
Answers to reviews of gmd-2019-149 “An aerosol climatology for global 
models based on the tropospheric aerosol scheme in the Integrated 

Forecasting System of ECMWF” 
 
Answers to anonymous Referee 1: 
 
General comments: 
The manuscript is well written can be useful for potential users of the CAMSiRA aerosol 
climatology. In particular in showing the effects of the impacts of radiation fluxes using 
the new climatology in the IFS forecast system the effects of the new climatology are 
presented. 
A major concern is that the aerosol climatology is only evaluated in terms of AOT. As 
the new aerosol climatology was constrained by MODIS AOT, it is nice to know but 
unsurprising that the new CAMSiRA climatology provides a better match with AOT 
measurements compared to the older Tegen et al. (1997) climatology given that the older 
climatology was compiled from a results of very early attempts at aerosol tracer 
models using very coarse models and use emission fields that are meanwhile outdated. 
While it is a good start to look at regions that are dominated by specific aerosol types 
(although at most stations AOT will be a result of mixtures of different aerosol types, 
e.g. at Midway Island there is likely a contribution from sulfate AOT) it is notable that in 
particular for mineral dust evaluation at sites that are dominates by dust are absent, and 
should be added. As it is important for its radiative effect, particularly the effect on the 
Indian summer monsoon, the authors should also compare their absorbing AOT with 
the AERONET absorbing aerosol product. This should be a straightforward extension 
of the already existing analysis. Ultimately other aspects such as the mixing rations 
or number size distributions will be used (e.g. for simulating indirect effects of aerosol 
particles on clouds). Aerosol composition will play a major role for these aspects. How 
about comparing other aspects such as near surface concentrations? 
 
We thank the reviewer for the thorough and very helpful comments to the manuscript.  
It is true that we concentrate mostly on the evaluation of the AOT but, given that the 
climatology derives from the constrained CAMS reanalysis, we think that we can therefore 
rely on the evaluation of the CAMS model as a mean of evaluation of the climatology. 
Therefore we think that for a full evaluation of various other aspects of the CAMS prognostic 
aerosol fields, we can refer to the discussion available in Flemming et al. (2017) and Remy 
et al. (2019). The latter in particular also includes an analysis on particle matriculate matter 
(PM2.5 and PM10). We made more clear this point in the text. 
 
In this work we are mostly interested in discussing the general impact of the climatological 
aerosol fields on the mean radiative fluxes in a global model, as this is what we believe 
would be the main use of such a database. For this we use the optical properties 
implemented in the ECMWF model to compute the diagnostic AOT fields, and this is only 
one of the possible choice available. A thorough comparison in terms of absorption optical 
depth would require a full study on the quality of different refractive indices for various 
species, which is beyond the scope of this work and the user has the freedom to specify any 
radiative properties of choice to associate to the CAMS aerosol species. This choice will 
have a significant impact especially on the most uncertain quantities such as single 
scattering albedo. 
 
But we agree with the reviewer that it is indeed very useful to give an idea of how the 
absorption AOT in the particular implementation we discuss here, compares to the AAOT 
retrieved at AERONET sites. We therefore added to the general description of the spatial 
characteristics of the AAOD a comparison with the retrieved AAOD at selected AERONET 



sites, including two new sites, one dominated mostly by the dust type and another by 
biomass burning in South America. 
 
Specific comments: 
 
1. While the introduction section gives a detailed overview about the role of aerosol 
climatologies in NWP and in particular for the ECMWF model, to avoid confusions the 
section would benefit from a table listing the current and previous aerosol climatology 
versions. 
Table added 
 
2. Page 4, line 32: What does ‘mass volumetric concentration’ mean? Do you just 
mean ‘mass concentration’? 
 
Corrected 
 
3. Page 5, lines 21-25: This sentence is not clear, please explain in more detail 
what is meant by ‘not efficient coupling’ between convective transport and scavenging/ 
speciation/vertical distribution of analysis increments. 
 
The paragraph has been rewritten better clarifying the concept.  
 
4. Figure 1 The labels with numbers in some oft he panels (top 2 rows) are not explained. 
Are they actually needed? 
 
The contour labels have been removed. 
 
5. Figure 1: In addition to mass load, the distribution of the AOTs of the individual species 
would be interesting, as the AOTs ultimately determine the radiative effects. 
This would also support the choice of Aeronet locations relevant for individual aerosol 
types. These locations could be indicated on such AOT maps. 
Added a new figure with the AOT distribution of the individual species, including the position 
of the selected AERONET sites 
 
6. Figure 4: Additional difference plots between the two climatologies would be useful 
to highlight their key differences. 
Difference maps added to the figures  
 
 
7. Page 11 and figure 5: At least one Aeronet station dominated by mineral dust should 
be added, as this aerosol type caused major differences between the climatologies. 
 
