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Abstract 13 

Due to the potential for land use / land cover change (LULCC) to alter surface albedo, there is 14 

need within the LULCC science community for simple and transparent tools for predicting 15 

radiative forcings ( F ) from surface albedo changes ( s ).  To that end, the radiative kernel 16 

technique – developed by the climate modeling community to diagnose internal feedbacks 17 

within general circulation models (GCMs) – has been adopted by the LULCC science 18 

community as a tool to perform offline F calculations for s .  However, the codes and 19 

data behind the GCM kernels are not readily transparent, and the climatologies of the 20 

atmospheric state variables used to derive them vary widely both in time period and duration.  21 

Observation-based kernels offer an attractive alternative to GCM-based kernels and could be 22 

updated annually at relatively low costs.  Here, we present a radiative kernel for surface 23 

albedo change founded on a novel, simplified parameterization of shortwave radiative transfer 24 

driven with inputs from the Clouds and the Earth’s Radiant Energy System (CERES) Energy 25 
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Balance and Filled (EBAF) products.  When based on a 16-year climatology (2001-2016), we 26 

find that the CERES albedo change kernel – or CACK – agrees remarkably well with the 27 

mean kernel of four GCMs (rRMSE = 14%).  When the novel parameterization underlying 28 

CACK is applied to emulate two of the GCM kernels using their own boundary fluxes as 29 

input, we find even greater agreement (mean rRMSE = 7.4%), suggesting that this simple and 30 

transparent parameterization represents a credible candidate for a satellite-based alternative to 31 

GCM kernels.  We document and compute the various sources of uncertainty underlying 32 

CACK and include them as part of a more extensive dataset (CACK v1.0) while providing 33 

examples showcasing its application. 34 

Keywords:  GCM, radiative forcing, land use change, land cover change, LULCC 35 

 36 

1. Introduction 37 

Diagnosing changes to the shortwave radiation balance at the top-of-the-atmosphere (TOA) 38 

resulting from changes to albedo at the surface ( s ) is an important step in predicting 39 

climate change.  However, outside the climate science community, many researchers do not 40 

have the tools to convert  to the climate-relevant F  measure (Bright, 2015; Jones et al., 41 

2015), which requires a detailed representation of the atmospheric constituents that absorb or 42 

scatter solar radiation (e.g. cloud, aerosols, and gases) and a sophisticated radiative transfer 43 

code.  For single points in space or for small regions, these calculations are typically 44 

performed offline – meaning without feedbacks to the atmosphere (e.g., (Randerson et al., 45 

2006))).  Large-scale investigations (e.g. Amazonian or pan-boreal LULCC (Bonan et al., 46 

1992; Dickinson and Henderson-Sellers, 1988)) typically prescribe the land surface layer in a 47 

GCM with initial and perturbed states, allowing the radiative transfer code to interact with the 48 

rest of the model.  While this has the benefit of allowing interaction and feedbacks between 49 

surface albedo and scattering or absorbing components of the model, such an approach is 50 
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computationally expensive and thereby restricts the number of LULCC scenarios that can be 51 

investigated (Atwood et al., 2016).  Consequently, this method does not meet the needs of 52 

some modern LULCC studies which may require millions of individual land cover transitions 53 

to be evaluated cost effectively (Ghimire et al., 2014; Lutz and Howarth, 2015).   54 

Within the LULCC science community, two methods have primarily met the need for 55 

efficient F calculations from s :  simplified parameterizations of atmospheric transfer of 56 

shortwave radiation (Bozzi et al., 2015; Bright and Kvalevåg, 2013; Caiazzo et al., 2014; 57 

Carrer et al., 2018; Cherubini et al., 2012; Muñoz et al., 2010), and radiative kernels (Ghimire 58 

et al., 2014; O'Halloran et al., 2012; Vanderhoof et al., 2013) derived from sophisticated 59 

radiative transfer schemes embedded in GCMs (Block and Mauritsen, 2014; Pendergrass et 60 

al., 2018; Shell et al., 2008; Soden et al., 2008).  Simplified parameterizations of the LULCC 61 

science community have not been evaluated comprehensively in space and time.  Bright & 62 

Kvalevåg (2013) evaluated the shortwave F  parameterization of Cherubini et al. (2012) 63 

when applied at several globally distributed sites on land, finding inconsistencies in 64 

performance at individual sites despite good overall cross-site performance.  Radiative kernels 65 

(Block and Mauritsen, 2014; Pendergrass et al., 2018; Shell et al., 2008; Soden et al., 2008) – 66 

while being based on state-of-the-art models of radiative transfer – have the downside of 67 

being model-dependent and not readily transparent.  While the radiative transfer codes behind 68 

them are well-documented, the scattering components (i.e. aerosols, gases, and clouds) 69 

affecting transmission have many simplifying parameterizations, vary widely across models, 70 

and may contain significant biases (Dolinar et al., 2015; Wang and Su, 2013).  An additional 71 

downside is that the atmospheric state climatologies used to compute the GCM kernels vary 72 

widely in their time periods (i.e., from pre-industrial to the year 2007) and durations (from 1 73 

to 1,000 yrs).  The application of a state-dependent GCM kernel that is outdated may be 74 

undesirable in regions undergoing rapid changes in cloud cover or aerosol optical depth, such 75 
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as in the northwest United States (Free and Sun, 2014) and in southern and eastern Asia 76 

(Srivastava, 2017; Zhao et al., 2018), respectively.  An albedo change kernel based on Earth-77 

orbiting satellite products could be updated annually to capture changes in atmospheric state 78 

at relatively low costs. 79 

The NASA Clouds and the Earth’s Radiant Energy System (CERES) Energy Balance and 80 

Filled (EBAF) products (CERES Science Team, 2018a, b), which are  based largely on 81 

satellite optical remote sensing, provide the monthly mean boundary fluxes and other 82 

atmospheric state information (e.g., cloud area fraction, cloud optical depth) that could be 83 

used to develop a more empirically-based alternative to the GCM-based kernels.  The latest 84 

EBAF-TOA Ed4.0 (version 4.0) products have many improvements with respect to the 85 

previous version (version 2.8, Loeb et al. 2009), including the use of advanced and more 86 

consistent input data, retrieval of cloud properties, and instrument calibration (Kato et al., 87 

2018; Loeb et al., 2017).   88 

Here, we present an albedo change kernel based on the CERES EBAF v4 products – or 89 

CACK.  Underlying CACK is a simplified model of shortwave radiative transfer through a 90 

one-layer atmosphere.  The model form (or parameterization) is selected after a two-stage 91 

performance evaluation of six model candidates:  two analytical, one semi-empirical, and 92 

three empirical.  An initial performance screening is implemented where all six model 93 

candidates are driven with a 16-year climatology (January 2001 – December 2016) of 94 

monthly all-sky boundary fluxes from CERES, with the resulting kernels benchmarked both 95 

qualitatively and quantitatively against the mean of four GCM-based kernels (Block and 96 

