



# 1 SEAMUS (v1.0): a $\Delta^{14}$ C-enabled, single-specimen sediment accumulation simulator

- 2 Bryan C. Lougheed<sup>1,2</sup>
- 3 1. Department of Earth Sciences, Uppsala University, Uppsala, Sweden.
- 4 2. Laboratoire d'Océanologie et de Géosciences, Université du Littoral Côte d'Opale, Wimereux,
- 5 France.
- 6 Corresponding author: B.C. Lougheed (bryan.lougheed@geo.uu.se)

### 7 Abstract

- 8 The systematic bioturbation of single particles (such as foraminifera) within deep-sea sediment
- 9 archives leads to the apparent smoothing of any temporal signal as record by the downcore,
- 10 discrete-depth mean signal. This smoothing is the result of the systematic mixing of particles from a
- 11 wide range of depositional ages into the same discrete depth interval. Previous sediment models
- 12 that simulate bioturbation have specifically produced an output in the form of a downcore, discrete-
- 13 depth mean signal. Palaeoceanographers analysing the distribution of single foraminifera specimens
- 14 from sediment core intervals would be assisted by a model that specifically evaluates the effect of
- 15 bioturbation upon single specimen populations. Taking advantage of recent increases in computer
- 16 memory, the single-specimen SEdiment AccuMUlation Simulator (SEAMUS) was created in Matlab,
- 17 whereby large arrays of single specimens are simulated. This simulation allows researchers to
- 18 analyse the post-bioturbation age heterogeneity of single specimens contained within discrete-
- 19 depth sediment core intervals, and how this heterogeneity is influenced by changes in sediment
- 20 accumulation rate (SAR), bioturbation depth (BD) and species abundance. The simulation also
- assigns a realistic <sup>14</sup>C activity to each specimen, by considering the dynamic  $\Delta^{14}$ C history of the Earth
- 22 and temporal changes in reservoir age. This approach allows for the quantification of possible
- 23 significant artefacts arising when <sup>14</sup>C dating multi-specimen samples with heterogeneous <sup>14</sup>C activity.
- 24 Users may also assign additional desired carrier signals to specimens (e.g., stable isotopes, trace
- 25 elements, temperature, etc.) and consider a second species with an independent abundance. Finally,
- 26 the model can simulate a virtual palaeoceanographer by randomly picking whole specimens
- 27 (whereby the user can set the percentage of older, 'broken' specimens) of a prescribed sample size
- 28 from discrete depths, after which virtual laboratory <sup>14</sup>C dating and <sup>14</sup>C calibration is carried out
- 29 within the model.





### 30 1.0 Introduction

Deep-sea sediment archives provide valuable insight into past changes in ocean circulation and 31 32 global climate. The most often studied carrier vessels of the climate signal are the calcite tests of 33 foraminifera. The tests of these organisms incorporate isotopes and trace elements of the ambient water at the time of calcification, before sinking to the seafloor sediment archive after death. Each 34 35 discrete-depth interval of a sediment core (typically 1 cm core slices) retrieved from the sea floor 36 can contain many thousands of specimens. Researchers have typically had to combine many tens or 37 hundreds of single tests into a single sample for successful analysis using mass spectrometry. 38 Furthermore, post-depositional sediment mixing (e.g. bioturbation (Berger and Heath, 1968)) of 39 deep-sea sediment means that foraminifera specimens of vastly differing ages can be mixed into the same discrete-depth interval. The main consequence of this mixing is that a downcore, discrete-40 41 depth multi-specimen reconstruction of a specific climate proxy will appear to be strongly smoothed out (on the order of multiple centuries or millennia) when compared to the original temporal signal 42 (Pisias, 1983; Schiffelbein, 1984; Bard et al., 1987). Moreover, machine analysis of multi-specimen 43 44 samples will only report the mean value and machine error, thus hiding the true distribution of 45 values within the sample. Advances in mass spectrometry eventually allowed the analysis of single specimens (Killingley et al., 1981) and, since single specimens capture a single year/season of the 46 47 climate signal, researchers can study the full distribution of isotope or trace element values obtained from single specimens contained within various discrete depths of sediment cores to make 48 49 inferences regarding variability in climate, habitat or specimen morphology for various specific time 50 periods during the Earth's history (Spero and Williams, 1990; Tang and Stott, 1993; Billups and Spero, 1996; Ganssen et al., 2011; Wit et al., 2013; Ford et al., 2015; Metcalfe et al., 2015, 2019b; 51 52 Ford and Ravelo, 2019). However, the accuracy with which the aforementioned studies can quantify 53 time-specific variation for a particular climate period, habitat or morphological variable is strongly 54 dependent upon the constraint of the age range of the specimens contained within a given discrete-55 depth interval. The aforementioned studies still rely strongly upon the mean depth age method to 56 assign an age range to all specimens contained within a discrete depth interval, and previous models 57 of single specimen analysis in sediment cores do not include bioturbation (Thirumalai et al., 2013; 58 Fraass and Lowery, 2017). Such an approach can be problematic if, to give but one example, an 59 assumed Holocene age 1-cm slice of sediment core were to also contain a significant number of Late Glacial specimens, which could lead to a spurious interpretation of Holocene climate variability. 60 61 Ultimately, this problem can be circumvented through the application of paired analysis of both 62 radiocarbon (<sup>14</sup>C) and stable isotopes on single specimens (Lougheed et al., 2018), but the current mass requirements of <sup>14</sup>C accelerated mass spectrometry (AMS) means that such a method is 63





64 currently limited to very large specimens (>100 μg), whereas most planktonic foraminifera used in 65 palaeoceanography are of an order of magnitude smaller. Until such time that single specimen <sup>14</sup>C 66 methods become systematically applicable to planktonic specimens, and for periods older than the 67 analytical limit of <sup>14</sup>C dating (>50 ka), a sediment accumulation model specifically designed for the 68 analysis of single specimens can help shed light on the age distributions planktonic foraminifera 69 contained within discrete depths.

Using a model to quantify the distribution of specimen ages within discrete-depth sediment intervals 70 is also important for <sup>14</sup>C dating applied to multi-specimen samples, which can be expected to have 71 72 heterogeneous radiocarbon (<sup>14</sup>C) activity. This heterogeneity is governed by the Earth's dynamic  $\Delta^{14}$ C 73 history, temporal changes in species abundance, sediment accumulation rate (SAR) and in local <sup>14</sup>C reservoir age. Temporal changes in <sup>14</sup>C heterogeneity have the potential to induce downcore age-74 depth artefacts when <sup>14</sup>C analysis and <sup>14</sup>C calibration are applied to multi-specimen samples. The 75 ability to make a quantitative estimate of downcore changes in the <sup>14</sup>C heterogeneity and its effect 76 upon <sup>14</sup>C dating would help to improve Late Glacial and Holocene geochronologies for deep-sea 77 78 sediment archives.

