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Abstract




Due to the potential for land use / land cover change (LULCC) to alter surface albedo, there is need within the LULCC science community for simple and transparent tools for predicting radiative forcings () from surface albedo changes ().  To that end, the radiative kernel technique – developed by the climate modeling community to diagnose internal feedbacks within general circulation models (GCMs) – has been adopted by the LULCC science community as a tool to perform offline calculations for .  However, the codes and data behind the GCM kernels are not readily transparent, and the climatologies of the  atmospheric state variables used to derive them GCM vary widely both in time period and duration.  codes are not readily transparent and the atmospheric state variables used as model input are limited to single years, thus being sensitive to anomalous weather conditions that may have occurred in those simulated years.   Observation-based kernels founded on longer-term climatologies of Earth’s atmospheric state offer an attractive alternative to GCM-based kernels and could be updated annually at relatively low costs.  Here, we present a radiative kernel for surface albedo change we evaluatefounded on simplified modelsa novel, simplified parameterization  of shortwave radiative transfer  as candidates for an albedo change kernel founded ondriven with inputs from the the Clouds and the Earth’s Radiant Energy System (CERES) Energy Balance and Filled (EBAF) products.  When based on a 16-year climatology (2001-2016), we find that the CERES albedo change kernel – or CACK – We find that a new, simple model supported by statistical analyses gives remarkable agreement when benchmarked tagrees remarkably well with o the mean kernel of four GCM s (rRMSE = 14%)kernels.  When the novel parameterization underlying CACK is applied to emulate two of the GCM kernels using their own boundary fluxes as input, we find even greater agreement (mean rRMSE = 7.4%), suggesting that this simple and transparent parameterization represents a credible candidate for a satellite-based alternative to GCM kernels and to two GCM kernels following emulation with their own boundary fluxes as input.  Our findings lend support to its candidacy as a satellite-based alternative to GCM kernels and to its application in land-climate studies.  We document and compute the various sources of uncertainty underlying CACK and include them as part of a more extensive dataset (CACK v1.0) while providing examples showcasing its application.
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1. Introduction



Diagnosing changes to the shortwave radiation balance at the top-of-the-atmosphere (TOA) resulting from changes to albedo at the surface () is an important step in predicting climate change.  However, outside the climate science community, many researchers do not have the tools to convert to the climate-relevant  measure (Bright, 2015;Jones et al., 2015), which requires a detailed representation of the atmospheric constituents that absorb or scatter solar radiation (e.g. cloud, aerosols, and gases) and a sophisticated radiative transfer code.  For single points in space or for small regions, these calculations are typically performed offline – meaning without feedbacks to the atmosphere (e.g., (Randerson et al. 2006(Randerson et al., 2006))).  Large-scale investigations (e.g. Amazonian or pan-boreal LULCC (Dickinson and Henderson-Sellers, 1988;Bonan et al., 1992)) typically prescribe the land surface layer in a GCM with initial and perturbed states, allowing the radiative transfer code to interact with the rest of the model.  While this has the benefit of allowing interaction and feedbacks between surface albedo and scattering or absorbing components of the model, such an approach is computationally expensive and thereby restricts the number of LULCC scenarios that can be investigated (Atwood et al., 2016).  Consequently, this method does not meet the needs of some modern LULCC studies which may require millions of individual land cover transitions to be evaluated cost effectively (Lutz and Howarth, 2015;Ghimire et al., 2014).  




Within the LULCC science community, two methods have primarily met the need for efficient calculations from :  simplified parameterizations of atmospheric transfer of shortwave radiation (Bright and Kvalevåg, 2013;Cherubini et al., 2012;Bozzi et al., 2015;Muñoz et al., 2010;Caiazzo et al., 2014;Carrer et al., 2018), and radiative kernels (Ghimire et al., 2014;O'Halloran et al., 2012;Vanderhoof et al., 2013) derived from sophisticated radiative transfer schemes embedded in GCMs (Soden et al., 2008;Shell et al., 2008;Pendergrass et al., 2018;Block and Mauritsen, 2014).  Simplified parameterizations of the LULCC science community have not been evaluated comprehensively in space and time.  Bright & Kvalevåg (2013) evaluated the shortwave  parameterization of Cherubini et al. (2012) when applied at several sites distributed globally distributed sites on land, finding inconsistencies in performance at individual sites despite good overall cross-site performance.  Radiative kernels (Soden et al., 2008;Shell et al., 2008;Pendergrass et al., 2018;Block and Mauritsen, 2014) – while being based on state-of-the-art models of radiative transfer – have the downside of being model-dependent and not readily transparent.  While the radiative transfer codes behind them are well-documented, the scattering components (i.e. aerosols, gases, and clouds) affecting transmission have many simplifying parameterizations, vary widely across models, and may contain significant biases (Dolinar et al., 2015;Wang and Su, 2013).  An additional downside is the that the atmospheric state climatologies used to compute the GCM kernels vary widely in their time periods (i.e., from pre-industrial to the year 2007) and durations (from 1 to 1,000 yrs).  variables used as model input are limited to single years, thus being sensitive to anomalous weather conditions that may have occurred in those years.  Further, tThe application of a state-dependent GCM kernel that is outdated may be undesirable in regions undergoing rapid changes in cloud cover or aerosol optical depth, such as in the northwest United States (Free and Sun, 2014) and in southern and eastern Asia (Zhao et al., 2018;Srivastava, 2017), respectively.  An albedo change  kernel based on Earth-orbiting satellite products remotely-sensed observations could be updated annually to capture changes in atmospheric state at relatively low costs.
The NASA Clouds and the Earth’s Radiant Energy System (CERES) Energy Balance and Filled (EBAF) products (CERES Science Team, 2018a, b), which are  based largely on satellite optical remote sensing, provide the monthly mean boundary fluxes and other atmospheric state information (e.g., cloud area fraction, cloud optical depth) that could be used to develop a more empirically-based alternative to the GCM-based kernels.  The latest EBAF-TOA Ed4.0 (version 4.0) products have many improvements with respect to the previous version (version 2.8, Loeb et al. 2009), including the use of advanced and more consistent input data, retrieval of cloud properties, and instrument calibration (Kato et al., 2018;Loeb et al., 2017).  
Here, we present an albedo change kernel based on the CERES EBAF v4 products – or CACK.  Underlying CACK is a simplified model of shortwave radiative transfer through a one-layer atmosphere.  The model form (or parameterization) is selected after a two-stage performance evaluation of six model candidates:  two analytical, one semi-empirical, and three empirical.  An initial performance screening is implemented where all six model candidates are driven with a 16-year climatology (January 2001 – December 2016) of monthly all-sky boundary fluxes from CERES, with the resulting kernels benchmarked both qualitatively and quantitatively against the mean of four GCM-based kernels (Shell et al., 2008;Soden et al., 2008;Pendergrass et al., 2018;Block and Mauritsen, 2014).  Top model candidates from the initial performance screening are then subjected to an additional performance evaluation where they are applied to emulate two GCM kernels using their own boundary fluxes as input, which eliminates possible biases related to differences in the GCM representation of clouds or other atmosphere state variables.  
We start in Section 2 by providing a brief overview of existing approaches applied in LULCC climate studies for estimating ΔF from Δα.  We then present the six model candidates in Section 3.  Section 4 describes the model evaluation and uncertainty quantification methods, in addition to two application examples.  Results are presented in Section 5, while Section 6 discusses the merits and uncertainties of a CERES-based kernel relative to GCM-based kernels.