Mauritsen, 2014; Pendergrass et al., 2018; Shell et al., 2008; Soden et al., 2008).  Top model 97 

candidates from the initial performance screening are then subjected to an additional 98 

performance evaluation where they are applied to emulate two GCM kernels using their own 99 
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boundary fluxes as input, which eliminates possible biases related to differences in the GCM 100 

representation of clouds or other atmosphere state variables.   101 

We start in Section 2 by providing a brief overview of existing approaches applied in LULCC 102 

climate studies for estimating ΔF from Δα.  We then present the six model candidates in 103 

Section 3.  Section 4 describes the model evaluation and uncertainty quantification methods, 104 

in addition to two application examples.  Results are presented in Section 5, while Section 6 105 

discusses the merits and uncertainties of a CERES-based kernel relative to GCM-based 106 

kernels. 107 

2 Review of existing approaches  108 

Earth’s energy balance (at TOA) in an equilibrium state can be written: 109 

0 ( )TOA TOA TOAF LW SW SW
  

= = − −                                                                                          (1) 110 

where the equilibrium flux F is a balance between the net solar energy inputs ( TOA TOASW SW
 

−111 

) and thermal energy output ( TOALW


).  Perturbing this balance results in a radiative forcing 112 

ΔF, while perturbing the shortwave component is referred to as a shortwave radiative forcing 113 

and may be written as:  114 

( ) 1
TOA TOA

TOA TOA TOA TOA

TOA TOA

SW SW
F SW SW SW SW

SW SW
 

   

 

   
 =  − =  − −       

   
                                 (2) 115 

where the shortwave radiative forcing results either from changes to solar energy inputs (116 

TOASW


 ) or from internal perturbations within the Earth system (

TOA

TOA

SW

SW




 ).  The latter can 117 

be brought about by changes to the reflective properties of Earth’s surface which is the focus 118 

of this paper. 119 
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a. GCM-based radiative kernels 120 

The radiative kernel technique was developed as a way to assess various climate feedbacks 121 

from climate change simulations across multiple climate models in a computationally efficient 122 

manner (Shell et al., 2008; Soden et al., 2008).  A radiative kernel is defined as the differential 123 

response of an outgoing radiation flux at TOA to an incremental change in some climate state 124 

variable -- such as water vapor, air temperature, or surface albedo (Soden et al., 2008).  To 125 

generate a radiative kernel for a change in surface albedo with a GCM, the prescribed surface 126 

albedo change is perturbed incrementally by 1%, and the response by the outgoing shortwave 127 

radiation flux at TOA is recorded: 128 

( ) ( )
s

TOA

TOA TOA TOA

s s s s s

s

SW
SW SW SW K    




  


 = + − =   


                                     (3) 129 

where TOASW


 is the outgoing shortwave flux at TOA and 
s

K  is the radiative kernel (in Wm-130 

2) which can then be used with Eq. (1) to estimate an instantaneous shortwave radiative 131 

forcing ( F ) at TOA: 132 

( )
s

s

TOA TOA TOA

s

s

F F LW SW SW K

F K









  
+ = − − + 

 = − 
                                                                       (4) 133 

To the best of our knowledge, four albedo change kernels have been developed based on the 134 

following GCMs:  the Community Atmosphere Model version 3, or CAM3 (Shell et al., 135 

2008), the Community Atmosphere Model version 5, or CAM5 (Pendergrass et al., 2018), the 136 

European Center and Hamburg model version 6, or ECHAM6 (Block and Mauritsen, 2014), 137 

and the Geophysical Fluid Dynamics Laboratory model version AM2p12b, or GFDL (Soden 138 

et al., 2008).  These four GCM kernels vary in their vertical and horizontal resolutions, their 139 

parameterizations of shortwave radiative transfer, and their prescribed atmospheric state 140 

climatologies.  These differences are summarized in Table 1.  Apart from differences in their 141 
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prescribed atmospheric background states and radiative transfer schemes, a major source of 142 

uncertainty in GCM-based kernels is related to the GCM representation of atmospheric liquid 143 

water/ice associated with convective clouds; of the four aforementioned GCMs, only CAM5 144 

and GFDL attempt to model the effects of convective core ice and liquid in their radiation 145 

calculations (Li et al., 2013). 146 

 147 

< Table 1 > 148 

 149 

b.  Single-layer atmosphere  models of shortwave radiation transfer 150 

Within the atmospheric science community, various simplified analytical or semi-empirical 151 

modeling frameworks have been developed, either to diagnose effective surface and 152 

atmospheric optical properties from climate model outputs, or to study the relative 153 

contributions of changes to these properties on shortwave flux changes at the top and bottom 154 

of the atmosphere (Atwood et al., 2016; Donohoe and Battisti, 2011; Kashimura et al., 2017; 155 

Qu and Hall, 2006; Rasool and Schneider, 1971; Taylor et al., 2007; Winton, 2005; Winton, 156 

2006).  While these frameworks all treat the atmosphere as a single layer, they differ by 157 

whether or not the reflection and transmission properties of this layer are assumed to have a 158 

directional dependency (Stephens et al., 2015) and by whether or not inputs other than those 159 

derived from the boundary fluxes are required (e.g. cloud properties; (Qu and Hall, 2006)).    160 

Winton (2005) presented a semi-empirical four-parameter optical model to account for the 161 

directional dependency of up- and downwelling shortwave fluxes through the one-layer 162 

atmosphere and found good agreement (rRMSE < 2% globally) when benchmarked to online 163 

radiative transfer calculations.  Also considering a directional dependency of the atmospheric 164 

optical properties, Taylor et al. (2007) presented a two-parameter analytical model where 165 

atmospheric absorption was assumed to occur at a level above atmospheric reflection.  The 166 
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analytical model of Donohoe and Battisti (2011) subsequently relaxed the directional 167 

dependency assumption and found the atmospheric attenuation of the surface albedo 168 

contribution to planetary albedo to be 8% higher than the model of Taylor et al. (2007).  169 

Elsewhere, Qu & Hall (2006) developed an analytical framework making use of additional 170 

atmospheric properties such as cloud cover fraction, cloud optical thickness, and the clear-sky 171 

planetary albedo, which proved highly accurate when model estimates of planetary albedo 172 

were evaluated against climate models and satellite-based datasets.   173 

c. Simple empirical parameterizations of the LULCC science community 174 

Two simple empirical parameterizations of shortwave radiative transfer have been widely 175 

applied within the LULCC science community for estimating F  from s (Bozzi et al., 176 

2015; Caiazzo et al., 2014; Carrer et al., 2018; Cherubini et al., 2012; Lutz et al., 2015; 177 

Muñoz et al., 2010).  While these parameterizations are also based on a single-layer 178 

atmosphere model of shortwave radiative transfer, at the core of these parameterizations is the 179 

fundamental assumption that radiative transfer is wholly independent of (or unaffected by)180 

s .  In other words, they neglect the change in the attenuating effect of multiple reflections 181 

between the surface and the atmosphere that accompanies a change to the surface albedo.  182 