Here, the  $\Delta^{14}$ C-enabled single-specimen SEdiment AccuMUlation Simulator (SEAMUS) is presented. 79 80 This model takes advantage of advances in computing power to simulate a large array of single 81 specimens. Such an approach allows for a relatively straightforward execution of transient runs with 82 temporally dynamic time series inputs for sediment accumulation rate (SAR), species abundance, bioturbation depth (BD), <sup>14</sup>C reservoir age,  $\Delta^{14}$ C and any desired carrier signal(s). Single specimen 83 populations are essentially transferred from the time domain to the depth domain, thus simulating 84 the sedimentation history of the resulting sediment archive. The distribution of discrete depth single 85 specimen true age, <sup>14</sup>C activity, bioturbation history (number of bioturbation cycles), and carrier 86 signal can subsequently be investigated and relationships with the dynamic input parameters can be 87 88 explored. Subsequently, users can subject the simulated sediment archive to a picking procedure 89 (with a prescribed number of randomly picked whole specimens per sample) to create virtual 90 subsamples from each discrete core depth, whereby one can also consider the presence of broken 91 (non-picked) specimens, which have been through more bioturbation cycles and are therefore older. 92 From these virtual subsamples, mean carrier signal values and species abundances can be calculated, 93 allowing users to evaluate their downcore core reconstructions for the possible presence of artefacts. Furthermore, these virtual subsamples can be used to calculate virtual laboratory <sup>14</sup>C 94 95 dates, which are subsequently calibrated using the MatCal (Lougheed and Obrochta, 2016) calibration software. Calibrated age distributions for a discrete depth can be compared to their 96





- 97 associated simulated true age distribution, thus evaluating the accuracy of the <sup>14</sup>C dating and
- 98 calibration process.
- 99 2.0 Model description

#### 100 2.1 Bioturbation understanding and previous models

101 The most commonly used mathematical model of bioturbation in deep-sea sediments is the so-102 called Berger-Heath bioturbation model, which assumes a uniform an instantaneous (on geological 103 timescales) mixing of the bioturbation depth (BD), the uppermost portion of a sediment archive 104 where oxygen availability allows for the active bioturbation of sediments (Berger and Heath, 1968; 105 Berger and Johnson, 1978; Berger and Killingley, 1982). Observations of uniform mean age in the uppermost intervals of sediment archives do indeed support this mixing model (Peng et al., 1979; 106 107 Boudreau, 1998), and the BD itself has been shown to be related to the organic carbon flux at the seafloor (Trauth et al., 1997). Researchers wishing to carry out transient bioturbation simulations 108 109 with dynamic input parameters have incorporated the Berger-Heath mathematical model into their 110 computer models to, most notably the FORTRAN77 model TURBO (Trauth, 1998), its updated 111 MATLAB version TURBO2 (Trauth, 2013) and the more recent R model Sedproxy (Dolman and 112 Laepple, 2018). In the case of TURBO2, the user inputs a number of idealised, non-bioturbated 113 stratigraphical levels with assigned age, depth, carrier signal and abundance. Subsequently, TURBO2 114 outputs the bioturbated carrier signal and abundance values corresponding to the inputted 115 stratigraphic levels. Consequently, TURBO2 is of most interest for researchers who would like to 116 understand the perturbation of the mean downcore signal. Sedproxy allows the user to input a climate data in the time domain, along with sediment core variables (such as SAR and BD), after 117 118 which mathematical computations are used to produce the equivalent bioturbated climate data also 119 in the time domain, whereby single specimen distributions can also be quasi-inferred.

### 120 2.2 The SEAMUS model

### 121 2.2.1 Short description of the model

The SEAMUS simulation is an iterative model that actively simulates the sedimentation process of single specimens on a per timestep basis, whereby input data in the time domain is converted into the core depth domain. For each timestep, a number of new specimens are added to the top of the simulated core, with bioturbation subsequently being carried out. SEAMUS uses the sediment core and species abundance variables inputted in the time domain (SAR in the form of an age-depth model, BD vs time, species abundance vs time) to simulate a number of new single specimens per timestep. Each of these specimens are assigned an age, <sup>14</sup>C activity, reservoir age and carrier signal





- 129 corresponding to the timestep. Subsequently, the new specimens are added to the top of the
- 130 existing core, after which bioturbation is carried out. The simulation takes advantage of recent
- 131 increases in computer memory capacity to keep track of the depths, ages, <sup>14</sup>C activities, species
- 132 types and number of bioturbation cycles for all single specimens in the simulation. Such an
- approach, which is optimised for single specimens, allows the user to use logical indexing to quickly
- access all variables for given single specimens for given depths, ages and/or species.
- 135 The SEAMUS simulation is broken down into two main functions that the user can call. The first
- 136 function seamus\_run, carries out the actual single specimen sedimentation simulation based on the
- 137 input parameters designated by the user. The second function, *seamus\_pick*, can be best described
- 138 as a 'virtual palaeoceanographer', in that it carries out downcore analysis of the simulated sediment
- 139 core, including discrete-depth sample picking, calculation of sub-sample mean carrier signals, <sup>14</sup>C
- analysis by virtual AMS, <sup>14</sup>C calibration, etc. The *seamus\_run* and *seamus\_pick* functions, as well as
- their associated input and output variables, are detailed in sections 2.3.2 and 2.3.3.

### 142 2.2.2 The sediment core simulation (seamus\_run)

143 The seamus\_run module uses the required and optional input parameters specified by the user 144 (Table S1) to synthesise n number of single specimens being net-added to the historical layer of the 145 sediment core per simulation timestep, whereby *n* is scaled to the capacity of the synthetic sediment 146 archive being simulated (input variable fpcm) and to the SAR of the timestep as predicted by an 147 inputted age-depth relationship. The simulation creates large single specimen arrays of matching 148 dimensions for age (corresponding to the timestep), 'unbioturbated' sediment depth (according to the age-depth input), as well as a <sup>14</sup>C age (in <sup>14</sup>C yrs) and <sup>14</sup>C activity (in *f*MC). The user also has the 149 option to input a <sup>14</sup>C blank value. Furthermore, all single specimens can be assigned carrier signal 150 151 values. It should be noted that the user is not required to enter input values for every timestep: for example, an age-depth relationship can simply be inputted with a handful of data points and the 152 153 model will automatically linearly interpolate to create age and depth values for every simulation 154 timestep. The same principle holds true for other temporally dynamic inputs such as species 155 abundance, reservoir age and carrier signals.

After the creation of all new single specimens within the synthetic core, a per timestep bioturbation simulation of the depth array is carried out. Specifically, for each timestep the depth values corresponding to all simulated specimens within the timestep-specific active BD are each assigned a new depth by way of uniform random sampling of the BD interval. In this way, uniform mixing of specimens within the BD is simulated following established understanding of bioturbation. The per





| 161 | timestep bioturbation simulation is carried out in <i>seamus_run</i> as follows; first, the simulation finds      |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------|--|--|--|
| 162 | the indices for all specimen depth values present in the contemporaneous BD:                                      |  |  |  |
| 163 | <pre>ind = find(depths &gt;= addepths(s) &amp; depths &lt; addepths(s) + biodepths(s))</pre>                      |  |  |  |
| 164 | Where <i>addepths(s)</i> is the depth corresponding to the age for timestep <i>s</i> , i.e. <i>addephts(s)</i> is |  |  |  |
| 165 | analogous to the timestep's core top; and where <i>biodepths(s)</i> is the BD corresponding to the age for        |  |  |  |
| 166 | timestep s.                                                                                                       |  |  |  |
| 167 | Subsequently, all specimen depth values corresponding to the active BD are assigned new depth                     |  |  |  |
| 168 | values by uniform random sampling of the active BD itself:                                                        |  |  |  |
| 169 | <pre>depths(ind) = rand(length(ind),1)*biodepths(s) + addepths(s)</pre>                                           |  |  |  |
| 170 | The simulation uses a simple counter array to keep track of how many times each single specimen                   |  |  |  |
| 171 | has been subjected to a bioturbation cycle:                                                                       |  |  |  |
| 172 | cycles(ind) = cycles(ind) + 1                                                                                     |  |  |  |
| 173 | All of the aforementioned processes are repeated for every simulation timestep until such point that              |  |  |  |
| 174 | the end of the age-depth input (i.e. the final core top) is reached. Currently, the simulation carries            |  |  |  |
| 175 | out bioturbation according to a per timestep uniform random sampling, but users wishing to                        |  |  |  |
| 176 | experiment with other types of bioturbation (i.e. partial bioturbation, etc.) can modify the                      |  |  |  |
| 177 | aforementioned lines of the script.                                                                               |  |  |  |
| 178 | It is recommended that users initiate the <i>seamus_run</i> simulation with sufficient spinup time. The           |  |  |  |
| 179 | necessary spin-up time can vary dependent upon the SAR and BD being studied, but for most                         |  |  |  |
| 180 | applications (SAR >5 cm/ka), a spin-up time of at least 20 ka should suffice. In other words, if one is           |  |  |  |
| 181 | studying a period of interest that commences at 50 ka ago, then the simulation can be started at 70               |  |  |  |
| 182 | ka ago. The required input parameters should be inputted in the command line as follows:                          |  |  |  |
| 183 | seamus run(simstart, siminc, simend, btinc, form, realD14C, blankbg,                                              |  |  |  |
| 184 | adpoints, bdpoints, savename)                                                                                     |  |  |  |
| 105 |                                                                                                                   |  |  |  |
| 185 | Optional parameters can be additionally specified as follows, e.g. in the case of including the matrix            |  |  |  |
| 186 | matrixname containing temporal changes in reservoir age for Species A:                                            |  |  |  |
| 187 | <pre>seamus_run(simstart, siminc, simend, btinc, fpcm, realD14C, blankbg,</pre>                                   |  |  |  |
| 188 | adpoints, bdpoints, savename, `resageA', matrixname)                                                              |  |  |  |
| 189 | The <i>seamus_run</i> module outputs a .mat file containing a number of very large 1 arrays of the same           |  |  |  |
| 190 | dimension, whereby each position in each array corresponds to the same simulated single                           |  |  |  |





