ω parameter determines how much spatial detail is resolved when sampling or computing marginals of the random field.

A small value like 0.1 will make computing very expensive, and using such values might be unnecessary when the smallest

covariance subkernel length scale parameters are large. These ` parameters are in the scale of distances on the unit ball, and25

therefore on the equator an ` parameter of 0.05 corresponds to a length scale of around 2.9◦, so the ω parameter should rarely

be much less than half of that. On the other hand, if the observations are spatially very close to each other and describing local

variation is aimed for, then the ` parameters need also
:::
also

::::
need

:
to be small. Given computational constraints, larger values or

different
::::
area parameters may need to be used.

In the third section of Table 2, the first parameter nker denotes the number of subkernels. Even though the hard limit is set at30

::
to 10, in practice this should be between one and three since the parameters of more than three subkernels are not necessarily

:::::::::
reasonably identifiable. More kernels means also more computational cost, due to the κ parameter, which is the last one in the

table and
:
is

:
discussed later.
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The parameters and
::
cfc

:::
and

::
mf are not strictly input variables, but C struct pointers that are created based on input variables.

These variables are described in the configuration file, and they amount to choosing the covariance kernels from prescribed

types (e.g. Matern
:::::
Matérn, exponential, and periodic), and then defining the parameters for those kernels. The best parameters

are those that are learned with
::::::
learn_k = 2 when non-synthetic data is used.

The learning
:::::::
Learning

:::
the

:::::::::
covariance

:::::::::
parameters

::
θ is best performed with MCMC, and the posterior mean and median have5

proven to be a useful values. For unimodal posterior distributions these values are very close
:::::
usually

:::::
very

::::
close

::
to

:::::
each

::::
other.

The number of MCMC iterations is controlled by the variable mcmc_iters, for which 106 is a large enough value, and for

computing the log-likelihood in Eq. (24), the .
::::
The

:
number of reference points nref in the set Eref :

in
::::
Eq.

::::
(24)

:::
that

::
is
:::::

used

::
for

:::::::::
computing

:::
the

::::::::::::
log-likelihood

:
can be set to a low value of e.g. number of CPU threads, if at least 12 are available. If with

MCMC the chain gets stuck in local minima, the value of the mcmcs->scalefactor in the mcmc() function in mcmc.h10

may be shrunk, and equally well, if the posterior ends up being flat with respect to many parameters, it may be increased.
::::
This

:
is
:::::::
justified

:::::
since

::::
due

::
to

:::
the

::::::::::
approximate

:::::::::
maximum

:::::::::
likelihood

::::::
method

:::::::
correct

::::::
scaling

:::::
factor

::
of

:::
the

::::
log

:::::::
posterior

:::::::
density

::
is

::
in

:::
any

::::
case

::::::::
unknown.

:

For learning the covariance parameters, parameter limits need to be given. These should correspond to the expected length

scales in the data – e.g. long-range fluctuations with low amplitude, and short-scale variations due to local effects. It is in15

practice best if the parameter ranges do not overlap.

If the exponent of the exponential kernel needs to be changed, that needs to be done by changing the exponent variable in

the covfun_dyn() function in the file covariance_functions.h. Similarly, if the order of the Matern
::::::
Matérn

:
kernel

needs to be changed, that can be done by changing the variable n in functions covfun_matern52() and initialize_covfunconfig()

in that same file.20

For constructing the mean function, the configuration file contains the parameter mftype. The possible values are: 0) a

zero mean function is used, 1) a mean function that changes only in time is used, 2) a (time-dependent) field is read in and

used - this can be e.g. the mean value from a previous Gaussian process simulation, and 3) a space and time dependent mean

function is used. The function itself is given as a function pointer to variable mean_function in the configuration file, and

this function needs to be defined somewhere – e.g. in the file mean_functions.h. For the mean function, another variable,25

mfcoeff, needs to be set. This is the total number of parameters (β and δ in Eq.
:
(2)) if mftype ∈ {1,3}. If the mean

function parameters are learned, the parameter nnonbetas, the number of mean function non-linear δ parameters, needs

to be set to the appropriate value in the function fit_beta_parameters_with_unc() in mean_functions.h. For

global mean function coefficients, the values of those coefficients are given in the configuration file. Additionally, ,
::::::
where

:::
the

parameter limits for learning the space-dependent mean function parameters are set in the configuration file
:::
also

:::
set. Finally,30

when learning the space-dependent mean function parameters, the smoothness of the field may be controlled by changing

the dscale parameter in the configuration file, and to a lesser extent by modifying the dfmin and dfmax parameters

in function fit_beta_parameters_with_unc() in file mean_functions.h.
::::::
Another

:::::::
strategy

:::
for

::::
e.g.

