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Abstract 13 

Due to the potential for land use / land cover change (LULCC) to alter surface albedo, there is 14 

need within the LULCC science community for simple and transparent tools for predicting 15 

radiative forcings ( F ) from surface albedo changes ( s ).  To that end, the radiative kernel 16 

technique – developed by the climate modeling community to diagnose internal feedbacks 17 

within general circulation models (GCMs) – has been adopted by the LULCC science 18 

community as a tool to perform offline F calculations for s .  However, the codes and 19 

data behind the GCM kernels are not readily transparent, and the climatologies of the 20 

atmospheric state variables used to derive them vary widely both in time period and duration.  21 

Observation-based kernels offer an attractive alternative to GCM-based kernels and could be 22 

updated annually at relatively low costs.  Here, we present a radiative kernel for surface 23 

albedo change founded on a novel, simplified parameterization of shortwave radiative transfer 24 

driven with inputs from the Clouds and the Earth’s Radiant Energy System (CERES) Energy 25 
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Balance and Filled (EBAF) products.  When constructed on a 16-year climatology (2001-26 

2016), we find that the CERES-based albedo change kernel – or CACK – agrees remarkably 27 

well with the mean kernel of four GCMs (rRMSE = 14%).  When the novel parameterization 28 

underlying CACK is applied to emulate two of the GCM kernels using their own boundary 29 

fluxes as input, we find even greater agreement (mean rRMSE = 7.4%), suggesting that this 30 

simple and transparent parameterization represents a credible candidate for a satellite-based 31 

alternative to GCM kernels.  We document and compute the various sources of uncertainty 32 

underlying CACK and include them as part of a more extensive dataset (CACK v1.0) while 33 

providing examples showcasing its application. 34 

Keywords:  GCM, radiative forcing, land use change, land cover change, LULCC 35 

 36 

1. Introduction 37 

Diagnosing changes to the shortwave radiation balance at the top-of-the-atmosphere (TOA) 38 

resulting from changes to albedo at the surface ( s ) is an important step in predicting 39 

climate change.  However, outside the climate science community, many researchers do not 40 

have the tools to convert  to the climate-relevant F  measure (Bright, 2015; Jones et al., 41 

2015), which requires a detailed representation of the atmospheric constituents that absorb or 42 

scatter solar radiation (e.g. cloud, aerosols, and gases) and a sophisticated radiative transfer 43 

code.  For single points in space or for small regions, these calculations are typically 44 

performed offline – meaning without feedbacks to the atmosphere (e.g., (Randerson et al., 45 

2006))).  Large-scale investigations (e.g. Amazonian or pan-boreal LULCC (Bonan et al., 46 

1992; Dickinson and Henderson-Sellers, 1988)) typically prescribe the land surface layer in a 47 

GCM with initial and perturbed states, allowing the radiative transfer code to interact with the 48 

rest of the model.  While this has the benefit of allowing interaction and feedbacks between 49 

surface albedo and scattering or absorbing components of the model, such an approach is 50 
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computationally expensive and thereby restricts the number of LULCC scenarios that can be 51 

investigated (Atwood et al., 2016).  Consequently, this method does not meet the needs of 52 

some modern LULCC studies which may require millions of individual land cover transitions 53 

to be evaluated cost effectively (Ghimire et al., 2014; Lutz and Howarth, 2015).   54 

Within the LULCC science community, two methods have primarily met the need for 55 

efficient F calculations from s :  simplified parameterizations of atmospheric transfer of 56 

shortwave radiation (Bozzi et al., 2015; Bright and Kvalevåg, 2013; Caiazzo et al., 2014; 57 

Carrer et al., 2018; Cherubini et al., 2012; Muñoz et al., 2010), and radiative kernels (Ghimire 58 

et al., 2014; O'Halloran et al., 2012; Vanderhoof et al., 2013) derived from sophisticated 59 

radiative transfer schemes embedded in GCMs (Block and Mauritsen, 2014; Pendergrass et 60 

al., 2018; Shell et al., 2008; Soden et al., 2008).  Simplified parameterizations of the LULCC 61 

science community have not been evaluated comprehensively in space and time.  Bright & 62 

Kvalevåg (2013) evaluated the shortwave F  parameterization of Cherubini et al. (2012) 63 

when applied at several globally distributed sites on land, finding inconsistencies in 64 

performance at individual sites despite good overall cross-site performance.  Radiative kernels 65 

(Block and Mauritsen, 2014; Pendergrass et al., 2018; Shell et al., 2008; Soden et al., 2008) – 66 

while being based on state-of-the-art models of radiative transfer – have the downside of 67 

being model-dependent and not readily transparent.  While the radiative transfer codes behind 68 

them are well-documented, the scattering components (i.e. aerosols, gases, and clouds) 69 

affecting transmission have many simplifying parameterizations, vary widely across models, 70 

and may contain significant biases (Dolinar et al., 2015; Wang and Su, 2013).  An additional 71 

downside is that the atmospheric state climatologies used to compute the GCM kernels vary 72 

widely in their time periods (i.e., from pre-industrial to the year 2007) and durations (from 1 73 

to 1,000 yrs).  The application of a state-dependent GCM kernel that is outdated may be 74 

undesirable in regions undergoing rapid changes in cloud cover or aerosol optical depth, such 75 
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as in the northwest United States (Free and Sun, 2014) and in southern and eastern Asia 76 

(Srivastava, 2017; Zhao et al., 2018), respectively.  An albedo change kernel based on Earth-77 

orbiting satellite products could be updated annually to capture changes in atmospheric state 78 

at relatively low costs. 79 

The NASA Clouds and the Earth’s Radiant Energy System (CERES) Energy Balance and 80 

Filled (EBAF) products (CERES Science Team, 2018a, b), which are  based largely on 81 

satellite optical remote sensing, provide the monthly mean boundary fluxes and other 82 

atmospheric state information (e.g., cloud area fraction, cloud optical depth) that could be 83 

used to develop a more empirically-based alternative to the GCM-based kernels.  The latest 84 

EBAF-TOA Ed4.0 (version 4.0) products have many improvements with respect to the 85 

previous version (version 2.8, Loeb et al. 2009), including the use of advanced and more 86 

consistent input data, retrieval of cloud properties, and instrument calibration (Kato et al., 87 

2018; Loeb et al., 2017).   88 

Here, we present an albedo change kernel based on the CERES EBAF v4 products – or 89 

CACK.  Underlying CACK is a simplified model of shortwave radiative transfer through a 90 

one-layer atmosphere.  The model form (or parameterization) is selected after a two-stage 91 

performance evaluation of six model candidates:  two analytical, one semi-empirical, and 92 

three empirical.  An initial performance screening is implemented where all six model 93 

candidates are driven with a 16-year climatology (January 2001 – December 2016) of 94 

monthly all-sky boundary fluxes from CERES, with the resulting kernels benchmarked both 95 

qualitatively and quantitatively against the mean of four GCM-based kernels (Block and 96 