- 191 specimens. Output variables are detailed in Table S2. To improve performance and ease of use, all
- 192 output variables are simulated for all single specimens. For example, carrier signals specific to
- 193 Species A (carrierA) are simulated for both Species A and Species B. As all output variables are of the
- 194 same dimension, one can easily isolate the carrierA signals specific to the specimens of Species A
- 195 (*types* value of 0) using logical indexing:
- 196 carrierA(types == 0 , :)
- 197 and from a specific core depth interval (e.g. between 16 and 17 cm):

198 carrierA(types == 0 & depths >= 16 & depths < 17 , :)

#### 199 2.2.3 Virtual picking of the simulated sediment core (seamus\_pick)

200 The seamus pick module carries out a simple picking simulation upon the simulated core generated 201 by seamus run. Users are able to set a specific sample size (i.e. the number of single specimens to be randomly picked per sample), sample picking interval (i.e. core slice thickness) and optionally 202 203 include information about the amount of broken/non-whole specimens. The latter parameter is set 204 as a fraction of the entire specimen population, whereby the fraction of the population that has 205 been through the most bioturbation cycles is assumed to be broken. For example, if the user sets the fraction of broken specimens to 0.25, then the simulation will only randomly pick from the specimen 206 population with bioturbation cycles between the 1<sup>st</sup> and 75<sup>th</sup> percentiles. In this way, the preference 207 208 of a palaeoceanographer to pick whole specimens is simulated. Within seamus pick, virtual <sup>14</sup>C laboratory analysis is carried out on the picked subsamples by 209 calculating the mean <sup>14</sup>C activity (in fMC), after which the resulting mean fMC value is converted into 210

- <sup>14</sup>C age (in <sup>14</sup>C yr). A realistic measurement error is also assigned to to each <sup>14</sup>C age, whereby a late
- Holocene  ${}^{14}$ C age is assumed to have a measurement error of ±30  ${}^{14}$ C yr, and a  ${}^{14}$ C age of just above
- 213 the blank value is assumed to have an error of  $\pm 200^{14}$ C yr. Measurement errors for ages in between
- are linearly scaled to <sup>14</sup>C activity. Using the *MatCal* (Lougheed and Obrochta, 2016) calibration
- 215 software, <sup>14</sup>C ages and errors are calibrated inline, after the application of a user-prescribed
- 216 calibration curve and downcore reservoir age.

217 The *seamus\_pick* function is called from the command line:

218 seamus\_pick(matfilein, matfileout, calcurve, pickint, Apickfordate,

- 219 Bpickfordate)
- 220 Optional parameters can be additionally specified as follows, e.g. in the case of including the matrix
- 221 *matrixname* containing downcore changes in the fraction of broken specimens in Species A:





222 seamus\_pick(matfilein, matfileout, calcurve, pickint, Apickfordate,

223 Bpickfordate, 'Abroken', matrixname)

## 224 2.2.4 Suggested input data

- 225 Users are free to use any input data they please, so long as it abides to the specified requirements as 226 listed in the function documentation, as well as in Tables S1 and S3. This freedom can allow users to 227 carry out abstract modelling experiments to increase understanding of the relationship between 228 input variables, the resulting downcore single specimen vales and trends in downcore discrete-depth 229 means. Alternatively, users can try to forward model an actual sediment core record in order to 230 investigate for the possible presence of bioturbation/abundance artefacts within their sediment core 231 record. An existing age-depth model of a sediment core could be used as the dynamic age-depth 232 input for the SEAMUS simulation, although users must be aware that age-depth models may 233 themselves contain artefacts caused by the interaction between bioturbation and abundance. Data 234 regarding downcore abundance estimates could be used as abundance estimates, but similarly, 235 users should be aware that observed downcore abundance in the core depth domain is not the same 236 as original abundance in the time domain. Users could, therefore, experiment in using multiple 237 temporal abundance and bioturbation depth combinations as simulation input, and rerunning the
- 238 simulation with different temporal abundance and bioturbation depth combinations until such time
- that generated abundance data in depth is similar to the observed abundance in depth. Input
- 240 climate data for simulations could be based on multiple experimental, fictional scenarios, geological
- 241 records, or generated from isotope-enabled climate models (Roche, 2013) coupled to, for example, a
- 242 foraminifera ecology model such as FORAMCLIM (Lombard et al., 2011) or FAME (Roche et al., 2018;
- 243 Metcalfe et al., 2019a), to produce a fully parameterised "climate to sediment core" model
- 244 workflow.

### 245 3.0 Model Evaluation

## 246 **3.1 Comparison with TURBO2**

In order to evaluate the performance of the SEAMUS model, it is compared here to the output of the
established TURBO2 bioturbation model (Trauth, 2013), which was also authored in Matlab. The
most notable difference between SEAMUS and TURBO2 is that the latter outputs data in the form of
the perturbation of the mean downcore signal, whereas SEAMUS takes advantage of recent
increases in available computer memory to store and output a very large array of single elements
(foraminifera specimens). The two models can be compared, therefore, by comparing the mean

253 downcore output from TURBO2 with the SEAMUS downcore mean value derived from discrete-





254 depth single specimen populations. To achieve this comparison, the NGRIP Greenland ice core  $\delta^{18}$ O 255 record on the GICC05 timescale (North Greenland Ice Core Project members, 2004; Rasmussen et al., 256 2014; Seierstad et al., 2014) is used as a reference signal to represent the 'unbioturbated' climate signal (Fig. 1a). This 50 year temporal resolution signal is subsequently inputted into both SEAMUS 257 and TURBO2 using identical run conditions comprising of a constant SAR of 10 cm/ka, a constant BD 258 259 of 10 cm and a single foraminiferal species with a constant abundance. The SEAMUS simulation is 260 run using a 10 year timestep. The TURBO2 and SEAMUS core simulations (i.e. single specimens in the 261 case of SEAMUS) are directly assigned the oxygen isotope values from the NGRIP record. One would 262 obviously not expect that foraminifera in the open ocean would have the same oxygen isotope 263 values as an ice sheet record (due to fractionation effects, habitat effects, oceanographic effects, 264 seasonal overprint, etc), but the purpose here is simply to compare the output of the respective 265 bioturbation algorithms in SEAMUS and TURBO2 using some kind of high-temporal resolution 266 climatic input signal. Furthermore, using the NGRIP record allows for the isolation of the 267 bioturbation effect upon a hypothesised single specimen record. The respective mean downcore 268 bioturbated signals produced by SEAMUS and TURBO2 are shown in Fig. 1b and exhibit a significant 269 correlation ( $r^2 = 0.99$ , p < 0.01), indicating that the SEAMUS approach is incorporating the same 270 understanding of bioturbation as TURBO2.