Nevertheless, due to their simplicity and ease of application they continue to be widely 183 

employed in climate research.  184 

3. Kernel model candidates 185 

The six candidate models (or parameterizations) for a CERES-based albedo change kernel 186 

(CACK) are presented henceforth.  All requisite variables and their derivatives may be 187 

obtained directly from the CERES EBAF v4 products (at monthly and 1° × 1° resolution) and 188 

are presented in Table 2.  To improve readability, temporal and spatial indexing is neglected 189 

and all terms presented henceforth in Section 3 denote the monthly pixel means. 190 
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< Table 2 > 191 

a. Analytical kernels 192 

The first kernel candidate may be analytically-derived from the CERES EBAF all-sky 193 

boundary fluxes and their derivatives.  The surface contribution to the outgoing shortwave 194 

flux at TOA 
,

TOA

SFC
SW


 can be expressed (Donohoe and Battisti, 2011; Stephens et al., 2015; 195 

Winton, 2005) as: 196 

( )
2

,

1

(1 )

TOA TOA

sSFC

s

r a
SW SW

r


 

− −
=

−
                                                                                               (5) 197 

where r is a single pass atmospheric reflection coefficient, a is a single pass atmospheric 198 

absorption coefficient, TOASW


 is the extraterrestrial (downwelling) shortwave flux at TOA, 199 

and s  is the surface albedo (defined in Table 2).   The expression in the denominator of the 200 

righthand term represents a fraction attenuated by multiple reflections between the surface 201 

and the atmosphere.  This model assumes that the atmospheric optical properties r and a are 202 

insensitive to the origin and direction of shortwave fluxes – or in other words – that they are 203 

isotropic. 204 

The single-pass reflectance coefficient is calculated from the system boundary fluxes (Table 205 

2) following Winton (2005) and Kashimura et al. (2017): 206 

 2  2

TOA TOA SFC SFC

TOA SFC

SW SW SW SW
r

SW SW
   

 

−
=

−
                                                                                           (6) 207 

while the single-pass absorption coefficient a is given as: 208 

1 (1 )sa r T r= − − −                                                                                                                 (7) 209 
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where T is the clearness index (defined in Table 2).  Our interest is in quantifying the 
,

TOA

SFC
SW


 210 

response to an albedo perturbation at the surface – or the partial derivative of 
,

TOA

SFC
SW


 with 211 

respect to   in Eq. (5):     212 

2

2

(1 )

(1 )s

TOA TOA

ISO

s s s

s s

SW SW r a
K

r
  

 
 

 − −
 =  = 

 −
                                                                   (8) 213 

where 
s

ISOK  is referred to henceforth as the Isotropic kernel.  214 

The second analytical kernel is based on the model of Qu and Hall (2006) which makes use of 215 

auxiliary cloud property information commonly provided in satellite-based products of 216 

Earth’s radiation budget – including CERES EBAF – such as cloud cover area fraction, cloud 217 

visible optical depth, and clear-sky planetary albedo.  This model links all-sky and clear-sky 218 

effective atmospheric transmissivities of the earth system through a linear coefficient k 219 

relating the logarithm of cloud visible optical depth to the effective all-sky atmospheric 220 

transmissivity: 221 

,( ) ( )

ln( 1)

a CLR aT T
k



−
=

+
                                                                                                                   (9) 222 

where ,a CLRT is the clear-sky effective system transmissivity, aT is the all-sky effective system 223 

transmissivity, and   is the cloud visible optical depth.  This linear coefficient can then be 224 

used together with the cloud cover area fraction to derive a shortwave kernel based on the 225 

model of Qu and Hall (2006) – or 06

s

QHK : 226 

 06 ( ) ln( 1)
s

TOA

QH SFC

s s a s

s

SW
K SW T kc   







 =  = − + 


                                                    (10) 227 

where c is the cloud cover area fraction. 228 

b. Semi-empirical kernel  229 
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The third kernel makes use of three directionally-dependent (anisotropic) bulk optical 230 

properties  r

, t


, and t


, where the first is the atmospheric reflectivity to upwelling 231 

shortwave radiation and the latter two are the atmospheric transmission coefficients for 232 

upwelling and downwelling shortwave radiation, respectively (Winton, 2005).  It is not 233 

possible to derive r

 analytically from the all-sky boundary fluxes; however, Winton (2005) 234 

provides an empirical formula relating upwelling reflectivity r

 to the ratio of all-sky to clear-235 

sky fluxes incident at surface: 236 

,

0.05 0.85 1
SFC

SFC

CLR

SW
r

SW






 
= + − 

 
 

                                                                                                 (11) 237 

where 
,

SFC

CLR
SW


 is the clear-sky shortwave flux incident at the surface.   238 

Knowing r

, we can then solve for the two remaining optical parameters needed to obtain our 239 

kernel: 240 

SFC SFC

TOA

SW r SW
t

SW
  





−
=                                                                                                            (12) 241 

(1 )a st T t t r
   
= − − −                                                                                                         (13) 242 

where aT  is the effective atmospheric transmittance (Table 2) of the earth system. 243 

The kernel may now be expressed as: 244 

2(1 )s

TOA TOA

ANISO

s s s

s s

SW SW t t
K

r
  

 
   




 =  = 

 −
                                                                           (14) 245 

where 
s

ANISOK  is henceforth referred to as the Anisotropic kernel. 246 

c. Existing empirical parameterizations  247 
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Although not referred to as “kernels” in the literature per se, we present the simple empirical 248 

parameterizations as such to ensure consistency with previously described notation and 249 

terminology.   250 

 251 

The first candidate parameterization, originally presented in Muñoz et al. (2010), makes use 252 

of a local two-way transmittance factor based on the local clearness index: 253 

10 2

s

TOA

M TOA

s s s

s

SW
K SW T  







   = 


                                                                             (15) 254 

where TOASW


 is the local incoming solar flux at TOA, T is the local clearness index, and 255 

TOA

sSW 


   is the approximated change in the upwelling shortwave flux at TOA due to a 256 

change in the surface albedo.   257 

The second candidate parameterization, originally proposed in Cherubini et al. (2012), makes 258 

direct use of the solar flux incident at the surface SFCSW


 combined with a one-way 259 

transmission constant k: 260 

12

s

TOA

C SFC

s s s

s

SW
K SW k  







   = 


                                                                                 (16) 261 

where k is based on the global annual mean share of surface reflected shortwave radiation 262 

exiting a clear-sky (Lacis and Hansen, 1974; Lenton and Vaughan, 2009) and is hence 263 

temporally and spatially invariant.  This value – or 0.85 -- is similar to the global mean ratio 264 

of forward-to-total shortwave scattering reported in Iqbal (1983).   Bright & Kvalevåg (2013) 265 

evaluated Eq. (16) at several global locations and found large biases for some regions and 266 

months, despite good overall performance globally (rRMSE = 7%; n = 120 months). 267 

d. Novel empirical parameterization  268 
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To determine whether the GCM-based kernels could be approximated with sufficient fidelity 269 

using other simpler model formulations based on their own boundary data, we applied 270 

machine learning to identify potential model forms using GCM boundary fluxes as input.  For 271 

the two GCMs kernels in which the GCM’s own boundary fluxes are also made available 272 