Within the atmospheric science community, simplified radiative transfer frameworks have been developed, either to diagnose effective surface and atmospheric optical properties from climate model outputs, or to study the relative contributions of changes to these properties on shortwave flux changes at the top and bottom of the atmosphere (Rasool and Schneider, 1971;Winton, 2005;Winton, 2006;Taylor et al., 2007;Donohoe and Battisti, 2011;Atwood et al., 2016;Kashimura et al., 2017;Qu and Hall, 2006).   These frameworks differ by whether or not the reflection and transmission properties of the atmospheric layer are assumed to have a directional dependency (Stephens et al., 2015) and by the number of variables required as input (Qu and Hall, 2006).  Winton (2005) presented a four-parameter optical model to account for the directional dependency of up- and downwelling shortwave fluxes through a one-layer atmosphere and found good agreement (RMSE < 2% globally) when benchmarked to online radiative transfer calculations.  Also considering a directional dependency of the atmospheric optical properties, Taylor et al. (2007) presented a two-parameter model where atmospheric absorption was assumed to occur at a level above atmospheric reflection.  Donohoe and Battisti (2011) subsequently relaxed the directional dependency assumption and found the atmospheric attenuation of the surface albedo contribution to planetary albedo to be 8% higher than the model of Taylor et al. (2007).  Elsewhere, Qu & Hall (2006) developed a framework making use of additional known atmospheric properties such as cloud cover fraction, cloud optical thickness, and the clear-sky planetary albedo which proved highly accurate when model estimates of planetary albedo were evaluated against climate models and satellite-based datasets.  

Here, our primary research objective is to thoroughly evaluate a variety of shortwave kernels derived both analytically and statistically from satellite-based climatologies of Earth’s shortwave radiation budget.  To this end, we employ a 16-yr. time series of Earth’s monthly mean radiation budget at both TOA (Loeb et al., 2017) and at the surface (Kato et al., 2012) as input to simplified models linking  to changes in the outgoing shortwave radiation flux at TOA.  An initial performance screening is implemented where the six observation-driven kernels are first assessed both qualitatively and quantitatively against the mean of four GCM kernels (Shell et al., 2008;Soden et al., 2008;Pendergrass et al., 2018;Block and Mauritsen, 2014).  Top performers are then subjected to a more rigorous evaluation where they are applied to emulate the GCM kernels using the GCM’s own boundary fluxes as input, which eliminates any bias related to differences in the GCM representation of clouds or other atmosphere state variables.  Our results elucidate the merits and uncertainties of empirical alternatives to those based on GCMs.  

We start in Section 2 by introducing the satellite-based energy balance product and the variables derived from them utilized in this study.  We then provide a brief overview of the GCM-based kernels and of the methods currently being applied within the LULCC science community to estimate instantaneous radiative forcings from surface albedo change.  Section 3 details the methods applied to derive candidate GCM kernel alternatives from the radiative fluxes at Earth’s upper and lower boundaries.  We then present results of a comparative analysis in Section 4 and conclude with a brief discussion surrounding the merits and uncertainties of albedo change kernels based on satellite remote sensing.  

2 Review of existing approaches 

Earth’s energy balance (at TOA) in an equilibrium state can be written:

                                                                                         (1)


where the equilibrium flux F is a balance between the net solar energy inputs () and thermal energy output ().  Perturbing this balance results in a radiative forcing ΔF, while perturbing the shortwave component is referred to as a shortwave radiative forcing and may be written as: 

                                 (2)


where the shortwave radiative forcing results either from changes to solar energy inputs () or from internal perturbations within the Earth system ().  The latter can be brought about by changes to the reflective properties of Earth’s surface which is the focus of this paper.
a. GCM-based radiative kernels
The radiative kernel technique was developed as a way to assess various climate feedbacks from climate change simulations across multiple climate models in a computationally efficient manner (Shell et al., 2008;Soden et al., 2008).  A radiative kernel is defined as the differential response of an outgoing radiation flux at TOA to an incremental change in some climate state variable -- such as water vapor, air temperature, or surface albedo (Soden et al., 2008).  To generate a radiative kernel for a change in surface albedo with a GCM, the prescribed surface albedo change is perturbed incrementally by 1%, and the response by the outgoing shortwave radiation flux at TOA is recorded:

                                     (3)


where  is the outgoing shortwave flux at TOA and  is the radiative kernel (in Wm-2) which The NASA Clouds and the Earth’s Radiant Energy System (CERES) Energy Balance and Filled (EBAF) products provide the monthly mean boundary fluxes and atmospheric state information necessary to derive our GCM kernel alternatives (CERES Science Team, 2018a, b).  The latest EBAF-TOA Ed4.0 (version 4.0) products have many improvements with respect to the previous version (version 2.8, Loeb et al. 2009), including the use of advanced and more consistent input data, retrieval of cloud properties, and instrument calibration (Loeb et al. 2018).  The temporal extent of the EBAF dataset employed in our analysis spans the sixteen full calendar years from January 1, 2001 to December 31, 2016 (retrieved April, 2018).  An overview of all CERES inputs used in our analysis is presented in Table 1.

< Table 1 >







b. GCM-based radiative kernels


The radiative kernel technique was developed as a way to assess various climate feedbacks from climate change simulations across multiple climate models in a computationally efficient manner (Shell et al., 2008;Soden et al., 2008).  A radiative kernel is defined as the differential response of an outgoing radiation flux at TOA to an incremental change in some climate feedback variable -- such as water vapor, air temperature, or surface albedo (Soden et al., 2008).  To generate a radiative kernel for a change in surface albedo  with a GCM, the prescribed surface albedo is perturbed incrementally by 1% and the response by is recorded, which can be expressed as:

                                     (3)


where  is the radiative kernel (in Wm-2).  The albedo change kernel can then then be used with Eq. (1) to estimate an instantaneous shortwave radiative forcing () at TOA:

                                                                       (4)
To the best of our knowledge, four albedo change kernels have been developed based on the following GCMs:  the Community Atmosphere Model version 3, or CAM3 (Shell et al., 2008), the Community Atmosphere Model version 5, or CAM5 (Pendergrass et al., 2018), the European Center and Hamburg model version 6, or ECHAM6 (Block and Mauritsen, 2014), and the Geophysical Fluid Dynamics Laboratory model version AM2p12b, or GFDL (Soden et al., 2008).  These four GCM kernels vary in their vertical and horizontal resolutions, their parameterizations of shortwave radiative transfer, and their prescribed atmospheric state climatologies.  (Soden et al., 2008;Shell et al., 2008;Block and Mauritsen, 2014;Pendergrass et al., 2018)These differences are summarized in Table 1.  Apart from differences in their prescribed atmospheric background states and radiative transfer schemes, a major source of uncertainty in GCM-based kernels is related to the GCM representation of atmospheric liquid water/ice associated with convective clouds; of the four aforementioned GCMs, only CAM5 and GFDL attempt to model the effects of convective core ice and liquid in their radiation calculations (Li et al., 2013).

