June 25,2019

GMD-2019-15: Revision

Dear Editor,

We are pleased to submit our revised manuscript entitled: “Developing a monthly radiative
kernel for surface albedo change from satellite climatologies of Farth’s shortwave radiation
budget: CACK v1.0” for publication consideration in Geoscientific Model Development.

Major changes to the manuscript include:

- A major re-structuring to improve overall flow and readability. This re-structuring was
necessary to showcase CACK v1.0 as a comprehensive, transparent, and flexible dataset
built on a novel model (parameterization) of shortwave radiation transfer.

- An expanded analysis of CACK’s performance including new content on uncertainty and
two new demonstrations of its application

- An improved description of the methods to ensure reproducibility, in particular that
pertaining to the symbolic regression analysis

- The addition of a Supporting Information document providing additional detail
surrounding CACK’s uncertainty calculations, the symbolic regression method and
results, and a detailed description of the CACK v1.0 dataset which now includes
estimates for three sources of uncertainty.

The revised manuscript has increased by ~2,000 words, 3 figures, and 1 table. We feel confident
that our revisions go above and beyond that which is required to satisfy reviewers and add
notable value to the paper serving to elevate its overall impact. For instance, the new and
comprehensive analysis on uncertainty and its inclusion in CACK v1.0 should make it more
attractive as a credible candidate for use as part of a future Monitoring, Reporting, and

Verification (MRV) framework for radiative forcing impacts of albedo changes on land.

Please do not hesitate contacting us should you require additional information or clarification.

Kind Regards,

Ryan M. Bright and Tom L. O’Halloran



Reponses to Anonymous Referee #1

This study by Bright and O’Halloran developed shortwave radiative kernels based on the CERES
EBAF products, which would be an alternative to GCM-based kernels. The performance of the
observation-based kernels is also evaluated based on the multi-GCM mean. This is an interesting
study, and the developed shortwave radiative kernels have the potential of being used for land
use-climate studies. However, I think the manuscript needs some improvement and further
development in the analysis before it can be published.

We thank Anonymous Referee #1 for his/her constructive feedback. To address his/her major
concerns, we have provided more detail about the GCM kernels and their uncertainties,
improved the description of our methodology, and provided two examples illustrating CACK’s
application.

My major concerns include:

1. The evaluation of CERES kernels uses four GCM kernels as benchmarks. I am wondering the
uncertainties among the different GCMs. GCM uncertainties are largely related to their
representation of low-level cloud cover and properties (please see our reference to Dolinar e a/.
2015 [original manuscript P3 L.67]). Regarding cloud properties, one of the major differences
among GCMs is related to the representation of atmosphetic liquid water/ice associated with
convective clouds. Of the four GCMs we considered, only CAM5 and GFDL attempt to model
the effects of precipitating and/or convective core ice and liquid in their radiation calculations.
We add this detail in (new) Section 2.a and provide a new citation (e.g., to Li et al. (2013)).  First,
why are these four models chosen? These GCM kernels were chosen simply because at the time
the study commenced these were the only ones available. We add this rationale to the main text
(new Section 2.a). But why CAM3 and GFDL are not mentioned in the results? We carried out
a two-stage evaluation, where CAM3 and GFDL comprised part of the “multi-GCM mean”
benchmark we used in the first stage (described in new Section 4a), whose results are presented in
(new) Section 5, Figures 1 & 2. We hope our re-organization and improved methods
descriptions have now made this clearer. Second, for Figure 1, if plotting the radiative kernel for
individual GCMs, is there a large spread like the CERES-based estimates? This is a great
question and we agree that the spread in GCMs should be made more visible. We have revised
Figure 1 such that is now shows the spread (taken as 1 standard deviation) in latitudinal means
across the four GCMs. Third, are the author’s conclusions model-dependent? Because the BO18
kernel is trained using the multi-GCM mean as the reference, it is not surprising that it has better
performance than other CERES kernels. This is a fair comment and valid concern. To check
this, we re-ran the machine learning algorithm twice, first using a random sample of the CAM5
kernel (as the dependent) with its own boundary fluxes (as independents), the second time using
a random sample of the ECHAMG6 kernel with its own boundary fluxes as input (note: these
were the only two kernels for which the boundary fluxes used to derive them were also available
to us). The BO18 model emerged as the best solution (i.e., model form) common to the two
independent machine learning analyses. Because the BO18 model was then applied using
CERES EBAF inputs and subsequently compared to a multi-GCM mean that included the two
additional GCM kernels (i.e., GFDL and CAM3) that were not part of the model training
exercise, we feel confident that the BO18 model is robust and insensitive to the GCM kernels
used for training. However, if using a single GCM (or including other GCMs, like HaddGEM2
radiative kernels, Smith 2018) as the benchmarks, will QHO6 or ANISO still be better than other
kernel models? Yes, we indeed found this to be the case — that whether benchmarking to multi-
GCM means or to specific GCMs, the CERES kernel performance ranking remained unchanged
(excluding the QHO6 kernel for the reason provided in revised Section 5b). The authors may



need more analysis and discussion about the model dependency. We have added a section in the
Discussion regarding BO18’s model (in)dependency.

2. One of the motivations of this study is “atmospheric state variables used as model input are
limited to single years, thus being sensitive to anomalous weather conditions that may have
occurred in those years”. Can you explain more about this? As the authors mentioned in 1278,
they are comparing the multi-year CERES kernel to a single-year GCM kernel. I assume the
GCM simulations are only one-year long? The authors may need to provide more description
and discussion about these GCM simulations. The GCM simulations from which the kernels are
derived are indeed carried out for a period of one year. However, when going back to double
check this, we discovered that we had mistook this for the temporal signature and duration of the
prescribed atmospheric background state, which for three of the four GCM kernels does extend
beyond a single year. We now include a new table (Table 1) that summarizes this and other
differences between the GCMs used to derive the GCM kernels and delete the incorrect
statement quoted above. If the simulates are for a specific year (which year?), or a climatological
run, are they comparable to the CERES-based kernel models which are for the period 2001-2016.
No GCM kernel is comparable to the 2001-2016 CERES kernel; background climatologies of
ECHAMO6, CAM3, and GFDL kernels span several years (or decades) but all pre-date the
CERES EBAF era. CAM5’s background does fall within the CERES era but is based on a single
year only. These discrepancies are why we chose to compare to the mean of all four kernels in
our initial performance screening. We chose not to compare the CAMS5 kernel to a CERES
kernel based on the same background year because the atmospheric state information underlying
CAMS5 is not based on CERES EBAF (i.e., it would still not be possible to attribute disagreement
to differences in the representation of shortwave radiative transfer). This is why we chose
instead to emulate CAMS5 with the BO18 parameterization run with CAM5’s own boundary
fluxes. Additionally, I am curious about the inter-annual variability of the multi-year

CERES kernels. The interannual variability of a kernel based on CERES can now be inferred
from the results of our second application example (Figure 7 C, southern Amazonian
deforestation).

3. This study is started with the “need within LULCC science community for simple and
transparent tools for predicting radiative forcings from surface albedo changes”. Is it possible to
provide a simple example of how to apply CACK v1.0 to the LULCC studies? This is a fair
request and have thus invested notable effort into demonstrating how both a climatological
CACK and a temporally-explicit CACK may be applied to estimate radiative forcings in LULCC
studies (New Sections 4 d & e, 5 d & e, and new Figures 6 & 7).

Specific comments:

1. The organization of section 2 and section 3 is a little confusing. The title of section 2 is
“Review of existing approaches”, but most of the kernels described in section 3 are also “existing
approaches”, aren’t they? We fully agree and have carried out a major re-organization of the
manuscript. We are confident that the new manuscript structure is more intuitive and easier to
follow and digest.

2. 140, What do you mean by “offline”’? Run land surface model offline? Here we mean that
GCMs are not practical to apply for estimating albedo change RFs for single locations, and that
other modeling approaches have been applied for this purpose involving stand-alone radiative
transfer modeling in which the surface and atmosphere are not coupled. I also can’t find the
paper (Randerson et al. 2000) in the reference. Thank you for pointing out this missing reference
which has now been added.



3.L151, Eq. (3) and Eq. (4), are __s and __ the same thing? If yes, it would be better to keep the
consistency. Yes, these are the same and have been corrected (thanks).

4. 1.247, Which part (or period) of data is used for model training, and which part is used for
prediction? Model training and prediction datasets are based on a random sampling in both time
and space (200,000 grid cells in each). This detail has been added to (new) Section 3 d).

5. 1.263, It should be “e. Initial screening of candidate models for a CERES-based kernel”.
Corrected.

6. 409, They are mean absolute bias, not RMSD. Corrected.

7. 1L441-444, Can the authors explain more about how the land-based solar radiation
management is an example of the CACK’s flexibility? This was a poorly constructed sentence
which has been deleted in the revision.

Reference:
Smith, Christopher J. (2018) HadGEM2 radiative kernels. University of Leeds.
[Dataset] https://doi.org/10.5518/406

Reponses to Anonymous Referee #2

General comments

The manuscript presented by Bright and O’Halloran suggests the use of a new kernel
(CACKv1.0) to derive radiative forcing at the top of the atmosphere from surface albedo
changes. This kernel is derived by applying a machine learning technique to identify a formula
which can best reproduce the results from kernels derived from Global Circulation Models, once
it is applied to CERES satellite-derived data. The authors argue that compared to GCM-derived
kernels, this new formula would 1) enable a more transparent derivation of radiative forcing from
surface albedo changes, and 2) rely on data from several years. Their analysis shows that the new
formula performs better at mimicking the results from GCM-derived kernels compared to
previously suggested formulations. They suggest the use of their results by the scientists studying
the impacts of land-use and land-cover changes (LULCC) on climate to improve their
calculations of radiative forcing from surface albedo changes.

Having an easily applicable kernel that reproduces the results from GCMs can indeed be useful
for the LULCC community, and in that sense the authors’ initiative is welcome and scientifically
significant. Having said that, there are a couple of issues with the authors’ approach, while the
methodology could be better described to ensure reproducibility of the results. Overall,
substantial work also needs to be done on the writing to improve understandability of the
manuscript. These issues are not insurmountable, but I recommend that they are addressed
before the manuscript is accepted.

We thank Anonymous Referee #2 for his/her constructive feedback. To address his/her major
concerns, we have carried out a major re-structuring of the paper that we now believe is easier to
follow and more intuitive to digest. This includes more attention to CACK’s uncertainties as well
as the uncertainties between GCM kernels, and we now include uncertainty estimates for CACK
in effort to make CACK v1.0 a more attractive and complete dataset. Lastly, we have also



invested notable effort to improve the description of our methods to better-ensure
reproducibility of results.