Thank you, although the site of Karachi does include mineral dust, this aspect was indeed 
overlooked in the draft. We added one more Aeronet station affected by dust, Solar Village 
in Saudi Arabia which provided the most complete record for the period in question, amongst 
other dust-dominated sites and it is instrumental to the discussion on the indian monsoon. 
 
8. Figure 5: what causes the dips in the green line (Tegen climatology) at the beginning 
of each month? 
 
This was an artefact in the plotting script and it has been corrected.  
 
9. Page 14, lines 10-11: Please state here for which years the ‘forecast runs’ are 
performed. In the caption of Figure 8, the period May to August of the year 2016 is 
named, which should also be stated in the text. 



 
The text has been checked for consistency with the figure captions 
 
10. Figures 6 and 7: Please provide the information on the years of the simulations in 
the figure captions 
 
Information added 
 
11. Figure 10: If, as stated in the figure caption, the figure shows also zonal winds as 
in Figure 9, why is the unit m2/s2 rather than m/s? 
 
There was an error in the caption, the figure shows the geopotential, in units of m^2/s^2 
 
Minor corrections: 
 
12. Abstract, line 1: ’global atmospheric models’ – the words should not be starting 
with captital letters 
 
Corrected 
 
13. Abstract, line 3: into -> in 
 
Corrected 
 
14. Abstract, line 8: : : : assimilating -the- aerosol optical thickness : : : 
 
corrected 
 
15. The authors use at several places in the manuscript the expression ‘specie’ for 
singular of ‘species’. Please check if that is the correct usage of the singular word 
here. (I am not a native speaker, but would also use species for singular and plural in this 
context) 
 
The reviewer is correct; we changed into species throughout the text 
 
16. Page 6, figure 1 caption, line 1: Interim reanalysis is written as interim Reanalysis 
at other places in the manuscript, please make sure it is written with the same 
capitalization everywhere. 
 
Corrected throughout the text 
 
17. Page 7, line 29 ad -> and 
 
corrected 
 
18. Page 10, figure 4: I suggest to place the figure labels (a and b) above and not 
below the figures 
We split the figure in two separated figures adding the panel with the differences, as per 
comment number 6.  
 
 
19. Figure 5: The lines in figure and the labels are difficult to recognize. The lines 
should be thicker and the label fonts should be larger. 
 
The figure has been improved 



 
20. Page 17, line 10: fig -> Fig 
 
corrected 
 
21. Page 19, Table 2: Here the fonts are too large 
fixed 
 
22. Page 24, line 18 – The number 0.05 should probably be 0.5? 

True, fixed in the text 

 

 

 

Answers to anonymous Referee 2: 

 

Reviewer comments to 
"An aerosol climatology for global models based on the tropospheric aerosol scheme 
in the Integrated Forecasting System of ECMWF. Alessio Bozzo 1* , Angela Benedetti 
1 , Johannes Flemming 1 , Zak Kipling 1 , and Samuel Rémy 1,2" 
This is a generally well written and comprehensive paper that documents the new 
CAMS aerosol climatology and illustrates its application in the ECMWF forecast model. 
Interesting new results concerning the dynamic impact of aerosols on model results 
over certain areas of the globe are presented and analysed. The paper can be used 
as a document of the CAMS aerosol climatology data set by NWP modellers and other 
users. For this, it is important to get also the details carefully presented. As not only 
NWP modellers are interested in the aerosol impacts, it would be good to avoid NWP 
specific jargon and implicit assumptions that the reader is familiar with e.g. the data 
assimilation methods. 
 
We appreciated the reviewer detailed revision of the manuscript and the numerous 
comments, which helped improving the paper. Below we provide the answers to each 
specific remark. 
 
Detailed remarks and questions are presented below 
 
p1 l6 ... set of model simulations ... 
corrected 
 
p1 l7 re-analysis or reanalysis, please check consistency throughout the paper 
consistency checked 
 
p1 l8 Aerosol Optical Thickness (AOT) or aerosol optical thickness, also check consistency 
consistency checked 
 
p1 l15 ... improve the simulation of summer monsoon circulation ... Are the words like 
Monsoon or Tropics or Dimethyl Sulfate written with capital letters? 
Fixed using the correct capitalization of the words (should be lower-case) 
 
p1 l24 Please check the consistency of years of both Baklanov et al. references in 
text/list of references 



corrected 
 
p2 l6 remove ’and’ from ...prognostic aerosol field -and- because ...? 
removed 
 
p2 l16 feed-backs of feedbacks, please check consistency 
consistency checked throughout the text 
 
p2 l25 ... multi aerosol model simulation.. or ...multi-aerosol... ? 
consistency checked throughout the text 
 
p2 l28 ... teleconnections ... instead of tele-connections Perhaps check all combinations 
of adjectives and nouns including or not including ’-’ ? 
consistency checked throughout the text 
 
p4 l8-9 Dust emissions do not really depend on albedo, perhaps something like: ’in the 
model, emissions of dust are related to ... 
In this case the parameterization controlling the emission of dust depends on the surface 
albedo to determine (together with other parameters) the points able to act as dust source 
and also as a weight affecting the source strength. We clarified the text, more details are in 
Remy et al. (2019). 
 
