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Abstract 7 

The systematic bioturbation of single particles (such as foraminifera) within deep-sea sediment 8 

archives leads to the apparent smoothing of any temporal signal as record by the downcore, 9 

discrete-depth mean signal. This smoothing is the result of the systematic mixing of particles from a 10 

wide range of depositional ages into the same discrete depth interval. Previous sediment models 11 

that simulate bioturbation have specifically produced an output in the form of a downcore, discrete-12 

depth mean signal. Palaeoceanographers analysing the distribution of single foraminifera specimens 13 

from sediment core intervals would be assisted by a model that specifically evaluates the effect of 14 

bioturbation upon single specimen populations. Taking advantage of recent increases in computer 15 

memory, the single-specimen SEdiment AccuMUlation Simulator (SEAMUS) was created in Matlab, 16 

whereby large arrays of single specimens are simulated. This simulation allows researchers to 17 

analyse the post-bioturbation age heterogeneity of single specimens contained within discrete-18 

depth sediment core intervals, and how this heterogeneity is influenced by changes in sediment 19 

accumulation rate (SAR), bioturbation depth (BD) and species abundance. The simulation also 20 

assigns a realistic 14C activity to each specimen, by considering the dynamic Δ14C history of the Earth 21 

and temporal changes in reservoir age. This approach allows for the quantification of possible 22 

significant artefacts arising when 14C dating multi-specimen samples with heterogeneous 14C activity. 23 

Users may also assign additional desired carrier signals to specimens (e.g., stable isotopes, trace 24 

elements, temperature, etc.) and consider a second species with an independent abundance. Finally, 25 

the model can simulate a virtual palaeoceanographer by randomly picking whole specimens 26 

(whereby the user can set the percentage of older, ‘broken’ specimens) of a prescribed sample size 27 

from discrete depths, after which virtual laboratory 14C dating and 14C calibration is carried out 28 

within the model.  29 
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1.0 Introduction 30 

Deep-sea sediment archives provide valuable insight into past changes in ocean circulation and 31 

global climate. The most often studied carrier vessels of the climate signal are the calcite tests of 32 

foraminifera. The tests of these organisms incorporate isotopes and trace elements of the ambient 33 

water at the time of calcification, before sinking to the seafloor sediment archive after death. Each 34 

discrete-depth interval of a sediment core (typically 1 cm core slices) retrieved from the sea floor 35 

can contain many thousands of specimens. Researchers have typically had to combine many tens or 36 

hundreds of single tests into a single sample for successful analysis using mass spectrometry. 37 

Furthermore, post-depositional sediment mixing (e.g. bioturbation (Berger and Heath, 1968)) of 38 

deep-sea sediment means that foraminifera specimens of vastly differing ages can be mixed into the 39 

same discrete-depth interval. The main consequence of this mixing is that a downcore, discrete-40 

depth multi-specimen reconstruction of a specific climate proxy will appear to be strongly smoothed 41 

out (on the order of multiple centuries or millennia) when compared to the original temporal signal 42 

(Pisias, 1983; Schiffelbein, 1984; Bard et al., 1987). Moreover, machine analysis of multi-specimen 43 

samples will only report the mean value and machine error, thus hiding the true distribution of 44 

values within the sample. Advances in mass spectrometry eventually allowed the analysis of single 45 

specimens (Killingley et al., 1981) and, since single specimens capture a single year/season of the 46 

climate signal, researchers can study the full distribution of isotope or trace element values obtained 47 

from single specimens contained within various discrete depths of sediment cores to make 48 

inferences regarding variability in climate, habitat or specimen morphology for various specific time 49 

periods during the Earth’s history (Spero and Williams, 1990; Tang and Stott, 1993; Billups and 50 

Spero, 1996; Ganssen et al., 2011; Wit et al., 2013; Ford et al., 2015; Metcalfe et al., 2015, 2019b; 51 

Ford and Ravelo, 2019). However, the accuracy with which the aforementioned studies can quantify 52 

time-specific variation for a particular climate period, habitat or morphological variable is strongly 53 

dependent upon the constraint of the age range of the specimens contained within a given discrete-54 

depth interval. The aforementioned studies still rely strongly upon the mean depth age method to 55 

assign an age range to all specimens contained within a discrete depth interval, and previous models 56 

of single specimen analysis in sediment cores do not include bioturbation (Thirumalai et al., 2013; 57 

Fraass and Lowery, 2017). Such an approach can be problematic if, to give but one example, an 58 

assumed Holocene age 1-cm slice of sediment core were to also contain a significant number of Late 59 

Glacial specimens, which could lead to a spurious interpretation of Holocene climate variability. 60 

Ultimately, this problem can be circumvented through the application of paired analysis of both 61 

radiocarbon (14C) and stable isotopes on single specimens (Lougheed et al., 2018), but the current 62 

mass requirements of 14C accelerated mass spectrometry (AMS) means that such a method is 63 
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currently limited to very large specimens (>100 μg), whereas most planktonic foraminifera used in 64 

palaeoceanography are of an order of magnitude smaller. Until such time that single specimen 14C 65 

methods become systematically applicable to planktonic specimens, and for periods older than the 66 

analytical limit of 14C dating (>50 ka), a sediment accumulation model specifically designed for the 67 

analysis of single specimens can help shed light on the age distributions planktonic foraminifera 68 

contained within discrete depths. 69 

Using a model to quantify the distribution of specimen ages within discrete-depth sediment intervals 70 

is also important for 14C dating applied to multi-specimen samples, which can be expected to have 71 

heterogeneous radiocarbon (14C) activity. This heterogeneity is governed by the Earth’s dynamic Δ14C 72 

history, temporal changes in species abundance, sediment accumulation rate (SAR) and in local 14C 73 

reservoir age. Temporal changes in 14C heterogeneity have the potential to induce downcore age-74 

depth artefacts when 14C analysis and 14C calibration are applied to multi-specimen samples. The 75 

ability to make a quantitative estimate of downcore changes in the 14C heterogeneity and its effect 76 

upon 14C dating would help to improve Late Glacial and Holocene geochronologies for deep-sea 77 

sediment archives. 78 

Here, the Δ14C-enabled single-specimen SEdiment AccuMUlation Simulator (SEAMUS) is presented. 79 