- Specific comments

The real added value of CACK compared to previously suggested simple formulations can only
be assessed in light of the uncertainties between GCM kernels. These thus need to be included at
least in Figure 1 and discussed in the manuscript, so that the readers can assess for themselves
how much of a difference using CACK rather than a simple isotropic kernel (for example) makes.
This is a fair comment. We have added additional text describing major sources of uncertainty in
GCM-based kernels (new Section 2.a), a new table (new Table 1) highlighting the major
differences between them, and a new Figure 1 that now shows the spread among the four GCM
kernels we employed (expressed in terms of the seasonal and latitude band mean standard
deviations). The authors also mention that the GCM-derived kernels are based on single years
of forcing data. This renders them uncertain and thus less appropriate as a benchmark, therefore
the authors choose to use the multi-GCM mean kernel as a reference to partly alleviate the lack
of consideration of interannual variability when they were derived. This seems reasonable but
only

partly alleviates the issue. In addition to being explicitly shown and discussed, the uncertainties
about GCM-derived kernels (both related to model spread and interannual variability) need to be
acknowledged in the Discussion. Even in the current state, more conclusions could be drawn
from Figure 1 by describing for example which kernels perform worst against the GCM-derived
ones and potentially advancing reasons why this is the case. We believe the revised Figure 1
sufficiently demonstrates the performance of all CERES kernel candidates in light of
discrepancies among the GCM kernels themselves.

The methodology should be more detailed to be able to understand how Equation 16 is derived.
Which optimal structures and coefficients are considered during the symbolic regression? What
should make the reader think that this approach doesn’t miss potentially relevant formulas? And
which “boundary fluxes (or system parameters derived from these fluxes) that minimized the
sum of squared residuals. . .” were considered? This information should at least be provided in
the Supplementary Material. This is a fair comment and have thus provided more detail
surrounding Eq. (16) (now Eq. (17)) in (new) Section 2.d, including what fluxes were included
and what constraints were applied, as well as providing other detail in a new section of the
Supporting Information. In the Supporting Information we provide examples of alternate model
structures obtained from the machine learning exercise, their performance metrics, and the
criteria we applied in the model selection process.

It is also not so clear from the current manuscript why certain choices were made regarding the
GCM and kernel selections. Why are four GCM kernels included in the study, are these the only
ones available? Correct, these are the only four GCM kernels available at the time the study
commenced. We add this rationale to the main text (new Section 2 a). Is there some information
existing on the quality of these kernels that guided the selection? Could the authors justify why
they “emulated” the kernels of just two GCMs in a second step? Only ECHAMG6 and CAM5
kernels were used in the emulation exercise because these were the only two kernels for which
the boundary fluxes were also provided (which were needed for the machine learning-based
model selection and for kernel emulation). We add this justification to (new) Section 3 b. It
seems like only the 3 kernels performing best against the GCM-derived ones were retained for
further analysis, but this is also not explicitly mentioned. We have added a sentence at the end of



(new) Section 4 a explicitly stating why only these three kernels were retained for further analysis
(i.e., they were the top performers of the initial CERES candidate model evaluation exercise).

The structure of the manuscript could be improved to facilitate understandability. For example,
why not mentioning the isotropic and anisotropic kernels, as well as the kernel from Qu and Hall
in Section 2 already. Currently, at first it may read like they have been derived by the authors. The
names of the studies that introduced other types of statistical kernels could also be added in the
subsection titles to help the reader follow. We agree that our manuscript needed a more logical
organization to facilitate improved readability. We believe the new organization leaves the reader
with zero doubt about the origin of the CERES model candidates we consider in the paper.

The description of the CERES dataset also seems misplaced in Section 2. Additionally, in some
occurrences the subsection numbering is wrong and the placeholders for Figures or Tables
misplaced. We agree and have re-structured the manuscript accordingly such that description of
the CERES EBAF v4 products is now provided up front in the Introduction. We have checked
and updated all section/table/figure numbering.

Last but not least, the CACK dataset is only mentioned in the conclusion, although from the title
it sounds like an important output of the study. If this is the case, it would need to be introduced
in the abstract and the introduction of the manuscript. But ultimately, one may wonder whether
describing CACK as a dataset is appropriate. Could the authors maybe develop on what makes it
more than just applying Eq. 16 to CERES data, for example in terms of pre-processing or
perspectives for updates, etc.? We agree that the value of CACK v1.0 packaged as a dataset (i.e.,
more than just Eq. (17) applied to CERES data) ought to be highlighted and clearly showcased.
We have therefore invested considerable effort into describing and quantifying the various
sources of uncertainty of CACK and include these as part of a more comprehensive CACK v1.0
data product. We believe this addition strengthens the credibility of CACK v1.0 as a data
product and as a viable tool for the advancement of a verification framework for biogeophysical
climate forcings on land.

- Technical comments

1. 68: “An additional downside is the that”. Check typo Corrected typo.

1. 157: to facilitate understandability it could be good to repeat the downsides of GCMderived
kernels here We agree and include this as part of (new) Section 2 a.

1. 425: “course” should read “coarse” Corrected.

1. 704-705: can the authors make clearer what is meant by “100X100 sample grid”’? Clarified.
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from satellite climatologies of Earth’s shortwave radiation budget: CACK v1.0
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Abstract
Due to the potential for land use / land cover change (LULCC) to alter surface albedo, there is

need within the LULCC science community for simple and transparent tools for predicting
radiative forcings (AF ) from surface albedo changes (Ac, ). To that end, the radiative kernel

technique — developed by the climate modeling community to diagnose internal feedbacks

within general circulation models (GCMs) — has been adopted by the LULCC science
community as a tool to perform offline AF calculations for-Aca,. However, the codes and

data behind the GCM Kkernels are not readily transparent, and the climatologies of the

atmospheric state variables used to derive them GEM-vary widely both in time period and

duration.

Observation-based kernels founded-ontonger-

o-offer an attractive alternative to GCM-based
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kernels and could be updated annually at relatively low costs. Here, we present a radiative

kernel for surface albedo change we-evaluatefounded on simplified-medelsa novel, simplified

parameterization -of shortwave radiative transfer -as—candidatesforan-albedechanse kernel

founded-endriven with inputs from-the the Clouds and the Earth’s Radiant Energy System

(CERES) Energy Balance and Filled (EBAF) products. When based on a 16-year climatology

(2001-2016), we find that the CERES albedo change kernel — or CACK — Wefind-thatanew;

benehmarked—tagrees remarkably well with e-the mean kernel of four GCM-s (rRMSE =

14%)kernels. When the novel parameterization underlying CACK is applied to emulate two

of the GCM kernels using their own boundary fluxes as input, we find even greater agreement

(mean rRMSE = 7.4%), suggesting that this simple and transparent parameterization

represents a credible candidate for a satellite-based alternative to GCM kernels-and—to—twe

apphication—in—tand-climate——studies._ We document and compute the various sources of

uncertainty underlying CACK and include them as part of a more extensive dataset (CACK

v1.0) while providing examples showcasing its application.

Keywords: GCM, radiative forcing, land use change, land cover change, LULCC

1. Introduction

Diagnosing changes to the shortwave radiation balance at the top-of-the-atmosphere (TOA)
resulting from changes to albedo at the surface (Ac,) is an important step in predicting
climate change. However, outside the climate science community, many researchers do not
have the tools to convert A« to the climate-relevant AF measure (Bright, 2015;Jones et al.,
2015), which requires a detailed representation of the atmospheric constituents that absorb or

2
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scatter solar radiation (e.g. cloud, aerosols, and gases) and a sophisticated radiative transfer
code. For single points in space or for small regions, these calculations are typically
performed offline — meaning without feedbacks to the atmosphere (e.g., (Randerson—et-ak
2006(Randerson et al., 2006))). Large-scale investigations (e.g. Amazonian or pan-boreal
LULCC (Dickinson and Henderson-Sellers, 1988;Bonan et al., 1992)) typically prescribe the
land surface layer in a GCM with initial and perturbed states, allowing the radiative transfer
code to interact with the rest of the model. While this has the benefit of allowing interaction
and feedbacks between surface albedo and scattering or absorbing components of the model,
such an approach is computationally expensive and thereby restricts the number of LULCC
scenarios that can be investigated (Atwood et al., 2016). Consequently, this method does not
meet the needs of some modern LULCC studies which may require millions of individual
land cover transitions to be evaluated cost effectively (Lutz and Howarth, 2015;Ghimire et al.,

2014).

Within the LULCC science community, two methods have primarily met the need for
efficient AF calculations from Ag,: simplified parameterizations of atmospheric transfer of

shortwave radiation (Bright and Kvalevag, 2013;Cherubini et al., 2012;Bozzi et al.,
2015;Mufioz et al., 2010;Caiazzo et al., 2014;Carrer et al., 2018), and radiative kernels
(Ghimire et al., 2014;0'Halloran et al., 2012;Vanderhoof et al., 2013) derived from
sophisticated radiative transfer schemes embedded in GCMs (Soden et al., 2008;Shell et al.,
2008;Pendergrass et al., 2018;Block and Mauritsen, 2014). Simplified parameterizations of
the LULCC science community have not been evaluated comprehensively in space and time.
Bright & Kvalevédg (2013) evaluated the shortwave AF parameterization of Cherubini et al.

(2012) when applied at several sites—distributed—globally distributed sites on land, finding
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inconsistencies in performance at individual sites despite good overall cross-site performance.
Radiative kernels (Soden et al., 2008;Shell et al., 2008;Pendergrass et al., 2018;Block and
Mauritsen, 2014) — while being based on state-of-the-art models of radiative transfer — have
the downside of being model-dependent and not readily transparent. While the radiative
transfer codes behind them are well-documented, the scattering components (i.e. aerosols,
gases, and clouds) affecting transmission have many simplifying parameterizations, vary
widely across models, and may contain significant biases (Dolinar et al., 2015;Wang and Su,

2013). An additional downside is the-that the atmospheric state climatologies used to

compute the GCM Kkernels vary widely in their time periods (i.e., from pre-industrial to the

year 2007) and extentsdurations (from 1 to 1,000 yrs). wariables—used-as—modelinput-are

oceurred-in-these—years—Further—tThe application of a state-dependent GCM kernel that is

outdated may be undesirable in regions undergoing rapid changes in cloud cover or aerosol
optical depth, such as in the northwest United States (Free and Sun, 2014) and in southern and

eastern Asia (Zhao et al., 2018;Srivastava, 2017), respectively. An albedo change -kernel

based on Earth-orbiting satellite products remetely-sensed-ebservations—could be updated

annually to capture changes in atmospheric state at relatively low costs.

The NASA Clouds and the Earth’s Radiant Energy System (CERES) Energy Balance and

Filled (EBAF) products (CERES Science Team, 2018a, b). which are based largely on

satellite optical remote sensing, provide the monthly mean boundary fluxes and other

atmospheric state information (e.g.. cloud area fraction, cloud optical depth) that could be

used to develop a more empirically-based alternative to the GCM-based kernels. The latest

EBAF-TOA Ed4.0 (version 4.0) products have many improvements with respect to the

previous version (version 2.8. Loeb et al. 2009). including the use of advanced and more
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consistent input data, retrieval of cloud properties, and instrument calibration (Kato et al.,

2018;Loeb et al., 2017).