(CAM5 and ECHAM6), we used machine learning to minimize the sum of squared residuals 273 

between the four shortwave boundary fluxes and the GCM kernel at the monthly time step.  274 

The reference dataset consisted of a random global sample of 200,000 (~50%) grid cells at 275 

native model resolution (97% and 32% of all cells for ECHAM6 and CAM5, respectively) of 276 

which 50% were used for training and 50% for validation.  Models were identified using a 277 

form of genetic programming known as symbolic regression (Eureqa®; Nutonian Inc.; 278 

(Schmidt and Lipson, 2009, 2010)) which searches a wide space of model structures as 279 

constrained by user input.  In our case, we allowed the model to include the operators (i.e., 280 

addition, subtraction, multiplication, division, sine, cosine, tangent, exponential, natural 281 

logarithm, factorial, power, square root), but numerical coefficients were forbidden.  The 282 

model search was allowed to continue until the percent convergence and maturity metrics 283 

exceeded 98% and 50%, respectively, at which point more than 1 × 1011 formulae had been 284 

evaluated.  A parsimonious solution was chosen by minimizing the error metric and model 285 

complexity using the Pareto front (Figure S1 of Supporting Information) (Smits and 286 

Kotanchek, 2005).  Between CAM5 and ECHAM6, four common model solutions were found 287 

(Table S1 of Supporting Information).  The best of these common solutions is subsequently 288 

referred to as 18

s

BOK  and is given as: 289 

18

s

TOA

BO SFC

s s s

s

SW
K SW T  







 =  = 


                                                                    (17) 290 

 291 

 292 
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4. Kernel model evaluation  293 

a. Initial candidate screening  294 

The four GCM kernels presented in Section 2.b are employed as benchmarks to initially 295 

screen the six simple model candidates.   We compute a skill metric analogous to the “relative 296 

error” metric used to evaluate GCMs by Anav et al. (2013) that takes into account error in the 297 

spatial pattern between a model and an observation.  Because we have no true observational 298 

reference, our evaluation instead focuses on the disagreement or deviation between CERES 299 

and GCM kernels at the monthly time step.  Given interannual climate variability in the earth 300 

system, the challenge of comparing the multi-year CERES kernel to a single-year GCM 301 

kernel can be partially overcome by averaging the four GCM kernels.    302 

Using the multi-GCM mean as the reference, we first compute the absolute deviation
,

X

m pAD  303 

as: 304 

 ,, ,

X X
m pm p m pAD CERES GCM= −                                                                                           (18) 305 

where 
,

X

m pCERES  is the kernel for CERES model candidate x in month m and pixel p and 306 

,m pGCM  is the multi-GCM mean of the same pixel and month.  
,

X

m pAD  is then normalized to 307 

the maximum absolute deviation of all six CERES kernels for the same pixel and month to 308 

obtain a normalized absolute deviation, 
,

X

m pNAD , which is analogous to the “relative error” 309 

metric of Anav et al. (2013) having values ranging between 0 and 1: 310 

,

,

,

1
max( )

X

m pX

m p

m p

AD
NAD

AD
= −                                                                                                     (19) 311 

where ,max( )m pAD  is the maximum absolute deviation of all six CERES kernels at pixel p 312 

and month m.   313 
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CERES kernel ranking is based on the mean relative absolute deviation in both space and time 314 

– or
X

NAD : 315 

,

1 1

1 1M PX
X

m p

m p

NAD NAD
M P= =

=                                                                                                   (20) 316 

where M is the total number of months (i.e., 12) and P is the total number of grid cells.   317 

 318 

b. GCM kernel emulation 319 

In order to eliminate any bias related to differences in the atmospheric state embedded in the 320 

GCM kernel input climatologies, we emulate them by applying the candidate models (or 321 

parameterizations) using the original GCM boundary fluxes as input.  Emulation is only done 322 

for two of GCM-based kernels since only two of them have provided the accompanying 323 

boundary fluxes needed to do so:   ECHAM6 (Block and Mauritsen, 2014) and CAM5 324 

(Pendergrass et al., 2018).  Emulation enables a more critical evaluation of the functional 325 

form of the candidate models in relation to the more sophisticated radiative transfer schemes 326 

employed by ECHAM6 (Stevens et al., 2013) and CAM5 (Hurrell et al., 2013). 327 

c. CACK model uncertainty 328 

Following emulation, monthly GCM kernels are then regressed on the monthly kernels 329 

emulated with the leading model candidates.  The model that best emulates both GCM kernels 330 

– as measured in terms of the mean coefficient of determination (R2) and mean RMSE – is 331 

chosen to represent CACK. 332 

Three sources of uncertainty are considered for CACK when based on the CERES boundary 333 

flux climatology (i.e., 2001-2016 monthly means):  1) physical variability 2) data uncertainty; 334 

and 3) model error (Mahadevan and Sarkar, 2009).  The first is related to the interannual 335 

variability of Earth’s atmospheric state and boundary radiative fluxes.  The second is related 336 
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to the uncertainty of the CERES EBAF v4 variables used as input to CACK (including 337 

measurement error).  The third source of uncertainty is the error related to CACK’s model 338 

form.  CACK’s combined uncertainty for any given pixel and month is estimated as follows, 339 

where if CACK or y  is some non-linear function of the CERES boundary inputs 1x  and 2x340 

that co-vary in time and space, then the combined uncertainty of y  – or ( )y  – may be 341 

expressed as the sum of the model error plus the combined physical variability and data 342 

uncertainty associated with 1x  and 2x  summed in quadrature (Breipohl, 1970; Clifford, 1973; 343 

Green et al., 2017):  344 

   
2 2 2

2 2

1 1 2 2 1 2

1 2 1 2

( ) ( ) ( ) ( ) ( ) ( ) 2 ( , )ME PV DU PV DU

y y y y
y y x x x x x x

x x x x
      

        
 + + + + +     

        

   (21) 345 

where 1( )PV x  and 2( )PV x  are the standard deviations of the 16-yr. climatological record of 346 

CERES input variables 1x  and 2x , respectively, for a given grid cell and month, 1( )DU x and 347 