p4 l10 sea salt instead of Sea-salt 
corrected throughout the document 
 
p4 l13 SO_2 instead of SO2, mention the relation between SU and SO_2 
corrected and briefly mentioned the parametrization of the conversion rate SO_2->sulfate 
aerosols. All the details are provided in Remy et al. (2019) 
 
p4 l16 ... an extra control variable +and+ using a variational bias correction ... ? 

The sentence here is correct, meaning that the extra control variable is implemented 

adapting the bias correction framework developed for the assimilation of radiances.  

p4 l.19 AERONET reference, definition. You might consider an attachment table of 
acronyms with references? 
Reference added. We believe that the number of acronyms is not too large as to require a 
table of definitions. We checked the text for other acronyms not properly explained.  
 
p4 l23 ... same meteorological fields and emission +data+ as CAMSiRA ? 
corrected 
 
p4 l29 ... each specie... instead of ’species’? Or at least consistently. 
We checked as per other reviewer request. Species is the correct word and it has been 
changed consistently throughout the document. 
 
p4 l31 For what you used the scaled AOT - not only for diagnostics but for something 
more fundamental in derivation of the mmr? Please explain in this paragraph. 
The paragraph was not very clear in this respect, we agree. The scaled AOT in the context 
of this work is used mainly as diagnostic. We made that clearer in the text.  
 
p4 l32 Please explain why kg/m3 and not kg/kg as usually, e.g. in the available via 
CAMS near-real-time data. For this paper it may not be important as only layer integrated 
values kg/m2 are shown but for data users this may be confusing. 



Indeed there was confusion here. We chose the layer-integrated mass concentration 
because it is directly proportional to the AOT, since we believe the likely use of such a 
dataset will be for radiative computations. But in the climatology we also provide gridded 
mean pressure profiles to allow the conversion to mass mixing ratio. We made this clear in 
the text. 
 
p5 l12 What means "generally" in this sentence? 
Corrected, it should have been “mostly” 
 
p5l 19 ... organic and black carbon species ... 
corrected 
 
p5 l23 Please discuss volcanic (stratospheric) ash and sulfates in this context: are they 
included in the climatology, what are the uncertainties etc. Do the dust/sulfate optical 
properties apply to these as well? 
Stratospheric aerosol of volcanic origin are not included in the climatology because not 
modelled in the CAMS interim reanalysis used in this work. The stratospheric residual 
discussed here is to a certain extent an artefact of the model, as explained. We modified the 
text to clarify the ambiguity  
 
p5 l30 Would be logical to start from appendix A, i.e. change the order of the appendices 
True, modified 
 
p5 l32 ... away from the +near-surface+ sources? 
corrected 
 
p6 Fig 1 caption ... have been multiplied by 10 ... Not the mean values shown, though? 
Indeed, caption clarified 
 
p7 l6 ... non-negligible... ? Somewhere later you also use ’not negligible’, please check 
consistency 
consistency checked throughout  
 
p9 Fig 3 caption ... mineral dust ... ... from CR fields, the right ... ...while for organic 
matter +it+ is 2 km ... 
corrected 
 
p9 l5 ... emissions of black +carbon+ ... 

corrected 

p9 l3 Why ... it is smaller over Europe... ? Sulfates? 
Yes, mostly a decrease of industrial emission. Text clarified 
 
p9 l6 ... while showing ... 
corrected 
 
p11 l13 You have selected the sites based on dominant aerosol species. You might 
mention for each site what is dominating in terms of the 5 categories used here. Would 
an additionl Eastern European site in show in early summer something interesting 
related to organic (pollen etc) aerosol? Does the Karachi site show mineral (desert) 
dust impact? Lake Argyle seems to be in Australia, what aerosols are there? Showing 
a small map of the locations might also help. 
As per request of reviewer 1 we are now showing the position of each site over a map 
reporting the contribution of each species on annual mean. 