### 271 3.2 Processing speed and computing requirements

272 Where possible, the processing of variables for simulation timesteps has been vectorised (i.e. not 273 processed within an iterative loop), in order to maximise processing speed. For example, the per 274 timestep assignment of single specimen arrays corresponding to ages and carrier signals all occurs 275 within fully vectorised code. However, the bioturbation simulation (i.e. the bioturbation of the 276 assigned depth values) is not vectorised and is carried out within a single-thread iterative loop, due 277 to each iteration of the bioturbation simulation being dependent upon the results of the previous 278 iteration. In order to optimise the processing time on 64-bit computers, all arrays are stored as 64-279 bit. Should the user wish to save memory, it is possible to select the do32bit option when accessing 280 seamus run from the command line (see Table S1). Indicative run times and memory use are shown 281 in Table 1.

The SEAMUS model was developed in Matlab 2017b. The *seamus\_run* module can be run using the basic Matlab environment, with no extra toolboxes. The *seamus\_pick* module runs more efficiently when the Statistics and Machine Learning toolbox (specifically, the prctile function) is installed, but when it is detected that users do not have access to that toolbox, *seamus\_pick* will revert to using a modified version of the equivalent function in Octave (Kienzle, 2001), which has been embedded





- 287 into the script. The *seamus\_pick* function also requires the Matcal (Lougheed and Obrochta, 2016)
- <sup>14</sup>C calibration script, which has been included in the SEAMUS download package.

## 289 4.0 Potential model applications

### 290 4.1 Analysing downcore specimen population distributions

291 As outlined in the introduction, advances in mass spectrometry have allowed for routine single 292 specimen analysis, which has led to increased interest in using analysis of single specimen 293 populations from discrete depths as a potentially powerful tool with which to reconstruct past 294 changes in climate variability. This application of this tool, however, still relies upon median 295 downcore age by assigning an age estimate to all single specimens from a single depth. Climate variability/seasonality interpretations are clouded, therefore, when single specimens from a wide 296 297 range of ages are mixed into the same depth, especially if the interpretation relies upon detecting 298 extreme climate events in the form of single specimen outliers. Using the previously described (Section 3.1; Fig 1b) SEAMUS simulation, it is possible to construct a probability heatmap and 95.45% 299 300 intervals for the single specimen  $\delta^{18}$ O (Fig. 2a) data. The shape and range of these 95.45% intervals 301 relative to a glacial-interglacial change is similar to what has been previously calculated by 302 (Schiffelbein, 1986), albeit in the case of the Termination II deglaciation. Using SEAMUS, histograms 303 of single specimen  $\delta^{18}$ O values for discrete depths can also be explored, for example for sediment 304 core intervals with a median downcore age corresponding to the early Holocene (Fig. 2b), mid-305 Holocene (Fig. 2c), Younger Dryas (Fig. 2d) and Late Glacial Maximum (Fig. 2e). This analysis 306 demonstrates the potential for the presence of single specimens with glacial climate values being 307 present in samples with an interglacial mean value. For example, in the early Holocene depth interval (Fig. 2c), 15% of the simulated single specimens have a  $\delta^{18}$ O value less than or equal to -308 309 36‰. Of course, some sediment archives may have much higher lower SAR than the constant 10 cm/ka simulated in this example. The contribution of older specimens to a particular depth interval 310 311 is dependent upon a number of factors; temporal changes in SAR, BD, species abundance and the 312 susceptibility of older specimens to be broken/dissolved as a consequence of having been through 313 more bioturbation cycles (Rubin and Suess, 1955; Ericson et al., 1956; Emiliani and Milliman, 1966; 314 Barker et al., 2007). Using the SEAMUS model it is possible to run dynamic sediment scenarios to 315 investigate the influence of mixing of specimens of different ages upon interpretations based upon single specimen analysis. 316





## 318 4.2 Analysing <sup>14</sup>C calibration skill

As outlined earlier, it is possible to assign <sup>14</sup>C activities to single specimens in the sedimentation 319 320 simulation based by using suitable records of the Earth's  $\Delta^{14}$ C history (e.g., *IntCal*). Subsequently, SEAMUS uses the <sup>14</sup>C activities of the specimens contained within each discrete depth to calculate 321 and expected laboratory <sup>14</sup>C determination and measurement uncertainty. Using the MatCal 322 323 software, it is subsequently possible to calibrate the aforementioned <sup>14</sup>C age, in combination with a 324 calibration curve and reservoir age estimate, to produce an expected calibrated age distribution. The 325 calibrated age distribution for the discrete depth can be compared with the true age distribution for the discrete depth, as recorded by the simulation, to evaluate the skill with which current <sup>14</sup>C dating 326 327 and calibration processes can reproduce the true age distribution of a particular sediment core slice. A graphical representation of the aforementioned output for a discrete depth interval is shown in 328 329 Fig. 3, once again using the SEAMUS bioturbation simulation detailed in Section 3.1. This analysis 330 demonstrates that, for the applied simulation parameters and for the discrete depth interval analysed in Fig. 3 (121-122 cm), the <sup>14</sup>C calibration process would produce a median calibrated age 331 332 of 12.21 cal ka BP, whereas the true median age is 11.79 ka, meaning that there is a 420 year difference between the two. Furthermore, the <sup>14</sup>C calibration process produces a 95.45% credible 333 334 interval of 12.64 - 11.65 cal ka BP (a range of 990 cal yr), whereas the true 95.45% interval of the 335 single specimens within the simulation is 14.95-11.16 ka (a range of 3788 years), meaning that the <sup>14</sup>C dating and calibration process considerably underestimates (by some 2800 years) the age 336 337 uncertainty for this particular interval of simulated sediment core. A Matlab script enabling users to 338 produce a figure similar to Fig. 3 is included within the tutorial script (tutorial.m) that is bundled with 339 SEAMUS. Users can subsequently explore downcore changes in the effectiveness of <sup>14</sup>C dating to 340 accurately estimate true age under various dynamic simulation conditions, including: abundance changes, SAR changes, bioturbation depth changes, reservoir age changes, as well as during periods 341 of dynamic  $\Delta^{14}$ C. 342

## 343 4.3 Investigating noise created by the picking process

- 344 When picking discrete-depth samples from discrete-depth specimen populations,
- 345 palaeoceanographers randomly pick whole specimens to produce a downcore mean signal. The
- 346 seamus\_pick module can be used to test for random noise introduced upon the mean signal by the
- 347 picking process. The module can be repeatedly run with a set number of randomly picked whole
- 348 specimens per sample, and the resulting picking runs can be compared to an ideal picking run that
- 349 picks all available whole specimens for each discrete depth. Such an approach is investigated here,
- once again using the same SEAMUS bioturbation simulation that was carried out in Section 3.1, for





351 picking scenarios each with one specimen per sample (Fig. 4a), two specimens per sample (Fig. 4b), 352 three specimens per sample (Fig. 4c), five specimens per sample (Fig. 4d), 10 specimens per sample 353 (Fig. 4e) and 20 specimens per sample (Fig. 4f). Such simulations can allow researchers to isolate and 354 quantify the effect of the picking process upon their downcore multi-specimen reconstructions for their particular sediment core scenario. It can be noted that for the 10 cm/ka simulation carried out 355 356 here, that large sample sizes ( $n \ge 10$ ) tend to produce downcore sampling runs close to the total 357 population mean (Figs. 4E and 4F), although the true spread of values is hidden. Furthermore, even 358 with larger samples sizes there is still the possibility for the generation of picking noise-induced 359 peak/trough values which could be erroneously interpreted as a precise indication of the timing of a 360 particular climate feature. In the case of very small sample sizes (Figs. 4A and 4B), researchers can 361 get an idea of the total spread of values within single core intervals. With advances in mass 362 spectrometry making the analysis of single specimens ever more routine and cost-effective, the ideal 363 approach in the future may involve exclusively analysing single specimens, with single specimen 364 values from discrete depths used to both estimate the signal distribution and calculate a downcore 365 mean signal, thus facilitating a 'best of both worlds' approach.