This model takes advantage of advances in computing power to simulate a large array of single 80 

specimens. Such an approach allows for a relatively straightforward execution of transient runs with 81 

temporally dynamic time series inputs for sediment accumulation rate (SAR), species abundance, 82 

bioturbation depth (BD), 14C reservoir age, Δ14C and any desired carrier signal(s). Single specimen 83 

populations are essentially transferred from the time domain to the depth domain, thus simulating 84 

the sedimentation history of the resulting sediment archive. The distribution of discrete depth single 85 

specimen true age, 14C activity, bioturbation history (number of bioturbation cycles), and carrier 86 

signal can subsequently be investigated and relationships with the dynamic input parameters can be 87 

explored. Subsequently, users can subject the simulated sediment archive to a picking procedure 88 

(with a prescribed number of randomly picked whole specimens per sample) to create virtual 89 

subsamples from each discrete core depth, whereby one can also consider the presence of broken 90 

(non-picked) specimens, which have been through more bioturbation cycles and are therefore older. 91 

From these virtual subsamples, mean carrier signal values and species abundances can be calculated, 92 

allowing users to evaluate their downcore core reconstructions for the possible presence of 93 

artefacts. Furthermore, these virtual subsamples can be used to calculate virtual laboratory 14C 94 

dates, which are subsequently calibrated using the MatCal (Lougheed and Obrochta, 2016) 95 

calibration software. Calibrated age distributions for a discrete depth can be compared to their 96 
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associated simulated true age distribution, thus evaluating the accuracy of the 14C dating and 97 

calibration process. 98 

2.0 Model description 99 

2.1 Bioturbation understanding and previous models 100 

The most commonly used mathematical model of bioturbation in deep-sea sediments is the so-101 

called Berger-Heath bioturbation model, which assumes a uniform an instantaneous (on geological 102 

timescales) mixing of the bioturbation depth (BD), the uppermost portion of a sediment archive 103 

where oxygen availability allows for the active bioturbation of sediments (Berger and Heath, 1968; 104 

Berger and Johnson, 1978; Berger and Killingley, 1982). Observations of uniform mean age in the 105 

uppermost intervals of sediment archives do indeed support this mixing model (Peng et al., 1979; 106 

Boudreau, 1998), and the BD itself has been shown to be related to the organic carbon flux at the 107 

seafloor (Trauth et al., 1997).  Researchers wishing to carry out transient bioturbation simulations 108 

with dynamic input parameters have incorporated the Berger-Heath mathematical model into their 109 

computer models to, most notably the FORTRAN77 model TURBO (Trauth, 1998), its updated 110 

MATLAB version TURBO2 (Trauth, 2013) and the more recent R model Sedproxy (Dolman and 111 

Laepple, 2018). In the case of TURBO2, the user inputs a number of idealised, non-bioturbated 112 

stratigraphical levels with assigned age, depth, carrier signal and abundance. Subsequently, TURBO2 113 

outputs the bioturbated carrier signal and abundance values corresponding to the inputted 114 

stratigraphic levels. Consequently, TURBO2 is of most interest for researchers who would like to 115 

understand the perturbation of the mean downcore signal. Sedproxy allows the user to input a 116 

climate data in the time domain, along with sediment core variables (such as SAR and BD), after 117 

which mathematical computations are used to produce the equivalent bioturbated climate data also 118 

in the time domain, whereby single specimen distributions can also be quasi-inferred.  119 

2.2 The SEAMUS model 120 

2.2.1 Short description of the model 121 

The SEAMUS simulation is an iterative model that actively simulates the sedimentation process of 122 

single specimens on a per timestep basis, whereby input data in the time domain is converted into 123 

the core depth domain. For each timestep, a number of new specimens are added to the top of the 124 

simulated core, with bioturbation subsequently being carried out. SEAMUS uses the sediment core 125 

and species abundance variables inputted in the time domain (SAR in the form of an age-depth 126 

model, BD vs time, species abundance vs time) to simulate a number of new single specimens per 127 

timestep. Each of these specimens are assigned an age, 14C activity, reservoir age and carrier signal 128 
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corresponding to the timestep. Subsequently, the new specimens are added to the top of the 129 

existing core, after which bioturbation is carried out. The simulation takes advantage of recent 130 

increases in computer memory capacity to keep track of the depths, ages, 14C activities, species 131 

types and number of bioturbation cycles for all single specimens in the simulation. Such an 132 

approach, which is optimised for single specimens, allows the user to use logical indexing to quickly 133 

access all variables for given single specimens for given depths, ages and/or species. 134 

The SEAMUS simulation is broken down into two main functions that the user can call. The first 135 

function seamus_run, carries out the actual single specimen sedimentation simulation based on the 136 

input parameters designated by the user. The second function, seamus_pick, can be best described 137 

as a ‘virtual palaeoceanographer’, in that it carries out downcore analysis of the simulated sediment 138 

core, including discrete-depth sample picking, calculation of sub-sample mean carrier signals, 14C 139 

analysis by virtual AMS, 14C calibration, etc. The seamus_run and seamus_pick functions, as well as 140 

their associated input and output variables, are detailed in sections 2.3.2 and 2.3.3. 141 

2.2.2 The sediment core simulation (seamus_run) 142 

The seamus_run module uses the required and optional input parameters specified by the user 143 