Here, we present an albedo change kernel based on the CERES EBAF v4 products — or

CACK. Underlying CACK is a simplified model of shortwave radiative transfer through a

one-layer atmosphere. The model form (or parameterization) is selected after a two-stage

performance evaluation of six model candidates: two analytical, one semi-empirical, and

three empirical. An initial performance screening is implemented where all six model

candidates are driven with a 16-year climatology (January 2001 — December 2016) of

monthly all-sky boundary fluxes from CERES, with the resulting kernels benchmarked both

ualitatively and quantitatively against the mean of four GCM-based kernels (Shell et al.

2008:Soden et al., 2008:Pendergrass et al., 2018:Block and Mauritsen, 2014). Top model

candidates from the initial performance screening are then subjected to an additional

performance evaluation where they are applied to emulate two GCM kernels using their own

boundary fluxes as input, which eliminates possible biases related to differences in the GCM

representation of clouds or other atmosphere state variables.

We start in Section 2 by providing a brief overview of existing approaches applied in LULCC

climate studies for estimating AF from Ada. We then present the six model candidates in

Section 3. Section 4 describes the model evaluation and uncertainty quantification methods,

in addition to two application examples. Results are presented in Section 5, while Section 6

discusses the merits and uncertainties of a CERES-based kernel relative to GCM-based

kernels.
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2 Review of existing approaches

a-Shortwave AF-from-Ae

Earth’s energy balance (at TOA) in an equilibrium state can be written:

0=F = LVVTTOA _(SW¢T0A _SVVTTOA)

1)
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where the equilibrium flux F is a balance between the net solar energy inputs ( SW,"** — Sw;*

) and thermal energy output ( LWTTO" ). Perturbing this balance results in a radiative forcing

AF, while perturbing the shortwave component is referred to as a shortwave radiative forcing

and may be written as:

SMTOA SVVTTDA
AF = A(SI/VlTOA _SVVTTOA) — ASWLTOA [I_W —SVVfOA AW )
{ {

where the shortwave radiative forcing results either from changes to solar energy inputs (

T04

. . o SW,
ASW**) or from internal perturbations- within the Earth system ( AWTTDA ). _The latter can
—_— 1

be brought about by changes to the reflective properties of Earth’s surface-and/eratmesphere

which is the focus #of this paper.

a. GCM-based radiative kernels

The radiative kernel technique was developed as a way to assess various climate feedbacks

from climate change simulations across multiple climate models in a computationally efficient

manner (Shell et al., 2008;Soden et al., 2008). A radiative kernel is defined as the differential

response of an outgoing radiation flux at TOA to an incremental change in some climate state

variable -- such as water vapor, air temperature, or surface albedo (Soden et al., 2008). To

generate a radiative kernel for a change in surface albedo with a GCM, the prescribed surface

albedo change is perturbed incrementally by 1%, and the response by the outgoing shortwave

radiation flux at TOA is recorded:

T04

w,
ASW = SWI (a, + Aa,)) = SW % (ar,) = a—TAaS =K, Aa, (3)
a !
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where S, is the outgoing shortwave flux at TOA and K, is the radiative kernel (in Wi
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where K—is the radiative kernel-(in- W) The albedo-change kernel-can then-then be used
with Eq. (1) to estimate an instantaneous shortwave radiative forcing (AF ) at TOA:

F+AF = LW/ —(SW[™ - SW[* + K, Aa)

4
AF =—K”sAaS @

To the best of our knowledge, four albedo change kernels have been developed based on the

following GCMs: the Community Atmosphere Model version 3, or CAM3 (Shell et al.

2008), the Community Atmosphere Model version 5, or CAMS5 (Pendergrass et al., 2018). the

European Center and Hamburg model version 6, or ECHAMG6 (Block and Mauritsen, 2014),

and the Geophysical Fluid Dynamics Laboratory model version AM2p12b, or GFDL (Soden

10
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et al., 2008). These four GCM kernels vary in their vertical and horizontal resolutions, their

parameterizations of shortwave radiative transfer, and their prescribed atmospheric state

climatologies.

et-al5—2048)These differences are summarized in Table 1. Apart from differences in their

prescribed atmospheric background states and radiative transfer schemes, a major source of

uncertainty in GCM-based kernels is related to the GCM representation of atmospheric liquid

water/ice associated with convective clouds; of the four aforementioned GCMs, only CAMS5

and GFDL attempt to model the effects of convective core ice and liquid in their radiation

calculations (Li et al., 2013).

<Table 1 >

b. Single-layer atmosphere models of shortwave radiation transfer

Within the atmospheric science community, various simplified analytical or semi-empirical

modeling frameworks have been developed, either to diagnose effective surface and

atmospheric _optical properties from climate model outputs, or to study the relative

contributions of changes to these properties on shortwave flux changes at the top and bottom

of the atmosphere (Rasool and Schneider, 1971;Winton, 2005;Winton, 2006;Taylor et al.

2007:Donohoe and Battisti, 2011:Atwood et al., 2016;Kashimura et al., 2017;:Qu and Hall

2006). While these frameworks all treat the atmosphere as a single layer, they differ by

whether or not the reflection and transmission properties of this layer are assumed to have a

directional dependency (Stephens et al., 2015) and by whether or not inputs other than those

derived from the boundary fluxes are required (e.g. cloud properties; (Qu and Hall, 2006)).

Winton (2005) presented a semi-empirical four-parameter optical model to account for the

directional dependency of up- and downwelling shortwave fluxes through the one-layer

11
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275
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277

278

279

280

atmosphere and found good agreement (rRMSE < 2% globally) when benchmarked to online

radiative transfer calculations. Also considering a directional dependency of the atmospheric

optical properties, Taylor et al. (2007) presented a two-parameter analytical model where

atmospheric absorption was assumed to occur at a level above atmospheric reflection. The

analytical model of Donohoe and Battisti (2011) subsequently relaxed the directional

dependency assumption and found the atmospheric attenuation of the surface albedo

contribution to planetary albedo to be 8% higher than the model of Taylor et al. (2007).

Elsewhere, Qu & Hall (2006) developed an analytical framework making use of additional

atmospheric properties such as cloud cover fraction, cloud optical thickness, and the clear-sky

planetary albedo, which proved highly accurate when model estimates of planetary albedo

were evaluated against climate models and satellite-based datasets.
ec. Simple kerrnel-empirical parameterizations of the LULCC science community
Two simphified-simple empirical parameterizations of shortwave radiative transfer have been

widely applied within the LULCC science community for estimating AF' from A, (Mufioz

et al.,, 2010;Lutz et al., 2015;Bozzi et al., 2015;Caiazzo et al., 2014;Cherubini et al.,

2012;Carrer et al., 2018). While these parameterizations are also based on a single-layer

atmosphere model of shortwave radiative transfer, Aat the core of these parameterizations is

the fundamental assumption that radiative transfer is wholly independent of (or unaffected by)

Aa, . In other words, they neglect the change in the attenuating effect of multiple reflections

between the surface and the atmosphere that accompanies a_change to the surface albedo

change. Nevertheless, due to their simplicity and ease of application they continue to be

widely employed in climate research.

12
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3. MethodsKernel model candidates
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The six candidate models (or parameterizations) for a CERES-based albedo change kernel

(CACK) are presented henceforth. All requisite variables and their derivatives may be

obtained directly from the CERES EBAF v4 products (at monthly and 1° x 1° resolution) and

are presented in Table 2. To improve readability, temporal and spatial indexing is neglected

and all terms presented henceforth in Section 3 denote the monthly pixel means.

<Table 2 >

a. €ERES isotropic-Analytical kernels

The first kernel candidate may be analytically-derived from the CERES EBAF all-sky

boundary fluxes and their derivatives. The surface contribution to the outgoing shortwave

flux at TOA Sw,/%4  is-givencan be expressed -(Stephens et al., 2015;Donohoe and Battisti,

T.8FC

2011;Winton, 2005) as:

l—pe 2
SpToA =SWLTOA01( r a) (li)

TsFC s (l—raS)
where 7 is a single pass atmospheric reflection coefficient, a is a single pass atmospheric
absorption coefficient, SW/* is the extraterrestrial (downwelling) shortwave flux at TOA,

and ¢, is the surface albedo (defined in Table +2). The expression in the denominator of the

righthand term represents a fraction attenuated by multiple reflections between the surface

and the atmosphere. This model assumes that the atmospheric optical properties » and a are

14
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334

335

336

337

338

339

340

341

insensitive to the origin and direction of shortwave fluxes — or in other words — that they are

isotropic.

The single-pass reflectance coefficient is calculated from the system boundary fluxes (Table

12) following Winton (2005) and Kashimura et al. (2017):

SW oA T4 _ Sy SFC Sy SFC
y T ¥ i)
SWJ{TOA 2 _ SMSFC 2

r=

(86)
while the single-pass absorption coefficient « is given as:

a=1-r-T(1-a,r)

C0)

where T is the clearness index defined-in(defined in -Table +2). Our interest is in quantifying

the Sw,2". response to an albedo perturbation at the surface — or the partial derivative of

Swro4  with respect to a in Eq. (75):

T.SFC

osw, ! SwW'(1-r—-ay
L Aa, =K Aq =t ( - ) :
Oa, o (I-ra,)
(+03)
where K f" is referred to henceforth as the CERES-ilsotropic kernel.

The second analytical kernel is based on the model of Qu and Hall (2006) which makes use of

auxiliary cloud property information commonly provided in satellite-based products of

Earth’s radiation budget — including CERES EBAF — such as cloud cover area fraction, cloud

visible optical depth, and clear-sky planetary albedo. This model links all-sky and clear-sky

15
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effective atmospheric transmissivities of the earth system through a linear coefficient &

relating the logarithm of cloud visible optical depth to the effective all-sky atmospheric

transmissivity:

k= (T;,CLR ) - (Ta) ©) Field Code Changed
In(7 +1)

where T, s the clear-sky effective system transmissivity, T, is the all-sky effective system Field Code Changed

— ~—{Field Code Changed

transmissivity, and 7 is the cloud visible optical depth. This linear coefficient can then be /[Field Code Changed
o

used together with the cloud cover area fraction to derive a shortwave kernel based on the

model of Qu and Hall (2006) — or KGQSH%; /{ Field Code Changed
aswrod Field Code Changed
a—T Ao, = K" Aa, =SW[(T,) - keIn(r +1)] A, (10

o s

s

where c is the cloud cover area fraction.

b. CERES anisotropie-Semi-empirical kernel
The seeend-third kernel makes use of three directionally-dependent (anisotropic) bulk optical

properties  r, #;, and 7, where the first is the atmospheric reflectivity to upwelling

shortwave radiation and the latter two are the atmospheric transmission coefficients for
upwelling and downwelling shortwave radiation, respectively (Winton, 2005). It is not

possible to derive 7; analytically from the €ERES-all-sky boundary fluxes; however, Winton
(2005) provides an empirical formula relating upwelling reflectivity 7, to the ratio of all-sky

to clear-sky fluxes incident at surface:

WSFC
A =o.05+0.85{1——*] (1)

16



361  where SWC is the clear-sky shortwave flux incident at the surface.