#### 366 4.4 Investigating noise created by absolute specimen abundance

The interaction between total specimen abundance and bioturbation creates downcore noise in the 367 368 sedimentary record. In Fig. 5, the downcore, discrete-depth median age increase per centimetre for 369 three SEAMUS simulations all with an idealised constant SAR of 10 cm ka<sup>-1</sup> and constant BD of 10 cm 370 is shown, with the number of outputted specimens per centimetre being set differently for each 371 simulation, namely at  $10^2$  specimens per cm (Fig. 5a),  $10^3$  specimens per cm (Fig. 5b) and  $10^4$ specimens per cm (Fig. 5c). In all three scenarios the downcore, discrete-depth increase in median 372 373 age clusters around 100 years cm<sup>-1</sup>, which is what would be expected in the case of 10 cm ka<sup>-1</sup> 374 sediment core. As expected, the signal-to-noise ratio is higher in cases of higher abundance. An 375 interesting side-effect of a decreased signal-noise-ratio is the increased likelihood of the generation 376 of apparent age-depth reversals. For example, in the abundance scenario with 10<sup>2</sup> specimens cm<sup>-1</sup> 377 (Fig. 5a), 21.7% of the discrete-depth (1 cm) age-depth points produce an apparent age-depth 378 reversal. Due to the fact that many age-depth modelling software packages often consider such age-379 depth reversals as outliers (Blaauw and Christen, 2011; Lougheed and Obrochta, 2019), 380 palaeoceanographers should be aware that the apparent age-depth reversals generated by very 381 noisy downcore signals caused by low specimen abundance may result in age-depth models that are 382 biased towards young ages. Also, while palaeoceanographers often quantify relative abundance as a 383 ratio between different species, it is additionally important to quantify the absolute abundance of a





- 384 particular species being studied in the form of number of specimens per specific sediment volume,
- as this can give clues regarding the expected signal to noise ratio ascertained from a discrete-depth
- 386 analysis.

### 387 4.5 Investigating artefacts created by dynamic specimen abundance

388 In the previous sections, scenarios involving constant specimen abundance were explored. SEAMUS is specifically designed with the ability to process multiple temporally dynamic inputs. In Fig. 6, the 389 390 effect of temporally dynamic species abundance for a theorised "Species A" is studied, once again 391 using a scenario with a constant SAR of 10 cm/ka and constant BD of 10 cm. Past studies using 392 simpler mixing models have previously shown that the downcore  $\delta^{18}$ O signal for particular species can display offsets that are in fact an artefact of the interplay between abundance and bioturbation 393 394 (Löwemark and Grootes, 2004; Trauth, 2013). Here, the single-specimen SEAMUS simulation is used 395 to investigate the effects of abundance and bioturbation upon the age-depth signal produced by 396 single specimens. In this scenario SEAMUS is driven using a dynamic input with six temporal maxima 397 in Species A specimen flux centred upon 10, 16 18, 28, 32 and 36 ka ago (Fig. 6a). The resulting post-398 simulation absolute abundance of Species A in the depth domain (Fig. 6b) a smoothed out / mixing 399 of the abundance peaks as a result of bioturbation. The interaction between dynamic abundance 400 and bioturbation also has consequences for the discrete-depth age-depth relationship of Species A. 401 For example, the downcore change in discrete-depth median age for Species A (Fig. 6c) is less noisy 402 (i.e. less likely to produce outliers) for intervals close to the absolute abundance peaks, but 403 negatively offset from the target discrete-depth median age change of 100 years per cm that would be associated with the 10 cm/ka sediment core simulation. This would be manifested in an age-404 405 depth reconstruction as an age-depth plateau near to an abundance peak. 406 Similarly, the 95.45% discrete-depth age range for Species A is much more constrained in the case of depth intervals located close to the abundance peaks (Fig. 6d), but less representative of the median 407 408 age for the total sediment (all specimens), with Species A being biased towards too young ages (Fig. 409 6e). This bias is an interesting finding, seeing as it has long been assumed that pooled specimen 410 samples used for dating (e.g., <sup>14</sup>C dating) should be retrieved from abundance peaks (Keigwin and 411 Lehman, 1994; Waelbroeck et al., 2001; Galbraith et al., 2015). This assumption is largely based on 412 the fact that <sup>14</sup>C dates sampled from abundance peaks are younger than the immediately surrounding sediment (Rafter et al., 2018). However, the SEAMUS simulation suggests that 413 414 abundance peaks can result in ages that are anomalously young when compared to the total

415 sediment (Fig. 6e).





## 416 5.0 Conclusion

- 417 Deep-sea sediment archives are subject to systematic bioturbation, which can complicate
- 418 palaeoclimate reconstructions sourced from sediment cores. Complications can include artefacts
- 419 and/or spurious offsets in <sup>14</sup>C age other carrier signals (such as  $\delta^{18}$ O) sourced from multi-specimen
- 420 samples. The SEAMUS model allows users to interactively investigate how such artefacts and/or
- 421 spurious offsets can be attributed to the mixing of single specimens. The model is suitable for users
- 422 who are investigating the downcore mean signal and how it is affected by dynamic changes in input
- 423 variables. The model is especially interesting for researchers who are using single-specimen
- 424 foraminifera analysis to quantify past changes in seasonality or multi-centennial amplitude in
- 425 regional climate variability, as it can assist researchers in understanding the influence of bioturbation
- 426 upon their results and the interpretation. The model is also useful as a teaching resource; for
- 427 example, users can keep all but one input variable constant, and learn to understand the influence
- 428 of dynamic changes in that particular input variable upon the downcore specimen record.
- 429 Subsequently, multiple dynamic variables can be introduced.

#### 430 Code availability

- 431 The SEAMUS model and accompanying interactive tutorial can be downloaded from the Zenodo
- 432 public repository: https://doi.org/10.5281/zenodo.3251655

#### 433 Acknowledgements

- 434 This work was funded by Swedish Research Council (Vetenskapsrådet VR) Starting Grant number
- 435 2018-04992. Thanks to LOG for hosting me as a guest researcher in Wimereux. Brett Metcalfe is
- 436 thanked for various discussions about the state-of-the-art of single specimen foraminifera analysis
- 437 (see also the resources at www.brett-metcalfe.com).

#### 438 References

- Bard, E., Arnold, M., Duprat, J., Moyes, J. and Duplessy, J. C.: Reconstruction of the last deglaciation:
  Deconvolved records of δ 18 O profiles, micropaleontological variations and accelerator mass
  spectrometric 14 C dating, Climate Dynamics, 1(2), 101–112, 1987.
- 442 Barker, S., Broecker, W., Clark, E. and Hajdas, I.: Radiocarbon age offsets of foraminifera resulting
- 443 from differential dissolution and fragmentation within the sedimentary bioturbated zone,
- 444 Paleoceanography, 22(2), doi:10.1029/2006PA001354, 2007.
- Berger, W. H. and Heath, G. R.: Vertical mixing in pelagic sediments, Journal of Marine Research, 26,
  134–143, 1968.
- Berger, W. H. and Johnson, R. F.: On the thickness and the 14C age of the mixed layer in deep-sea
  carbonates, Earth and Planetary Science Letters, 41(2), 223–227, 1978.