(Table S1) to synthesise n number of single specimens being net-added to the historical layer of the 144 

sediment core per simulation timestep, whereby n is scaled to the capacity of the synthetic sediment 145 

archive being simulated (input variable fpcm) and to the SAR of the timestep as predicted by an 146 

inputted age-depth relationship. The simulation creates large single specimen arrays of matching 147 

dimensions for age (corresponding to the timestep), ‘unbioturbated’ sediment depth (according to 148 

the age-depth input), as well as a 14C age (in 14C yrs) and 14C activity (in fMC). The user also has the 149 

option to input a 14C blank value. Furthermore, all single specimens can be assigned carrier signal 150 

values. It should be noted that the user is not required to enter input values for every timestep: for 151 

example, an age-depth relationship can simply be inputted with a handful of data points and the 152 

model will automatically linearly interpolate to create age and depth values for every simulation 153 

timestep. The same principle holds true for other temporally dynamic inputs such as species 154 

abundance, reservoir age and carrier signals. 155 

After the creation of all new single specimens within the synthetic core, a per timestep bioturbation 156 

simulation of the depth array is carried out. Specifically, for each timestep the depth values 157 

corresponding to all simulated specimens within the timestep-specific active BD are each assigned a 158 

new depth by way of uniform random sampling of the BD interval. In this way, uniform mixing of 159 

specimens within the BD is simulated following established understanding of bioturbation. The per 160 
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timestep bioturbation simulation is carried out in seamus_run as follows; first, the simulation finds 161 

the indices for all specimen depth values present in the contemporaneous BD: 162 

ind = find(depths >= addepths(s) & depths < addepths(s) + biodepths(s)) 163 

Where addepths(s) is the depth corresponding to the age for timestep s, i.e. addephts(s) is 164 

analogous to the timestep’s core top; and where biodepths(s) is the BD corresponding to the age for 165 

timestep s. 166 

Subsequently, all specimen depth values corresponding to the active BD are assigned new depth 167 

values by uniform random sampling of the active BD itself: 168 

depths(ind) = rand(length(ind),1)*biodepths(s) + addepths(s) 169 

The simulation uses a simple counter array to keep track of how many times each single specimen 170 

has been subjected to a bioturbation cycle: 171 

cycles(ind) = cycles(ind) + 1 172 

All of the aforementioned processes are repeated for every simulation timestep until such point that 173 

the end of the age-depth input (i.e. the final core top) is reached. Currently, the simulation carries 174 

out bioturbation according to a per timestep uniform random sampling, but users wishing to 175 

experiment with other types of bioturbation (i.e. partial bioturbation, etc.) can modify the 176 

aforementioned lines of the script. 177 

It is recommended that users initiate the seamus_run simulation with sufficient spinup time. The 178 

necessary spin-up time can vary dependent upon the SAR and BD being studied, but for most 179 

applications (SAR >5 cm/ka), a spin-up time of at least 20 ka should suffice. In other words, if one is 180 

studying a period of interest that commences at 50 ka ago, then the simulation can be started at 70 181 

ka ago. The required input parameters should be inputted in the command line as follows: 182 

seamus_run(simstart, siminc, simend, btinc, fpcm, realD14C, blankbg, 183 

adpoints, bdpoints, savename) 184 

Optional parameters can be additionally specified as follows, e.g. in the case of including the matrix 185 

matrixname containing temporal changes in reservoir age for Species A: 186 

seamus_run(simstart, siminc, simend, btinc, fpcm, realD14C, blankbg, 187 

adpoints, bdpoints, savename, ‘resageA’, matrixname) 188 

The seamus_run module outputs a .mat file containing a number of very large 1 arrays of the same 189 

dimension, whereby each position in each array corresponds to the same simulated single 190 
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specimens. Output variables are detailed in Table S2. To improve performance and ease of use, all 191 

output variables are simulated for all single specimens. For example, carrier signals specific to 192 

Species A (carrierA) are simulated for both Species A and Species B. As all output variables are of the 193 

same dimension, one can easily isolate the carrierA signals specific to the specimens of Species A 194 

(types value of 0) using logical indexing: 195 

carrierA(types == 0 , :) 196 

and from a specific core depth interval (e.g. between 16 and 17 cm): 197 

carrierA(types == 0 & depths >= 16 & depths < 17 , :) 198 

2.2.3 Virtual picking of the simulated sediment core (seamus_pick) 199 

The seamus_pick module carries out a simple picking simulation upon the simulated core generated 200 

by seamus_run. Users are able to set a specific sample size (i.e. the number of single specimens to 201 

be randomly picked per sample), sample picking interval (i.e. core slice thickness) and optionally 202 

include information about the amount of broken/non-whole specimens. The latter parameter is set 203 

as a fraction of the entire specimen population, whereby the fraction of the population that has 204 

been through the most bioturbation cycles is assumed to be broken. For example, if the user sets the 205 

fraction of broken specimens to 0.25, then the simulation will only randomly pick from the specimen 206 

population with bioturbation cycles between the 1st and 75th percentiles. In this way, the preference 207 

of a palaeoceanographer to pick whole specimens is simulated. 208 

Within seamus_pick, virtual 14C laboratory analysis is carried out on the picked subsamples by 209 

calculating the mean 14C activity (in fMC), after which the resulting mean fMC value is converted into 210 

14C age (in 14C yr). A realistic measurement error is also assigned to to each 14C age, whereby a late 211 

Holocene 14C age is assumed to have a measurement error of ±30 14C yr, and a 14C age of just above 212 

the blank value is assumed to have an error of ±200 14C yr. Measurement errors for ages in between 213 

are linearly scaled to 14C activity. Using the MatCal (Lougheed and Obrochta, 2016) calibration 214 

software, 14C ages and errors are calibrated inline, after the application of a user-prescribed 215 

calibration curve and downcore reservoir age. 216 

The seamus_pick function is called from the command line: 217 

seamus_pick(matfilein, matfileout, calcurve, pickint, Apickfordate, 218 

Bpickfordate) 219 

Optional parameters can be additionally specified as follows, e.g. in the case of including the matrix 220 

matrixname containing downcore changes in the fraction of broken specimens in Species A: 221 
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seamus_pick(matfilein, matfileout, calcurve, pickint, Apickfordate, 222 

Bpickfordate, ‘Abroken’, matrixname) 223 

2.2.4 Suggested input data 224 

Users are free to use any input data they please, so long as it abides to the specified requirements as 225 

listed in the function documentation, as well as in Tables S1 and S3. This freedom can allow users to 226 

carry out abstract modelling experiments to increase understanding of the relationship between 227 

input variables, the resulting downcore single specimen vales and trends in downcore discrete-depth 228 

means. Alternatively, users can try to forward model an actual sediment core record in order to 229 

investigate for the possible presence of bioturbation/abundance artefacts within their sediment core 230 

record. An existing age-depth model of a sediment core could be used as the dynamic age-depth 231 

input for the SEAMUS simulation, although users must be aware that age-depth models may 232 

themselves contain artefacts caused by the interaction between bioturbation and abundance. Data 233 

regarding downcore abundance estimates could be used as abundance estimates, but similarly, 234 

users should be aware that observed downcore abundance in the core depth domain is not the same 235 

as original abundance in the time domain. Users could, therefore, experiment in using multiple 236 

temporal abundance and bioturbation depth combinations as simulation input, and rerunning the 237 

simulation with different temporal abundance and bioturbation depth combinations until such time 238 

that generated abundance data in depth is similar to the observed abundance in depth. Input 239 

climate data for simulations could be based on multiple experimental, fictional scenarios, geological 240 

records, or generated from isotope-enabled climate models (Roche, 2013) coupled to, for example, a 241 

foraminifera ecology model such as FORAMCLIM (Lombard et al., 2011) or FAME (Roche et al., 2018; 242 