2( )DU x  are the absolute uncertainties of CERES input variables 1x  and 2x , respectively, for 348 

a given grid cell and month, 1 2( , )x x  is the covariance within the 16-yr. climatological 349 

record between CERES input variables 1x  and 2x  for a given month and grid cell, and ME  is 350 

the monthly grid cell model error.  Model error ( ( )ME y ) and data uncertainties ( ( )DU nx ) 351 

for any given grid cell and month are based on the relative RMSE (Supporting Information) 352 

and relative uncertainties of CERES boundary terms reported in Kato et al. (2018) (cf. Table 353 

8, “Monthly gridded, Ocean + Land”)  and Loeb et al. (2017) (cf. Table 8, “All-sky, Terra-354 

Aqua period”).  For the model error, we take the mean relative RMSE of the machine learning 355 

model solutions for ECHAM5 and CAM5.   For the relative uncertainty of the incoming solar 356 

flux at TOA ( TOASW


), we use the 1% “calibration uncertainty” reported in Loeb et al. (2017). 357 
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If CACK’s intended application is to estimate a temporally-explicit ΔF within the CERES era 358 

(i.e., if temporally-explicit rather than the climatological mean CERES boundary fluxes are 359 

desired to compute CACK), the uncertainty related to physical variability ( ( )PV nx ) can be 360 

dropped from Eq. (21).  361 

d. Climatological CACK example application 362 

To demonstrate CACK’s application when based on monthly CERES EBAF climatology, 363 

including the handling of uncertainty, we estimate the annual mean ΔF from a   scenario 364 

associated with hypothetical deforestation in the tropics, where ΔF for a given month is 365 

estimated as Eq. (4) where 
s

K  is the 2001-2016 monthly climatological CACK and   is 366 

the difference in the 2001-2011 monthly climatological mean white-sky surface albedo 367 

between “Croplands” (CRO) and “Evergreen broadleaved forests” (EBF) taken from Gao et 368 

al. (2014) which is based on International Geosphere-Biosphere Program definitions of land 369 

cover classification.   370 

The monthly climatological albedo look-up maps of Gao et al. (2014) contain their own 371 

uncertainties, which we take as the mean absolute difference between the monthly albedos 372 

reconstructed using their look-up model and the monthly MODIS retrieval record (c.f. Table 3 373 

in Gao et al. (2014)).  374 

The total estimated uncertainty linked to the annual local (i.e., grid cell) instantaneous ΔF can 375 

thus be expressed (in W m-2) as: 376 

2 2
12

, ,

1 , ,

( ) ( )1
( )

12
s

s

m s m

m

m m s m

K
F F

K





  


=

   
 =  +        

                                                               (22) 377 



18 
 

where , ,( )
s sm mK K   is the relative grid cell uncertainty of CACK and , ,( )s m s m     is 378 

the relative uncertainty of s  in month m defined as:  379 

2 2

, , ,

, , ,

( ) ( ) ( )s m s m s m

s m CRO m EBF m

     

  

   
= +          

                                                                          (23) 380 

where ,( )s m   is the monthly absolute uncertainty of the climatological mean surface albedo 381 

(i.e., of the Gao et al. (2014) product).  382 

e. Temporally-explicit CACK application example 383 

Use of a temporally-explicit CACK may be desirable for time-sensitive applications within 384 

the CERES era.  This is particularly true for regions experiencing significant changes to the 385 

atmospheric state affecting shortwave radiation transfer.  A good example is in southern 386 

Amazonia where tropical deforestation has been linked to changes in cloud cover (Durieux et 387 

al., 2003; Lawrence and Vandecar, 2014; Wright et al., 2017).  To exemplify this, we estimate 388 

the annual mean instantaneous ΔF for CERES grid cells in the region having experienced 389 

significant trends in both surface albedo and cloud area fraction during the 2001-2016 period.  390 

Grid cell trends in surface albedo and cloud area fraction are deemed significant if the slopes 391 

of linear fits obtained from local (i.e., grid cell) ordinary least squares regressions had p-392 

values ≤ 0.05.  We then apply the slope of the surface albedo trend to represent the monthly 393 

mean interannal   incurred over the time series together with CACK updated monthly to 394 

estimate the local annual mean instantaneous ΔF at each step in the series: 395 

12

,

1

( ) ( )
s

m

m s

m

F t K t 
=

=

 = −                                                                                             (24) 396 

where , ( )
s mK t  is the monthly CACK in year t of the time series.  ΔF is then averaged across 397 

all grid cells in the sample, with the results then compared to the ΔF that is computed for the 398 
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same grid sample using the time-insensitive CAM5 and ECHAM6 kernels (i.e., , ( )
s mK f t  ).  399 

Using the slope of the surface albedo trend as the s  for all months and years rather than the 400 

actual , ( )s m t  (i.e., , , , , , 1( )s m s m t s m tt   − = −  ) yields the same result when averaged over the 401 

full time period but allows us to isolate the effect of the changing atmospheric state on 402 

calculations of ΔF.  We limit the ΔF uncertainty estimate to CACK’s uncertainty that includes 403 

( )DU nx  and ( )ME nx  but excludes ( )PV nx .  404 

5. Results  405 

a. Initial performance screening  406 

Seasonally, differences in latitude band means between the CERES kernel candidates and the 407 

multi-GCM mean kernels are shown in Figure 1. 408 

 409 

< Figure 1 > 410 

 411 

Qualitatively, starting with December-January-February (DJF), 18

s

BOK gives the best 412 

agreement with 
s

GCMK
 with the exception of the zone around 55 – 65°S (-55 – -65°), where 413 

06

s

QHK gives slightly better agreement (Fig. 1A).  In March-April-May (MAM), 18

s

BOK  appears 414 

to give the best overall agreement with the exception of the high Arctic, where 
s

ANISOK  and 415 

12

s

CK give better agreement, and with the exception of the zone around 60 – 65°S (-60 – -65°) 416 

where 06

s

QHK , 
s

ANISOK , and 12

s

CK agree best with 
s

GCMK
 (Fig. 1B).  The largest spread in 417 

disagreement across all six CERES kernels is found in June-July-August (JJA; Fig. 1 C) at 418 

northern high latitudes.  18

s

BOK appears to agree best both here and elsewhere with the 419 

exception of the zone between ~20 – 35°N, where  06

s

QHK  gives slightly better agreement. 420 
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In September-October-November (SON), 18

s

BOK  agrees best with 
s

GCMK
 at all latitudes except 421 

the zone between 10 – 25°N and 55 – 65°S where 06

s

QHK agrees slightly better. 422 

Quantitatively, the proportion of the total variance explained by linear regressions of monthly 423 

s

GCMK
on monthly 

s

CERESK  (i.e., “R2”) is highest and equal for the CERES kernels based on the 424 

ANISO, QH06, and BO18 models (Fig. 2 B, C, & D).  Of these three, 06

s

QHK has a y-intercept 425 

(“B0”) closest to 0 and a slope (“m”) of 1, although the root mean squared error (“RMSE”) – 426 

an accuracy measure – is slightly better (lower) for 18

s

BOK .  The two CERES kernels with the 427 

lowest R2, highest slopes (negative deviations), highest RMSEs, and y-intercepts with the 428 