Mauritsen, 2014; Pendergrass et al., 2018; Shell et al., 2008; Soden et al., 2008).  Top model 97 

candidates from the initial performance screening are then subjected to an additional 98 

performance evaluation where they are applied to emulate two GCM kernels using their own 99 
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boundary fluxes as input, which eliminates possible biases related to differences in the GCM 100 

representation of clouds or other atmosphere state variables.   101 

We start in Section 2 by providing a brief overview of existing approaches applied in LULCC 102 

climate studies for estimating ΔF from Δα.  We then present the six model candidates in 103 

Section 3.  Section 4 describes the model evaluation and uncertainty quantification methods, 104 

in addition to two application examples.  Results are presented in Section 5, while Section 6 105 

discusses the merits and uncertainties of a CERES-based kernel relative to GCM-based 106 

kernels. 107 

2 Review of existing approaches  108 

Earth’s energy balance (at TOA) in an equilibrium state can be written: 109 

0 ( )TOA TOA TOAF LW SW SW
  

= = − −                                                                                          (1) 110 

where the equilibrium flux F is a balance between the net solar energy inputs ( TOA TOASW SW
 

−111 

) and thermal energy output ( TOALW


).  Perturbing this balance results in a radiative forcing 112 

ΔF, while perturbing the shortwave component is referred to as a shortwave radiative forcing 113 

and may be written as:  114 

( ) 1
TOA TOA

TOA TOA TOA TOA

TOA TOA

SW SW
F SW SW SW SW

SW SW
 

   

 

   
 =  − =  − −       

   
                                 (2) 115 

where the shortwave radiative forcing results either from changes to solar energy inputs (116 

TOASW


 ) or from internal perturbations within the Earth system (

TOA

TOA

SW

SW




 ).  The latter can 117 

be brought about by changes to the reflective properties of Earth’s surface which is the focus 118 

of this paper. 119 
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a. GCM-based radiative kernels 120 

The radiative kernel technique was developed as a way to assess various climate feedbacks 121 

from climate change simulations across multiple climate models in a computationally efficient 122 

manner (Shell et al., 2008; Soden et al., 2008).  A radiative kernel is defined as the differential 123 

response of an outgoing radiation flux at TOA to an incremental change in some climate state 124 

variable -- such as water vapor, air temperature, or surface albedo (Soden et al., 2008).  To 125 

generate a radiative kernel for a change in surface albedo with a GCM, the prescribed surface 126 

albedo change is perturbed incrementally by 1%, and the response by the outgoing shortwave 127 

radiation flux at TOA is recorded: 128 

( ) ( )
s

TOA

TOA TOA TOA

s s s s s

s

SW
SW SW SW K    




  


 = + − =   


                                     (3) 129 

where TOASW


 is the outgoing shortwave flux at TOA and 
s

K  is the radiative kernel (in Wm-130 

2) which can then be used with Eq. (1) to estimate an instantaneous shortwave radiative 131 

forcing ( F ) at TOA: 132 

( )
s

s

TOA TOA TOA

s

s

F F LW SW SW K

F K









  
+ = − − + 

 = − 
                                                                       (4) 133 

To the best of our knowledge, four albedo change kernels have been developed based on the 134 

following GCMs:  the Community Atmosphere Model version 3, or CAM3 (Shell et al., 135 

2008), the Community Atmosphere Model version 5, or CAM5 (Pendergrass et al., 2018), the 136 

European Center and Hamburg model version 6, or ECHAM6 (Block and Mauritsen, 2014), 137 

and the Geophysical Fluid Dynamics Laboratory model version AM2p12b, or GFDL (Soden 138 

et al., 2008).  These four GCM kernels vary in their vertical and horizontal resolutions, their 139 

parameterizations of shortwave radiative transfer, and their prescribed atmospheric state 140 

climatologies.  These differences are summarized in Table 1.  Apart from differences in their 141 
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prescribed atmospheric background states and radiative transfer schemes, a major source of 142 

uncertainty in GCM-based kernels is related to the GCM representation of atmospheric liquid 143 

water/ice associated with convective clouds; of the four aforementioned GCMs, only CAM5 144 

and GFDL attempt to model the effects of convective core ice and liquid in their radiation 145 

calculations (Li et al., 2013). 146 

 147 

< Table 1 > 148 

 149 

b.  Single-layer atmosphere  models of shortwave radiation transfer 150 

Within the atmospheric science community, various simplified analytical or semi-empirical 151 

modeling frameworks have been developed, either to diagnose effective surface and 152 

atmospheric optical properties from climate model outputs, or to study the relative 153 

contributions of changes to these properties on shortwave flux changes at the top and bottom 154 

of the atmosphere (Atwood et al., 2016; Donohoe and Battisti, 2011; Kashimura et al., 2017; 155 

Qu and Hall, 2006; Rasool and Schneider, 1971; Taylor et al., 2007; Winton, 2005; Winton, 156 

2006).  While these frameworks all treat the atmosphere as a single layer, they differ by 157 

whether or not the reflection and transmission properties of this layer are assumed to have a 158 

directional dependency (Stephens et al., 2015) and by whether or not inputs other than those 159 

derived from the boundary fluxes are required (e.g. cloud properties; (Qu and Hall, 2006)).    160 

Winton (2005) presented a semi-empirical four-parameter optical model to account for the 161 

directional dependency of up- and downwelling shortwave fluxes through the one-layer 162 

atmosphere and found good agreement (rRMSE < 2% globally) when benchmarked to online 163 

radiative transfer calculations.  Also considering a directional dependency of the atmospheric 164 

optical properties, Taylor et al. (2007) presented a two-parameter analytical model where 165 

atmospheric absorption was assumed to occur at a level above atmospheric reflection.  The 166 
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analytical model of Donohoe and Battisti (2011) subsequently relaxed the directional 167 

dependency assumption and found the atmospheric attenuation of the surface albedo 168 

contribution to planetary albedo to be 8% higher than the model of Taylor et al. (2007).  169 

Elsewhere, Qu & Hall (2006) developed an analytical framework making use of additional 170 

atmospheric properties such as cloud cover fraction, cloud optical thickness, and the clear-sky 171 

planetary albedo, which proved highly accurate when model estimates of planetary albedo 172 

were evaluated against climate models and satellite-based datasets.   173 

c. Simple empirical parameterizations of the LULCC science community 174 

Two simple empirical parameterizations of shortwave radiative transfer have been widely 175 

applied within the LULCC science community for estimating F  from s (Bozzi et al., 176 

2015; Caiazzo et al., 2014; Carrer et al., 2018; Cherubini et al., 2012; Lutz et al., 2015; 177 

Muñoz et al., 2010).  While these parameterizations are also based on a single-layer 178 

atmosphere model of shortwave radiative transfer, at the core of these parameterizations is the 179 

fundamental assumption that radiative transfer is wholly independent of (or unaffected by)180 

s .  In other words, they neglect the change in the attenuating effect of multiple reflections 181 

between the surface and the atmosphere that accompanies a change to the surface albedo.  182 