Metcalfe et al., 2019a), to produce a fully parameterised “climate to sediment core” model 243 

workflow. 244 

3.0 Model Evaluation 245 

3.1 Comparison with TURBO2 246 

In order to evaluate the performance of the SEAMUS model, it is compared here to the output of the 247 

established TURBO2 bioturbation model (Trauth, 2013), which was also authored in Matlab. The 248 

most notable difference between SEAMUS and TURBO2 is that the latter outputs data in the form of 249 

the perturbation of the mean downcore signal, whereas SEAMUS takes advantage of recent 250 

increases in available computer memory to store and output a very large array of single elements 251 

(foraminifera specimens). The two models can be compared, therefore, by comparing the mean 252 

downcore output from TURBO2 with the SEAMUS downcore mean value derived from discrete-253 
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depth single specimen populations. To achieve this comparison, the NGRIP Greenland ice core δ18O 254 

record on the GICC05 timescale (North Greenland Ice Core Project members, 2004; Rasmussen et al., 255 

2014; Seierstad et al., 2014) is used as a reference signal to represent the ‘unbioturbated’ climate 256 

signal (Fig. 1a). This 50 year temporal resolution signal is subsequently inputted into both SEAMUS 257 

and TURBO2 using identical run conditions comprising of a constant SAR of 10 cm/ka, a constant BD 258 

of 10 cm and a single foraminiferal species with a constant abundance. The SEAMUS simulation is 259 

run using a 10 year timestep. The TURBO2 and SEAMUS core simulations (i.e. single specimens in the 260 

case of SEAMUS) are directly assigned the oxygen isotope values from the NGRIP record. One would 261 

obviously not expect that foraminifera in the open ocean would have the same oxygen isotope 262 

values as an ice sheet record (due to fractionation effects, habitat effects, oceanographic effects, 263 

seasonal overprint, etc), but the purpose here is simply to compare the output of the respective 264 

bioturbation algorithms in SEAMUS and TURBO2 using some kind of high-temporal resolution 265 

climatic input signal. Furthermore, using the NGRIP record allows for the isolation of the 266 

bioturbation effect upon a hypothesised single specimen record. The respective mean downcore 267 

bioturbated signals produced by SEAMUS and TURBO2 are shown in Fig. 1b and exhibit a significant 268 

correlation (r2 = 0.99, p < 0.01), indicating that the SEAMUS approach is incorporating the same 269 

understanding of bioturbation as TURBO2. 270 

3.2 Processing speed and computing requirements 271 

Where possible, the processing of variables for simulation timesteps has been vectorised (i.e. not 272 

processed within an iterative loop), in order to maximise processing speed. For example, the per 273 

timestep assignment of single specimen arrays corresponding to ages and carrier signals all occurs 274 

within fully vectorised code. However, the bioturbation simulation (i.e. the bioturbation of the 275 

assigned depth values) is not vectorised and is carried out within a single-thread iterative loop, due 276 

to each iteration of the bioturbation simulation being dependent upon the results of the previous 277 

iteration. In order to optimise the processing time on 64-bit computers, all arrays are stored as 64-278 

bit. Should the user wish to save memory, it is possible to select the do32bit option when accessing 279 

seamus_run from the command line (see Table S1). Indicative run times and memory use are shown 280 

in Table 1. 281 

The SEAMUS model was developed in Matlab 2017b. The seamus_run module can be run using the 282 

basic Matlab environment, with no extra toolboxes. The seamus_pick module runs more efficiently 283 

when the Statistics and Machine Learning toolbox (specifically, the prctile function) is installed, but 284 

when it is detected that users do not have access to that toolbox, seamus_pick will revert to using a 285 

modified version of the equivalent function in Octave (Kienzle, 2001), which has been embedded 286 
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into the script. The seamus_pick function also requires the Matcal (Lougheed and Obrochta, 2016) 287 

14C calibration script, which has been included in the SEAMUS download package. 288 

4.0 Potential model applications 289 

4.1 Analysing downcore specimen population distributions 290 

As outlined in the introduction, advances in mass spectrometry have allowed for routine single 291 

specimen analysis, which has led to increased interest in using analysis of single specimen 292 

populations from discrete depths as a potentially powerful tool with which to reconstruct past 293 

changes in climate variability. This application of this tool, however, still relies upon median 294 

downcore age by assigning an age estimate to all single specimens from a single depth. Climate 295 

variability/seasonality interpretations are clouded, therefore, when single specimens from a wide 296 

range of ages are mixed into the same depth, especially if the interpretation relies upon detecting 297 

extreme climate events in the form of single specimen outliers. Using the previously described 298 

(Section 3.1; Fig 1b) SEAMUS simulation, it is possible to construct a probability heatmap and 95.45% 299 

intervals for the single specimen δ18O (Fig. 2a) data. The shape and range of these 95.45% intervals 300 

relative to a glacial-interglacial change is similar to what has been previously calculated by 301 

(Schiffelbein, 1986), albeit in the case of the Termination II deglaciation. Using SEAMUS, histograms 302 

of single specimen δ18O values for discrete depths can also be explored, for example for sediment 303 

core intervals with a median downcore age corresponding to the early Holocene (Fig. 2b), mid-304 

Holocene (Fig. 2c), Younger Dryas (Fig. 2d) and Late Glacial Maximum (Fig. 2e). This analysis 305 

demonstrates the potential for the presence of single specimens with glacial climate values being 306 

present in samples with an interglacial mean value. For example, in the early Holocene depth 307 

interval (Fig. 2c), 15% of the simulated single specimens have a δ18O value less than or equal to -308 