:::::::::
producing

:::::::
smoother

:::::
mean

:::::::
function

:::::::::
coefficient

:::::
fields

::
is

::
to

:::
use

::::
high

::::::
values

:::
for

:::::
ζtrain :::

and
::
κ

:::
and

:::::
large

:::::
spatial

::::::
length

::::
scale

::::::::::
parameters

::
in

:::
the
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:::::::::
covariance

:::::
kernel.

:::::::::
Changing

::
the

::::::
priors

::
for

:::
the

::
β

:::::::::
parameters

::
is

::::
done

::
in

::::::
section

:
2
::
of

:::::::::::::::::::::::::::::::::::::
fit_beta_parameters_with_unc()

::
in

:::::::::::::::::::
mean_functions.h

:
.

In the last section, the ζtrain parameter controls data thinning when learning covariance kernel parameters and the ζsample

parameter has the same effect for when
::::
does

:::
the

::::
same

:::::
when

::::::::
sampling 6= 0. How the thinning takes place was explained in the

context of Eq.
:
(26). While with few observations no thinning needs to be done at all, i.e. ζ· may be set to zero, with large data5

sets the representability of data may be improved when a coarse grid is used for computation, and also memory bottlenecks may

be avoided. These parameters may be also increased if faster execution is required, e.g.
::
for

::::::::
example for debugging purposes.

The σ2
min parameter controls which observations are not considered at all when computing at a location x∗, as described

by Eq.
:

(21). The higher this is, the more data is discarded. Setting σ2
min to a very low value makes searching for candidate

observations slow, while picking too high a value may make posterior fields look edgy. In practice values between 10−7 and10

10−3 seem to work well. This parameter is not actually meant to be changed , and it is for that reason
::::
often,

::::
due

::
to

:::::
which

::
it

::
is

set in create_config() in the file gaussian_proc.h.

The variable nsynthetic defines how many synthetic observations are generated when
:::::::
learn_k = 1. Very large values are

once again expensive, and instead a smaller
:::
area should rather be used with more moderate values of nsynthetic. Those values

can be in practice up to 105 or more. With very low values, it may be that spatial patterns specified by the prescribed covariance15

kernel are not represented appropriately, and therefore values less than 104 should be avoided, except for maybe in settings

:::::
setups with only a single subkernel. If σ2

synthetic is high, parameter identifiability suffers. Varying this parameter could be used

for understanding how complex a multi-scale kernel can be useful with particular data sets. The values also depend
::::
What

::::::
values

::
are

:::::::
enough

::::
large

::::
also

:::::::
depends

:
on the maximum covariance parameters of the Gaussian process, given by the τ2 parameters in

the formulas of Sect. 2.4.20

The last parameter in Table 2, κ, defines the maximum subkernel size. The larger this parameter is, the more data is included

for constructing the covariance matrix K, whose Cholesky decomposition needs to be computed to solve the local regression

problem inherent to Gaussian processes. In practice the full kernel size should be kept under 1000, and in order to compute GP

calculations fast, a full kernel size of less than 500 is recommended. However, with a very small number of marginals, values

up to 104 may be experimented with. When nkerκ < 64, the speed-up due to solving the GP formulas faster decreases, since at25

that point computing Cholesky decompositions no longer takes up majority of
:::
the

:::::::
majority

::
of

:::
the computing time. This lower

bound depends on the CPU architecture and the sizes of the various CPU caches.

Whether the observations for computing the local values are chosen at random or greedily is determined by the variable

select_closest in function pick_observations() in file covariance_functions.h. The value used should

normally be non-zero, since with random selection adjacent grid points often do not utilize the best available observations30

closest by, leading to noisiness or graininess in the computed
:::::::
posterior

:
mean field.

In addition to the parameters and variables listed here, there are also other parameters in the configuration file and in the code,

even though those should not need to be changed. Any variables that the user might want to tweak are generally accompanied

by at least some comments describing their effects.
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In the current version, the satGP program is run with the script gproc.sh, whose comments describe the various options.

Compiling and running require a modern GCC version (such as version 8) and the meson build system, and additionally all

the needed libraries listed in Sect.
:
3. The current low version number reflects the fact that as of now, installing and using the

software will require a degree of technical knowledge, including some Python, C, and BASH programming skills.
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