Nevertheless, due to their simplicity and ease of application they continue to be widely 183 

employed in climate research.  184 

3. Kernel model candidates 185 

The six candidate models (or parameterizations) for a CERES-based albedo change kernel 186 

(CACK) are presented henceforth.  All requisite variables and their derivatives may be 187 

obtained directly from the CERES EBAF v4 products (at monthly and 1° × 1° resolution) and 188 

are presented in Table 2.  To improve readability, temporal and spatial indexing is neglected 189 

and all terms presented henceforth in Section 3 denote the monthly pixel means. 190 
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< Table 2 > 191 

a. Analytical kernels 192 

The first kernel candidate may be analytically-derived from the CERES EBAF all-sky 193 

boundary fluxes and their derivatives.  The surface contribution to the outgoing shortwave 194 

flux at TOA 
,

TOA

SFC
SW


 can be expressed (Donohoe and Battisti, 2011; Stephens et al., 2015; 195 

Winton, 2005) as: 196 

( )
2

,

1

(1 )

TOA TOA

sSFC

s

r a
SW SW

r


 

− −
=

−
                                                                                               (5) 197 

where r is a single pass atmospheric reflection coefficient, a is a single pass atmospheric 198 

absorption coefficient, TOASW


 is the extraterrestrial (downwelling) shortwave flux at TOA, 199 

and s  is the surface albedo (defined in Table 2).   The expression in the denominator of the 200 

righthand term represents a fraction attenuated by multiple reflections between the surface 201 

and the atmosphere.  This model assumes that the atmospheric optical properties r and a are 202 

insensitive to the origin and direction of shortwave fluxes – or in other words – that they are 203 

isotropic. 204 

The single-pass reflectance coefficient is calculated from the system boundary fluxes (Table 205 

2) following Winton (2005) and Kashimura et al. (2017): 206 

 2  2

TOA TOA SFC SFC

TOA SFC

SW SW SW SW
r

SW SW
   

 

−
=

−
                                                                                           (6) 207 

while the single-pass absorption coefficient a is given as: 208 

1 (1 )sa r T r= − − −                                                                                                                 (7) 209 
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where T is the clearness index (defined in Table 2).  Our interest is in quantifying the 
,

TOA

SFC
SW


 210 

response to an albedo perturbation at the surface – or the partial derivative of 
,

TOA

SFC
SW


 with 211 

respect to   in Eq. (5):     212 

2

2

(1 )

(1 )s

TOA TOA

ISO

s s s

s s

SW SW r a
K

r
  

 
 

 − −
 =  = 

 −
                                                                   (8) 213 

where 
s

ISOK  is referred to henceforth as the Isotropic kernel.  214 

The second analytical kernel is based on the model of Qu and Hall (2006) which makes use of 215 

auxiliary cloud property information commonly provided in satellite-based products of 216 

Earth’s radiation budget – including CERES EBAF – such as cloud cover area fraction, cloud 217 

visible optical depth, and clear-sky planetary albedo.  This model links all-sky and clear-sky 218 

effective atmospheric transmissivities of the earth system through a linear coefficient k 219 

relating the logarithm of cloud visible optical depth to the effective all-sky atmospheric 220 

transmissivity: 221 

,( ) ( )

ln( 1)

a CLR aT T
k



−
=

+
                                                                                                                   (9) 222 

where ,a CLRT is the clear-sky effective system transmissivity, aT is the all-sky effective system 223 

transmissivity, and   is the cloud visible optical depth.  This linear coefficient can then be 224 

used together with the cloud cover area fraction to derive a shortwave kernel based on the 225 

model of Qu and Hall (2006) – or 06

s

QHK : 226 

 06 ( ) ln( 1)
s

TOA

QH SFC

s s a s

s

SW
K SW T kc   







 =  = − + 


                                                    (10) 227 

where c is the cloud cover area fraction. 228 

b. Semi-empirical kernel  229 
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The third kernel makes use of three directionally-dependent (anisotropic) bulk optical 230 

properties  r

, t


, and t


, where the first is the atmospheric reflectivity to upwelling 231 

shortwave radiation and the latter two are the atmospheric transmission coefficients for 232 

upwelling and downwelling shortwave radiation, respectively (Winton, 2005).  It is not 233 

possible to derive r

 analytically from the all-sky boundary fluxes; however, Winton (2005) 234 

provides an empirical formula relating upwelling reflectivity r

 to the ratio of all-sky to clear-235 

sky fluxes incident at surface: 236 

,

0.05 0.85 1
SFC

SFC

CLR

SW
r

SW






 
= + − 

 
 

                                                                                                 (11) 237 

where 
,

SFC

CLR
SW


 is the clear-sky shortwave flux incident at the surface.   238 

Knowing r

, we can then solve for the two remaining optical parameters needed to obtain our 239 

kernel: 240 

SFC SFC

TOA

SW r SW
t

SW
  





−
=                                                                                                            (12) 241 

(1 )a st T t t r
   
= − − −                                                                                                         (13) 242 

where aT  is the effective atmospheric transmittance (Table 2) of the earth system. 243 

The kernel may now be expressed as: 244 

2(1 )s

TOA TOA

ANISO

s s s

s s

SW SW t t
K

r
  

 
   




 =  = 

 −
                                                                           (14) 245 

where 
s

ANISOK  is henceforth referred to as the Anisotropic kernel. 246 

c. Existing empirical parameterizations  247 
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Although not referred to as “kernels” in the literature per se, we present the simple empirical 248 

parameterizations as such to ensure consistency with previously described notation and 249 

terminology.   250 

 251 

The first candidate parameterization, originally presented in Muñoz et al. (2010), makes use 252 

of a local two-way transmittance factor based on the local clearness index: 253 

10 2

s

TOA

M TOA

s s s

s

SW
K SW T  







   = 


                                                                             (15) 254 

where TOASW


 is the local incoming solar flux at TOA, T is the local clearness index, and 255 

TOA

sSW 


   is the approximated change in the upwelling shortwave flux at TOA due to a 256 

change in the surface albedo.   257 

The second candidate parameterization, originally proposed in Cherubini et al. (2012), makes 258 

direct use of the solar flux incident at the surface SFCSW


 combined with a one-way 259 

transmission constant k: 260 

12

s

TOA

C SFC

s s s

s

SW
K SW k  







   = 


                                                                                 (16) 261 

where k is based on the global annual mean share of surface reflected shortwave radiation 262 

exiting a clear-sky (Lacis and Hansen, 1974; Lenton and Vaughan, 2009) and is hence 263 

temporally and spatially invariant.  This value – or 0.85 -- is similar to the global mean ratio 264 

of forward-to-total shortwave scattering reported in Iqbal (1983).   Bright & Kvalevåg (2013) 265 

evaluated Eq. (16) at several global locations and found large biases for some regions and 266 