< Table 1 >

b.  Single-layer atmosphere  models of shortwave radiation transfer
Within the atmospheric science community, various simplified analytical or semi-empirical modeling frameworks have been developed, either to diagnose effective surface and atmospheric optical properties from climate model outputs, or to study the relative contributions of changes to these properties on shortwave flux changes at the top and bottom of the atmosphere (Rasool and Schneider, 1971;Winton, 2005;Winton, 2006;Taylor et al., 2007;Donohoe and Battisti, 2011;Atwood et al., 2016;Kashimura et al., 2017;Qu and Hall, 2006).  While these frameworks all treat the atmosphere as a single layer, they differ by whether or not the reflection and transmission properties of this layer are assumed to have a directional dependency (Stephens et al., 2015) and by whether or not inputs other than those derived from the boundary fluxes are required (e.g. cloud properties; (Qu and Hall, 2006)).   
Winton (2005) presented a semi-empirical four-parameter optical model to account for the directional dependency of up- and downwelling shortwave fluxes through the one-layer atmosphere and found good agreement (rRMSE < 2% globally) when benchmarked to online radiative transfer calculations.  Also considering a directional dependency of the atmospheric optical properties, Taylor et al. (2007) presented a two-parameter analytical model where atmospheric absorption was assumed to occur at a level above atmospheric reflection.  The analytical model of Donohoe and Battisti (2011) subsequently relaxed the directional dependency assumption and found the atmospheric attenuation of the surface albedo contribution to planetary albedo to be 8% higher than the model of Taylor et al. (2007).  Elsewhere, Qu & Hall (2006) developed an analytical framework making use of additional atmospheric properties such as cloud cover fraction, cloud optical thickness, and the clear-sky planetary albedo, which proved highly accurate when model estimates of planetary albedo were evaluated against climate models and satellite-based datasets.  
cc. Simple kernel empirical parameterizations of the LULCC science community



Two simplified simple empirical parameterizations of shortwave radiative transfer have been widely applied within the LULCC science community for estimating  from (Muñoz et al., 2010;Lutz et al., 2015;Bozzi et al., 2015;Caiazzo et al., 2014;Cherubini et al., 2012;Carrer et al., 2018).  While these parameterizations are also based on a single-layer atmosphere model of shortwave radiative transfer, Aat the core of these parameterizations is the fundamental assumption that radiative transfer is wholly independent of (or unaffected by).  In other words, they neglect the change in the attenuating effect of multiple reflections between the surface and the atmosphere that accompanies a change to the surface albedo change.  Nevertheless, due to their simplicity and ease of application they continue to be widely employed in climate research. Although not referred to as “kernels” in the literature, we present them as such to ensure consistency in notation and terminology henceforth.  These are subsequently included in the kernel evaluation exercise presented in Section 4.

The first simplified kernel presented in Muñoz et al. (2010) makes use of a local two-way transmittance factor based on the local clearness index (defined in Table 1):

                                                                                (5)


where  is the local incoming solar flux at TOA, T is the local clearness index, and  is the approximated change in the upwelling shortwave flux at TOA due  to a change in albedo at the surface. 


The second simplified kernel proposed in Cherubini et al. (2012) makes direct use of the solar flux incident at the surface  combined with a one-way transmission constant 

                                                                                 (6
where k is based on the global annual mean share of surface reflected shortwave radiation exiting a clear-sky (Lacis and Hansen, 1974;Lenton and Vaughan, 2009) and is hence temporally and spatially invariant.  This value – or 0.85 -- is similar to the global mean ratio of forward-to-total shortwave scattering reported in Iqbal (1983).   Bright & Kvalevåg (2013) evaluated Eq. (6) at several locations and found large biases for some regions and months, despite good overall performance globally (normalized RMSE = 7%; n = 120 month

3. MethodsKernel model candidates
The six candidate models (or parameterizations) for a CERES-based albedo change kernel (CACK) are presented henceforth.  All requisite variables and their derivatives may be obtained directly from the CERES EBAF v4 products (at monthly and 1° × 1° resolution) and are presented in Table 2.  To improve readability, temporal and spatial indexing is neglected and all terms presented henceforth in Section 3 denote the monthly pixel means.
< Table 2 >

Simple analytical models developed by the climate science community treat the atmosphere as a single layer having various optical properties.  These models vary by the number and type of optical properties included, whether these have a directional dependency (i.e., isotropic or anisotropic), or whether inputs other than those derived from the boundary fluxes are required (i.e., cloud properties).  These models are adapted here to derive kernels analytically for .
a. CERES isotropic Analytical kernels

The first kernel candidate may be analytically-derived from the CERES EBAF all-sky boundary fluxes and their derivatives.  The surface contribution to the outgoing shortwave flux at TOA  is givencan be expressed  (Stephens et al., 2015;Donohoe and Battisti, 2011;Winton, 2005) as:

                                                                                               (75)


where r is a single pass atmospheric reflection coefficient, a is a single pass atmospheric absorption coefficient,  is the extraterrestrial (downwelling) shortwave flux at TOA, and  is the surface albedo (defined in Table 12).   The expression in the denominator of the righthand term represents a fraction attenuated by multiple reflections between the surface and the atmosphere.  This model assumes that the atmospheric optical properties r and a are insensitive to the origin and direction of shortwave fluxes – or in other words – that they are isotropic.
The single-pass reflectance coefficient is calculated from the system boundary fluxes (Table 12) following Winton (2005) and Kashimura et al. (2017):

                                                                                           (86)
while the single-pass absorption coefficient a is given as:

                                                                                                                (97)



where T is the clearness index defined in(defined in  Table 12).  Our interest is in quantifying the  response to an albedo perturbation at the surface – or the partial derivative of  with respect to  in Eq. (75):    

                                                                   (108)

where  is referred to henceforth as the CERES iIsotropic kernel. 

The second analytical kernel is based on the model of Qu and Hall (2006) which makes use of auxiliary cloud property information commonly provided in satellite-based products of Earth’s radiation budget – including CERES EBAF – such as cloud cover area fraction, cloud visible optical depth, and clear-sky planetary albedo.  This model links all-sky and clear-sky effective atmospheric transmissivities of the earth system through a linear coefficient k relating the logarithm of cloud visible optical depth to the effective all-sky atmospheric transmissivity:

                                                                                                                   (9)




where is the clear-sky effective system transmissivity, is the all-sky effective system transmissivity, and  is the cloud visible optical depth.  This linear coefficient can then be used together with the cloud cover area fraction to derive a shortwave kernel based on the model of Qu and Hall (2006) – or :

                                                    (10)
where c is the cloud cover area fraction.
b. CERES anisotropic Semi-empirical kernel 





The second third kernel makes use of three directionally-dependent (anisotropic) bulk optical properties  , , and , where the first is the atmospheric reflectivity to upwelling shortwave radiation and the latter two are the atmospheric transmission coefficients for upwelling and downwelling shortwave radiation, respectively (Winton, 2005).  It is not possible to derive  analytically from the CERES all-sky boundary fluxes; however, Winton (2005) provides an empirical formula relating upwelling reflectivity  to the ratio of all-sky to clear-sky fluxes incident at surface:

                                                                                                 (11)

where  is the clear-sky shortwave flux incident at the surface.  