largest absolute difference from zero – or the worst performing candidates – are those based 429 

on the ISO and M10 models (Fig. 2 A&E). 430 

 431 

< Figure 2 > 432 

 433 

Although the y-intercept deviation from 0 for 12

s

CK  is relatively low, its RMSD is ~50% 434 

higher than that of 06

s

QHK , 18

s

BOK , and 
s

ANISOK  and  leads to notable positive deviation from the 435 

multi-GCM mean (
s

GCMK
) judging by its slope of 0.92. 436 

Globally, NAD  for the QH06, ANISO, and BO18 kernels are far superior to the ISO, M10, 437 

and C12 kernels (Table 3). 438 

 439 

< Table 3 > 440 

 441 

After filtering to remove grid cells for oceans and other water bodies, NAD  scores for these 442 

three kernels decreased; the decrease was smallest for 18

s

BOK (-0.03) and largest for 06

s

QHK  (-443 
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0.06).  Despite constraining the analysis to land surfaces only, the rank order remained 444 

unchanged (Table 3), and 06

s

QHK , 18

s

BOK , and 
s

ANISOK  are subjected to further evaluation.  445 

b. GCM kernel emulation and additional performance evaluation 446 

However, because the QH06 model ( 06

s

QHK ) required auxiliary inputs for cloud cover area 447 

fraction and cloud optical depth – two atmospheric state variables not provided with the 448 

ECHAM6 and CAM5 kernel datasets – it was not possible to emulate these two GCM kernels 449 

with 06

s

QHK .   Additional performance evaluation through GCM kernel emulation is therefore 450 

restricted to the ANISO and BO18 models.   451 

< Figure 3 > 452 

Globally, the kernel based on the ANISO model displays larger annual mean biases relative to 453 

BO18 when compared to both ECHAM6 and CAM5 kernels (Figure 3).  Notable positive 454 

biases over land with respect to both ECHAM6 and CAM5 kernels are evident in the northern 455 

Andes region of South America, the Tibetan plateau, and the tropical island region comprising 456 

Indonesia, Malaysia, and Papua New Guinea (Fig. 3 A & C).  Notable negative biases over 457 

land with respect to both ECHAM6 and CAM5 kernels are evident over Greenland, 458 

Antarctica, northeastern Africa, and the Arabian Peninsula (Fig. 3 A & C). 459 

< Figure 4 > 460 

Globally, annual biases for BO18 are generally found to be lower than for ANISO and are 461 

mostly non-existent in extra-tropical ocean regions (Fig. 3 B & D).  Patterns in biases over 462 

land are mostly negative with the exception of Saharan Africa where the annual mean bias 463 

with respect to both GCMs is positive. For BO18, systematic positive biases – or biases 464 

evident with respect to both GCM kernels – appear over eastern tropical and subtropical 465 
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marine coastal upwelling zones where marine stratocumulus cloud dynamics are difficult for 466 

GCMs to resolve (Bretherton et al., 2004; Richter, 2015). 467 

< Table 4 > 468 

Regression statistics (Figure 4) indicate a greater overall performance for BO18 than for 469 

ANISO.  RMSEs for monthly kernels emulated with BO18 are 9.0 and 8.2 W m-2 for CAM5 470 

and ECHAM6, respectively – which is ~50-60% of the RMSEs emulated with the ANISO 471 

model.  Relative to ANISO, the BO18 model also gives a higher R2, a slope closer to 1, and a 472 

y-intercept closer to zero (Figure 4).  The BO18 model (or parameterization) is therefore 473 

selected for the CERES albedo change kernel (CACK).  474 

Focusing only on the GCM kernels emulated with 18

s

BOK  henceforth, negative biases are 475 

evident in all months (Table 4), with the largest biases (in magnitude) appearing in May (-4.4 476 

W m-2) and November (-2.5 W m-2) for CAM5 and ECHAM6, respectively.  In absolute 477 

terms, largest biases of 8.6 W m-2 and 6.8 W m-2 appear in June for CAM5 and ECHAM6, 478 

respectively.  Annually, the mean absolute bias for CAM5 and ECHAM6 is 6.8 and 6.1 W m-479 

2, respectively – a magnitude which seems remarkably low if one compares this to the annual 480 

mean disagreement (standard deviation) of 33 W m-2 across all four GCM kernels (not shown; 481 

for seasonal mean standard deviations see Fig. 1). 482 

c. CACK uncertainty 483 

For a kernel based on 2001-2016 monthly mean CERES EBAF climatology, Figure 5 484 

illustrates the contribution of the absolute error related to 18

s

BOK ’s model form (Fig. 5 A, 485 

annual mean) relative to CACK’s total absolute uncertainty (Fig. 5 C, annual mean), which 486 

includes the uncertainty surrounding CERES EBAF v4 input variables SFCSW


 and TOASW


 487 

and their interannual variability (Fig. 5 B, annual mean). 488 
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< Figure 5 > 489 

Total propagated pv  and du  far exceeds me , is dominated by ( )SFC

du SW


 and 490 

( )SFC

pv SW


, and is largest in the Pacific region to the south of the intertropical convergence 491 

zone (ITCZ).  Over land, the annual pv  and du  as well as the annual total  are generally 492 

largest in arid or high altitude regions (Fig. 5 B).  However, annual CACK values are also 493 

large in these regions reducing the relative uncertainty (Fig. 5 D).  The largest relative 494 

uncertainties over land (on an annual basis) – which can approach 50% – are found over 495 

central Europe, northwestern Asia, southeastern China, Andean Chile, and northwestern N. 496 

America (Fig. 5 D). 497 

d. Climatological CACK application  498 

When estimated with a CACK based on monthly CERES EBAF climatology, the annual ΔF 499 

from s  linked to hypothetical deforestation in the tropics is negative in most regions, 500 

approaching -20 W m-2 locally in some regions of the Brazilian Cerrado and south of the 501 

Sahel region in Africa (Fig. 6 B).  The combined CACK and s  uncertainty for these 502 

regions can approach ± 5 W m-2 annually (Fig. 6 C) in regions like the Brazilian Cerrado and 503 

sub-Sahel Africa.  Relative to the ΔF magnitude, however, the largest uncertainties (annual) 504 

may be found in the subtropical regions of Central America, southern Brazil, southern Asia, 505 

and northern Australia, where it can approach 30-40% (Fig. 6 D). 506 

e. Temporally-explicit CACK application 507 

The effect of a decreasing cloud cover trend in southern Amazonia (Fig. 7 B) on shortwave 508 

radiative transfer and thus a CACK-based estimate of regional mean annual ΔF emerges in 509 

Figure 7 C, where ΔF increases in magnitude by 0.004 W m-2 from 2002 to 2016.  This ΔF 510 
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trend would otherwise go undetected if a GCM-based kernel were applied to the same surface 511 

albedo trend – that is, to a sustained positive interannual monthly albedo change “pulse”.  512 