months, despite good overall performance globally (rRMSE = 7%; n = 120 months). 267 

d. Proposed empirical parameterization  268 
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To determine whether the GCM-based kernels could be approximated with sufficient fidelity 269 

using other simpler model formulations based on their own boundary data, we applied 270 

machine learning to identify potential model forms using GCM shortwave boundary fluxes as 271 

input.  For the two GCMs kernels in which the GCM’s own shortwave boundary fluxes are 272 

also made available (CAM5 and ECHAM6), we used machine learning to minimize the sum 273 

of squared residuals between the four shortwave boundary fluxes (i.e., SFCSW


, TOASW


, 274 

SFCSW


, TOASW


) and the GCM kernel at the monthly time step.  The reference dataset 275 

consisted of a random global sample of 200,000 monthly kernel grid cells at native model 276 

resolution (97% and 32% of all cells for ECHAM6 and CAM5, respectively) of which 50% 277 

were used for training and 50% for validation.  Models were identified using a form of genetic 278 

programming known as symbolic regression (Eureqa®; Nutonian Inc.; (Schmidt and Lipson, 279 

2009, 2010)) which searches a wide space of model structures as constrained by user input.  280 

In our case, we allowed the model to include the operators (i.e., addition, subtraction, 281 

multiplication, division, sine, cosine, tangent, exponential, natural logarithm, factorial, power, 282 

square root), but numerical coefficients were forbidden.  The model search was allowed to 283 

continue until the percent convergence and maturity metrics exceeded 98% and 50%, 284 

respectively, at which point more than 1 × 1011 formulae had been evaluated.  A parsimonious 285 

solution was chosen by minimizing the error metric and model complexity using the Pareto 286 

front (Figure S1 of Supporting Information) (Smits and Kotanchek, 2005).  Between CAM5 287 

and ECHAM6, four common model solutions were found (Table S1 of Supporting 288 

Information).  The best of these common solutions is subsequently referred to as 18

s

BOK  and is 289 

given as: 290 

18

s

TOA

BO SFC

s s s

s

SW
K SW T  







 =  = 


                                                                    (17) 291 
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 292 

 293 

4. Kernel model evaluation  294 

a. Initial candidate screening  295 

The four GCM kernels presented in Section 2.a are employed as benchmarks to initially 296 

screen the six simple model candidates introduced from Section 3b to 3d.   We compute a 297 

skill metric analogous to the “relative error” metric used to evaluate GCMs by Anav et al. 298 

(2013) that takes into account error in the spatial pattern between a model and an observation.  299 

Because we have no true observational reference, our evaluation instead focuses on the 300 

disagreement or deviation between CERES and GCM kernels at the monthly time step.  Given 301 

interannual climate variability in the earth system, the challenge of comparing the multi-year 302 

CERES kernel to a single-year GCM kernel can be partially overcome by averaging the four 303 

GCM kernels.    304 

Using the multi-GCM mean as the reference, we first compute the absolute deviation
,

X

m pAD  305 

as: 306 

 ,, ,

X X
m pm p m pAD CERES GCM= −                                                                                           (18) 307 

where 
,

X

m pCERES  is the kernel for CERES model candidate x in month m and pixel p and 308 

,m pGCM  is the multi-GCM mean of the same pixel and month.  
,

X

m pAD  is then normalized to 309 

the maximum absolute deviation of all six CERES kernels for the same pixel and month to 310 

obtain a normalized absolute deviation, 
,

X

m pNAD , which is analogous to the “relative error” 311 

metric of Anav et al. (2013) having values ranging between 0 and 1: 312 

,

,

,

1
max( )

X

m pX

m p

m p

AD
NAD

AD
= −                                                                                                     (19) 313 
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where ,max( )m pAD  is the maximum absolute deviation of all six CERES kernels at pixel p 314 

and month m.   315 

CERES kernel ranking is based on the mean relative absolute deviation in both space and time 316 

– or
X

NAD : 317 

,

1 1

1 1M PX
X

m p

m p

NAD NAD
M P= =

=                                                                                                   (20) 318 

where M is the total number of months (i.e., 12) and P is the total number of grid cells.   319 

 320 

b. GCM kernel emulation 321 

In order to eliminate any bias related to differences in the atmospheric state embedded in the 322 

GCM kernel input climatologies, we emulate them by applying the top candidate models (as 323 

identified from the initial performance screening described in section 4a) using the original 324 

GCM boundary fluxes as input.  Emulation is only done for two of GCM-based kernels since 325 

only two of them have provided the accompanying boundary fluxes needed to do so:   326 

ECHAM6 (Block and Mauritsen, 2014) and CAM5 (Pendergrass et al., 2018).  Emulation 327 

enables a more critical evaluation of the functional form of the candidate models in relation to 328 

the more sophisticated radiative transfer schemes employed by ECHAM6 (Stevens et al., 329 

2013) and CAM5 (Hurrell et al., 2013). 330 

c. CACK model uncertainty 331 

Following emulation, monthly GCM kernels are then regressed on the monthly kernels 332 

emulated with the leading model candidates.  The model that best emulates both GCM kernels 333 

– as measured in terms of the mean coefficient of determination (R2) and mean RMSE – is 334 

chosen to represent CACK. 335 
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Three sources of uncertainty are considered for CACK when based on the CERES boundary 336 

flux climatology (i.e., 2001-2016 monthly means):  1) physical variability 2) data uncertainty; 337 

and 3) model error (Mahadevan and Sarkar, 2009).  The first is related to the interannual 338 

variability of Earth’s atmospheric state and boundary radiative fluxes.  The second is related 339 

to the uncertainty of the CERES EBAF v4 variables used as input to CACK (including 340 

measurement error).  The third source of uncertainty is the error related to CACK’s model 341 

form.  CACK’s combined uncertainty for any given pixel and month is estimated as follows, 342 

where if CACK or y  is some non-linear function of the CERES boundary inputs 1x  and 2x343 

that co-vary in time and space, then the combined uncertainty of y  – or ( )y  – may be 344 

expressed as the sum of the model error plus the combined physical variability and data 345 

uncertainty associated with 1x  and 2x  summed in quadrature (Breipohl, 1970; Clifford, 1973; 346 

Green et al., 2017):  347 

   
2 2 2

2 2

1 1 2 2 1 2

1 2 1 2

( ) ( ) ( ) ( ) ( ) ( ) 2 ( , )ME PV DU PV DU

y y y y
y y x x x x x x

x x x x
      

        
 + + + + +     

        

   (21) 348 

where 1( )PV x  and 2( )PV x  are the standard deviations of the 16-yr. climatological record of 349 

CERES input variables 1x  and 2x , respectively, for a given grid cell and month, 1( )DU x and 350 