Knowing , we can then solve for the two remaining optical parameters needed to derive obtain our kernel:

                                                                                                           (1112)

                                                                                                      (1213)

where  is the effective atmospheric transmittance (Table 12) of the earth system.

The anisotropic kernel  canmay now be derived expressed as:

                                                                           (1314)

where  is henceforth referred to as the Anisotropic kernel.
c. CERES aExisting empirical parameterizationsuxiliary input kernel 
Although not referred to as “kernels” in the literature per se, we present the simple empirical parameterizations as such to ensure consistency with previously described notation and terminology.  


The first candidate parameterization, originally presented in Muñoz et al. (2010), makes use of a local two-way transmittance factor based on the local clearness index:

                                                                             (15)


where  is the local incoming solar flux at TOA, T is the local clearness index, and  is the approximated change in the upwelling shortwave flux at TOA due to a change in the surface albedo.  


The second candidate parameterization, originally proposed in Cherubini et al. (2012), makes direct use of the solar flux incident at the surface  combined with a one-way transmission constant k:

                                                                                 (16)
where k is based on the global annual mean share of surface reflected shortwave radiation exiting a clear-sky (Lacis and Hansen, 1974;Lenton and Vaughan, 2009) and is hence temporally and spatially invariant.  This value – or 0.85 -- is similar to the global mean ratio of forward-to-total shortwave scattering reported in Iqbal (1983).   Bright & Kvalevåg (2013) evaluated Eq. (16) at several global locations and found large biases for some regions and months, despite good overall performance globally (rRMSE = 7%; n = 120 months).

Qu and Hall (2006) developed an alternative analytical kernel to the two described above.  The model makes use of auxiliary cloud property information commonly provided in satellite-based products of Earth’s radiation budget – including CERES EBAF – such as cloud cover area fraction, cloud visible optical depth, and clear-sky planetary albedo.  The model links all-sky and clear-sky effective atmospheric transmissivities of the earth system through a linear coefficient k relating the logarithm of cloud visible optical depth to the effective all-sky atmospheric transmissivity:
                                                                                                                   (14)




where is the clear-sky effective system transmissivity, is the all-sky effective system transmissivity, and  is the cloud visible optical depth.  This linear coefficient can then be used together with the cloud cover area fraction to derive a shortwave kernel based on the model of Qu and Hall (2006) – or :
                                                    (15)
where c is the cloud cover area fraction.

d. CERES statistical kernelNovel empirical parameterization 


To determine whether the GCM-based kernels could be approximated with sufficient fidelity using even other simpler model formulations based on the CEREStheir own boundary data, we applied machine learning to identify potential model forms using GCM boundary fluxes as input.  For the two GCMs kernels in which the GCM’s own boundary fluxes are also made available (CAM5 and ECHAM6), we used machine learning to the CERES EBAF all-sky boundary fluxes (or system parameters derived from these fluxes) that minimized the sum of squared residuals between monthly meansthe four shortwave boundary fluxes and the GCM kernel at the monthly time step.of four GCM-based kernels (described below) and model estimates.  The reference dataset consisted of a random global sample of 50200,000 (~50%) 2.8° x 2.8° grid cells at native model resolution (97% and 32% of all cells for ECHAM6 and CAM5, respectively) , from the multi-GMC mean, of which 50% were used for training and 50% for validation.  Models were identified using a form of genetic programming known as symbolic regression (Eureqa®; Nutonian Inc.; (Schmidt and Lipson, 2009, 2010)) which searches a wide space of for both optimal model structures as constrained by user input and coefficients.  In our case, we allowed the model to include the operators (i.e., addition, subtraction, multiplication, division, sine, cosine, tangent, exponential, natural logarithm, factorial, power, square root), but numerical coefficients were forbidden.  The model search was allowed to continue until the percent convergence and maturity metrics exceeded 98% and 50%, respectively, at which point more than 1 × 1011 formulae had been evaluated.  A parsimonious solution was chosen by minimizing the error metric and model complexity using the Pareto front (Figure S1 of Supporting Information) (Smits and Kotanchek, 2005).  Between CAM5 and ECHAM6, four common model solutions were found (Table S1 of Supporting Information).  The best of these common solutions is subsequently referred to as  and is given asBased on the mean squared deviation (MSD) and Akaike’s information criterion (AIC), the best model form of the statistical kernel – subsequently referred to as  -- is given as:

                                                                               (1617)


4. Kernel model evaluation 
d. Initial screening of candidate models for a CERES-based kernel
Four GCM kernels are employed as benchmarks to initially screen the six CERES-based kernel model candidates:  the Community Atmosphere Model version 3, or CAM3 (Shell et al., 2008), the Community Atmosphere Model version 5, or CAM5 (Pendergrass et al., 2018), the European Center and Hamburg model version 6, or ECHAM6 (Block and Mauritsen, 2014), and the Geophysical Fluid Dynamics Laboratory model version AM2p12b, or GFDL (Soden et al., 2008).  The four GCM kernels vary in vertical and horizontal resolution, parameterization of shortwave radiative transfer, and year of atmospheric state (input variables).   

a. Initial candidate screening 
The four GCM kernels presented in Section 2.b are employed as benchmarks to initially screen the six simple model candidates.   We compute a skill metric analogous to the “relative error” metric used to evaluate GCMs by Anav et al. (2013) that takes into account error in the spatial pattern between a model and an observation.  Because we have no true observational reference, our evaluation instead focuses on the disagreement or deviation between CERES and GCM kernels at the monthly time step.  Given interannual climate variability in the earth system, the challenge of comparing the multi-year CERES kernel to a single-year GCM kernel can be partially overcome by averaging the four GCM kernels.   


Using the multi-GCM mean as the reference, we first compute the absolute deviation as:

                                                                                           (1718)




where  is the kernel for CERES model candidate X x in month m and pixel p and  is the multi-GCM mean of the same pixel and month.   is then normalized to the maximum absolute deviation of all six CERES kernels for the same pixel and month to obtain a normalized absolute deviation, , which is analogous to the “relative error” metric of Anav et al. (2013) with having values ranging between 0 and 1:

                                                                                                    (1819)

where  is the maximum absolute deviation of all six CERES kernels at pixel p and month m.  