- Berger, W. H. and Killingley, J. S.: Box cores from the equatorial Pacific: 14C sedimentation rates and
  benthic mixing, Marine Geology, 45(1), 93–125, doi:10.1016/0025-3227(82)90182-7, 1982.
- 451 Billups, K. and Spero, H. J.: Reconstructing the stable isotope geochemistry and paleotemperatures
- 452 of the equatorial Atlantic during the last 150,000 years: Results from individual foraminifera,
- 453 Paleoceanography, 11(2), 217–238, doi:10.1029/95PA03773, 1996.
- 454 Blaauw, M. and Christen, J. A.: Flexible Paleoclimate Age-Depth Models Using an Autoregressive 455 Gamma Process, Bayesian Analysis, 6, 457–474, doi:10.1214/11-BA618, 2011.
- Boudreau, B. P.: Mean mixed depth of sediments: The wherefore and the why, Limnology and
  Oceanography, 43(3), 524–526, doi:10.4319/lo.1998.43.3.0524, 1998.
- 458 Dolman, A. M. and Laepple, T.: Sedproxy: a forward model for sediment archived climate proxies,
  459 Climate of the Past Discussions, 1–31, doi:10.5194/cp-2018-13, 2018.
- 460 Emiliani, C. and Milliman, J. D.: Deep-sea sediments and their geological record, Earth-Science
  461 Reviews, 1(2–3), 105–132, doi:10.1016/0012-8252(66)90002-X, 1966.
- 462 Ericson, D. B., Broecker, W. S., Kulp, J. L. and Wollin, G.: Late-Pleistocene Climates and Deep-Sea
  463 Sediments, Science, 124(3218), 385–389, doi:10.1126/science.124.3218.385, 1956.
- Ford, H. L. and Ravelo, A. C.: Estimates of Pliocene Tropical Pacific Temperature Sensitivity to
  Radiative Greenhouse Gas Forcing, Paleoceanography and Paleoclimatology, 34(1), 2–15,
  doi:10.1029/2018PA003461, 2019.
- Ford, H. L., Ravelo, A. C. and Polissar, P. J.: Reduced El Nino-Southern Oscillation during the Last
  Glacial Maximum, Science, 347(6219), 255–258, doi:10.1126/science.1258437, 2015.
- Fraass, A. J. and Lowery, C. M.: Defining uncertainty and error in planktic foraminiferal oxygen
  isotope measurements: Uncertainty in Foram Oxygen Isotopes, Paleoceanography, 32(2), 104–122,
  doi:10.1002/2016PA003035, 2017.
- Galbraith, E. D., Kwon, E. Y., Bianchi, D., Hain, M. P. and Sarmiento, J. L.: The impact of atmospheric
  CO2 on carbon isotope ratios of the atmosphere and ocean, Global Biogeochemical Cycles, 29(3),
  307–324, doi:10.1002/2014GB004929, 2015.
- Ganssen, G. M., Peeters, F. J. C., Metcalfe, B., Anand, P., Jung, S. J. A., Kroon, D. and Brummer, G.-J.
  A.: Quantifying sea surface temperature ranges of the Arabian Sea for the past 20 000 years, Climate
  of the Past, 7(4), 1337–1349, doi:10.5194/cp-7-1337-2011, 2011.
- Keigwin, L. D. and Lehman, S. J.: Deep circulation change linked to HEINRICH Event 1 and Younger
  Dryas in a middepth North Atlantic Core, Paleoceanography, 9(2), 185–194, doi:10.1029/94PA00032,
  1994.
- 481 Kienzle, P.: Octave prctile() function., [online] Available from:
- https://sourceforge.net/p/octave/statistics/ci/c1ef33a337b30168a0581d9cae26397d2c1ae06a/tree
   /inst/prctile.m#l28, 2001.
- Killingley, J. S., Johnson, R. F. and Berger, W. H.: Oxygen and carbon isotopes of individual shells of
   planktonic foraminifera from Ontong-Java plateau, equatorial pacific, 12, 1981.





- 486 Lombard, F., Labeyrie, L., Michel, E., Bopp, L., Cortijo, E., Retailleau, S., Howa, H. and Jorissen, F.:
- 487 Modelling planktic foraminifer growth and distribution using an ecophysiological multi-species
- 488 approach, Biogeosciences, 8(4), 853–873, doi:10.5194/bg-8-853-2011, 2011.
- Lougheed, B. C. and Obrochta, S. P.: MatCal: Open Source Bayesian 14C Age Calibration in Matlab,
  Journal of Open Research Software, 4, doi:10.5334/jors.130, 2016.
- 491 Lougheed, B. C. and Obrochta, S. P.: A rapid, deterministic age-depth modelling routine for
- 492 geological sequences with inherent depth uncertainty, Paleoceanography and Paleoclimatology, 34,
- 493 122–133, doi:10.1029/2018PA003457, 2019.
- Lougheed, B. C., Metcalfe, B., Ninnemann, U. S. and Wacker, L.: Moving beyond the age-depth model
  paradigm in deep sea palaeoclimate archives: dual radiocarbon and stable isotope analysis on single
  foraminifera, Climate of the Past, 14, 515–526, doi:10.5194/cp-2017-119, 2018.
- 497 Löwemark, L. and Grootes, P. M.: Large age differences between planktic foraminifers caused by
- 498 abundance variations and Zoophycos bioturbation., Paleoceanography, 19(2), PA2001,
- doi:10.1029/2003PA000949, 2004.

Metcalfe, B., Feldmeijer, W., de Vringer-Picon, M., Brummer, G.-J. A., Peeters, F. J. C. and Ganssen,
G. M.: Late Pleistocene glacial–interglacial shell-size–isotope variability in planktonic foraminifera as
a function of local hydrography, Biogeosciences, 12(15), 4781–4807, doi:10.5194/bg-12-4781-2015,
2015.

Metcalfe, B., Lougheed, B. C., Waelbroeck, C. and Roche, D. M.: On the validity of foraminifera-based
ENSO reconstructions, Climate of the Past Discussions, 1–31, doi:https://doi.org/10.5194/cp-2019-9,
2019a.

- 507 Metcalfe, B., Feldmeijer, W. and Ganssen, G. M.: Oxygen Isotope Variability of Planktonic
- 508 Foraminifera Provide Clues to Past Upper Ocean Seasonal Variability, Paleoceanography and
- 509 Paleoclimatology, 34(3), 374–393, doi:10.1029/2018PA003475, 2019b.
- 510 North Greenland Ice Core Project members: High-resolution record of Northern Hemisphere climate
- 511 extending into the last interglacial period, Nature, 431(7005), 147–151, doi:10.1038/nature02805,
  512 2004.
- Peng, T.-H., Broecker, W. S. and Berger, W. H.: Rates of benthic mixing in deep-sea sediment as
  determined by radioactive tracers, Quaternary Research, 11(1), 141–149, 1979.
- 515 Pisias, N. G.: Geologic time series from deep-sea sediments: Time scales and distortion by 516 bioturbation, Marine Geology, 51(1–2), 99–113, 1983.
- Rafter, P. A., Herguera, J.-C. and Southon, J. R.: Extreme lowering of deglacial seawater radiocarbon
  recorded by both epifaunal and infaunal benthic foraminifera in a wood-dated sediment core, Clim.
  Past, 14(12), 1977–1989, doi:10.5194/cp-14-1977-2018, 2018.
- 520 Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L., Clausen, H. B., Cvijanovic, I.,
- 521 Dahl-Jensen, D., Johnsen, S. J., Fischer, H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J.
- 522 B., Popp, T., Seierstad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P., Vinther, B. M., Walker,
- 523 M. J. C., Wheatley, J. J. and Winstrup, M.: A stratigraphic framework for abrupt climatic changes
- 524 during the Last Glacial period based on three synchronized Greenland ice-core records: refining and
- 525 extending the INTIMATE event stratigraphy, Quaternary Science Reviews, 106, 14–28,
- 526 doi:10.1016/j.quascirev.2014.09.007, 2014.