362  Knowing r,, we can then solve for the two remaining optical parameters needed to derive

363  obtain our kernel:

B SWLSFC —}’TSVVTSFC

364 t SWfOA

365 (1112)

366, =T,—[t,—1,(1-ra,)]

367 (4213)
368  where T, is the effective atmospheric transmittance (Table +2) of the earth system.

369  The anisotropie-kernel - KV eanmay now be derived-expressed as:

oS SWt t
370 ——Aa, =KAo, =——T Ag,
oa, . (I-na,)
371 (1314)

372 where K" is henceforth referred to as the Anisotropic kernel.

373 ¢ €ERES-aExisting empirical parameterizationswxitiary-input-fernet
374  Although not referred to as “kernels” in the literature per se, we present themthe simple

375  empirical parameterizations_as such to ensure consistency imwith previously described

376  notation and terminology—heneceforth. These—are—subsequently—included —in—the kernel

377  evaluationexereise presentedinSeetion4:

378

379
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400

(2010), makes use of a local two-way transmittance factor based on the local clearness index

e

aSVVTTOA
oa

s

Aa, =KAo, = SW"T*Aa,

(15)

where SWJOA is the local incoming solar flux at TOA, T is the local clearness index, and

asw,** [oa, _is the approximated change in the upwelling shortwave flux at TOA due -to a

change in albede-atthe surface albedo.

The second simplified-kernelcandidate parameterization, originally proposed in Cherubini et

al. (2012). makes direct use of the solar flux incident at the surface SW_combined with a

one-way transmission constant k:

6SVVTTOA
oa

s

Aa, =K. Aa, =SW  kAa, (16)

where £ is based on the global annual mean share of surface reflected shortwave radiation

exiting a clear-sky (Lacis and Hansen, 1974:Lenton and Vaughan, 2009) and is hence

temporally and spatially invariant. This value — or 0.85 -- is similar to the global mean ratio

of forward-to-total shortwave scattering reported in Igbal (1983). Bright & Kvalevig (2013

evaluated Eq. (16) at several global locations and found large biases for some regions and

months, despite good overall performance globally (nermalizedrRMSE = 7%; n = 120

months).-
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d. CERES statistical-kernelNovel empirical parameterization

To determine whether the GCM-based kernels could be approximated with sufficient fidelity
using even-other simpler model formulations based on the-CEREStheir own boundary data,

we applied machine learning to identify potential model forms using GCM boundary fluxes as

input. For the two GCMs kernels in which the GCM’s own boundary fluxes are also made

available (CAMS and ECHAMO6). we used machine learning to-the-CERESEBAF -all-sky

at minimized the sum of

squared residuals between menthly-meansthe four shortwave boundary fluxes and the GCM

kernel at the monthly time step.effour—GEM-basedkernels—{deseribedbelow)-and-model
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K%' and is given asBas

estimates: The reference dataset consisted of a random global sample of 56200,000 (~50%)

2:8°x2-8%grid cells_at native model resolution (97% and 32% of all cells for ECHAMG6 and

CAMS, respectively) sHromthe-mutti-GMECmean—of which 50% were used for training and
50% for validation. Models were identified using a form of genetic programming known as
symbolic regression (Eureqa®; Nutonian Inc.; (Schmidt and Lipson, 2009, 2010)) which

searches a wide space of fer-beth-eptimal-model structures as constrained by user input-ane

coefficients.  In our case, we allowed the model to include the operators (i.e., addition

subtraction, multiplication, division, sine, cosine, tangent, exponential

natural logarithm

factorial, power, square root), but numerical coefficients were forbidden. The model search

was allowed to continue until the percent convergence and maturity metrics exceeded 98%

and 50%, respectively, at which point more than 1 x 10'! formulae had been evaluated. A

parsimonious solution was chosen by minimizing the error metric and model complexity

using the Pareto front (Figure S1 of Supporting Information) (Smits and Kotanchek, 2005).

Between CAMS and ECHAMS6, four common model solutions were found (Table S1 of

Supporting Information). The best of these common solutions is subsequently referred to as

/{ Field Code Changed

asw!
a—TAas :KfmxA% _ SMSFCﬁAaS
a, ’
(F617)
PO spi 4. Kernel model evaluation

s
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a. Initial candidate screening

The four GCM kernels presented in Section 2.b are employed as benchmarks to initially

screen the six simple model candidates. We compute a skill metric analogous to the “relative

error” metric used to evaluate GCMs by Anav et al. (2013) that takes into account error in the
spatial pattern between a model and an observation. Because we have no true observational
reference, our evaluation instead focuses on the disagreement or deviation between CERES
and GCM kernels at the monthly time step. Given interannual climate variability in the earth
system, the challenge of comparing the multi-year CERES kernel to a single-year GCM

kernel can be partially overcome by averaging the four GCM kernels.

Using the multi-GCM mean as the reference, we first compute the absolute deviation 4D;; »

as:
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AD;F = CERES;F -GCM »,p
(1718)
where CERES;:{ , is the kernel for CERES model candidate #-x in month m and pixel p and

GCM ..., is the multi-GCM mean of the same pixel and month. AD,’; , is then normalized to

the maximum absolute deviation of all six CERES kernels for the same pixel and month to

obtain a normalized absolute deviation, NAD; ,» which is analogous to the “relative error”

metric of Anav et al. (2013) with-having values ranging between 0 and 1:

AD;
max(4D, )

m,p

NAD) =1

(1219)
where max(4D,, ,) is the maximum absolute deviation of all six CERES kernels at pixel p

and month m.

CERES kernel ranking is based on the mean relative absolute deviation in both space and time

—or WADX :
M P
Nap* =L LS napr
M m=1 p=1 ’
(#920)

where M is the total number of months (i.e., 12) and P is the total number of grid cells.

eb. GCM kernel emulation
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In order to eliminate any bias related to differences in the atmospheric state embedded in the

GCM and—CERES-derived—kernels__input climatologies, we re-compute—our—simple

kernelsemulate them by applying the candidate models (or parameterizations) using the

original GCM boundary fluxes as input. Emulation is only done for two of GCM-based

kernels since only two of them have provided the accompanying same-shertwave-beundary

boundary fluxes

needed to do so: -en ECHAMG6 (Block and Mauritsen, 2014) and CAMS (Pendergrass et al.,
2018). TFhis-Emulation enables a more critical evaluation of the functional form of the
candidatesimple models in relation to the more sophisticated radiative transfer schemes

employed by ECHAMG (Stevens et al., 2013) and CAMS (Hurrell et al., 2013).

¢. CACK model uncertainty

Following emulation, monthly GCM kernels are then regressed on the monthly kernels

emulated with the leading model candidates. The model that best emulates both GCM kernels

— as measured in terms of the mean coefficient of determination (R?) and mean RMSE — is

chosen to represent CACK.

Three sources of uncertainty are considered for CACK when based on the CERES boundary

flux climatology (i.e., 2001-2016 monthly means): 1) phvsical variability 2) data uncertainty;

and 3) model error (Mahadevan and Sarkar, 2009).{} The first is related to the interannual

variability of Earth’s atmospheric state and boundary radiative fluxes. The second is related

to the uncertainty of the CERES EBAF v4 variables used as input to CACK (including

measurement error). The third source of uncertainty is the error related to CACK’s model

form. CACK’s combined uncertainty for any given pixel and month is estimated as follows,

where if CACK or y _is some non-linear function of the CERES boundary inputs x,_and x,

— ey —

Field Code Changed

e

Field Code Changed

Y

Field Code Changed

that co-vary in time and space, then the combined uncertainty of y — or o(y)_— may be /{Field Code Changed
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a(y)zam(wa[gy] [ow(xl)ww(xl)]ﬁ[@] [0 () + 0 ()] + [26—yaﬂom,x2)] _@Dh
X, X

expressed as the sum of the model error plus the combined physical variability and data

uncertainty associated with x, _and x, summed in quadrature (Clifford, 1973;Breipohl, Field Code Changed

—_— —_— ~{ Field Code Changed

1970;Green et al., 2017):

Field Code Changed

0Ox,

o,y (x,) are the absolute uncertainties of CERES input variables x, and x,, respectively, for

where Oy (x,) and Oy (x,) _are the standard deviations of the 16-yr. climatological record of /{F'eh’ Code Changed
| Field Code Changed

CERES input variables X and X respectively, for a given grid cell and month Opy (x,) and /{F"ﬂd Code Changed

| Field Code Changed
\[ Field Code Changed

/{ Field Code Changed

Field Code Changed

a given grid cell and month, o(x,,x,) is the covariance within the 16-yr. climatological \Field Code Changed

\[ Field Code Changed

record between CERES input variables x, _and x, for a given month and grid cell, and &, is /{ Field Code Changed

S — p—

\{[ Field Code Changed
the monthly grid cell model error. Model error (o, (y)) and data uncertainties (o, (x,)) /{Field Code Changed
A A Field Code Changed

Field Code Changed

o 0 U 0 JC U L

for any given grid cell and month are based on the relative RMSE (Supporting Information)

and relative uncertainties of CERES boundary terms reported in Kato et al. (2018)_(cf. Table

8. “Monthly gridded, Ocean + Land”) and Loeb et al. (2017)_(cf. Table 8, “All-sky, Terra-

Aqua period”). For the model error, we take the mean relative RMSE of the machine learning

model solutions for ECHAMS and CAMS. For the relative uncertainty of the incoming solar

flux at TOA (SWiTOA ), we use the 1% “calibration uncertainty” reported in Loeb ef al. (2017). /{ Field Code Changed

If CACK’s intended application is to estimate a temporally-explicit AF within the CERES era

(i.e., if temporally-explicit rather than the climatological mean CERES boundary fluxes are

desired to compute CACK), the uncertainty related to physical variability (0, (x,)) can be | Field Code Changed

dropped from Eq. (21).
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d. Climatological CACK example application

To demonstrate CACK’s application when based on monthly CERES EBAF climatology.

including the handling of uncertainty, we estimate the annual mean AF from a Aa scenario | Field Code Changed

associated with hypothetical deforestation in the tropics, where AF for a given month is

estimated as Eq. (4) where K, _is the 2001-2016 monthly climatological CACK and Aq is

y S—— A

the difference in the 2001-2011 monthly climatological mean white-sky surface albedo

between “Croplands” (CRO) and “Evergreen broadleaved forests” (EBF) taken from Gao et

al. (2014)_which is based on International Geosphere-Biosphere Program definitions of land

cover classification.