CERES kernel ranking is based on the mean relative absolute deviation in both space and time – or:

                                                                                                (1920)
where M is the total number of months (i.e., 12) and P is the total number of grid cells.  

eb. GCM kernel emulation
In order to eliminate any bias related to differences in the atmospheric state embedded in the GCM and CERES-derived kernels input climatologies, we re-compute our simple kernelsemulate them by applying the candidate models (or parameterizations) using the original GCM boundary fluxes as input.  Emulation is only done for two of GCM-based kernels since only two of them have provided the accompanying same shortwave boundary fluxes used to compute the two most recent albedo change kernels basedboundary fluxes needed to do so:   on ECHAM6 (Block and Mauritsen, 2014) and CAM5 (Pendergrass et al., 2018).  This Emulation enables a more critical evaluation of the functional form of the candidatesimple models in relation to the more sophisticated radiative transfer schemes employed by ECHAM6 (Stevens et al., 2013) and CAM5 (Hurrell et al., 2013).
c. CACK model uncertainty
Following emulation, monthly GCM kernels are then regressed on the monthly kernels emulated with the leading model candidates.  The model that best emulates both GCM kernels – as measured in terms of the mean coefficient of determination (R2) and mean RMSE – is chosen to represent CACK.







Three sources of uncertainty are considered for CACK when based on the CERES boundary flux climatology (i.e., 2001-2016 monthly means):  1) physical variability 2) data uncertainty; and 3) model error (Mahadevan and Sarkar, 2009).{}  The first is related to the interannual variability of Earth’s atmospheric state and boundary radiative fluxes.  The second is related to the uncertainty of the CERES EBAF v4 variables used as input to CACK (including measurement error).  The third source of uncertainty is the error related to CACK’s model form.  CACK’s combined uncertainty for any given pixel and month is estimated as follows, where if CACK or  is some non-linear function of the CERES boundary inputs  and that co-vary in time and space, then the combined uncertainty of  – or  – may be expressed as the sum of the model error plus the combined physical variability and data uncertainty associated with  and  summed in quadrature (Clifford, 1973;Breipohl, 1970;Green et al., 2017): 

   (21)















where  and  are the standard deviations of the 16-yr. climatological record of CERES input variables  and , respectively, for a given grid cell and month, and  are the absolute uncertainties of CERES input variables  and , respectively, for a given grid cell and month,  is the covariance within the 16-yr. climatological record between CERES input variables  and  for a given month and grid cell, and  is the monthly grid cell model error.  Model error () and data uncertainties () for any given grid cell and month are based on the relative RMSE (Supporting Information) and relative uncertainties of CERES boundary terms reported in Kato et al. (2018) (cf. Table 8, “Monthly gridded, Ocean + Land”)  and Loeb et al. (2017) (cf. Table 8, “All-sky, Terra-Aqua period”).  For the model error, we take the mean relative RMSE of the machine learning model solutions for ECHAM5 and CAM5.   For the relative uncertainty of the incoming solar flux at TOA (), we use the 1% “calibration uncertainty” reported in Loeb et al. (2017).

If CACK’s intended application is to estimate a temporally-explicit ΔF within the CERES era (i.e., if temporally-explicit rather than the climatological mean CERES boundary fluxes are desired to compute CACK), the uncertainty related to physical variability () can be dropped from Eq. (21). 
d. Climatological CACK example application



To demonstrate CACK’s application when based on monthly CERES EBAF climatology, including the handling of uncertainty, we estimate the annual mean ΔF from a  scenario associated with hypothetical deforestation in the tropics, where ΔF for a given month is estimated as Eq. (4) where  is the 2001-2016 monthly climatological CACK and  is the difference in the 2001-2011 monthly climatological mean white-sky surface albedo between “Croplands” (CRO) and “Evergreen broadleaved forests” (EBF) taken from Gao et al. (2014) which is based on International Geosphere-Biosphere Program definitions of land cover classification.  
The monthly climatological albedo look-up maps of Gao et al. (2014) contain their own uncertainties, which we take as the mean absolute difference between the monthly albedos reconstructed using their look-up model and the monthly MODIS retrieval record (c.f. Table 3 in Gao et al. (2014)). 
The total estimated uncertainty linked to the annual local (i.e., grid cell) instantaneous ΔF can thus be expressed (in W m-2) as:

                                                              (22)



where  is the relative grid cell uncertainty of CACK and  is the relative uncertainty of  in month m defined as: 

                                                                          (23)

where  is the monthly absolute uncertainty of the climatological mean surface albedo (i.e., of the Gao et al. (2014) product). 
e. Temporally-explicit CACK application example

Use of a temporally-explicit CACK may be desirable for time-sensitive applications within the CERES era.  This is particularly true for regions experiencing significant changes to the atmospheric state affecting shortwave radiation transfer.  A good example is in southern Amazonia where tropical deforestation has been linked to changes in cloud cover (Durieux et al., 2003;Lawrence and Vandecar, 2014;Wright et al., 2017).  To exemplify this, we estimate the annual mean instantaneous ΔF for CERES grid cells in the region having experienced significant trends in both surface albedo and cloud area fraction during the 2001-2016 period.  Grid cell trends in surface albedo and cloud area fraction are deemed significant if the slopes of linear fits obtained from local (i.e., grid cell) ordinary least squares regressions had p-values ≤ 0.05.  We then apply the slope of the surface albedo trend to represent the monthly mean interannal  incurred over the time series together with CACK updated monthly to estimate the local annual mean instantaneous ΔF at each step in the series:

                                                                                           (24)








where  is the monthly CACK in year t of the time series.  ΔF is then averaged across all grid cells in the sample, with the results then compared to the ΔF that is computed for the same grid sample using the time-insensitive CAM5 and ECHAM6 kernels (i.e., ).  Using the slope of the surface albedo trend as the  for all months and years rather than the actual  (i.e.,  ) yields the same result when averaged over the full time period but allows us to isolate the effect of the changing atmospheric state on calculations of ΔF.  We limit the ΔF uncertainty estimate to CACK’s uncertainty that includes  and  but excludes. 
45. Results 

a. Initial performance screening 
a. Initial kernel performance screening 
Seasonally, differences in latitude band means between the CERESthe CERES kernel candidates  and the multi-GCM mean kernels are shown in Figure 1.

< Figure 1 >













Qualitatively, starting with December-January-February (DJF), gives the best agreement with  with the exception of the zone around 55 – 65°S (-55 – -65°), where gives slightly better agreement (Fig. 1A).  In March-April-May (MAM),  appears to give the best overall agreement with the exception of the high Arctic, where  and give better agreement, and with the exception of the zone around 60 – 65°S (-60 – -65°) where , , and agree best with  (Fig. 1B).  The largest spread in disagreement across all six CERES kernels is found in June-July-August (JJA; Fig. 1 C) at northern high latitudes.  appearsappears to agree best both here and elsewhere with the exception of the zone between ~20 – 35°N, where   gives slightly better agreement.



In September-October-November (SON),  agrees best with  at all latitudes except the zone between 10 – 25°N and 55 – 65°S where agrees slightly better.





Quantitatively, the proportion of the total variance explained by linear regressions of monthly on monthly  (i.e., “R2”) is highest and equal for the CERES kernels based on the ANISO, QH06, and BO18 models (Fig. 2 B, C, & D).  Of these three, has a y-intercept (“B0”) closest to 0 and a slope (“m”) of 1, although the root mean squared deviation error (“RMSDRMSE”) – an accuracy measure – is slightly better (lower) for .  The two CERES kernels with the lowest R2, highest slopes (negative deviations), highest RMSDsRMSEs, and y-intercepts with the largest absolute difference from zero – or the worst performing candidates – are those based on the ISO and M10 models (Fig. 2 A&E).