36‰. Of course, some sediment archives may have much higher lower SAR than the constant 10 309 

cm/ka simulated in this example. The contribution of older specimens to a particular depth interval 310 

is dependent upon a number of factors; temporal changes in SAR, BD, species abundance and the 311 

susceptibility of older specimens to be broken/dissolved as a consequence of having been through 312 

more bioturbation cycles (Rubin and Suess, 1955; Ericson et al., 1956; Emiliani and Milliman, 1966; 313 

Barker et al., 2007). Using the SEAMUS model it is possible to run dynamic sediment scenarios to 314 

investigate the influence of mixing of specimens of different ages upon interpretations based upon 315 

single specimen analysis.  316 

  317 
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4.2 Analysing 14C calibration skill 318 

As outlined earlier, it is possible to assign 14C activities to single specimens in the sedimentation 319 

simulation based by using suitable records of the Earth’s Δ14C history (e.g., IntCal). Subsequently, 320 

SEAMUS uses the 14C activities of the specimens contained within each discrete depth to calculate 321 

and expected laboratory 14C determination and measurement uncertainty. Using the MatCal 322 

software, it is subsequently possible to calibrate the aforementioned 14C age, in combination with a 323 

calibration curve and reservoir age estimate, to produce an expected calibrated age distribution. The 324 

calibrated age distribution for the discrete depth can be compared with the true age distribution for 325 

the discrete depth, as recorded by the simulation, to evaluate the skill with which current 14C dating 326 

and calibration processes can reproduce the true age distribution of a particular sediment core slice. 327 

A graphical representation of the aforementioned output for a discrete depth interval is shown in 328 

Fig. 3, once again using the SEAMUS bioturbation simulation detailed in Section 3.1. This analysis 329 

demonstrates that, for the applied simulation parameters and for the discrete depth interval 330 

analysed in Fig. 3 (121-122 cm), the 14C calibration process would produce a median calibrated age 331 

of 12.21 cal ka BP, whereas the true median age is 11.79 ka, meaning that there is a 420 year 332 

difference between the two. Furthermore, the 14C calibration process produces a 95.45% credible 333 

interval of 12.64 – 11.65 cal ka BP (a range of 990 cal yr), whereas the true 95.45% interval of the 334 

single specimens within the simulation is 14.95-11.16 ka (a range of 3788 years), meaning that the 335 

14C dating and calibration process considerably underestimates (by some 2800 years) the age 336 

uncertainty for this particular interval of simulated sediment core.  A Matlab script enabling users to 337 

produce a figure similar to Fig. 3 is included within the tutorial script (tutorial.m) that is bundled with 338 

SEAMUS. Users can subsequently explore downcore changes in the effectiveness of 14C dating to 339 

accurately estimate true age under various dynamic simulation conditions, including: abundance 340 

changes, SAR changes, bioturbation depth changes, reservoir age changes, as well as during periods 341 

of dynamic Δ14C. 342 

4.3 Investigating noise created by the picking process 343 

When picking discrete-depth samples from discrete-depth specimen populations, 344 

palaeoceanographers randomly pick whole specimens to produce a downcore mean signal. The 345 

seamus_pick module can be used to test for random noise introduced upon the mean signal by the 346 

picking process. The module can be repeatedly run with a set number of randomly picked whole 347 

specimens per sample, and the resulting picking runs can be compared to an ideal picking run that 348 

picks all available whole specimens for each discrete depth. Such an approach is investigated here, 349 

once again using the same SEAMUS bioturbation simulation that was carried out in Section 3.1, for 350 
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picking scenarios each with one specimen per sample (Fig. 4a), two specimens per sample (Fig. 4b), 351 

three specimens per sample (Fig. 4c), five specimens per sample (Fig. 4d), 10 specimens per sample 352 

(Fig. 4e) and 20 specimens per sample (Fig. 4f). Such simulations can allow researchers to isolate and 353 

quantify the effect of the picking process upon their downcore multi-specimen reconstructions for 354 

their particular sediment core scenario. It can be noted that for the 10 cm/ka simulation carried out 355 

here, that large sample sizes (n ≥ 10) tend to produce downcore sampling runs close to the total 356 

population mean (Figs. 4E and 4F), although the true spread of values is hidden. Furthermore, even 357 

with larger samples sizes there is still the possibility for the generation of picking noise-induced 358 

peak/trough values which could be erroneously interpreted as a precise indication of the timing of a 359 

particular climate feature. In the case of very small sample sizes (Figs. 4A and 4B), researchers can 360 

get an idea of the total spread of values within single core intervals. With advances in mass 361 

spectrometry making the analysis of single specimens ever more routine and cost-effective, the ideal 362 

approach in the future may involve exclusively analysing single specimens, with single specimen 363 

values from discrete depths used to both estimate the signal distribution and calculate a downcore 364 

mean signal, thus facilitating a ‘best of both worlds’ approach. 365 

4.4 Investigating noise created by absolute specimen abundance 366 

The interaction between total specimen abundance and bioturbation creates downcore noise in the 367 

sedimentary record. In Fig. 5, the downcore, discrete-depth median age increase per centimetre for 368 

three SEAMUS simulations all with an idealised constant SAR of 10 cm ka-1 and constant BD of 10 cm 369 

is shown, with the number of outputted specimens per centimetre being set differently for each 370 

simulation, namely at 102 specimens per cm (Fig. 5a), 103 specimens per cm (Fig. 5b) and 104 371 

specimens per cm (Fig. 5c). In all three scenarios the downcore, discrete-depth increase in median 372 

age clusters around 100 years cm-1, which is what would be expected in the case of 10 cm ka-1 373 

sediment core. As expected, the signal-to-noise ratio is higher in cases of higher abundance. An 374 

interesting side-effect of a decreased signal-noise-ratio is the increased likelihood of the generation 375 

of apparent age-depth reversals. For example, in the abundance scenario with 102 specimens cm-1 376 