2( )DU x  are the absolute uncertainties of CERES input variables 1x  and 2x , respectively, for 351 

a given grid cell and month, 1 2( , )x x  is the covariance within the 16-yr. climatological 352 

record between CERES input variables 1x  and 2x  for a given month and grid cell, and ME  is 353 

the monthly grid cell model error.  Model error ( ( )ME y ) and data uncertainties ( ( )DU nx ) for 354 

any given grid cell and month are based on the relative RMSE (Supporting Information) and 355 

relative uncertainties of CERES boundary terms reported in Kato et al. (2018) (cf. Table 8, 356 

“Monthly gridded, Ocean + Land”)  and Loeb et al. (2017) (cf. Table 8, “All-sky, Terra-Aqua 357 



17 
 

period”).  For the model error, we take the mean relative RMSE of the machine learning 358 

model solutions for ECHAM5 and CAM5.   For the relative uncertainty of the incoming solar 359 

flux at TOA ( TOASW


), we use the 1% “calibration uncertainty” reported in Loeb et al. (2017). 360 

If CACK’s intended application is to estimate a temporally-explicit ΔF within the CERES era 361 

(i.e., if temporally-explicit rather than the climatological mean CERES boundary fluxes are 362 

desired to compute CACK), the uncertainty related to physical variability ( ( )PV nx ) can be 363 

dropped from Eq. (21).  364 

d. Climatological CACK example application 365 

To demonstrate CACK’s application when based on monthly CERES EBAF climatology, 366 

including the handling of uncertainty, we estimate the annual mean local ΔF from a   367 

scenario associated with hypothetical deforestation in the tropics, where ΔF for a given month 368 

is estimated as Eq. (4) where 
s

K  is the 2001-2016 monthly climatological CACK and   is 369 

the difference in the 2001-2011 monthly climatological mean white-sky surface albedo 370 

between “Croplands” (CRO) and “Evergreen broadleaved forests” (EBF) taken from Gao et 371 

al. (2014) which is based on International Geosphere-Biosphere Program definitions of land 372 

cover classification.   373 

The monthly climatological albedo look-up maps of Gao et al. (2014) contain their own 374 

uncertainties, which we take as the mean absolute difference between the monthly albedos 375 

reconstructed using their look-up model and the monthly MODIS retrieval record (c.f. Table 3 376 

in Gao et al. (2014)).  377 

The total estimated uncertainty linked to the annual local (i.e., grid cell) instantaneous ΔF can 378 

thus be expressed (in W m-2) as: 379 
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where 
, ,( )

s sm mK K   is the relative grid cell uncertainty of CACK and 
, ,( )s m s m     is 381 

the relative uncertainty of s  in month m defined as:  382 

2 2

, , ,

, , ,

( ) ( ) ( )s m s m s m

s m CRO m EBF m

     

  

   
= +          

                                                                          (23) 383 

where ,( )s m   is the monthly absolute uncertainty of the climatological mean surface albedo 384 

(i.e., of the Gao et al. (2014) product).  385 

e. Temporally-explicit CACK application example 386 

Use of a temporally-explicit CACK may be desirable for time-sensitive applications within 387 

the CERES era.  This is particularly true for regions experiencing significant changes to the 388 

atmospheric state affecting shortwave radiation transfer.  A good example is in southern 389 

Amazonia where tropical deforestation has been linked to changes in cloud cover (Durieux et 390 

al., 2003; Lawrence and Vandecar, 2014; Wright et al., 2017).  To exemplify this, we estimate 391 

the annual mean instantaneous ΔF for CERES grid cells in the region having experienced both 392 

significant positive trends in surface albedo and negative trends in cloud area fraction during 393 

the 2001-2016 period.  Grid cell trends in surface albedo and cloud area fraction are deemed 394 

significant if the slopes of linear fits obtained from local (i.e., grid cell) ordinary least squares 395 

regressions had p-values ≤ 0.05.  We then apply the slope of the surface albedo trend to 396 

represent the monthly mean interannual   incurred over the time series together with 397 

CACK updated monthly to estimate the local annual mean instantaneous ΔF at each step in 398 

the series: 399 
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where , ( )
s mK t  is the monthly CACK in year t of the time series.  ΔF is then averaged across 401 

all grid cells in the sample, with the results then compared to the ΔF that is computed for the 402 

same grid sample using the time-insensitive CAM5 and ECHAM6 kernels (i.e., , ( )
s mK f t  ).  403 

Using the slope of the surface albedo trend as the s  for all months and years rather than the 404 

actual , ( )s m t  (i.e., , , , , , 1( )s m s m t s m tt   − = −  ) yields the same result when averaged over the 405 

full time period but allows us to isolate the effect of the changing atmospheric state on 406 

calculations of ΔF.  We limit the ΔF uncertainty estimate to CACK’s uncertainty that includes 407 

( )DU nx  and ( )ME nx  but excludes ( )PV nx .  408 

5. Results  409 

a. Initial performance screening  410 

Seasonally, differences in latitude band means between the CERES kernel candidates and the 411 

multi-GCM mean kernels are shown in Figure 1. 412 

 413 

< Figure 1 > 414 

 415 

Qualitatively, starting with December-January-February (DJF), 18

s

BOK gives the best 416 

agreement with 
s

GCMK
 with the exception of the zone around 55 – 65°S (-55 – -65°), where 417 

06

s

QHK gives slightly better agreement (Fig. 1A).  In March-April-May (MAM), 18

s

BOK  appears 418 

to give the best overall agreement with the exception of the high Arctic, where 
s

ANISOK  and 419 

12

s

CK give better agreement, and with the exception of the zone around 60 – 65°S (-60 – -65°) 420 

where 06

s

QHK , 
s

ANISOK , and 12

s

CK agree best with 
s

GCMK
 (Fig. 1B).  The largest spread in 421 
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disagreement across all six CERES kernels is found in June-July-August (JJA; Fig. 1 C) at 422 

northern high latitudes.  18

s

BOK appears to agree best both here and elsewhere with the 423 

exception of the zone between ~20 – 35°N, where  06

s

QHK  gives slightly better agreement. 424 

In September-October-November (SON), 18

s

BOK  agrees best with 
s

GCMK
 at all latitudes except 425 

the zone between 10 – 25°N and 55 – 65°S where 06

s

QHK agrees slightly better. 426 

Quantitatively, the proportion of the total variance explained by linear regressions of monthly 427 

s

GCMK
on monthly 

s

CERESK  (i.e., “R2”) is highest and equal for the CERES kernels based on the 428 

ANISO, QH06, and BO18 models (Fig. 2 B, C, & D).  Of these three, 06

s

QHK has a y-intercept 429 

(“B0”) closest to 0 and a slope (“m”) of 1, although the root mean squared error (“RMSE”) – 430 

an accuracy measure – is slightly better (lower) for 18

s

BOK .  The two CERES kernels with the 431 

lowest R2, highest slopes (negative deviations), highest RMSEs, and y-intercepts with the 432 

largest absolute difference from zero – or the worst performing candidates – are those based 433 