< Figure 2 >






Although the y-intercept deviation from 0 for  is relatively low, its RMSD is ~50% higher than that of , , and  and  leads to notable positive deviation from the multi-GCM mean () judging by its slope of 0.92.

c. Normalized absolute deviation 

Globally,  for the QH06, ANISO, and BO18 kernels are far superior to the ISO, M10, and C12 kernels (Table 23).

< Table 2 3 >







After filtering to remove grid cells for oceans and other water bodies,  scores for these three kernels decreased; the decrease was smallest for(-0.03) and largest for  (-0.06).  Despite constraining the analysis to land surfaces only, the rank order remained unchanged (Table 23), and , , and  are subjected to further evaluation. .

db. GCM kernel emulation and additional performance screeningevaluation


However, Bbecause the simple kernel based on the QH06 model () required auxiliary inputs for cloud cover area fraction and cloud optical depth – two atmospheric state variables not provided with the ECHAM6 and CAM5 kernel datasets – it was not possible to emulate these two GCM kernels using with the QH06 model.   Additional performance evaluation through GCM kernel emulation is therefore restricted to the ANISO and BO18 models.  
< Figure 3 >
Globally, the kernel based on the ANISO model displays larger annual mean biases relative to BO18 when compared to both ECHAM6 and CAM5 kernels (Figure 3).  Notable positive biases over land with respect to both ECHAM6 and CAM5 kernels are evident in the northern Andes region of South America, the Tibetan plateau, and the tropical island region comprising Indonesia, Malaysia, and Papua New Guinea (Fig. 3 A & C).  Notable negative biases over land with respect to both ECHAM6 and CAM5 kernels are evident over Greenland, Antarctica, northeastern Africa, and the Arabian Peninsula (Fig. 3 A & C).
< Figure 4 >
Globally, annual biases for BO18 are generally found to be lower than for ANISO and are mostly non-existent in extra-tropical ocean regions (Fig. 3 B & D).  Patterns in biases over land are mostly negative with the exception of Saharan Africa where the annual mean bias with respect to both GCMs is positive. For BO18, systematic positive biases – or biases evident with respect to both GCM kernels – appear over eastern tropical and subtropical marine coastal upwelling zones where marine stratocumulus cloud dynamics are difficult for GCMs to resolve (Bretherton et al., 2004;Richter, 2015).
< Table 3 4 >
Performance metrics based on regressing monthly kernels from the two GCMs on kernels emulated with both ANISO and BO18 modelsRegression statistics (Figure 4) indicate a greater overall accuracy (or agreement)performance for BO18 (Figure 4)than for ANISO.  RMSDs RMSEs for monthly kernels emulated with BO18 are 9.0 and 8.2 W m-2 with respect tofor CAM5 and ECHAM6, respectively – which is ~50-60% of the RMSDs RMSEs emulated with the ANISO model.  Relative to ANISO, the BO18 model also gives a higher R2, a slope closer to 1, and a y-intercept closer to zero (Figure 4).  The BO18 model (or parameterization) is therefore selected for the CERES albedo change kernel (CACK). 

Focusing henceforth only on the only on the kernel emulated with BO18 modelGCM kernels emulated with  henceforth, negative biases are evident in all months (Table 34), with the largest biases (in magnitude) appearing in May (-4.4 W m-2) and November (-2.5 W m-2) for CAM5 and ECHAM6, respectively.  In absolute terms, largest biases of 8.6 W m-2 and 6.8 W m-2 appear in June for CAM5 and ECHAM6, respectively.  Annually, the mean absolute bias for CAM5 and ECHAM6 is 6.8 and 6.1 W m-2, respectively – a magnitude which seems remarkably low if one compares this to the annual mean disagreement (standard deviation) of 33 W m-2 across all four GCM kernels (not shown; for seasonal mean standard deviations see Fig. 1).
c. CACK uncertainty


For a kernel based on 2001-2016 monthly mean CERES EBAF climatology, Figure 5 illustrates the contribution of the absolute error related to ’s model form (Fig. 5 A, annual mean) relative to CACK’s total absolute uncertainty (Fig. 5 C, annual mean), which includes the uncertainty surrounding CERES EBAF v4 input variables  and  and their interannual variability (Fig. 5 B, annual mean).
< Figure 5 >








Total propagated  and  far exceeds , is dominated by  and , and is largest in the Pacific region to the south of the intertropical convergence zone (ITCZ).  Over land, the annual  and  as well as the annual  are generally largest in arid or high altitude regions (Fig. 5 B).  However, annual CACK values are also large in these regions reducing the relative uncertainty (Fig. 5 D).  The largest relative uncertainties over land (on an annual basis) – which can approach 50% – are found over central Europe, northwestern Asia, southeastern China, Andean Chile, and northwestern N. America (Fig. 5 D).
d. Climatological CACK application 


When estimated with a CACK based on monthly CERES EBAF climatology, the annual ΔF from  linked to hypothetical deforestation in the tropics is negative in most regions, approaching -20 W m-2 locally in some regions of the Brazilian Cerrado and south of the Sahel region in Africa (Fig. 6 B).  The combined CACK and  uncertainty for these regions can approach ± 5 W m-2 annually (Fig. 6 C) in regions like the Brazilian Cerrado and sub-Sahel Africa.  Relative to the ΔF magnitude, however, the largest uncertainties (annual) may be found in the subtropical regions of Central America, southern Brazil, southern Asia, and northern Australia, where it can approach 30-40% (Fig. 6 D).
e. Temporally-explicit CACK application


The effect of a decreasing cloud cover trend in southern Amazonia (Fig. 7 B) on shortwave radiative transfer and thus a CACK-based estimate of regional mean annual ΔF emerges in Figure 7 C, where ΔF increases in magnitude by 0.004 W m-2 from 2002 to 2016.  This ΔF trend would otherwise go undetected if a GCM-based kernel were applied to the same surface albedo trend – that is, to a sustained positive interannual monthly albedo change “pulse”.  Alternatively, a CACK based on 2001 CERES EBAF inputs (applied with  for 2001-2002) would give slightly higher ΔF estimates relative to those based on ECHAM6 and CAM5 kernels; conversely, a CACK based on 2015 CERES EBAF inputs (applied with  for 2015-2016) that would yield lower ΔF estimates relative to those based on the same two GCM-based kernels (Fig. 7 C). Use of temporally-explicit CACK can therefore capture ΔF trends related to a changing atmospheric state that fixed-state GCM kernels are unable to capture. 
5. Discussion and conclusions 
Motivated by an increasing abundance of climate impact research focusing on land processes in recent years, we comprehensively evaluated six simplified models (or parameterizations) as candidates for an albedo change kernel based on the CERES EBAF v4 products (Loeb et al., 2017;Kato et al., 2018). linking shortwave radiative flux perturbations at TOA with surface albedo changes at the surface.  Relative to albedo change kernels based on sophisticated radiative transfer schemes embedded in GCMs, the simplified models evaluated herea CERES-based albedo change kernel – or CACK – represents a more transparent and empirically-rooted alternative that can be updated frequently at relatively low cost using boundary fluxes obtained from remote sensing-based products of Earth’s shortwave energy budget.  This allows greater flexibility to meet the needs of research that focusesfocusing on longer-termsurface albedo trends within the CERES era in or regions currently undergoing rapid changes in to atmospheric compositionstate as it affects shortwave radiation transfer.  Although some modeling groups have provided recent updates to radiative their albedo change kernels using the latest GCM versions (e.g., (Pendergrass et al., 2018)), the atmospheric state of the boundary conditions used to derive them may still be considered outdated or not in sync with that required for some many applications (Table 1). 