(Fig. 5a), 21.7% of the discrete-depth (1 cm) age-depth points produce an apparent age-depth 377 

reversal. Due to the fact that many age-depth modelling software packages often consider such age-378 

depth reversals as outliers (Blaauw and Christen, 2011; Lougheed and Obrochta, 2019), 379 

palaeoceanographers should be aware that the apparent age-depth reversals generated by very 380 

noisy downcore signals caused by low specimen abundance may result in age-depth models that are 381 

biased towards young ages. Also, while palaeoceanographers often quantify relative abundance as a 382 

ratio between different species, it is additionally important to quantify the absolute abundance of a 383 
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particular species being studied in the form of number of specimens per specific sediment volume, 384 

as this can give clues regarding the expected signal to noise ratio ascertained from a discrete-depth 385 

analysis. 386 

4.5 Investigating artefacts created by dynamic specimen abundance 387 

In the previous sections, scenarios involving constant specimen abundance were explored. SEAMUS 388 

is specifically designed with the ability to process multiple temporally dynamic inputs. In Fig. 6, the 389 

effect of temporally dynamic species abundance for a theorised “Species A” is studied, once again 390 

using a scenario with a constant SAR of 10 cm/ka and constant BD of 10 cm. Past studies using 391 

simpler mixing models have previously shown that the downcore δ18O signal for particular species 392 

can display offsets that are in fact an artefact of the interplay between abundance and bioturbation 393 

(Löwemark and Grootes, 2004; Trauth, 2013). Here, the single-specimen SEAMUS simulation is used 394 

to investigate the effects of abundance and bioturbation upon the age-depth signal produced by 395 

single specimens. In this scenario SEAMUS  is driven using a dynamic input with six temporal maxima 396 

in Species A specimen flux centred upon 10, 16 18, 28, 32 and 36 ka ago (Fig. 6a). The resulting post-397 

simulation absolute abundance of Species A in the depth domain (Fig. 6b) a smoothed out / mixing 398 

of the abundance peaks as a result of bioturbation. The interaction between dynamic abundance 399 

and bioturbation also has consequences for the discrete-depth age-depth relationship of Species A. 400 

For example, the downcore change in discrete-depth median age for Species A (Fig. 6c) is less noisy 401 

(i.e. less likely to produce outliers) for intervals close to the absolute abundance peaks, but 402 

negatively offset from the target discrete-depth median age change of 100 years per cm that would 403 

be associated with the 10 cm/ka sediment core simulation. This would be manifested in an age-404 

depth reconstruction as an age-depth plateau near to an abundance peak. 405 

Similarly, the 95.45% discrete-depth age range for Species A is much more constrained in the case of 406 

depth intervals located close to the abundance peaks (Fig. 6d), but less representative of the median 407 

age for the total sediment (all specimens), with Species A being biased towards too young ages (Fig. 408 

6e). This bias is an interesting finding, seeing as it has long been assumed that pooled specimen 409 

samples used for dating (e.g., 14C dating) should be retrieved from abundance peaks (Keigwin and 410 

Lehman, 1994; Waelbroeck et al., 2001; Galbraith et al., 2015). This assumption is largely based on 411 

the fact that 14C dates sampled from abundance peaks are younger than the immediately 412 

surrounding sediment (Rafter et al., 2018). However, the SEAMUS simulation suggests that 413 

abundance peaks can result in ages that are anomalously young when compared to the total 414 

sediment (Fig. 6e). 415 
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5.0 Conclusion 416 

Deep-sea sediment archives are subject to systematic bioturbation, which can complicate 417 

palaeoclimate reconstructions sourced from sediment cores. Complications can include artefacts 418 

and/or spurious offsets in 14C age other carrier signals (such as δ18O) sourced from multi-specimen 419 

samples. The SEAMUS model allows users to interactively investigate how such artefacts and/or 420 

spurious offsets can be attributed to the mixing of single specimens. The model is suitable for users 421 

who are investigating the downcore mean signal and how it is affected by dynamic changes in input 422 

variables. The model is especially interesting for researchers who are using single-specimen 423 

foraminifera analysis to quantify past changes in seasonality or multi-centennial amplitude in 424 

regional climate variability, as it can assist researchers in understanding the influence of bioturbation 425 

upon their results and the interpretation. The model is also useful as a teaching resource; for 426 

example, users can keep all but one input variable constant, and learn to understand the influence 427 

of dynamic changes in that particular input variable upon the downcore specimen record. 428 

Subsequently, multiple dynamic variables can be introduced. 429 

Code availability 430 

The SEAMUS model and accompanying interactive tutorial can be downloaded from the Zenodo 431 

public repository: https://doi.org/10.5281/zenodo.3251655 432 
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Table 1. Approximate run times and Matlab memory use in the case of a 70 ka simulation run with 574 

10 year iterations and core capacity of 102, 103 and 104 specimens per cm. The runs carried out using 575 

Matlab 2017b on a 64-bit system with 8GB of RAM and an Intel i7-2600 processor. 576 

 102 specimens cm-1 103 specimens cm-1 104 specimens cm-1 

seamus_run 2.5 s / 0.62 GB 19.7 s / 0.66 GB 237.5 s / 1.15 GB 

seamus_pick 11.4 s / 0.61 GB 13.2 s / 0.64 GB 37.8 s / 0.99 GB 

  577 
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Figure captions (also included with figures) 578 

Figure 1. (a) NGRIP δ18O record (North Greenland Ice Core Project members, 2004) plotted using the 579 

latest GICC05 timescale (Rasmussen et al., 2014; Seierstad et al., 2014), adjusted by 50 years so that 580 