- 527 Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H.,
- 528 Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C.,
- Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W.,
- Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M. and
   van der Plicht, J.: IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP,
- 532 Radiocarbon, 55(04), 1869–1887, 2013.
- Roche, D. M.: δ180 water isotope in the iLOVECLIM model (version 1.0) Part 1: Implementation
  and verification, Geosci. Model Dev., 6(5), 1481–1491, doi:10.5194/gmd-6-1481-2013, 2013.
- 535 Roche, D. M., Waelbroeck, C., Metcalfe, B. and Caley, T.: FAME (v1.0): a simple module to simulate
- 536 the effect of planktonic foraminifer species-specific habitat on their oxygen isotopic content,
- 537 Geoscientific Model Development, 11(9), 3587–3603, doi:10.5194/gmd-11-3587-2018, 2018.
- Rubin, M. and Suess, H. E.: U.S. Geological Survey Radiocarbon Dates 11., Science, 121, 481–488,
  1955.
- 540 Schiffelbein, P.: Effect of benthic mixing on the information content of deep-sea stratigraphical 541 signals, Nature, 311(5987), 651, doi:10.1038/311651a0, 1984.
- 542 Schiffelbein, P.: The interpretation of stable isotopes in deep-sea sediments: An error analysis case 543 study, Marine Geology, 70(3–4), 313–320, doi:10.1016/0025-3227(86)90008-3, 1986.
- 544 Seierstad, I. K., Abbott, P. M., Bigler, M., Blunier, T., Bourne, A. J., Brook, E., Buchardt, S. L., Buizert,
- 545 C., Clausen, H. B., Cook, E., Dahl-Jensen, D., Davies, S. M., Guillevic, M., Johnsen, S. J., Pedersen, D. S.,
- 546 Popp, T. J., Rasmussen, S. O., Severinghaus, J. P., Svensson, A. and Vinther, B. M.: Consistently dated
- records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional
- 548 millennial-scale  $\delta$ 180 gradients with possible Heinrich event imprint, Quaternary Science Reviews,
- 549 106, 29–46, doi:10.1016/j.quascirev.2014.10.032, 2014.
- 550 Spero, H. J. and Williams, D. F.: Evidence for seasonal low-salinity surface waters in the Gulf of
- 551 Mexico over the last 16,000 years, Paleoceanography, 5(6), 963–975,
- 552 doi:10.1029/PA005i006p00963, 1990.
- 553 Tang, C. M. and Stott, L. D.: Seasonal salinity changes during Mediterranean sapropel deposition
- 554 9000 years B.P.: Evidence from isotopic analyses of individual planktonic foraminifera,
- 555 Paleoceanography, 8(4), 473–493, doi:10.1029/93PA01319, 1993.
- 556 Thirumalai, K., Partin, J. W., Jackson, C. S. and Quinn, T. M.: Statistical constraints on El Niño
- Southern Oscillation reconstructions using individual foraminifera: A sensitivity analysis: IFA-ENSO
   UNCERTAINTY, Paleoceanography, 28(3), 401–412, doi:10.1002/palo.20037, 2013.
- 556 ONCERTAINTT, Paleoceanography, 28(5), 401–412, 001.10.1002/palo.20057, 2015.
- Trauth, M. H.: TURBO: a dynamic-probabilistic simulation to study the effects of bioturbation on
  paleoceanographic time series, Computers & Geosciences, 24(5), 433–441, doi:10.1016/S00983004(98)00019-3, 1998.
- 562 Trauth, M. H.: TURBO2: A MATLAB simulation to study the effects of bioturbation on
- 563 paleoceanographic time series, Computers & Geosciences, 61, 1–10,
- 564 doi:10.1016/j.cageo.2013.05.003, 2013.
- 565 Trauth, M. H., Sarnthein, M. and Arnold, M.: Bioturbational mixing depth and carbon flux at the
- 566 seafloor, Paleoceanography, 12(3), 517–526, 1997.





- 567 Waelbroeck, C., Duplessy, J.-C., Michel, E., Labeyrie, L., Paillard, D. and Duprat, J.: The timing of the
- last deglaciation in North Atlantic climate records, Nature, 412, 724–727, 2001.
- 569 Wit, J. C., Reichart, G. J. and Ganssen, G. M.: Unmixing of stable isotope signals using single specimen
- 570  $\delta^{18}$  O analyses, Geochemistry, Geophysics, Geosystems, 14(4), 1312–1320, doi:10.1002/ggge.20101,
- 571 2013.

572





- 574 Table 1. Approximate run times and Matlab memory use in the case of a 70 ka simulation run with
- 575 10 year iterations and core capacity of  $10^2$ ,  $10^3$  and  $10^4$  specimens per cm. The runs carried out using

# 576 Matlab 2017b on a 64-bit system with 8GB of RAM and an Intel i7-2600 processor.

|             | 10 <sup>2</sup> specimens cm <sup>-1</sup> | 10 <sup>3</sup> specimens cm <sup>-1</sup> | 10 <sup>4</sup> specimens cm <sup>-1</sup> |
|-------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|
| seamus_run  | 2.5 s / 0.62 GB                            | 19.7 s / 0.66 GB                           | 237.5 s / 1.15 GB                          |
| seamus_pick | 11.4 s / 0.61 GB                           | 13.2 s / 0.64 GB                           | 37.8 s / 0.99 GB                           |





## 578 Figure captions (also included with figures)

Figure 1. (a) NGRIP  $\delta^{18}$ O record (North Greenland Ice Core Project members, 2004) plotted using the latest GICC05 timescale (Rasmussen et al., 2014; Seierstad et al., 2014), adjusted by 50 years so that 1950 BCE is equivalent to 'present'. (b) Result of SEAMUS run using the NGRIP  $\delta^{18}$ O data as temporal input data. SEAMUS run settings are shown in the panel inset. Also shown is the average of ten runs of TURBO2 (Trauth, 2013), based on the same NGRIP input data and using a SAR of 10 cm ka<sup>-1</sup> and a constant BD of 10 cm.

585 Figure 2. (a) Log heat map (in greyscale) of downcore single specimen  $\delta^{18}$ O value probability in the 586 form of a 0.25‰ by 1 cm matrix, based on the single specimen data from the SEAMUS run displayed in Fig 1B. The probability for each matrix element is calculated as the number of specimens for each 587 588 discrete depth within a given 0.25% range, divided by the total number of specimens contained 589 within the discrete depth. The natural logarithm of the probability is subsequently plotted, in order to increase visibility of low probability areas in the heat map. Also shown (in orange) are the  $\delta^{18}$ O 590 values corresponding to the mean and 95.45% intervals for each discrete depth interval. (b, c, d and 591 e) Single specimen  $\delta^{18}$ O histograms for various discrete-depth intervals. 592

Figure 3. Example of using output from a SEAMUS simulation to estimate <sup>14</sup>C calibration skill for a 593 594 particular discrete-depth subsample. The green histograms represent the SEAMUS simulation output: on the x-axis the true age distribution of the discrete-depth single specimens (with the green 595 diamond corresponding to the median true age), and on the y-axis the <sup>14</sup>C age distribution of the 596 597 single specimens (with the green diamond corresponding to the mean <sup>14</sup>C age). All histograms are 598 shown using 100 (<sup>14</sup>C) year bins. The orange probability distribution on the y-axis represents a normal distribution corresponding to an idealised laboratory <sup>14</sup>C analysis of the single specimens, 599 where the orange square corresponds to the expected mean laboratory <sup>14</sup>C age. The orange 600 601 probability distribution on the x-axis represents the calibrated age distribution arising from the 602 calibration of the laboratory <sup>14</sup>C analysis using *Marine13* (Reimer et al., 2013). Also shown, for 603 reference, are the Marine13 calibration curve 1sigma (dark grey) and 2sigma (light grey) confidence intervals. Simulation output shown in the figure is based on the SEAMUS run in Fig 1B, with <sup>14</sup>C 604 activities assigned to single specimens according to *Marine13* with a constant  $\Delta R$  of 0±0 <sup>14</sup>C yr. For 605 the picking and calibration, all single specimens within the 121-122 cm discrete depth are picked, 606 and calibration is carried out using *MatCal* (Lougheed and Obrochta, 2016) with *Marine13* and a  $\Delta R$ 607 of 0±0<sup>14</sup>C yr. 608