The monthly climatological albedo look-up maps of Gao et al. (2014) contain their own

uncertainties, which we take as the mean absolute difference between the monthly albedos

reconstructed using their look-up model and the monthly MODIS retrieval record (c.f. Table 3

in Gao et al. (2014)).

The total estimated uncertainty linked to the annual local (i.e., grid cell) instantaneous 4F can

thus be expressed (in W m) as:

K

ag.m

A

S,m

12 K ’ ’
0(AF)=%Z:;|AFM| [G( "“"')J +(6(Aas””)j 22)

/{ Field Code Changed
1[ Field Code Changed

Field Code Ch d

where o(K, ,)/K

ag,m

is the relative grid cell uncertainty of CACK and o(Ae,,)/Aa,,, is

/{ Field Code Changed
|

the relative uncertainty of Ae, in month m defined as:

—

| Field Code Changed

/{ Field Code Changed

o(da,)_ (0@ [o@.)) .
Aa,, Xcro.m X g m

Field Code Changed
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where O'(asgm) is the monthly absolute uncertainty of the climatological mean surface albedo /{ Field Code Changed

(i.e., of the Gao et al. (2014) product).

e. Temporally-explicit CACK application example

Use of a temporally-explicit CACK may be desirable for time-sensitive applications within

the CERES era. This is particularly true for regions experiencing significant changes to the

atmospheric state affecting shortwave radiation transfer. A good example is in southern

Amazonia where tropical deforestation has been linked to changes in cloud cover (Durieux et

al., 2003;Lawrence and Vandecar, 2014;Wright et al., 2017). To exemplify this, we estimate

the annual mean instantaneous AF for CERES grid cells in the region having experienced

significant trends in both surface albedo and cloud area fraction during the 2001-2016 period.

Grid cell trends in surface albedo and cloud area fraction are deemed significant if the slopes

of linear fits obtained from local (i.e., grid cell) ordinary least squares regressions had p-

values < 0.05. We then apply the slope of the surface albedo trend to represent the monthly

mean interannal Ae incurred over the time series together with CACK updated monthly to /{Field Code Ch d

estimate the local annual mean instantaneous AF at each step in the series:

m=12 " .
AF(t)= Z _Kas,m (HAa, 24) / Field Code Changed

m=1
A

where K, (¢)_is the monthly CACK in year ¢ of the time series. AF is then averaged across /{Fiﬂd Code Changed

all grid cells in the sample, with the results then compared to the AF that is computed for the

same grid sample using the time-insensitive CAMS and ECHAMS kernels (i.e.. K, ,, # f(¢)). _| Field Code Changed

Using the slope of the surface albedo trend as the Aer, for all months and years rather than the /{ Field Code Changed

—

actual Ae, (1) (ie. Aa, () =q,,, ~0a,,, ) vilds the same result when averaged over the /{ Field Code Changed
. . ~—{ Field Code Changed

full time period but allows us to isolate the effect of the changing atmospheric state on
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574  calculations of AF. We limit the AF uncertainty estimate to CACK’s uncertainty that includes

575 o, (x,) and o,,(x,) ebut excludes o,y (x,) . | Field Code Changed

< { Field Code Changed

{ Field Code Changed

576  45. Results
577

578  a. Initial performance screening

579

580  Seasonally, differences in latitude band means between the—CERESthe CERES kernel

581  candidates -and the multi-GCM mean kernels are shown in Figure 1.

582
583  <Figure 1 >
584

585  Qualitatively, starting with December-January-February (DJF), K.’ gives the best
586  agreement with KiTM with the exception of the zone around 55 — 65°S (-55 — -65°), where
587 K2"*gives slightly better agreement (Fig. 1A). In March-April-May (MAM), K;°"* appears

588  to give the best overall agreement with the exception of the high Arctic, where and

ANISO
Ka
s

589 K" give better agreement, and with the exception of the zone around 60 — 65°S (-60 — -65°)

500  where K2, K", and K"agree best with kK¢ (Fig. 1B). The largest spread in

591  disagreement across all six CERES kernels is found in June-July-August (JJA4; Fig. 1_C) at

592  northern high latitudes. K jo'sapp%?sa])pcal's to agree best both here and elsewhere with the
593  exception of the zone between ~20 — 35°N, where Kgﬂ% gives slightly better agreement.
594 In September-October-November (SON), K;°'"* agrees best with K5 at all latitudes except

595  the zone between 10 — 25°N and 55 — 65°S where Kﬁ”m’ agrees slightly better.
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Quantitatively, the proportion of the total variance explained by linear regressions of monthly

Krfﬁ on monthly KEERES (i.e., “R?”) is highest and equal for the CERES kernels based on the

ANISO, QHO06, and BO18 models (Fig. 2 B, C, & D). Of these three, K2"*has a y-intercept

(“Bo”) closest to 0 and a slope (“m”) of 1, although the root mean squared deviatien—crror
(“RMSDRMSE™) — an accuracy measure — is slightly better (lower) for K;°". The two
CERES kernels with the lowest R’ highest slopes (negative deviations), highest

RMSDsRMSEs, and y-intercepts with the largest absolute difference from zero — or the worst

performing candidates — are those based on the ISO and M10 models (Fig. 2 A&E).

< Figure 2 >

Although the y-intercept deviation from 0 for Kffz is relatively low, its RMSD is ~50%
higher than that of KgHO‘) , K 20'8 ,and K ; M50 and leads to notable positive deviation from the

multi-GCM mean (KZTM) judging by its slope of 0.92.

Globally, NAD for the QHO06, ANISO, and BO18 kernels are far superior to the ISO, M10,

and C12 kernels (Table 23).

< Table 2-3 >

After filtering to remove grid cells for oceans and other water bodies, NAD scores for these
three kernels decreased; the decrease was smallest for K" (-0.03) and largest for K2"* (-
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0.06). Despite constraining the analysis to land surfaces only, the rank order remained

unchanged (Table 23). and K27%_ K" and K/¥° are subjected to further evaluation. -

db. GCM kernel emulation and additional performance sereeningevaluation

However, Bbecause the—simplekernel-based-en-the QH06 model (Kg”“ %) required auxiliary

inputs for cloud cover area fraction and cloud optical depth — two atmospheric state variables

not provided with the ECHAMG6 and CAMS kernel datasets — it was not possible to emulate

these two GCM kernels wsing—with K2"* the-QHO6—model.  Additional performance

evaluation through GCM kernel emulation is therefore restricted to the ANISO and BO18

models.

< Figure 3 >

Globally, the kernel based on the ANISO model displays larger annual mean biases relative to
BO18 when compared to both ECHAM6 and CAMS kernels (Figure 3). Notable positive
biases over land with respect to both ECHAMG6 and CAMS kernels are evident in the northern
Andes region of South America, the Tibetan plateau, and the tropical island region comprising
Indonesia, Malaysia, and Papua New Guinea (Fig. 3 A & C). Notable negative biases over
land with respect to both ECHAM6 and CAMS kernels are evident over Greenland,

Antarctica, northeastern Africa, and the Arabian Peninsula (Fig. 3 A & C).

< Figure 4 >

Globally, annual biases for BO18 are generally found to be lower than for ANISO and are
mostly non-existent in extra-tropical ocean regions (Fig. 3 B & D). Patterns in biases over

land are mostly negative with the exception of Saharan Africa where the annual mean bias
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with respect to both GCMs is positive. For BO18, systematic positive biases — or biases
evident with respect to both GCM kernels — appear over eastern tropical and subtropical
marine coastal upwelling zones where marine stratocumulus cloud dynamics are difficult for

GCMs to resolve (Bretherton et al., 2004;Richter, 2015).

< Table 34 >

emulated—with-—both-—ANISO—and-BO18—medelsRegression statistics (Figure 4) indicate a

greater overall aceuracy(or—agreement)performance for BO18 (Figure—4jthan for ANISO.

RMSDs-RMSEs for monthly kernels emulated with BO18 are 9.0 and 8.2 W m™ with-respeet
tofor CAMS and ECHAMS, respectively — which is ~50-60% of the RMSDs-RMSEs

emulated with the ANISO model. Relative to ANISO, the BO18 model also gives a higher

R2, a slope closer to 1, and a y-intercept closer to zero (Figure 4). The BO18 model (or

parameterization) is therefore selected for the CERES albedo change kernel (CACK).

Focusing heneeforth-only on the enly-en-the kernelemulated-with- BO18-medelGCM kernels

emulated with K7 henceforth, negative biases are evident in all months (Table 34), with

the largest biases (in magnitude) appearing in May (-4.4 W m) and November (-2.5 W m?)
for CAMS and ECHAMBS, respectively. In absolute terms, largest biases of 8.6 W m2and 6.8
W m? appear in June for CAM5 and ECHAMS6, respectively. Annually, the mean absolute
bias for CAMS and ECHAMES is 6.8 and 6.1 W m™, respectively — a magnitude which seems
remarkably low if one compares this to the annual mean disagreement (standard deviation) of

33 W m2 across all four GCM kernels (not shown; for seasonal mean standard deviations see

Fig. 1).

c. CACK uncertainty
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For a kernel based on 2001-2016 monthly mean CERES EBAF climatology, Figure 5

illustrates the contribution of the absolute error related to Kfmg’s model form (Fig. 5 A,

annual mean) relative to CACK’s total absolute uncertainty (Fig. 5 C, annual mean), which

includes the uncertainty surrounding CERES EBAF v4 input variables SWfFC and SWfOA /{Field Code Changed

~{ Field Code Changed

and their interannual variability (Fig. 5 B, annual mean).

< Figure 5 >

Total propagated o, and o, far exceeds o,,, is dominated by o, (SW°)_and /{ Field Code Changed
pv u me u 1
— — — s < Field Code Changed

SFC . . . . . . Field Code Changed
AO'pv(SW¢ ). and is largest in the Pacific region to the south of the intertropical convergence Field Code Changed
~{ Field Code Changed

zone (ITCZ). Over land, the annual o, _and o, as well as the annual o, are generally Field Code Changed
_ — < Field Code Changed

largest in arid or high altitude regions (Fig. 5 B). However, annual CACK values are also \“ie'd Code Changed

o A JC )

large in these regions reducing the relative uncertainty (Fig. 5 D). The largest relative

uncertainties over land (on an annual basis) — which can approach 50% — are found over

central Europe, northwestern Asia, southeastern China, Andean Chile, and northwestern N.