on the ISO and M10 models (Fig. 2 A&E). 434 

 435 

< Figure 2 > 436 

 437 

Although the y-intercept deviation from 0 for 12

s

CK  is relatively low, its RMSE is ~50% 438 

higher than that of 06

s

QHK , 18

s

BOK , and 
s

ANISOK  and  leads to notable positive deviation from the 439 

multi-GCM mean (
s

GCMK
) judging by its slope of 0.92. 440 

Globally, NAD  for the QH06, ANISO, and BO18 kernels are far superior to the ISO, M10, 441 

and C12 kernels (Table 3). 442 

 443 

< Table 3 > 444 
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 445 

After filtering to remove grid cells for oceans and other water bodies, NAD  scores for these 446 

three kernels decreased; the decrease was smallest for 18

s

BOK (-0.03) and largest for 06

s

QHK  (-447 

0.06).  Despite constraining the analysis to land surfaces only, the rank order remained 448 

unchanged (Table 3), and 06

s

QHK , 18

s

BOK , and 
s

ANISOK  are subjected to further evaluation.  449 

b. GCM kernel emulation and additional performance evaluation 450 

However, because the QH06 model ( 06

s

QHK ) required auxiliary inputs for cloud cover area 451 

fraction and cloud optical depth – two atmospheric state variables not provided with the 452 

ECHAM6 and CAM5 kernel datasets – it was not possible to emulate these two GCM kernels 453 

with 06

s

QHK .   Additional performance evaluation through GCM kernel emulation is therefore 454 

restricted to the ANISO and BO18 models.   455 

< Figure 3 > 456 

Globally, the kernel based on the ANISO model displays larger annual mean biases relative to 457 

BO18 when compared to both ECHAM6 and CAM5 kernels (Figure 3).  Notable positive 458 

biases over land with respect to both ECHAM6 and CAM5 kernels are evident in the northern 459 

Andes region of South America, the Tibetan plateau, and the tropical island region comprising 460 

Indonesia, Malaysia, and Papua New Guinea (Fig. 3 A & C).  Notable negative biases over 461 

land with respect to both ECHAM6 and CAM5 kernels are evident over Greenland, 462 

Antarctica, northeastern Africa, and the Arabian Peninsula (Fig. 3 A & C). 463 

< Figure 4 > 464 

Globally, annual biases for BO18 are generally found to be lower than for ANISO and are 465 

mostly non-existent in extra-tropical ocean regions (Fig. 3 B & D).  Patterns in biases over 466 
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land are mostly negative with the exception of Saharan Africa where the annual mean bias 467 

with respect to both GCMs is positive. For BO18, systematic positive biases – or biases 468 

evident with respect to both GCM kernels – appear over eastern tropical and subtropical 469 

marine coastal upwelling zones where marine stratocumulus cloud dynamics are difficult for 470 

GCMs to resolve (Bretherton et al., 2004; Richter, 2015). 471 

< Table 4 > 472 

Regression statistics (Figure 4) indicate a greater overall performance for BO18 than for 473 

ANISO.  RMSEs for monthly kernels emulated with BO18 are 9.0 and 8.2 W m-2 for CAM5 474 

and ECHAM6, respectively – which is ~50-60% of the RMSEs emulated with the ANISO 475 

model.  Relative to ANISO, the BO18 model also gives a higher R2, a slope closer to 1, and a 476 

y-intercept closer to zero (Figure 4).  The BO18 model (or parameterization) is therefore 477 

selected for the CERES albedo change kernel (CACK).  478 

Focusing only on the GCM kernels emulated with 18

s

BOK  henceforth, global mean negative 479 

biases are evident in all months (Table 4), with the largest biases (in magnitude) appearing in 480 

May (-4.4 W m-2) and November (-2.5 W m-2) for CAM5 and ECHAM6, respectively.  In 481 

absolute terms, largest biases of 8.6 W m-2 and 6.8 W m-2 appear in June for CAM5 and 482 

ECHAM6, respectively.  Annually, the mean absolute bias for CAM5 and ECHAM6 is 6.8 483 

and 6.1 W m-2, respectively – a magnitude which seems remarkably low if one compares this 484 

to the annual mean disagreement (standard deviation) of 33 W m-2 across all four GCM 485 

kernels (not shown; for seasonal mean standard deviations see Fig. 1). 486 

c. CACK uncertainty 487 

For a kernel based on 2001-2016 monthly mean CERES EBAF climatology, Figure 5 488 

illustrates the contribution of the absolute error related to 18

s

BOK ’s model form (Fig. 5 A, 489 
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annual mean) relative to CACK’s total absolute uncertainty (Fig. 5 C, annual mean), which 490 

includes the uncertainty surrounding CERES EBAF v4 input variables SFCSW


 and TOASW


 491 

and their interannual variability (Fig. 5 B, annual mean). 492 

< Figure 5 > 493 

Total propagated pv  and du  far exceeds me , is dominated by ( )SFC

du SW


 and 494 

( )SFC

pv SW


, and is largest in the Pacific region to the south of the intertropical convergence 495 

zone (ITCZ).  Over land, the annual pv  and du  as well as the annual total  are generally 496 

largest in arid or high altitude regions (Fig. 5 B).  However, annual CACK values are also 497 

large in these regions reducing the relative uncertainty (Fig. 5 D).  The largest relative 498 

uncertainties over land (on an annual basis) – which can approach 50% – are found over 499 

central Europe, northwestern Asia, southeastern China, Andean Chile, and northwestern N. 500 

America (Fig. 5 D). 501 

d. Climatological CACK application  502 

When estimated with a CACK based on monthly CERES EBAF climatology, the annual local 503 

ΔF from s  linked to hypothetical deforestation in the tropics is negative in most regions, 504 

approaching -20 W m-2 locally in some regions of the Brazilian Cerrado and south of the 505 

Sahel region in Africa (Fig. 6 B).  The combined CACK and s  uncertainty for these 506 

regions can approach ± 5 W m-2 annually (Fig. 6 C) in regions like the Brazilian Cerrado and 507 

sub-Sahel Africa.  Relative to the ΔF magnitude, however, the largest uncertainties (annual) 508 

may be found in the subtropical regions of Central America, southern Brazil, southern Asia, 509 

and northern Australia, where it can approach 30-40% (Fig. 6 D). 510 

e. Temporally-explicit CACK application 511 
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The effect of a decreasing cloud cover and increasing surface albedo trend in southern 512 

Amazonia (Fig. 7 B) on shortwave radiative transfer and thus a CACK-based estimate of 513 

regional mean annual ΔF emerges in Figure 7 C, where ΔF increases in magnitude by 0.004 514 

W m-2 from 2002 to 2016.  This ΔF trend would otherwise go undetected if a GCM-based 515 

kernel were applied to the same surface albedo trend – that is, to a sustained positive 516 

interannual monthly albedo change “pulse”.  Alternatively, a CACK based on 2001 CERES 517 

EBAF inputs (applied with s  for 2001-2002) would give slightly higher ΔF estimates 518 

relative to those based on ECHAM6 and CAM5 kernels; conversely, a CACK based on 2015 519 