Alternatively, a CACK based on 2001 CERES EBAF inputs (applied with s  for 2001-513 

2002) would give slightly higher ΔF estimates relative to those based on ECHAM6 and 514 

CAM5 kernels; conversely, a CACK based on 2015 CERES EBAF inputs (applied with s  515 

for 2015-2016) that would yield lower ΔF estimates relative to those based on the same two 516 

GCM-based kernels (Fig. 7 C). Use of temporally-explicit CACK can therefore capture ΔF 517 

trends related to a changing atmospheric state that fixed-state GCM kernels are unable to 518 

capture.  519 

5. Discussion  520 

Motivated by an increasing abundance of climate impact research focusing on land processes 521 

in recent years, we comprehensively evaluated six simplified models (or parameterizations) as 522 

candidates for an albedo change kernel based on the CERES EBAF v4 products (Kato et al., 523 

2018; Loeb et al., 2017). Relative to albedo change kernels based on sophisticated radiative 524 

transfer schemes embedded in GCMs, a CERES-based albedo change kernel – or CACK – 525 

represents a more transparent and empirically-rooted alternative that can be updated 526 

frequently at relatively low cost.  This allows greater flexibility to meet the needs of research 527 

focusing on surface albedo trends within the CERES era in regions currently undergoing rapid 528 

changes to atmospheric state as it affects shortwave radiation transfer.  Although some 529 

modeling groups have provided recent updates to their albedo change kernels using the latest 530 

GCM versions (e.g., (Pendergrass et al., 2018)), the atmospheric state conditions used to 531 

derive them may still be considered outdated or not in sync with that required for many 532 

applications (Table 1).  533 
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Based on both qualitative and quantitative benchmarking against the mean of four GCM 534 

kernels, the novel kernel parameterization obtained from machine learning 18

s

BOK , together 535 

with the two (semi-)analytically derived kernels 06

s

QHK  and 
s

ANISOK , proved far superior to the 536 

s

ISOK  analytical kernel and to the two additional empirical parameterizations 12

s

CK  and 10

s

MK .  537 

When subjected to additional performance evaluation, however, we found that 18

s

BOK  was 538 

able to more robustly emulate two GCM kernels (ECHAM6 and CAM5) with exceptionally 539 

high agreement, suggesting that 18

s

BOK  could serve as a suitable candidate for CACK.   540 

Relative to the monthly CAM5 and ECHAM6 kernels, the mean absolute monthly emulation 541 

“error” of 18

s

BOK  was found to be 6.8 and 6.1 W m-2, respectively – a magnitude which is only 542 

~20% of the standard deviation found across four GCM kernels (annual mean).  CACK’s 543 

remarkable simplicity lends support to the idea of using machine learning to explore and 544 

detect emergent properties of radiative transfer or other complex, interactive model outputs in 545 

future research.  The fact that the 18

s

BOK  parameterization emerged as the best common 546 

solution from two independently executed machine learning analyses each employing a 547 

random sampling unique to a specific GCM kernel suggests that the 18

s

BOK  parameterization is 548 

robust and insensitive to the underlying GCM representation of shortwave radiative transfer. 549 

Despite its stronger empirical foundation over a GCM-based kernel, it is important to 550 

recognize CACK’s limitations.  Firstly, while CACK has a finer spatial resolution than most 551 

GCM kernels, it still represents a spatially averaged response rather than a truly local 552 

response; in other words, the state variables used to define the TOASW


 response are averages 553 

tied to the coarse spatial (i.e., 1° x 1°) resolution of the CERES EBAF v4 product grids.  554 

Secondly, the monthly CERES EBAF-Surface product used to define lower atmospheric 555 
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boundary conditions is not strictly an observation.  The space-borne platform is not able to 556 

directly observe surface irradiances, requiring additional satellite-based estimates of cloud and 557 

aerosol properties as input to a radiative transfer model (Kato et al., 2012).  Although TOA 558 

irradiances are applied to constrain the surface irradiances, they remain susceptible to errors 559 

in the radiative transfer model inputs.  Considering this error as “data uncertainty” increases 560 

CACK’s overall uncertainty beyond that which is related to its underlying parameterization or 561 

“model error”.  The uncertainty of CERES surface shortwave irradiances as well as extensive 562 

ground validation and testing are documented in greater detail elsewhere (Kato et al., 2013; 563 

Kato et al., 2018; Loeb et al., 2017; Loeb et al., 2009) and may continue to be reduced in 564 

future EBAF-Surface versions. 565 

a. Concluding remarks 566 

To conclude, we developed, evaluated, and proposed a radiative kernel for surface albedo 567 

change based on CERES EBAF v4 products – or CACK. Relative to existing kernels based on 568 

GCMs, CACK provides a higher spatial resolution, higher transparency alternative that is 569 

more amenable to user needs.  For LULCC research of the near-past, present day, or near-570 

future periods, application of a CACK whose inputs are based on monthly climatological 571 

means of the full CERES EBAF record can better-account for the corresponding interannual 572 

variability in Earth’s atmospheric state affecting shortwave radiative transfer.  For regions 573 

undergoing changes in atmospheric state that are detectable above the normal variability 574 

within the CERES era, application of a temporally-explicit CACK can better-account for its 575 

influence on ΔF estimates from surface albedo change.  CACK’s input flexibility and 576 

transparency combined with documented uncertainty make it well-suited to be applied as part 577 

of a Monitoring, Reporting, and Verification (MRV) framework for biogeophysical impacts 578 

on land, analogous to those which currently exist for land sector greenhouse gas emissions. 579 

 580 
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Code and Dataset Availability 581 

We make both monthly temporally-explicit and monthly climatological mean CACKs for 582 

years 2001-2016 available as a complete data product (“CACKv1.0”; netCDF file available at 583 

doi:10.6073/pasta/d77b84b11be99ed4d5376d77fe0043d8) that includes their respective 584 

uncertainty layers.  A summary of this dataset and associated variables is provided in Table 585 

S3 of the Supporting Information. Octave script files for generating monthly CACK and 586 

demonstrating its application with user-specified temporal and spatial extents are bundled 587 

with the netCDF file.    588 

 589 

Data Availability 590 

CERES EBAF data are available for download at:  591 

https://ceres.larc.nasa.gov/products.php?product=EBAF-TOA .  The CAM3 kernel is 592 

available at:  http://people.oregonstate.edu/~shellk/kernel.html .  The CAM5 kernel is 593 

available at:  https://www.earthsystemgrid.org/ac/guest/secure/sso.html . The ECHAM5 594 

kernel is available at:  https://swiftbrowser.dkrz.de/public/dkrz_0c07783a-0bdc-4d5e-9f3b-595 

c1b86fac060d/Radiative_kernels/ .   596 
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Table 1.  Attributes of existing GCM kernels, all of which having a monthly temporal 838 

resolution. 839 

Kernel  Base 

climatology 

extent 

Base 

climatology 

period 

Shortwave 

Radiative 

transfer 

Horizontal 

Resolution 

References 

ECHAM6 1,000 years Preindustrial* RRTM-G 1.88° × 1.88° (Block and Mauritsen, 2014; 
Stevens et al., 2013) 