America (Fig. 5 D).

d. Climatological CACK application

When estimated with a CACK based on monthly CERES EBAF climatology, the annual 4F

from Ac, linked to hypothetical deforestation in the tropics is negative in most regions, /{Field Code Changed

Y —

approaching -20 W m locally in some regions of the Brazilian Cerrado and south of the

Sahel region in Africa (Fig. 6 B). The combined CACK and Ae, uncertainty for these /{Fie'd Code Changed

J—

regions can approach * 5 W m2 annually (Fig. 6 C) in regions like the Brazilian Cerrado and

sub-Sahel Africa. Relative to the AF magnitude, however, the largest uncertainties (annual)
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686 may be found in the subtropical regions of Central America, southern Brazil, southern Asia,

687  and northern Australia, where it can approach 30-40% (Fig. 6 D).

688  e. Temporally-explicit CACK application

689  The effect of a decreasing cloud cover trend in southern Amazonia (Fig. 7 B) on shortwave

690 radiative transfer and thus a CACK-based estimate of regional mean annual 4F emerges in

691  Figure 7 C. where AF increases in magnitude by 0.004 W m™ from 2002 to 2016. This AF

692  trend would otherwise go undetected if a GCM-based kernel were applied to the same surface

693 albedo trend — that is, to a sustained positive interannual monthly albedo change “pulse”.

694  Alternatively, a CACK based on 2001 CERES EBAF inputs (applied with A, for 2001- ~ _{ Field Code Changed

695 2002) would give slightly higher AF estimates relative to those based on ECHAMG6 and

696 CAMS kernels; conversely, a CACK based on 2015 CERES EBAF inputs (applied with‘i/{ﬁe'd Code Changed

697  for 2015-2016) that would yield lower AF estimates relative to those based on the same two

698 GCM-based kernels (Fig. 7 C). Use of temporally-explicit CACK can therefore capture AF

699  trends related to a changing atmospheric state that fixed-state GCM kernels are unable to

700 capture.

701 5. Discussion and-conclusions

702  Motivated by an increasing abundance of climate impact research focusing on land processes

703 in recent years, we comprehensively evaluated six simplified models (or parameterizations) as

704  candidates for an albedo change kernel based on the CERES EBAF v4 products (Loeb et al.,

705  2017;Kato et al., 2018). hinkins shortwave radiative Hhaxperturbationsat TOA—with-surface
706  albedechanges—at-thesurface——Relative to albedo change kernels based on sophisticated
707  radiative transfer schemes embedded in GCMs, the—simplitied—medels—evaluated—herea

708  CERES-based albedo change kernel — or CACK — represents a more transparent and

709  empirically-rooted alternative that can be updated frequently at relatively low cost-using
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budget. This allows greater flexibility to meet the needs of research thatfoeusesfocusing on

longer-termsurface albedo trends within the CERES era in er-regions currently undergoing

rapid changes #1-to atmospheric eompesitionstate as it affects shortwave radiation transfer.
Although some modeling groups have provided recent updates to radiative—their albedo
change kernels using the latest GCM versions_(c.g.. (Pendergrass et al., 2018)), the
atmospheric state of-the-beundary—conditions used to derive them may still be considered

outdated or not in sync with that required for seme-many applications (Table 1).

Based on both qualitative and quantitative benchmarking against the mean of four GCM

kernels, the simple—novel kernel medel-parameterization derived—obtained from machine

learning; K,'"*BO48, together with the two (scmi-)analytically derived medelskernels /{Field Code Changed

K2 QHO6 and K° ANISO, proved far superior to the K° analytical kernel and to the Field Code Changed
P N s < Field Code Changed
f Field Code Changed

two additional empirical parameterizations K¢? and K™ li—@,—Gl—L—aﬁd—th%IS@—kemel .
L L /{ Field Code Changed

~{ Field Code Changed

o U )

models. When subjected to additional performance evaluation, however, we found that X 2018 //{ Field Code Changed
——

the-BO18-model-was able to more robustly emulate the-two GCM kernels (ECHAMG6 and

CAMS) kesnels-with exceptionally high aceuraeyagreement, suggesting that K" this-medel | Field Code Changed

canould serve as a suitable candidate for an-albedo-change kernel-based-on-CERES boundary

fluxesCACK.

Relative to the monthly CAMS5 and ECHAMG6 kernels, Fthe RMSD-mean absolute monthly

criulation Terror el e heme e fosth e Lo o b D b edo Ul Thopne]

QGAGI@\A%))QKDIZOIS; was found to be 6.8 and 6.1 W m?2

. /{ Field Code Changed
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CAMS-and ECHAM6 kernelrespectively — a magnitude which is only ~20% of the standard
deviation found across four GCM kernels (annual mean)-{annual-mean). CACK’s remarkable
simplicity lends support to the idea of using machine learning to explore and detect emergent

properties of shertwave-radiative transfer or other complex, interactive model outputs in

future research. The fact that the Kfmg parameterization emerged as the best common

/{ Field Code Changed

solution from two independently executed machine learning analyses each employing a

random sampling unique to a specific GCM kernel suggests that the K*°'® parameterization

/{ Field Code Changed

is robust and insensitive to the underlying GCM representation of shortwave radiative

transfer.

Despite the-stronger-empirical-foundation-of CACKits stronger empirical foundation over a

GCM-based kernel, it is important to recognize CACK sits limitations. Firstly, while CACK

has a finer spatial resolution than most GCM kernels, it still represents a spatially averaged

response rather than a truly local response; in other words, the state variables used to define

the SMTOA response are averages tied to the coarse spatial (i.e., 1° x 1°) resolution of the

/{ Field Code Changed

CERES EBAF v4 product grids. Secondly, the monthly CERES EBAF-Surface product used

to define lower atmospheric boundary conditions is not strictly an observation. The space-

borne ebservation—platform is not able to directly ebserveEarth’s—surfacefluxesobserve

surface irradiances, requiring—under—evercast—eonditions—and—hence—requires model

avgmentationadditional satellite-based estimates of cloud and aerosol properties as input to a

radiative transfer model (Kato et al., 2012). Hewewver;Although TOA irradiances are applied

to constrain the surface irradiances, the-enersy-balaneingstep-ensures-that-fluxesare-adjusted

Hansen—et-al;2005)they remain susceptible to errors in the radiative transfer model inputs.
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Considering this error as “data uncertainty” increases CACK’s overall uncertainty beyond that

which is related to its underlying parameterization or “model error”. Fhese—proeessesThe

uncertainty of CERES surface shortwave irradiances s-as well as extensive ground validation

and testing ;—are documented in greater detail elsewhere (Kato et al., 2013;Loeb et al.,

2009;Loeb et al., 2017;Kato et al., 2018)_and may continue to be reduced in future EBAF-

Surface version:s. -

a. Concluding remarks

To conclude, we developed, evaluated, and proposed a radiative kernel for surface albedo

change based on CERES EBAF v4 products — or CACK. Relative to existing kernels based on

CACK provides a higher spatial resolution, higher transparency alternative to-existinskernels

based-en-GEMsthat is more amenable to user needs. For LULCC research of the near-past

present day, or near-future periods, application of a CACK whose inputs are based on
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monthly climatological means of the full CERES EBAF record can better-account for the

corresponding interannual variability in FEarth’s atmospheric state affecting shortwave

radiative transfer. For regions undergoing changes in atmospheric state that are detectable

above the normal variability within the CERES era, application of a temporally-explicit

CACK can better-account for its influence on AF estimates from surface albedo change.

CACK’s input flexibility and transparency combined with documented uncertainty make it

well-suited to be appliedCACK eceould-be-easily-applied as part of a Monitoring, Reporting,

and Verification (MRV) frameworks for biogeophysical impacts on land, analogous to those

which currently exist for land sector greenhouse gas emissions.

Code and Dataset Availability

We make both monthly temporally-explicit and monthly climatological mean CACKs for

years 2001-2016 available as a complete data product (“CACKv1.0”; netCDF file available at

doi:10.6073/pasta/d77b84b11be99ed4d5376d77fe0043d8PDOIXXX)  that  includes  their

respective uncertainty layers. A summary of this dataset and associated variables is provided

in Table S3 of the Supporting Information. AOctave—Matlab script files for generating

monthly CACK with—uaser-speeified—temperal—and—spatialextents—and demonstrating_its

application with user-specified temporal and spatial extents is—are alse—available—at
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POolx>Xbundled with the netCDF file. The 2001 2016—¢slobalmenthly—elimatologiecal

Data Availability
CERES EBAF data are available for download at:
https://ceres.larc.nasa.gov/products.php?product=EBAF-TOA . The CAM3 kernel is

available at:  http:/people.oregonstate.edu/~shellk/kernel.html . The CAMS5 kernel is

available at:  https://www.earthsystemgrid.org/ac/guest/secure/sso.html . The ECHAMS

kernel is available at: https://swiftbrowser.dkrz.de/public/dkrz_0c07783a-0Obdc-4d5e-913b-

clb86fac060d/Radiative_kernels/ .

Acknowledgements
R.M.B. was supported by the Research Council of Norway, grants #244074/E20 and
#250113/F20; T.L.O. was supported by Climate and Land Use program award #2017-68002-

26612 of the USDA National Institute of Food and Agriculture.

References

Anav, A, Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P., Jones, C., Jung, M., Myneni, R., and
Zhu, Z.: Evaluating the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth
System Models, Journal of Climate, 26, 6801-6843, 10.1175/JCLI-D-12-00417.1, 2013.

Atwood, A. R., Wu, E., Frierson, D. M. W., Battisti, D. S., and Sachs, J. P.: Quantifying Climate Forcings
and Feedbacks over the Last Millennium in the CMIP5—-PMIP3 Models, Journal of Climate, 29, 1161-
1178, 10.1175/jcli-d-15-0063.1, 2016.

Block, K., and Mauritsen, T.: Forcing and feedback in the MPI-ESM-LR coupled model under abruptly
quadrupled CO2, Journal of Advances in Modeling Earth Systems, 5, 676-691, 10.1002/jame.20041,
2014.

Bonan, G. B., Pollard, D., and Thompson, S. L.: Effects of Boreal Forest Vegetation on Global Climate,
Nature, 359, 716-718, 1992.

Bozzi, E., Genesio, L., Toscano, P., Pieri, M., and Miglietta, F.: Mimicking biochar-albedo feedback in
complex Mediterranean agricultural landscapes, Environmental Research Letters, 10, 084014, 2015.
Breipohl, A. M.: Probabilistic systems analysis: an introduction to probabilistic models, decisions, and
applications of random processes, Wiley, New York, 1970.

37


https://ceres.larc.nasa.gov/products.php?product=EBAF-TOA
http://people.oregonstate.edu/%7Eshellk/kernel.html
https://www.earthsystemgrid.org/ac/guest/secure/sso.html
https://swiftbrowser.dkrz.de/public/dkrz_0c07783a-0bdc-4d5e-9f3b-c1b86fac060d/Radiative_kernels/
https://swiftbrowser.dkrz.de/public/dkrz_0c07783a-0bdc-4d5e-9f3b-c1b86fac060d/Radiative_kernels/

837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887

Bretherton, C. S., Uttal, T., Fairall, C. W., Yuter, S. E., Weller, R. A., Baumgardner, D., Comstock, K.,
Wood, R., and Raga, G. B.: The Epic 2001 Stratocumulus Study, Bulletin of the American
Meteorological Society, 85, 967-978, 10.1175/BAMS-85-7-967, 2004.