CERES EBAF inputs (applied with s  for 2015-2016) that would yield lower ΔF estimates 520 

relative to those based on the same two GCM-based kernels (Fig. 7 C). Use of temporally-521 

explicit CACK can therefore capture ΔF trends related to a changing atmospheric state that 522 

fixed-state GCM kernels are unable to capture.  523 

5. Discussion  524 

Motivated by an increasing abundance of climate impact research focusing on land processes 525 

in recent years, we comprehensively evaluated six simplified models (or parameterizations) as 526 

candidates for an albedo change kernel based on the CERES EBAF v4 products (Kato et al., 527 

2018; Loeb et al., 2017). Relative to albedo change kernels based on sophisticated radiative 528 

transfer schemes embedded in GCMs, a CERES-based albedo change kernel – or CACK – 529 

represents a more transparent and empirically-rooted alternative that can be updated 530 

frequently at relatively low cost.  This allows greater flexibility to meet the needs of research 531 

focusing on surface albedo trends within the CERES era in regions currently undergoing rapid 532 

changes to atmospheric state as it affects shortwave radiation transfer.  Although some 533 

modeling groups have provided recent updates to their albedo change kernels using the latest 534 

GCM versions (e.g., (Pendergrass et al., 2018)), the atmospheric state conditions used to 535 
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derive them may still be considered outdated or not in sync with that required for many 536 

applications (Table 1).  537 

Based on both qualitative and quantitative benchmarking against the mean of four GCM 538 

kernels, the novel kernel parameterization obtained from machine learning 18

s

BOK , together 539 

with the two (semi-)analytically derived kernels 06

s

QHK  and 
s

ANISOK , proved far superior to the 540 

s

ISOK  analytical kernel and to the two additional empirical parameterizations 12

s

CK  and 10

s

MK .  541 

When subjected to additional performance evaluation, however, we found that 18

s

BOK  was 542 

able to more robustly emulate two GCM kernels (ECHAM6 and CAM5) with exceptionally 543 

high agreement, suggesting that 18

s

BOK  could serve as a suitable candidate for CACK.   544 

Relative to the monthly CAM5 and ECHAM6 kernels, the mean absolute monthly emulation 545 

“error” of 18

s

BOK  was found to be 6.8 and 6.1 W m-2, respectively – a magnitude which is only 546 

~20% of the standard deviation found across four GCM kernels (annual mean).  CACK’s 547 

remarkable simplicity lends support to the idea of using machine learning to explore and 548 

detect emergent properties of radiative transfer or other complex, interactive model outputs in 549 

future research.  The fact that the 18

s

BOK  parameterization emerged as the best common 550 

solution from two independently executed machine learning analyses each employing a 551 

random sampling unique to a specific GCM kernel suggests that the 18

s

BOK  parameterization is 552 

robust and insensitive to the underlying GCM representation of shortwave radiative transfer. 553 

Despite its stronger empirical foundation over a GCM-based kernel, it is important to 554 

recognize CACK’s limitations.  Firstly, while CACK has a finer spatial resolution than most 555 

GCM kernels, it still represents a spatially averaged response rather than a truly local 556 

response; in other words, the state variables used to define the TOASW


 response are averages 557 
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tied to the coarse spatial (i.e., 1° x 1°) resolution of the CERES EBAF v4 product grids.  558 

Secondly, the monthly CERES EBAF-Surface product used to define lower atmospheric 559 

boundary conditions is not strictly an observation.  The space-borne platform is not able to 560 

directly observe surface irradiances, requiring additional satellite-based estimates of cloud and 561 

aerosol properties as input to a radiative transfer model (Kato et al., 2012).  Although TOA 562 

irradiances are applied to constrain the surface irradiances, they remain susceptible to errors 563 

in the radiative transfer model inputs.  Considering this error as “data uncertainty” increases 564 

CACK’s overall uncertainty beyond that which is related to its underlying parameterization or 565 

“model error”.  The uncertainty of CERES surface shortwave irradiances as well as extensive 566 

ground validation and testing are documented in greater detail elsewhere (Kato et al., 2013; 567 

Kato et al., 2018; Loeb et al., 2017; Loeb et al., 2009) and may continue to be reduced in 568 

future EBAF-Surface versions. 569 

Concluding remarks 570 

To conclude, we developed, evaluated, and proposed a radiative kernel for surface albedo 571 

change based on CERES EBAF v4 products – or CACK. Relative to existing kernels based on 572 

GCMs, CACK provides a higher spatial resolution, higher transparency alternative that is 573 

more amenable to user needs.  For LULCC research of the near-past, present day, or near-574 

future periods, application of a CACK whose inputs are based on monthly climatological 575 

means of the full CERES EBAF record can better-account for the corresponding interannual 576 

variability in Earth’s atmospheric state affecting shortwave radiative transfer.  For regions 577 

undergoing changes in atmospheric state that are detectable above the normal variability 578 

within the CERES era, application of a temporally-explicit CACK can better-account for its 579 

influence on ΔF estimates from surface albedo change.  CACK’s input flexibility and 580 

transparency combined with documented uncertainty make it well-suited to be applied as part 581 
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of a Monitoring, Reporting, and Verification (MRV) framework for biogeophysical impacts 582 

on land, analogous to those which currently exist for land sector greenhouse gas emissions. 583 

 584 

Code and Dataset Availability 585 

We make both monthly temporally-explicit and monthly climatological mean CACKs for 586 

years 2001-2016 available as a complete data product (“CACKv1.0”; (Bright and O’Halloran, 587 

2019)) that includes their respective uncertainty layers.  A summary of this dataset and 588 

associated variables is provided in Table S3 of the Supporting Information. Octave script files 589 

for generating monthly CACK and demonstrating its application with user-specified temporal 590 

and spatial extents are bundled with the netCDF file.    591 

 592 

Data Availability 593 

CERES EBAF data are available for download at:  594 

https://ceres.larc.nasa.gov/products.php?product=EBAF-TOA .  The CAM3 kernel is 595 

available at:  http://people.oregonstate.edu/~shellk/kernel.html .  The CAM5 kernel is 596 

available at:  https://www.earthsystemgrid.org/ac/guest/secure/sso.html . The ECHAM5 597 

kernel is available at:  https://swiftbrowser.dkrz.de/public/dkrz_0c07783a-0bdc-4d5e-9f3b-598 

c1b86fac060d/Radiative_kernels/ .   599 
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Table 1.  Attributes of existing GCM kernels, all of which having a monthly temporal 843 

resolution. 844 

Kernel  Base 

climatology 

extent 

Base 

climatology 

period 

Shortwave 

Radiative 

transfer 

Horizontal 

Resolution 

References 

ECHAM6 1,000 years Preindustrial* RRTM-G 1.88° × 1.88° (Block and Mauritsen, 2014; 
Stevens et al., 2013) 

