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Machine learning results summary

A subset of the machine learning model solutions for ECHAM6 and CAM5 and associated summary statistics are presented in Table S1.  Equivalent solutions of complexities 1, 6, 7, and 10 were found independently by the two GCMs.  The model with complexity 10 (red boldface) was the highest performing model common to both GCMs and was chosen to representand hence subjected to further performance evaluation in the main article.  
Table S1.  Subset of machine learning model solutions for ECHAM6 and CAM5 and associated statistics for the “selected” solutions shown in Figure S1.  Means of CAM5 and ECHAM6 kernels are 140.2 and 133.4 W m-2, respectively, which are used to compute the monthly relative RMSEs (“rRMSE”; in %).  “Comp.” = model complexity.
	Solution
	R2
	Max Error
	rRMSE (%)
	MSE
	MAE
	Comp.

	ECHAM6

	
 
	1.00
	31.96
	4.1
	27.02
	3.92
	30

	
 
	0.99
	32.59
	5.6
	40.93
	4.91
	16

	

	0.99
	31.59
	7.1
	66.48
	6.03
	10

	

	0.86
	81.55
	22.0
	947.8
	25.10
	7

	

	0.81
	82.95
	31.4
	1,314
	33.03
	6

	

	0.67
	103.8
	41.0
	2,245
	40.98
	1

	CAM5

	

	1.00
	43.57
	5.0
	35.66
	4.31
	30

	

	0.99
	53.39
	5.7
	45.82
	5.31
	18

	

	0.99
	36.62
	7.7
	83.37
	6.71
	10

	

	0.88
	82.26
	25.0
	874.9
	23.87
	7

	

	0.80
	83.99
	32.4
	1,474
	35.04
	6

	

	0.71
	103.9
	38.7
	2,098
	39.03
	1

	ECHAM6 & CAM5 mean

	

	0.99
	34.11
	7.4
	74.93
	6.37
	10




The rRMSE for  of Table S1 is the mean rRMSE for the ECHAM6 and CAM5 solutions. 

Figure S1 illustrates the Pareto front used to assist  model selection.  Model solutions are plotted as small dots showing model MSE as a function of model complexity.   A subset of models of interest, generally found at ‘elbows’ in the Pareto front, are indicated by larger dots.  At these elbows, slight increases in model complexity lead to large reductions in model error.   has a model complexity of 10.

[image: ]
Figure S1.  Pareto front used to assist model selection from machine learning output.  

Additional uncertainty detail

The rRMSE for  (Table S1) is used to estimate CACK’s monthly model error for a given grid cell as follows:

                                                                                       (S1)



where the numerator represents the mean RMSE of the ECHAM6 and CAM5 solutions, is the mean of the monthly ECHAM6 and CAM5 kernels in the training datasets, and  is the CERES albedo change kernel (CACK) based on the  parameterization for month m and grid cell p.

Uncertainty related to the local “physical variability” of a CERES input variable for any given month m and grid cell p is taken as the standard deviation within the 2001-2016 period:

                                                                                                 (S2)





where is the monthly and grid cell value of ,   is the total number of years in the period (i.e., 16), and  is the monthly and grid cell mean of  during this period.
Uncertainty related to CERES EBAF input variable  for any given month m and grid cell p is estimated using its relative uncertainty as:

                                                                                                           (S3)



where  is the monthly and grid cell value of , is the absolute uncertainty of  (Table S2), and  is the mean  of the sample domain (Table S2). 
Table S2. Uncertainty of the CERES EBAF v4 input variables required by CACK.
	CERES Variable
	Domain
	
     (W m-2)
	
    (W m-2)
	

	Reference

	

	“Ocean + land”
	187
	13
	0.07
	(Kato et al., 2018)

	

	N/A
	N/A
	N/A
	0.01
	(Loeb et al., 2017)







Covariance of CERES input variables  and  (i.e.,  and ) in any given grid cell p is estimated as:

                                                                  (S4)









where  is the total number of months,  and  are the values for variables  and  in grid cell p and month m, and and  are the means of  and  in grid cell p for the 2001-2016 time period.









Grid cell and grid cell and monthly  and  are then used to estimate the total propagated uncertainty of CERES input variables  and  (i.e.,  and ) as the second right-hand term of Eq. (21) of the main article.  This is then summed together with the  estimated as equation S1.  In Eq. (21), the partial derivative of CACK with respect to is given as:

                                                                                               (S5)

The partial derivative of CACK with respect to is given as:

                                                                                                    (S6)

CACK v1.0 dataset summary
Table S3 summarizes the variables comprising the CACK v1.0 dataset.  
Table S3.  Summary of variables included in the CACK v1.0 dataset.
	Variable name
	Description
	Temporal resolution
	Temporal signature (extent)

	“CACK CM”
	Eq. (17) with CERES inputs as 2001-2016 means
	Monthly
	2001-2016 mean

	“Sigma_me CM”
	First right-hand term of Eq. (21) estimated as Eq. (S1) with CERES inputs as 2001-2016 means
	Monthly
	2001-2016 mean

	“Sigma_du_pv CM”
	




Second right-hand term in Eq. (21)  where ,  , and are estimated with Eq.’s S2-S4, and an d  are 2001-2016 means of  and  
	Monthly
	2001-2016 mean

	“Sigma_total CM”
	Eq. (21), or the sum of “Sigma_me CM” and “Sigman_du_pv CM”
	Monthly
	2001-2016 mean

	“CACK”
	Eq. (17) estimated  for all years in the 2001-2016 period
	Monthly
	Annual (2001-2016)

	“Sigma_me”
	First right-hand term of Eq. (21) estimated as Eq. (S1) for all years in the 2001-2016 period
	Monthly
	Annual (2001-2016)

	“Sigma_du”
	




Second right-hand term of Eq. (21) estimated  for all years in the 2001-2016 period  but excluding   ;  and are estimated with Eq.’s S3-S4;  an d  are [image: ] and [image: ] provided by CERES EBAF v4.
	Monthly
	Annual (2001-2016)

	“Sigma_total”
	Sum of “Sigma_me” and  “Sigma_du”
	Monthly
	Annual (2001-2016)
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