Bright, R. M., and Kvalevag, M. M.: Technical note: Evaluating a simple parameterization of radiative
shortwave forcing from surface albedo change, Atmospheric Chemistry and Physics, 13, 11169-
11174, 2013.

Bright, R. M.: Metrics for Biogeophysical Climate Forcings from Land Use and Land Cover Changes
and Their Inclusion in Life Cycle Assessment: A Critical Review, Environmental Science & Technology,
49, 3291-3303, 10.1021/es505465t, 2015.

Caiazzo, F., Malina, R., Staples, M. D., Wolfe, P., J.,, Yim, S. H. L., and Barrett, S. R. H.: Quantifying the
climate impacts of albedo changes due to biofuel production: a comparison with biogeochemical
effects, Environmental Research Letters, 9, 024015, 2014.

Carrer, D., Pique, G., Ferlicoq, M., Ceamanos, X., and Ceschia, E.: What is the potential of cropland
albedo management in the fight against global warming? A case study based on the use of cover
crops, Environmental Research Letters, 13, 044030, 2018.

CERES Science Team: CERES EBAF-Surface Edition 4.0. NASA Atmospheric Science and Data Center
(ASDC). https://doi.org/10.5067/TERRA+AQUA/CERES/EBAF-SURFACE L3B004.0. Accessed January
14, 2018., in, 2018a.

CERES Science Team: CERES EBAF-TOA Edition 4.0. NASA Atmospheric Science and Data Center
(ASDC). https://doi.org/10.5067/TERRA+AQUA/CERES/EBAF-TOA L3B004.0 . Accessed January 14,
2018. , in, 2018b.

Cherubini, F., Bright, R. M., and Strgmman, A. H.: Site-specific global warming potentials of biogenic
CO2 for bioenergy: contributions from carbon fluxes and albedo dynamics, Environmental Research
Letters, 7, 045902, 2012.

Clifford, A. A.: Multivariate error analysis: A handbook of error propagation and calculation in many-
parameter systems, Applied Science Publishers, London, U. K., 1973.

Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson, D. L., Briegleb, B. P., Bitz,
C. M., Lin, S.-J., and Zhang, M.: The Formulation and Atmospheric Simulation of the Community
Atmosphere Model Version 3 (CAM3), Journal of Climate, 19, 2144-2161, 10.1175/JCLI3760.1, 2006.
Dickinson, R. E., and Henderson-Sellers, A.: Modelling tropical deforestation: A study of GCM land-
surface parametrizations, Quarterly Journal of the Royal Meteorological Society, 114, 439-462,
10.1002/qj.49711448009, 1988.

Dolinar, E. K., Dong, X., Xi, B., Jiang, J. H., and Su, H.: Evaluation of CMIP5 simulated clouds and TOA
radiation budgets using NASA satellite observations, Clim. Dyn., 44, 2229-2247, 10.1007/s00382-014-
2158-9, 2015.

Donohoe, A., and Battisti, D. S.: Atmospheric and Surface Contributions to Planetary Albedo, Journal
of Climate, 24, 4402-4418, 10.1175/2011JCLI3946.1, 2011.

Durieux, L., Machado, L. A. T., and Laurent, H.: The impact of deforestation on cloud cover over the
Amazon arc of deforestation, Remote Sensing of Environment, 86, 132-140,
http://dx.doi.org/10.1016/S0034-4257(03)00095-6, 2003.

Free, M., and Sun, B.: Trends in U.S. Total Cloud Cover from a Homogeneity-Adjusted Dataset,
Journal of Climate, 27, 4959-4969, 10.1175/jcli-d-13-00722.1, 2014.

Gao, F., He, T., Wang, Z., Ghimire, B., Shuai, Y., Masek, J., Schaaf, C., and Williams, C.: Multi-scale
climatological albedo look-up maps derived from MODIS BRDF/albedo products, Journal of Applied
Remote Sensing, 8, 2014.

Ghimire, B., Williams, C. A., Masek, J., Gao, F., Wang, Z., Schaaf, C., and He, T.: Global albedo change
and radiative cooling from anthropogenic land cover change, 1700 to 2005 based on MODIS, land use
harmonization, radiative kernels, and reanalysis, Geophysical Research Letters, 41, 9087-9096,
10.1002/2014GL061671, 2014.

Green, P., Gardiner, T., Medland, D., and Cimini, D.: WP2: Guide to uncertainty in measurement and
its nomenclature. Version 4.0., U.K., 212, 2017.

38


https://doi.org/10.5067/TERRA+AQUA/CERES/EBAF-SURFACE_L3B004.0
https://doi.org/10.5067/TERRA+AQUA/CERES/EBAF-TOA_L3B004.0
http://dx.doi.org/10.1016/S0034-4257(03)00095-6

888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914

915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938

Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J. F., Large, W.
G., Lawrence, D, Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B.,
Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., and Marshall, S.:
The Community Earth System Model: A Framework for Collaborative Research, Bulletin of the
American Meteorological Society, 94, 1339-1360, 10.1175/BAMS-D-12-00121.1, 2013.

Igbal, M.: An introduction to solar radiation, Academic Press Canada, Ontario, CA, 389 pp., 1983.
Jones, A. D., Calvin, K. V., Collins, W. D., and Edmonds, J.: Accounting for radiative forcing from
albedo change in future global land-use scenarios, Climatic Change, 131, 691-703, 10.1007/s10584-
015-1411-5, 2015.

Kashimura, H., Abe, M., Watanabe, S., Sekiya, T., Ji, D., Moore, J. C., Cole, J. N. S., and Kravitz, B.:
Shortwave radiative forcing, rapid adjustment, and feedback to the surface by sulfate
geoengineering: analysis of the Geoengineering Model Intercomparison Project G4 scenario, Atmos.
Chem. Phys., 17, 3339-3356, 2017.

Kato, S., Loeb, N. G., Rose, F. G., Doelling, D. R., Rutan, D. A., Caldwell, T. E., Yu, L., and Weller, R. A.:
Surface Irradiances Consistent with CERES-Derived Top-of-Atmosphere Shortwave and Longwave
Irradiances, Journal of Climate, 26, 2719-2740, 10.1175/JCLI-D-12-00436.1, 2012.

Kato, S., Loeb, N. G., Rose, F. G., Doelling, D. R., Rutan, D. A., Caldwell, T. E., Yu, L., and Weller, R. A.:
Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave
irradiances, Journal of Climate, 26, 2719-2740, 2013.

Kato, S., Rose, F. G., Rutan, D. A, Thorsen, T. J., Loeb, N. G., Doelling, D. R., Huang, X., Smith, W. L.,
Su, W., and Ham, S.-H.: Surface Irradiances of Edition 4.0 Clouds and the Earth’s Radiant Energy
System (CERES) Energy Balanced and Filled (EBAF) Data Product, Journal of Climate, 31, 4501-4527,
10.1175/JCLI-D-17-0523.1, 2018.

Lacis, A. A., and Hansen, J. E.: A parameterization for the absorption of solar radiation in the earth's
atmosphere, Journal of Atmospheric Sciences, 31, 118-133, 1974.

Lawrence, D., and Vandecar, K.: Effects of tropical deforestation on climate and agriculture, Nature
Climate Change, 5, 27, 10.1038/nclimate2430

https://www.nature.com/articles/nclimate2430#supplementary-information, 2014.

Lenton, T. M., and Vaughan, N. E.: The radiative forcing potential of different climate geoengineering
options, Atmospheric Chemistry and Physics 9, 5539-5561, 2009.

Li, J. L. F., Waliser, D. E., Stephens, G., Lee, S., L'Ecuyer, T., Kato, S., Loeb, N., and Ma, H.-Y.:
Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary
GCM, and reanalysis, Journal of Geophysical Research: Atmospheres, 118, 8166-8184,
10.1002/jgrd.50378, 2013.

Loeb, N. G., Wielicki, B. A., Doelling, D. R., Smith, G. L., Keyes, D. F., Kato, S., Manalo-Smith, N., and
Wong, T.: Toward optimal closure of the Earth's top-of-atmosphere radiation budget, Journal of
Climate, 22, 748-766, 2009.

Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G., Liang, L., Mitrescu, C., Rose, F.
G., and Kato, S.: Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled
(EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product, Journal of Climate, 31, 895-918,
10.1175/JCLI-D-17-0208.1, 2017.

Lutz, D. A., Burakowski, E. A., Murphy, M. B., Borsuk, M. E., Niemiec, R. M., and Howarth, R. B.:
Tradeoffs between three forest ecosystem services across the state of New Hampshire, USA: timber,
carbon, and albedo, Ecological Applications, 26, 146-161, 10.1890/14-2207.1, 2015.

Lutz, D. A., and Howarth, R. B.: The price of snow: albedo valuation and a case study for forest
management, Environmental Research Letters, 10, 064013, 2015.

Mahadevan, S., and Sarkar, S.: Uncertainty analysis methods, U.S. Department of Energy,
Washington, D.C., USA, 32, 2009.

Mufioz, I., Campra, P., and Fernandez-Alba, A. R.: Including CO2-emission equivalence of changes in
land surface albedo in life cycle assessment. Methodology and case study on greenhouse agriculture,
International Journal of Life Cycle Assessment, 15, 672-681, 2010.

39


https://www.nature.com/articles/nclimate2430#supplementary-information

939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

O'Halloran, T. L., Law, B. E., Goulden, M. L., Wang, Z., Barr, J. G., Schaaf, C., Brown, M., Fuentes, J. D.,
Gockede, M., Black, A., and Engel, V.: Radiative forcing of natural forest disturbances, Global Change
Biology, 18, 555-565, 2012.

Pendergrass, A. G., Conley, A., and Vitt, F. M.: Surface and top-of-atmosphere radiative feedback
kernels for CESM-CAMS, Earth Syst. Sci. Data, 10, 317-324, 10.5194/essd-10-317-2018, 2018.

Qu, X., and Hall, A.: Assessing Snow Albedo Feedback in Simulated Climate Change, Journal of
Climate, 19, 2617-2630, 10.1175/JCLI3750.1, 2006.

Randerson, J. T., Liu, H., Flanner, M. G., Chambers, S. D., Jin, Y., Hess, P. G., Pfister, G., Mack, M. C.,
Treseder, K. K., Welp, L. R., Chapin, F. S., Harden, J. W., Goulden, M. L., Lyons, E., Neff, J. C., Schuur, E.
A. G., and Zender, C. S.: The Impact of Boreal Forest Fire on Climate Warming, Science, 314, 1130-
1132, 2006.

Rasool, S. I., and Schneider, S. H.: Atmospheric Carbon Dioxide and Aerosols: Effects of Large
Increases on Global Climate, Science, 173, 138-141, 10.1126/science.173.3992.138, 1971.