CAM3 6 years 1995-2000 δ-Eddington 1.4° × 1.4° (Collins et al., 2006; Shell et al., 
2008) 

CAM5 1 year 2006-2007 RRTM-G 0.94° × 1.25° (Pendergrass et al., 2018) 

GFDL 17 years 1979-1995 Exponential 

sum-fits, 18 

bands 

2° × 2.5° (Soden et al., 2008; The GFDL 
Global Atmospheric Model 
Development Team, 2004) 

*Atmospheric CO2 concentration = 284.7 ppmv; Exact time period unknown 840 
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Table 2.  Definition of CERES input variables and other system optical properties derived 843 

from CERES inputs.  All variables have a monthly temporal resolution and a spatial 844 

resolution of 1° × 1°.   845 

CERES EBAF v.4 Shortwave Boundary Fluxes 

TOASW


 Downwelling solar flux at top-of-atmosphere  Wm-2 

SFCSW


 Downwelling solar flux at surface Wm-2 

,

SFC

CLR
SW


 Clear-sky downwelling solar flux at surface Wm-2 

TOASW


 Upwelling solar flux at top-of-atmosphere Wm-2 

SFCSW


 Upwelling solar flux at surface Wm-2 

System Optical Properties 

SFC TOAT SW SW
 

=  Clearness index unitless 

TOA TOA

p SW SW
 

=  Planetary albedo unitless 

SFC SFC

s SW SW
 

=  Surface albedo unitless 

1p pA = −  Effective planetary absorption unitless 

SFC SFC TOA

sA SW SW SW
  

 = −   Effective surface absorption unitless 

a p sA A A= −  Effective atmospheric absorption unitless 

1a aT A= −  Effective atmospheric transmission unitless 

, ,1a CLR a CLRT A= −  Clear-sky effective atmospheric transmission unitless 

  Cloud visible optical depth unitless 

c  Cloud area fraction fraction 
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Table 3.  Normalized absolute deviation and CERES kernel model candidate ranking. 848 

 Global Land only  

 NAD  Rank NAD  Rank Mean Rank 

ISO 0.05 6 0.05 6 6 

ANISO 0.64 3 0.59 3 3 

C12 0.45 4 0.47 4 4 

M10 0.26 5 0.34 5 5 

QH06 0.66 2 0.60 2 2 

BO18 0.67 1 0.64 1 1 
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Table 4.  Global monthly mean bias (MB) and mean absolute bias (MAB) for 18BOK  emulated 

with T and SFCSW


 from ECHAM6 and CAM5. For reference, the global mean value of 18BOK  

is 133 W m-2. 

 MB (W m-2) 

 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Ann. 

18 5BO CAMK K −  -2.9 -3.4 -3.3 -3.9 -4.4 -3.8 -3.8 -3.7 -3.4 -3.8 -3.7 -3.3 -3.6 

18 6BO ECHAMK K −  -1.9 -2.2 -1.8 -1.9 -2.2 -1.5 -1.1 -1.6 -1.7 -2.5 -2.5 -1.8 -1.9 

MAB (W m-2) 

 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Ann. 

18 5| |BO CAMK K −  6.9 5.7 5.2 6.8 7.7 8.6 7.9 6.7 5.6 6.1 6.9 6.9 6.8 

18 6| |BO ECHAMK K −  6.3 5.7 5.0 5.9 6.7 6.8 6.4 5.8 5.3 5.6 6.4 6.7 6.1 
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 852 

Figure 1.  Latitudinal (1°) and seasonal means of the multi-GCM mean ( GCMK
) and CACK 853 

model candidates for:  A) December-January-February (DJF); B) March-April-May (MAM); 854 

C) June-July-August (JJA); D) September-October-November (SON). 855 
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 857 

Figure 2.  A)-F):  Scatter-density regressions of global monthly mean GCMK
 (y-axis) and 858 

CERESK (x-axis), with the CERES kernel identifier shown at the top of each sub-panel. “m” = 859 

slope; “B0” = y-intercept.  The color scale indicates the percentage of regression points that 860 

fall within an averaging bin, where the x-axis and y-axis have been gridded into 100 × 100 861 

equally-spaced bins to help illustrate the density of overlapping points. 862 
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 864 

Figure 3.  A) Mean annual bias of the CAM5 albedo change kernel emulated with the ANISO 865 

semi-empirical model; B) Mean annual bias of the CAM5 albedo change kernel emulated 866 

with the BO18 parameterization; C) Mean annual bias of the ECHAM6 albedo change kernel 867 

emulated with the ANISO semi-empirical model; D) Mean annual bias of the ECHAM6 868 

albedo change kernel emulated with the BO18 parameterization 869 
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 871 

Figure 4.  A)-D):  Scatter-density regressions of GCMK  (y-axis) and GCMK   emulated with the 872 

ANISO semi-empirical model and BO18 parameterization (x-axis); “m” = slope; “B0” = y-873 

intercept.  See Figure 2 caption for a description of the color scale. 874 
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 877 

Figure 5.  Annual uncertainty of a CACK based on 2001-2016 monthly mean CERES EBAF 878 

v4 climatology:  A) The absolute uncertainty related to model error (i.e., the 18

s

BOK  879 

parameterization); B) The total propagated absolute uncertainty related to physical variability 880 

and data uncertainty of CACK input variables; C) Total absolute uncertainty; D) Total 881 

relative uncertainty. 882 
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 884 

Figure 6.  Example application of a CACK based on the 2001-2016 monthly mean CERES 885 

EBAF v4 climatology.  A)  Annual mean of the climatological (i.e., 2001-2011) monthly 886 

mean difference in white-sky surface albedo between grasslands and evergreen broadleaved 887 

forests ( s  ) based on the 1° product of Gao et al. (2014); B) Annual mean instantaneous 888 

radiative forcing ( F ) of monthly mean s estimated with CACK; C) Absolute uncertainty 889 

(annual mean) of the CACK-based F  estimate, including the uncertainty of s ; D) 890 

Relative uncertainty (annual mean) of the CACK-based F estimate.  891 
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 892 

Figure 7.  Example application of a temporally-explicit CACK.  A)  2001-2016 statistically 893 

significant positive trends in all-sky surface albedo derived from CERES EBAF-Surface v4;  894 

B) 2001-2016 statistically significant negative trends in cloud area derived from CERES 895 

EBAF-TOA v4; C)  Mean local F from s when estimated with the CACK, ECHAM6, 896 

and CAM5 surface albedo change kernels.  The 1σ confidence interval (“CI”) shown for 897 

CACK excludes the uncertainty component related to physical variability. 898 
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