1950 BCE is equivalent to ‘present’. (b) Result of SEAMUS run using the NGRIP δ18O data as temporal 581 

input data. SEAMUS run settings are shown in the panel inset. Also shown is the average of ten runs 582 

of TURBO2 (Trauth, 2013), based on the same NGRIP input data and using a SAR of 10 cm ka-1 and a 583 

constant BD of 10 cm. 584 

Figure 2. (a) Log heat map (in greyscale) of downcore single specimen δ18O value probability in the 585 

form of a 0.25‰ by 1 cm matrix, based on the single specimen data from the SEAMUS run displayed 586 

in Fig 1B. The probability for each matrix element is calculated as the number of specimens for each 587 

discrete depth within a given 0.25‰ range, divided by the total number of specimens contained 588 

within the discrete depth. The natural logarithm of the probability is subsequently plotted, in order 589 

to increase visibility of low probability areas in the heat map. Also shown (in orange) are the δ18O 590 

values corresponding to the mean and 95.45% intervals for each discrete depth interval. (b, c, d and 591 

e) Single specimen δ18O histograms for various discrete-depth intervals. 592 

Figure 3. Example of using output from a SEAMUS simulation to estimate 14C calibration skill for a 593 

particular discrete-depth subsample. The green histograms represent the SEAMUS simulation 594 

output: on the x-axis the true age distribution of the discrete-depth single specimens (with the green 595 

diamond corresponding to the median true age), and on the y-axis the 14C age distribution of the 596 

single specimens (with the green diamond corresponding to the mean 14C age). All histograms are 597 

shown using 100 (14C) year bins. The orange probability distribution on the y-axis represents a 598 

normal distribution corresponding to an idealised laboratory 14C analysis of the single specimens, 599 

where the orange square corresponds to the expected mean laboratory 14C age. The orange 600 

probability distribution on the x-axis represents the calibrated age distribution arising from the 601 

calibration of the laboratory 14C analysis using Marine13 (Reimer et al., 2013). Also shown, for 602 

reference, are the Marine13 calibration curve 1sigma (dark grey) and 2sigma (light grey) confidence 603 

intervals. Simulation output shown in the figure is based on the SEAMUS run in Fig 1B, with 14C 604 

activities assigned to single specimens according to Marine13 with a constant ΔR of 0±0 14C yr. For 605 

the picking and calibration, all single specimens within the 121-122 cm discrete depth are picked, 606 

and calibration is carried out using MatCal (Lougheed and Obrochta, 2016) with Marine13 and a ΔR 607 

of 0±0 14C yr.  608 
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Figure 4. Estimating noise induced by subsample size during the picking process. Based on the 609 

SEAMUS simulation in Fig. 1b, six sample size scenarios are considered: (a) one specimen per 610 

sample; (b) two specimens per sample; (c) three specimens per sample; (d) five specimens per 611 

sample; (e) ten specimens per sample; (f) 20 specimens per sample. In each scenario, the downcore 612 

picking process is repeated 10 times, and each picking run is represented by a coloured line. Also 613 

shown in all panels is the mean δ18O value for all single specimens within discrete depth intervals 614 

(black line) and 95.45% intervals (filled grey area). 615 

Figure 5. Estimating downcore age-depth noise induced by absolute species abundance in three 616 

scenarios all involving involving a constant SAR of 10 cm ka-1 and constant bioturbation depth of 10 617 

cm. In all three panels, the data points (circles) indicate the downcore discrete-depth median age 618 

increase for each cm of core depth. Green circles correspond to positive downcore median age 619 

change, while orange data points correspond to negative downcore median age change (i.e. 620 

apparent age reversals). The horizontal black line in each panel denotes the perfect downcore age 621 

change of +100 years cm-1 that would be associated with a constant SAR of 10 cm ka-1. The yellow 622 

interval denotes the still-active BD (10 cm) at the core top. The signal-to-noise ratio (SNR) is also 623 

computed for each scenario as the ratio between the summed squared magnitudes of the signal and 624 

of the noise. The still-active BD at the core top is excluded from the SNR calculation. Three different 625 

abundance scenarios are shown: (a) constant abundance of 102 specimens cm-1. (b) constant 626 

abundance of 103 specimens cm-1. (c) constant abundance of 104 specimens cm-1. 627 

Figure 6. Investigating the effect of temporal changes in a species’ abundance upon its discrete-628 

depth age-depth signal in the case of a simulated sediment core with a constant SAR of 10 cm ka and 629 

constant BD of 10 cm. In all panels, the yellow interval denotes the still-active BD (10 cm) at the core 630 

top. (a) The temporal abundance for a given species “Species A” used in the SEAMUS simulation, 631 

inputted into the model as a fraction of the per timestep specimen flux. (b) The resulting simulated 632 

downcore, discrete-depth (1 cm) absolute abundance (number of specimens) for Species A. Vertical 633 

grey bands correspond to the depth of the abundance peaks. (c) The downcore, discrete-depth (1 634 

cm) change in median age based on samples containing only Species A specimens. Green circles 635 

denote downcore increase in discrete-depth apparent median age (i.e. positive apparent SAR) and 636 

orange circles denote downcore decrease in discrete-depth median age (i.e. apparent age reversals). 637 

The horizontal black line in each panel denotes the perfect downcore age change of +100 years cm-1 638 

that would be associated with a constant SAR of 10 cm ka-1. (d) The 95.45% age range of for Species 639 

A for each discrete 1 cm depth. (e) The offset between the median age of Species A (MedA) and the 640 
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median age of all specimens (Medall). Shown in the panel is MedA-Medall. The horizontal black line 641 

represents corresponds to zero (i.e., no offset). 642 
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Figure 1. (a) NGRIP δ18O record (North Greenland Ice Core Project members, 2004) 
plotted using the latest GICC05 timescale (Rasmussen et al., 2014; Seierstad et al., 
2014), adjusted by 50 years so that 1950 BCE is equivalent to ‘present’. (b) Result 
of SEAMUS run using the NGRIP δ18O data as temporal input data. SEAMUS run 
settings are shown in the panel inset. Also shown is the average of ten runs of 
TURBO2 (Trauth, 2013), based on the same NGRIP input data and using a SAR of 
10 cm ka-1 and a constant BD of 10 cm.
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95.45%: 7790-4070 yr
Mean 18

(b)

Discrete depth: 95-96 cm
Median age: 9250 yr
95.45%: 12310-8570 yr
Mean 18

(c)

Discrete depth: 121-122 cm
Median age: 11830 yr
95.45%: 14930-11170 yr
Mean 18

(d)

Discrete depth: 211-212 cm
Median age: 20840 yr
95.45%: 23890-20170 yr
Mean 18

(e)