- 609 Figure 4. Estimating noise induced by subsample size during the picking process. Based on the SEAMUS simulation in Fig. 1b, six sample size scenarios are considered: (a) one specimen per 610 611 sample; (b) two specimens per sample; (c) three specimens per sample; (d) five specimens per sample; (e) ten specimens per sample; (f) 20 specimens per sample. In each scenario, the downcore 612 picking process is repeated 10 times, and each picking run is represented by a coloured line. Also 613 shown in all panels is the mean  $\delta^{18}$ O value for all single specimens within discrete depth intervals 614 (black line) and 95.45% intervals (filled grey area). 615
- 616 Figure 5. Estimating downcore age-depth noise induced by absolute species abundance in three 617 scenarios all involving involving a constant SAR of 10 cm ka<sup>-1</sup> and constant bioturbation depth of 10 cm. In all three panels, the data points (circles) indicate the downcore discrete-depth median age 618 increase for each cm of core depth. Green circles correspond to positive downcore median age 619 620 change, while orange data points correspond to negative downcore median age change (i.e. apparent age reversals). The horizontal black line in each panel denotes the perfect downcore age 621 change of +100 years cm<sup>-1</sup> that would be associated with a constant SAR of 10 cm ka<sup>-1</sup>. The yellow 622 623 interval denotes the still-active BD (10 cm) at the core top. The signal-to-noise ratio (SNR) is also 624 computed for each scenario as the ratio between the summed squared magnitudes of the signal and 625 of the noise. The still-active BD at the core top is excluded from the SNR calculation. Three different abundance scenarios are shown: (a) constant abundance of  $10^2$  specimens cm<sup>-1</sup>. (b) constant 626 abundance of  $10^3$  specimens cm<sup>-1</sup>. (c) constant abundance of  $10^4$  specimens cm<sup>-1</sup>. 627
- 628 Figure 6. Investigating the effect of temporal changes in a species' abundance upon its discretedepth age-depth signal in the case of a simulated sediment core with a constant SAR of 10 cm ka and
- 630 constant BD of 10 cm. In all panels, the yellow interval denotes the still-active BD (10 cm) at the core
- 631 top. (a) The temporal abundance for a given species "Species A" used in the SEAMUS simulation,
- inputted into the model as a fraction of the per timestep specimen flux. (b) The resulting simulated 632
- 633 downcore, discrete-depth (1 cm) absolute abundance (number of specimens) for Species A. Vertical
- 634 grey bands correspond to the depth of the abundance peaks. (c) The downcore, discrete-depth (1
- cm) change in median age based on samples containing only Species A specimens. Green circles 635
- 636 denote downcore increase in discrete-depth apparent median age (i.e. positive apparent SAR) and
- 637 orange circles denote downcore decrease in discrete-depth median age (i.e. apparent age reversals).
- The horizontal black line in each panel denotes the perfect downcore age change of +100 years cm<sup>-1</sup> 638
- that would be associated with a constant SAR of 10 cm ka<sup>-1</sup>. (d) The 95.45% age range of for Species 639
- 640 A for each discrete 1 cm depth. (e) The offset between the median age of Species A ( $Med_A$ ) and the





- 641 median age of all specimens (Med<sub>all</sub>). Shown in the panel is Med<sub>A</sub>-Med<sub>all</sub>. The horizontal black line
- 642 represents corresponds to zero (i.e., no offset).







Figure 1. (a) NGRIP  $\delta^{18}$ O record (North Greenland Ice Core Project members, 2004) plotted using the latest GICC05 timescale (Rasmussen et al., 2014; Seierstad et al., 2014), adjusted by 50 years so that 1950 BCE is equivalent to 'present'. (b) Result of SEAMUS run using the NGRIP  $\delta^{18}$ O data as temporal input data. SEAMUS run settings are shown in the panel inset. Also shown is the average of ten runs of TURBO2 (Trauth, 2013), based on the same NGRIP input data and using a SAR of 10 cm ka<sup>-1</sup> and a constant BD of 10 cm.











(00)





Figure 3. Example of using output from a SEAMUS simulation to estimate <sup>14</sup>C calibration skill for a particular discrete-depth subsample. The green histograms represent the SEAMUS simulation output: on the x-axis the true age distribution of the discrete-depth single specimens (with the green diamond corresponding to the median true age), and on the y-axis the <sup>14</sup>C age distribution of the single specimens (with the green diamond corresponding to the mean <sup>14</sup>C age). All histograms are shown using 100 (<sup>14</sup>C) year bins. The orange probability distribution on the y-axis represents a normal distribution corresponding to an idealised laboratory <sup>14</sup>C analysis of the single specimens, where the orange square corresponds to the expected mean laboratory <sup>14</sup>C age. The orange probability distribution on the x-axis represents the calibrated age distribution arising from the calibration of the laboratory <sup>14</sup>C analysis using Marine13 (Reimer et al., 2013). Also shown, for reference, are the *Marine13* calibration curve 1sigma (dark grey) and 2sigma (light grey) confidence intervals. Simulation output shown in the figure is based on the SEAMUS run in Fig 1B, with <sup>14</sup>C activities assigned to single specimens according to Marine13 with a constant  $\Delta R$  of 0±0 <sup>14</sup>C yr. For the picking and calibration, all single specimens within the 121-122 cm discrete depth are picked, and calibration is carried out using *MatCal* (Lougheed and Obrochta, 2016) with *Marine13* and a  $\Delta R$  of 0±0 <sup>14</sup>C yr.







Figure 4. Estimating noise induced by subsample size during the picking process. Based on the SEAMUS simulation in Fig. 1b, six sample size scenarios are considered: (a) one specimen per sample; (b) two specimens per sample; (c) three specimens per sample; (d) five specimens per sample; (e) ten specimens per sample; (f) 20 specimens per sample. In each scenario, the downcore picking process is repeated 10 times, and each picking run is represented by a coloured line. Also shown in all panels is the mean  $\delta^{18}$ O value for all single specimens within discrete depth intervals (black line) and 95.45% intervals (filled grey area).







Figure 5. Estimating downcore age-depth noise induced by absolute species abundance in three scenarios all involving involving a constant SAR of 10 cm ka<sup>-1</sup> and constant bioturbation depth of 10 cm. In all three panels, the data points (circles) indicate the downcore discrete-depth median age increase for each cm of core depth. Green circles correspond to positive downcore median age change, while orange data points correspond to negative downcore median age change (i.e. apparent age reversals). The horizontal black line in each panel denotes the perfect downcore age change of +100 years cm<sup>-1</sup> that would be associated with a constant SAR of 10 cm ka<sup>-1</sup>. The yellow interval denotes the still-active BD (10 cm) at the core top. The signal-to-noise ratio (SNR) is also computed for each scenario as the ratio between the summed squared magnitudes of the signal and of the noise. The still-active BD at the core top is excluded from the SNR calculation. Three different abundance scenarios are shown: (a) constant abundance of 10<sup>2</sup> specimens cm<sup>-1</sup>. (b) constant abundance of 10<sup>3</sup> specimens cm<sup>-1</sup>. (c) constant abundance of 10<sup>4</sup> specimens cm<sup>-1</sup>.







Figure 6. Investigating the effect of temporal changes in a species' abundance upon its discrete-depth age-depth signal in the case of a simulated sediment core with a constant SAR of 10 cm ka and constant BD of 10 cm. In all panels, the yellow interval denotes the still-active BD (10 cm) at the core top. (a) The temporal abundance for a given species "Species A" used in the SEAMUS simulation, inputted into the model as a fraction of the per timestep specimen flux. (b) The resulting simulated downcore, discrete-depth (1 cm) absolute abundance (number of specimens) for Species A. Vertical grey bands correspond to the depth of the abundance peaks. (c) The downcore, discrete-depth (1 cm) change in median age based on samples containing only Species A specimens. Green circles denote downcore increase in discrete-depth apparent median age (i.e. apparent age reversals). The horizontal black line in each panel denotes the perfect downcore age change of +100 years cm<sup>-1</sup> that would be associated with a constant SAR of 10 cm ka<sup>-1</sup>. (d) The 95.45% age range of for Species A for each discrete 1 cm depth. (e) The offset between the median age of Species A (Med<sub>a</sub>) and the