Based on both qualitative and quantitative benchmarking against the mean of four GCM kernels, the simple novel kernel model parameterization derived obtained from machine learning, BO18, together with the two (semi-)analytically derived modelskernels, QH06 and ANISO, proved far superior to the  analytical kernel and to the two additional empirical parameterizations  and M10, C12, and  the ISO kernel models.  When subjected to additional performance evaluation, however, we found that  the BO18 model was able to more robustly emulate the two GCM kernels (ECHAM6 and CAM5) kernels with exceptionally high accuracyagreement, suggesting that  this model canould serve as a suitable candidate for an albedo change kernel based on CERES boundary fluxesCACK.  



Relative to the monthly CAM5 and ECHAM6 kernels, Tthe RMSD mean absolute monthly emulation “error” of this kernel – henceforth referred to as the CERES Albedo Change Kernel (CACK v1.0)of  – was found to be 6.8 and 6.1 W m-2 when benchmarked to the,  CAM5 and ECHAM6 kernel, respectively – a magnitude which is only ~20% of the standard deviation found across four GCM kernels (annual mean) (annual mean).  CACK’s remarkable simplicity lends support to the idea of using machine learning to explore and detect emergent properties of shortwave radiative transfer or other complex, interactive model outputs in future research.  The fact that the  parameterization emerged as the best common solution from two independently executed machine learning analyses each employing a random sampling unique to a specific GCM kernel suggests that the  parameterization is robust and insensitive to the underlying GCM representation of shortwave radiative transfer.


Despite the stronger empirical foundation of CACKits stronger empirical foundation over a GCM-based kernel, it is important to recognize CACK’sits limitations.  Firstly, while CACK has a finer spatial resolution than most GCM kernels, it still represents a spatially averaged response rather than a truly local response; in other words, the state variables used to define the  response are averages tied to the coarse spatial (i.e., 1° x 1°) resolution of the CERES EBAF v4 product grids.  Secondly, the monthly CERES EBAF-Surface product used to define lower atmospheric boundary conditions is not strictly an observation.  The space-borne observation platform is not able to directly observe Earth’s surface fluxesobserve surface irradiances, requiring under overcast conditions and hence requires model augmentationadditional satellite-based estimates of cloud and aerosol properties as input to a radiative transfer model (Kato et al., 2012).  However,Although TOA irradiances are applied to constrain the surface irradiances, the energy-balancing step ensures that fluxes are adjusted to match the observed rate of heat accumulation in the climate system (i.e., the oceans) (Hansen et al., 2005)they remain susceptible to errors in the radiative transfer model inputs.  Considering this error as “data uncertainty” increases CACK’s overall uncertainty beyond that which is related to its underlying parameterization or “model error”.  These processesThe uncertainty of CERES surface shortwave irradiances , as well as extensive ground validation and testing , are documented in greater detail elsewhere (Kato et al., 2013;Loeb et al., 2009;Loeb et al., 2017;Kato et al., 2018) and may continue to be reduced in future EBAF-Surface version.s.  Further, while CACK has a finer spatial resolution than most GCM kernels, it still represents a spatially averaged response rather than a truly local response; in other words, the state variables used to define the response are tied to the course spatial (i.e., 1° x 1°) resolution of the CERES EBAF product grids.  Lastly, it is important to emphasize that CACK is based on the climate conditions of the present day (2001-2016); hence, caution should be exercised when applying it to estimate associated with albedo changes occurring outside this range.
a. Concluding remarks

To conclude, we developed, evaluated, and proposed a radiative kernel for surface albedo change based on CERES EBAF v4 products – or CACK. Relative to existing kernels based on GCMs, evaluated six simplified albedo change kernels based on CERES shortwave boundary fluxes as candidate alternatives to GCM-based albedo change kernels.   Albedo change kernels are useful tools for estimating instantaneous shortwave radiative forcings connected to anthropogenic land use activities.  Our results showed that the BO18 model developed and presented in this study is the best candidate for a CERES albedo change kernel -- or CACK.   CACK provides a higher spatial resolution, higher transparency alternative to existing kernels based on GCMsthat is more amenable to user needs.  For LULCC research of the near-past, present day, or near-future periods, application of a CACK whose inputs are based on monthly climatological means of the full CERES EBAF record can better-account for the corresponding interannual variability in Earth’s atmospheric state affecting shortwave radiative transfer.  For regions undergoing changes in atmospheric state that are detectable above the normal variability within the CERES era, application of a temporally-explicit CACK can better-account for its influence on ΔF estimates from surface albedo change.  CACK’s input flexibility and transparency combined with documented uncertainty make it well-suited to be appliedCACK could be easily applied as part of a Monitoring, Reporting, and Verification (MRV) frameworks for biogeophysical impacts on land, analogous to those which currently exist for land sector greenhouse gas emissions.
  Given the extensive time span of the CERES EBAF products, CACK based on a multi-year climatology of Earth’s shortwave radiation budget would better-account for internal climate variability in the earth system.  However, CACK’s flexibility regarding input year should make it broadly appealing across a range of disciplines.  One example is the land-based solar radiation management (SRM) research community who frequently calculate fromto evaluate climate mitigation strategies .   

Code and Dataset Availability
We make both monthly temporally-explicit and monthly climatological mean CACKs for years 2001-2016 available as a complete data product (“CACKv1.0”; netCDF file available at doi:10.6073/pasta/d77b84b11be99ed4d5376d77fe0043d8) that includes their respective uncertainty layers.  A summary of this dataset and associated variables is provided in Table S3 of the Supporting Information. AOctave Matlab script files for generating monthly CACK with user-specified temporal and spatial extents and demonstrating its application with user-specified temporal and spatial extents is are available at DOI.XXXbundled with the netCDF file.   The 2001-2016 global monthly climatological CACK  provided as a Matlab data file is also available at DOI.XXX.