Figure 2. (a) Log heat map (in greyscale) of downcore single specimen δ18O 
value probability in the form of a 0.25‰ by 1 cm matrix, based on the single 
specimen data from the SEAMUS run displayed in Fig 1B. The probability for 
each matrix element is calculated as the number of specimens for each discrete 
depth within a given 0.25‰ range, divided by the total number of specimens 
contained within the discrete depth. The natural logarithm of the probability is 
subsequently plotted, in order to increase visibility of low probability areas in 
the heat map. Also shown (in orange) are the δ18O values corresponding to the 
mean and 95.45% intervals for each discrete depth interval. (b, c, d and e) Single 
specimen δ18O histograms for various discrete-depth intervals.
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Figure 3. Example of using output from a SEAMUS simulation to estimate 14C 
calibration skill for a particular discrete-depth subsample. The green histograms 
represent the SEAMUS simulation output: on the x-axis the true age distribution 
of the discrete-depth single specimens (with the green diamond corresponding 
to the median true age), and on the y-axis the 14C age distribution of the single 
specimens (with the green diamond corresponding to the mean 14C age). 
All histograms are shown using 100 (14C) year bins. The orange probability 
distribution on the y-axis represents a normal distribution corresponding to 
an idealised laboratory 14C analysis of the single specimens, where the orange 
square corresponds to the expected mean laboratory 14C age. The orange 
probability distribution on the x-axis represents the calibrated age distribution 
arising from the calibration of the laboratory 14C analysis using Marine13 
(Reimer et al., 2013). Also shown, for reference, are the Marine13 calibration 
curve 1sigma (dark grey) and 2sigma (light grey) confidence intervals. Simulation 
output shown in the figure is based on the SEAMUS run in Fig 1B, with 14C 
activities assigned to single specimens according to Marine13 with a constant 
ΔR of 0±0 14C yr. For the picking and calibration, all single specimens within 
the 121-122 cm discrete depth are picked, and calibration is carried out using 
MatCal (Lougheed and Obrochta, 2016) with Marine13 and a ΔR of 0±0 14C yr.
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(a)

Sample picking interval: 1 cm
1 specimen per sample

(b)

Sample picking interval: 1 cm
2 specimens per sample

(c)

Sample picking interval: 1 cm
3 specimens per sample

(d)

Sample picking interval: 1 cm
5 specimens per sample

(e)

Sample picking interval: 1 cm
10 specimens per sample

(f)

Sample picking interval: 1 cm
20 specimens per sample

Figure 4. Estimating noise induced by 
subsample size during the picking process. 
Based on the SEAMUS simulation in Fig. 1b, 
six sample size scenarios are considered: (a) 
one specimen per sample; (b) two specimens 
per sample; (c) three specimens per sample; 
(d) five specimens per sample; (e) ten 
specimens per sample; (f) 20 specimens 
per sample. In each scenario, the downcore 
picking process is repeated 10 times, and 
each picking run is represented by a coloured 
line. Also shown in all panels is the mean δ18O 
value for all single specimens within discrete 
depth intervals (black line) and 95.45% 
intervals (filled grey area).

26

https://doi.org/10.5194/gmd-2019-155
Preprint. Discussion started: 16 July 2019
c© Author(s) 2019. CC BY 4.0 License.



0 50 100 150 200 250 300 350 400
Simulated core depth (cm)

-400

-200

0

200

400

600

D
ow

nc
or

e 
di

sc
re

te
-d

ep
th

tru
e 

m
ed

ia
n 

ag
e 

ch
an

ge
 (y

r)

0 50 100 150 200 250 300 350 400
Simulated core depth (cm)

-400

-200

0

200

400

600

D
ow

nc
or

e 
di

sc
re

te
-d

ep
th

tru
e 

m
ed

ia
n 

ag
e 

ch
an

ge
 (y

r)

0 50 100 150 200 250 300 350 400
Simulated core depth (cm)

-400

-200

0

200

400

600

D
ow

nc
or

e 
di

sc
re

te
-d

ep
th

tru
e 

m
ed

ia
n 

ag
e 

ch
an

ge
 (y

r)

(a)

Constant abundance of 102 specimens cm-1

SNR: 1.8 dB

(b)

Constant abundance of 103 specimens cm-1

SNR: 7.8 dB

(c)

Constant abundance of 104 specimens cm-1

SNR: 16.7 dB

Figure 5. Estimating downcore age-depth noise induced by absolute species abundance 
in three scenarios all involving involving a constant SAR of 10 cm ka-1 and constant 
bioturbation depth of 10 cm. In all three panels, the data points (circles) indicate 
the downcore discrete-depth median age increase for each cm of core depth. Green 
circles correspond to positive downcore median age change, while orange data points 
correspond to negative downcore median age change (i.e. apparent age reversals). 
The horizontal black line in each panel denotes the perfect downcore age change of 
+100 years cm-1 that would be associated with a constant SAR of 10 cm ka-1. The yellow 
interval denotes the still-active BD (10 cm) at the core top. The signal-to-noise ratio 
(SNR) is also computed for each scenario as the ratio between the summed squared 
magnitudes of the signal and of the noise. The still-active BD at the core top is excluded 
from the SNR calculation. Three different abundance scenarios are shown: (a) constant 
abundance of 102 specimens cm-1. (b) constant abundance of 103 specimens cm-1. (c) 
constant abundance of 104 specimens cm-1.
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Figure 6. Investigating the effect of temporal changes in a species’ abundance upon its discrete-depth 
age-depth signal in the case of a simulated sediment core with a constant SAR of 10 cm ka and constant 
BD of 10 cm. In all panels, the yellow interval denotes the still-active BD (10 cm) at the core top. (a) The 
temporal abundance for a given species “Species A” used in the SEAMUS simulation, inputted into the 
model as a fraction of the per timestep specimen flux. (b) The resulting simulated downcore, discrete-
depth (1 cm) absolute abundance (number of specimens) for Species A. Vertical grey bands correspond to 
the depth of the abundance peaks. (c) The downcore, discrete-depth (1 cm) change in median age based 
on samples containing only Species A specimens. Green circles denote downcore increase in discrete-
depth apparent median age (i.e. positive apparent SAR) and orange circles denote downcore decrease in 
discrete-depth median age (i.e. apparent age reversals). The horizontal black line in each panel denotes 
the perfect downcore age change of +100 years cm-1 that would be associated with a constant SAR of 10 
cm ka-1. (d) The 95.45% age range of for Species A for each discrete 1 cm depth. (e) The offset between 
the median age of Species A (MedA) and the
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