CAM3 6 years 1995-2000 δ-Eddington 1.4° × 1.4° (Collins et al., 2006; Shell et al., 
2008) 

CAM5 1 year 2006-2007 RRTM-G 0.94° × 1.25° (Pendergrass et al., 2018) 

GFDL 17 years 1979-1995 Exponential 

sum-fits, 18 

bands 

2° × 2.5° (Soden et al., 2008; The GFDL 
Global Atmospheric Model 
Development Team, 2004) 

*Atmospheric CO2 concentration = 284.7 ppmv; Exact time period unknown 845 
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Table 2.  Definition of CERES input variables and other system optical properties derived 848 

from CERES inputs.  All variables have a monthly temporal resolution and a spatial 849 

resolution of 1° × 1°.   850 

CERES EBAF v.4 Shortwave Boundary Fluxes 

TOASW


 Downwelling solar flux at top-of-atmosphere  Wm-2 

SFCSW


 Downwelling solar flux at surface Wm-2 

,

SFC

CLR
SW


 Clear-sky downwelling solar flux at surface Wm-2 

TOASW


 Upwelling solar flux at top-of-atmosphere Wm-2 

SFCSW


 Upwelling solar flux at surface Wm-2 

System Optical Properties 

SFC TOAT SW SW
 

=  Clearness index unitless 

TOA TOA

p SW SW
 

=  Planetary albedo unitless 

SFC SFC

s SW SW
 

=  Surface albedo unitless 

1p pA = −  Effective planetary absorption unitless 

SFC SFC TOA

sA SW SW SW
  

 = −   Effective surface absorption unitless 

a p sA A A= −  Effective atmospheric absorption unitless 

1a aT A= −  Effective atmospheric transmission unitless 

, ,1a CLR a CLRT A= −  Clear-sky effective atmospheric transmission unitless 

  Cloud visible optical depth unitless 

c  Cloud area fraction fraction 

 851 
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Table 3.  Normalized absolute deviation and CERES kernel model candidate ranking. 853 

 Global Land only  

 NAD  Rank NAD  Rank Mean Rank 

ISO 0.05 6 0.05 6 6 

ANISO 0.64 3 0.59 3 3 

C12 0.45 4 0.47 4 4 

M10 0.26 5 0.34 5 5 

QH06 0.66 2 0.60 2 2 

BO18 0.67 1 0.64 1 1 

 854 
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Table 4.  Global monthly mean bias (MB) and mean absolute bias (MAB) for 
18BOK  emulated 

with T and SFCSW


 from ECHAM6 and CAM5. For reference, the global mean value of 
18BOK  

is 133 W m-2. 

 MB (W m-2) 

 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Ann. 

18 5BO CAMK K −  -2.9 -3.4 -3.3 -3.9 -4.4 -3.8 -3.8 -3.7 -3.4 -3.8 -3.7 -3.3 -3.6 

18 6BO ECHAMK K −  -1.9 -2.2 -1.8 -1.9 -2.2 -1.5 -1.1 -1.6 -1.7 -2.5 -2.5 -1.8 -1.9 

MAB (W m-2) 

 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Ann. 

18 5| |BO CAMK K −  6.9 5.7 5.2 6.8 7.7 8.6 7.9 6.7 5.6 6.1 6.9 6.9 6.8 

18 6| |BO ECHAMK K −  6.3 5.7 5.0 5.9 6.7 6.8 6.4 5.8 5.3 5.6 6.4 6.7 6.1 
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 857 

Figure 1.  Latitudinal (1°) and seasonal means of the multi-GCM mean ( GCMK
) and CACK 858 

model candidates for:  A) December-January-February (DJF); B) March-April-May (MAM); 859 

C) June-July-August (JJA); D) September-October-November (SON).  CACK model 860 

candidates refer to those presented in section 3 and not to those of the model selection phase 861 

of the machine learning algorithm. 862 
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 864 

Figure 2.  A)-F):  Scatter-density regressions of global monthly mean GCMK
 (y-axis) and 865 

CERESK (x-axis), with the CERES kernel identifier shown at the top of each sub-panel. “m” = 866 

slope; “B0” = y-intercept.  The color scale indicates the percentage of regression points that 867 

fall within an averaging bin, where the x-axis and y-axis have been gridded into 100 × 100 868 

equally-spaced bins to help illustrate the density of overlapping points. 869 
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 871 

Figure 3.  A) Mean annual bias of the CAM5 albedo change kernel emulated with the ANISO 872 

semi-empirical model; B) Mean annual bias of the CAM5 albedo change kernel emulated 873 

with the BO18 parameterization; C) Mean annual bias of the ECHAM6 albedo change kernel 874 

emulated with the ANISO semi-empirical model; D) Mean annual bias of the ECHAM6 875 

albedo change kernel emulated with the BO18 parameterization 876 
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 878 

Figure 4.  A)-D):  Scatter-density regressions of GCMK  (y-axis) and GCMK   emulated with the 879 

ANISO semi-empirical model and BO18 parameterization (x-axis); “m” = slope; “B0” = y-880 

intercept.  See Figure 2 caption for a description of the color scale. 881 

  882 

  883 

A      B 

 

 

 

 

 

 

C           D 



41 
 

 884 

Figure 5.  Annual uncertainty of a CACK based on 2001-2016 monthly mean CERES EBAF 885 

v4 climatology:  A) The absolute uncertainty related to model error (i.e., the 18

s

BOK  886 

parameterization); B) The total propagated absolute uncertainty related to physical variability 887 

and data uncertainty of CACK input variables; C) Total absolute uncertainty; D) Total 888 

relative uncertainty. 889 
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 891 

Figure 6.  Example application of a CACK based on the 2001-2016 monthly mean CERES 892 

EBAF v4 climatology to estimate the local annual mean F  from a hypothetical land cover 893 

change within a CERES grid cell.  A)  Annual mean of the climatological (i.e., 2001-2011) 894 

monthly mean difference in white-sky surface albedo between croplands and evergreen 895 

broadleaved forests ( s  ) based on the 1° product of Gao et al. (2014); B) Annual mean 896 

local (i.e., within grid cell) instantaneous radiative forcing ( F ) of monthly mean s897 

estimated with CACK; C) Absolute uncertainty (annual mean) of the CACK-based F  898 
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estimate, including the uncertainty of s ; D) Relative uncertainty (annual mean) of the 899 

CACK-based F estimate.  900 
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 901 

Figure 7.  Example application of a temporally-explicit CACK.  A)  2001-2016 statistically 902 

significant positive trends in all-sky surface albedo derived from CERES EBAF-Surface v4;  903 

B) 2001-2016 statistically significant negative trends in cloud area derived from CERES 904 

EBAF-TOA v4; C)  Mean F from s when estimated with the CACK, ECHAM6, and 905 

CAM5 surface albedo change kernels.  F  is the mean of all grid cells plotted in panel A).  906 

The 1σ confidence interval (“CI”) shown for CACK excludes the uncertainty component 907 

related to physical variability. 908 
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