Data Availability
CERES EBAF data are available for download at:  https://ceres.larc.nasa.gov/products.php?product=EBAF-TOA .  The CAM3 kernel is available at:  http://people.oregonstate.edu/~shellk/kernel.html .  The CAM5 kernel is available at:  https://www.earthsystemgrid.org/ac/guest/secure/sso.html . The ECHAM5 kernel is available at:  https://swiftbrowser.dkrz.de/public/dkrz_0c07783a-0bdc-4d5e-9f3b-c1b86fac060d/Radiative_kernels/ .  
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Table 1.  Attributes of existing GCM kernels, all of which having a monthly temporal resolution.
	Kernel 
	Base climatology extent
	Base climatology period
	Shortwave Radiative transfer
	Horizontal Resolution
	References

	ECHAM6
	1,000 years
	Preindustrial*
	RRTM-G
	1.88° × 1.88°
	(Block and Mauritsen, 2014;Stevens et al., 2013)

	CAM3
	6 years
	1995-2000
	δ-Eddington
	1.4° × 1.4°
	(Shell et al., 2008;Collins et al., 2006)

	CAM5
	1 year
	2006-2007
	RRTM-G
	0.94° × 1.25°
	(Pendergrass et al., 2018)

	GFDL
	17 years
	1979-1995
	Exponential sum-fits, 18 bands
	2° × 2.5°
	(Soden et al., 2008;The GFDL Global Atmospheric Model Development Team, 2004)


*Atmospheric CO2 concentration = 284.7 ppmv; Exact time period unknown



Table 12.  Definition of CERES input variables and other system optical properties derived from CERES inputs.  All variables are have a 2001-2016 monthly meansmonthly temporal resolution and a at 1° × 1° spatial resolution of 1° × 1°.  
	CERES EBAF v.4 Shortwave Boundary Fluxes

	

	Downwelling solar flux at top-of-atmosphere 
	Wm-2

	

	Downwelling solar flux at surface
	Wm-2

	

	Clear-sky downwelling solar flux at surface
	Wm-2

	

	Upwelling solar flux at top-of-atmosphere
	Wm-2

	

	Upwelling solar flux at surface
	Wm-2

	System Optical Properties

	

	Clearness index
	unitless

	

	Planetary albedo
	unitless

	

	Surface albedo
	unitless

	

	Effective planetary absorption
	unitless

	

	Effective surface absorption
	unitless

	

	Effective atmospheric absorption
	unitless

	

	Effective atmospheric transmission
	unitless

	

	Clear-sky effective atmospheric transmission
	unitless

	

	Cloud visible optical depth
	unitless

	

	Cloud area fraction
	fraction





Table 23.  Normalized absolute deviation and CERES kernel model candidate ranking.
	
	Global
	Land only
	

	
	

	Rank
	

	Rank
	Mean Rank

	ISO
	0.05
	6
	0.05
	6
	6

	ANISO
	0.64
	3
	0.59
	3
	3

	C12
	0.45
	4
	0.47
	4
	4

	M10
	0.26
	5
	0.34
	5
	5

	QH06
	0.66
	2
	0.60
	2
	2

	BO18
	0.67
	1
	0.64
	1
	1





	


Table 34.  Global monthly mean bias (MB) and mean absolute bias (MAB) for  emulated with T and  from ECHAM6 and CAM5. For reference, the global mean value of  is 133 W m-2.
 MB (W m-2)

	
	Jan.
	Feb.
	Mar.
	Apr.
	May
	Jun.
	Jul.
	Aug.
	Sep.
	Oct.
	Nov.
	Dec.
	Ann.

	

	-2.9
	-3.4
	-3.3
	-3.9
	-4.4
	-3.8
	-3.8
	-3.7
	-3.4
	-3.8
	-3.7
	-3.3
	-3.6

	

	-1.9
	-2.2
	-1.8
	-1.9
	-2.2
	-1.5
	-1.1
	-1.6
	-1.7
	-2.5
	-2.5
	-1.8
	-1.9

	MAB (W m-2)

	
	Jan.
	Feb.
	Mar.
	Apr.
	May
	Jun.
	Jul.
	Aug.
	Sep.
	Oct.
	Nov.
	Dec.
	Ann.

	

	6.9
	5.7
	5.2
	6.8
	7.7
	8.6
	7.9
	6.7
	5.6
	6.1
	6.9
	6.9
	6.8

	

	6.3
	5.7
	5.0
	5.9
	6.7
	6.8
	6.4
	5.8
	5.3
	5.6
	6.4
	6.7
	6.1
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Figure 1.  Latitudinal (1°) and seasonal means of the multi-GCM mean () and CACK model candidates for:  A) December-January-February (DJF); B) March-April-May (MAM); C) June-July-August (JJA); D) September-October-November (SON).
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Figure 2.  A)-F):  Scatter-density regressions of global monthly mean  (y-axis) and (x-axis), with the CERES kernel identifier shown at the top of each sub-panel. “m” = slope; “B0” = y-intercept.  The color scale indicates the percentage of regression points that fall within an averaging bin, where the x-axis and y-axis have been gridded into 100 × 100 equally-spaced bins to help illustrate the density of overlapping points.The color scale indicates the percentage of regression points that fall within a 100 × 100 sample grid centered on the plotted point.
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Figure 3.  A) Mean annual bias of the CAM5 albedo change kernel emulated with the ANISO analytical semi-empirical model; B) Mean annual bias of the CAM5 albedo change kernel emulated with the BO18 parameterization; C) Mean annual bias of the ECHAM6 albedo change kernel emulated with the ANISO semi-empiricalanalytical model; D) Mean annual bias of the ECHAM6 albedo change kernel emulated with the BO18 parameterization
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Figure 4.  A)-D):  Scatter-density regressions of  (y-axis) and   emulated with the ANISO semi-empirical model and BO18 parameterization (x-axis); “m” = slope; “B0” = y-intercept.  The color scale indicates the percentage of regression points that fall within a 100 × 100 sample grid centered on the plotted point.See Figure 2 caption for a description of the color scale.
 


[image: ]
Figure 5.  Annual uncertainty of a CACK based on 2001-2016 monthly mean CERES EBAF v4 climatology:  A) The absolute uncertainty related to model error (i.e., the  parameterization); B) The total propagated absolute uncertainty related to physical variability and data uncertainty of CACK input variables; C) Total absolute uncertainty; D) Total relative uncertainty.
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Figure 6.  Example application of a CACK based on the 2001-2016 monthly mean CERES EBAF v4 climatology.  A)  Annual mean of the climatological (i.e., 2001-2011) monthly mean difference in white-sky surface albedo between grasslands and evergreen broadleaved forests ( ) based on the 1° product of Gao et al. (2014); B) Annual mean instantaneous radiative forcing () of monthly mean estimated with CACK; C) Absolute uncertainty (annual mean) of the CACK-based estimate, including the uncertainty of ; D) Relative uncertainty (annual mean) of the CACK-basedestimate.
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Figure 7.  Example application of a temporally-explicit CACK.  A)  2001-2016 statistically significant positive trends in all-sky surface albedo derived from CERES EBAF-Surface v4;  B) 2001-2016 statistically significant negative trends in cloud area derived from CERES EBAF-TOA v4; C)  Mean local from when estimated with the CACK, ECHAM6, and CAM5 surface albedo change kernels.  The 1σ confidence interval (“CI”) shown for CACK excludes the uncertainty component related to physical variability.
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