Richter, I.: Climate model biases in the eastern tropical oceans: causes, impacts and ways forward,
Wiley Interdisciplinary Reviews: Climate Change, 6, 345-358, 10.1002/wcc.338, 2015.

Schmidt, M., and Lipson, H.: Distilling free-form natural laws from experimental data, science, 324,
81-85, 20009.

Schmidt, M., and Lipson, H.: Symbolic regression of implicit equations, in: Genetic Programming
Theory and Practice VII, Springer, 73-85, 2010.

Shell, K. M., Kiehl, J. T., and Shields, C. A.: Using the Radiative Kernel Technique to Calculate Climate
Feedbacks in NCAR’s Community Atmospheric Model, Journal of Climate, 21, 2269-2282,
10.1175/2007JCLI2044.1, 2008.

Smits, G. F., and Kotanchek, M.: Pareto-front exploitation in symbolic regression, in: Genetic
programming theory and practice Il, Springer, 283-299, 2005.

Soden, B. J., Held, I. M., Colman, R., Shell, K. M., Kiehl, J. T., and Shields, C. A.: Quantifying climate
feedbacks using radiative kernels, Journal of Climate, 21, 3504-3520, Doi 10.1175/2007jcli2110.1,
2008.

Srivastava, R.: Trends in aerosol optical properties over South Asia, International Journal of
Climatology, 37, 371-380, d0i:10.1002/joc.4710, 2017.

Stephens, G. L., O'Brien, D., Webster, P. J., Pilewski, P., Kato, S., and Li, J.-l.: The albedo of Earth,
Reviews of Geophysics, 53, 141-163, 10.1002/2014RG000449, 2015.

Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., Salzmann, M., Schmidt, H.,
Bader, J., Block, K., Brokopf, R., Fast, I., Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T.,
and Roeckner, E.: Atmospheric component of the MPI-M Earth System Model: ECHAMSG, Journal of
Advances in Modeling Earth Systems, 5, 146-172, doi:10.1002/jame.20015, 2013.

Taylor, K. E., Crucifix, M., Braconnot, P., Hewitt, C. D., Doutriaux, C., Broccoli, A. J., Mitchell, J. F. B.,
and Webb, M. J.: Estimating Shortwave Radiative Forcing and Response in Climate Models, Journal of
Climate, 20, 2530-2543, 10.1175/JCLI4143.1, 2007.

The GFDL Global Atmospheric Model Development Team: The New GFDL Global Atmosphere and
Land Model AM2—-LM2: Evaluation with Prescribed SST Simulations, Journal of Climate, 17, 4641-
4673, 10.1175/JCLI-3223.1, 2004.

Vanderhoof, M., Williams, C. A., Ghimire, B., and Rogan, J.: Impact of mountain pine beetle outbreaks
on forest albedo and radiative forcing, as derived from Moderate Resolution Imaging
Spectroradiometer, Rocky Mountains, USA, Journal of Geophysical Research: Biogeosciences, 118,
1461-1471, 10.1002/jgrg.20120, 2013.

Wang, H., and Su, W.: Evaluating and understanding top of the atmosphere cloud radiative effects in
Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) Coupled Model
Intercomparison Project Phase 5 (CMIP5) models using satellite observations, Journal of Geophysical
Research: Atmospheres, 118, 683-699, doi:10.1029/2012JD018619, 2013.

Winton, M.: Simple optical models for diagnosing surface-atmosphere shortwave interactions,
Journal of Climate, 18, 3796-3806, 2005.

40



990
991
992
993
994
995
996
997

998

Winton, M.: Surface Albedo Feedback Estimates for the AR4 Climate Models, Journal of Climate, 19,
359-365, 10.1175/jcli3624.1, 2006.

Wright, J. S., Fu, R., Worden, J. R., Chakraborty, S., Clinton, N. E., Risi, C., Sun, Y., and Yin, L.:
Rainforest-initiated wet season onset over the southern Amazon, Proceedings of the National
Academy of Sciences, 201621516, 10.1073/pnas.1621516114, 2017.

Zhao, D., Xin, J., Gong, C., Wang, X., Ma, Y., and Ma, Y.: Trends of Aerosol Optical Properties over the
Heavy Industrial Zone of Northeastern Asia in the Past Decade (2004-15), Journal of the Atmospheric
Sciences, 75, 1741-1754, 10.1175/jas-d-17-0260.1, 2018.

41



999
1000

Jjoo1

1002

1003

Table 1. Attributes of existing GCM kernels, all of which having a monthly temporal

resolution.

Kernel Base Base Shortwave Horizontal References
climatology climatology Radiative Resolution
extent period transfer

ECHAM®6 1,000 years Preindustrial* RRTM-G 1.88° x 1.88°

(Block and Mauritsen,

2014;Stevens et al., 2013)

CAM3 6 years 1995-2000 d-Eddington  1.4° x 1.4° (Shell et al., 2008;Collins et al.,
2006
CAM5 1vyear 2006-2007 RRTM-G 0.94° x 1.25° (Pendergrass et al., 2018)
GFDL 17 years 1979-1995 Exponential ~ 2° x 2.5° (Soden et al., 2008;The GFDL
sum-fits, 18 Global Atmospheric Model
bands Development Team, 2004)

*Atmospheric CO, concentration = 284.7 ppmv; Exact time period unknown
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Table 12. Definition of CERES input variables and other system optical properties derived

from CERES inputs. All variables are-have a 2001-2016-menthly-meansmonthly temporal

resolution and a-at +°1°gpatial resolution of 1° x 1°.

CERES EBAF v.4 Shortwave Boundary Fluxes

s Downwelling solar flux at top-of-atmosphere ~~ Wm
SWfFC Downwelling solar flux at surface Wm?
SWf*CiR Clear-sky downwelling solar flux at surface Wm?
Swlo Upwelling solar flux at top-of-atmosphere Wm?
Swre Upwelling solar flux at surface Wm2
System Optical Properties

T = SWfF ¢ / SWLTOA Clearness index unitless
a, = SVVTTOA / SWfO“ Planetary albedo unitless
o, =SWe / swre Surface albedo unitless
4,=1-a, Effective planetary absorption unitless
A = [ SWfFC _ SWfFC } / SWfOA Effective surface absorption unitless
A4,=4,-4, Effective atmospheric absorption unitless
T =1-4, Effective atmospheric transmission unitless
Tcn =1— 4, cn Clear-sky effective atmospheric transmission unitless
T Cloud visible optical depth unitless
c Cloud area fraction fraction
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1‘009 Table 23. Normalized absolute deviation and CERES kernel model candidate ranking.

Global Land only
WD Rank W4D Rank Mean Rank
ISO 0.05 6 0.05 6 6
ANISO 0.64 3 0.59 3 3
C12 0.45 4 0.47 4 4
M10 0.26 5 0.34 5 5
QHO06 0.66 2 0.60 2 2
BO18 0.67 1 0.64 1 )i
1010
1011
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Table 34. Global monthly mean bias (MB) and mean absolute bias (MAB) for K*°** emulated
with Tand S from ECHAMG6 and CAMS. For reference, the global mean value of K"

is 133 Wm™.

BO18 CAM's
KO( - Ka

BO18 ECHAM 6
Ka - K!I

BO18 CAM'S
K =K

BO18 ECHAM 6
K K,

MB (W m2)
Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Ann.
29 34 33 -39 44 38 38 37 34 38 37 -33 36
-9 22 -18 -9 22 -15 11 -16 -1.7 25 25 -18 -19
MAB (W m2)
Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Ann.
6.9 5.7 52 6.8 7.7 8.6 79 6.7 5.6 6.1 6.9 6.9 6.8
6.3 5.7 5.0 5.9 6.7 6.8 64 58 5.3 56 64 6.7 6.1
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Figure 1. Latitudinal (1°) and seasonal means of the multi-GCM mean ( ch?“) and CACK

K model candidates for:  A) December-January-February (DJF); B) March-April-May

(MAM); C) June-July-August (JJA); D) September-October-November (SON).
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Figure 2. A)-F): Scatter-density regressions of global monthly mean K;TM (y-axis) and

K S5 (x-axis), with the CERES kernel identifier shown at the top of each sub-panel. “m” =

slope; “By” = y-intercept. The color scale indicates the percentage of regression points that

fall within an averaging bin, where the x-axis and y-axis have been gridded into 100 x 100

equally-spaced bins to help illustrate the density of overlapping points.Fhe—coelor—scale
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Figure 3. A) Mean annual bias of the CAMS albedo change kernel emulated with the ANISO
analbytieal-semi-empirical model; B) Mean annual bias of the CAMS albedo change kernel
emulated with the BO18 parameterization; C) Mean annual bias of the ECHAM6 albedo
change kernel emulated with the ANISO semi-empiricalanalytical model; D) Mean annual

bias of the ECHAMBG6 albedo change kernel emulated with the BO18 parameterization
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Figure 4. A)-D): Scatter-density regressions of K (y-axis) and K“ emulated with the

ANISO semi-empirical model and BO18 parameterization (x-axis); “m” = slope; “By” = y-

intercept.

100-sample—erid-centered-ontheplottedpoint-See Figure 2 caption for a description of the

color scale.
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044  Figure 5. Annual uncertainty of a CACK based on 2001-2016 monthly mean CERES EBAF

045  v4 climatology: A) The absolute uncertainty related to model error (i.e., the Kfms

046  parameterization); B) The total propagated absolute uncertainty related to physical variability

047  and data uncertainty of CACK input variables; C) Total absolute uncertainty; D) Total

048  relative uncertainty.
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Figure 6. Example application of a CACK based on the 2001-2016 monthly mean CERES

EBAF v4 climatology. A) Annual mean of the climatological (i.e., 2001-2011) monthly

mean difference in white-sky surface albedo between grasslands and evergreen broadleaved

forests (Aa, ) based on the 1° product of Gao et al. (2014); B) Annual mean instantaneous

y—
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radiative forcing (AF' ) of monthly mean Ag, estimated with CACK:; C) Absolute uncertainty
A

—
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056  (annual mean) of the CACK-based AF' estimate, including the uncertainty of Ae, ; D) /{ Field Code Changed
‘ (

B | Field Code Changed

057  Relative uncertainty (annual mean) of the CACK-based AF estimate. /{ Field Code Changed
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Figure 7. Example application of a temporally-explicit CACK. A) 2001-2016 statistically

significant positive trends in all-sky surface albedo derived from CERES EBAF-Surface v4;

B) 2001-2016 statistically significant negative trends in cloud area derived from CERES

EBAF-TOA v4; C) Mean local AF from Aea, when estimated with the CACK, ECHAMG6 Field Code Changed

“ — [ Field Code Changed

and CAMS surface albedo change kernels. The 1o confidence interval (“CI”’) shown for

CACK excludes the uncertainty component related to physical variability.
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