 
p12 Table 1 CAMSiRA 2008 v.s. CAMSiRA clim remains unclear. Also further in Fig.5 
you refer to CAMSiRA original. Please clarify. Is CAMSiRA (original) run for 2008 
without scaling of AOT, does CAMSiRA contain your scaling? 
We modified the text, hopefully clearer now 
 
p12 l7 Please clarify what means "compared to the IFS configuration using the old 
climatology based on TG97", i.e. what exactly are the differences between the 
configurations. 
See also the next comment. 
p14 <l7 Please add a paragraph summarising how the radiation scheme of your experiments 
(Hogan and Bozzo, 2018?) treats the aerosol input in case of CAMSiRA mmr + 
new IOPs v.s. Tegen AOD: 
- which variables enter the radiation parametrizations (AOD, SSA, ASY at each 3D 
gridpoint?) 
- vertical distributions - native or exponential 
- assumptions concerning SW and LW radiation (e.g. scattering, wavelengths really 
used)? 
- something else? 
 
An extra paragraph was added better explaining the two configurations 
 
 
p14 l7 What do you mean with ’model mean state’ in climate runs? You only discuss 
the radiation fluxes, which is fine, so perhaps remove the mean state from here? 

‘model mean state’ was indeed out of context and it has been removed 

p15 l1 CERES-EBAF definition, reference (into a table of acronyms?) 
acronym explained and added relevant references 
 
p16 l17 remove extra ’on’ 
fixed 
 
p17 l5 ...desert +(in China)+ ... It is perhaps Takla Makan desert? 
We found it spelled in various ways; Taklamakan seems to be the one used more often 
 
p18 l5-10 Please reformulate this interesting list with less jargon like ’driven in part 
by the operator splitting of convective transport and scavenging’, ’assign far too much 
positive increment to black carbon’ 
We clarified the paragraph 
 
p18 l9 Please remind what are the biomass burning species 
there was some confusion throughout the text between organic species and biomass 
burning, which is part of the organic species. We clarified the composition of the organic 
matter species and corrected the text 
 
p18 l12 ... non-negligible ...? 
corrected 
 
p19 Section 4.4 is very interesting! 
Thank you 
 
p19 Table 2 Definition, references to all "different products" 
references and full acronyms explanations added to the table 



 
p20 l4 Please reformulate ’helps reducing the first-guess departure ...’ 
modified 
 
p20 l12 Is ’in the Indian Ocean’ correct, or perhaps ’over’? 
corrected 
 
p21 l8 Would it be possible to say something about changes in clouds, not due to 
explicitly accounting for cloud-aerosol microphysics interactions but resulting anyway? 
We added a short paragraph in this section linking to the results observed in section 4.2 
 
p22 l15-16 ... modifies the strength of temperature and pressure gradients over the 
Indian Ocean ... It seems that you did not directly show the temperature and pressure 
gradients but the resulting wind fields and 925 geopotential (relative topography 850- 
100 would directly show the mean temperature). Perhaps consider how to formulate 
this conclusion better. 

We modified the conclusions so they reflect better what we showed in the previous section. 

Although the impact on the monsoon circulation is very interesting, it was shown here just as 

an example of potential impacts that can be expected when modifying the aerosol radiative 

effect and unfortunately a deeper discussion on the topic is beyond the scope of this 

technical paper. 

 

Answers to executive editor comment: 

 

This is an executive editor comment on the subject of code and data availability. It 
highlights certain respects in which this manuscript does not currently comply with 
GMD model code and data policy. These issues need to be remedied before a revised 
manuscript could be accepted for publication. 

Code availability 
IFS is proprietary and cannot be publicly archived. The manuscript correctly identifies 
this issue. However certain other code is listed as available from the author. This 
does not conform to GMD requirements. This code should be persistently archived, for 
example on Zenodo. If this is not possible for reasons beyond the control of the authors 
then the restrictions need to be stated (as for IFS). 
Thank you for the comment. The code mentioned is actually a pretty standard algorithm to 
compute the scattering properties of spheres with a defined refractive index and we realised 
there is no need to release this particular code publicly, also given the complications due to 
the restrictions that computer codes are subjected to when developed at ECMWF. We listed 
the appropriate reference for the algorithm.  
 
Data availability 
It is not possible to work out from the statement given which of the data on CAMS is 
the result of this paper. Please identify the data precisely. I presume that CAMS has a 
preferred mechanism for identifying and citing data sets (for example by DOI or similar), 
please use this mechanism if available. 

Indeed the section was not clear. We clarified which datasets will be available and how to 

access it. Data on the CAMS archive do not have a DOI associated so we indicated the 

location where the data will be stored and a point of contact. We would like upload the data 

and provide the complete address once the revision process is completed.  
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Abstract. An aerosol climatology to represent aerosols in the radiation schemes of Global Atmospheric Models
:::::
global

::::::::::
atmospheric

::::::
models was recently developed. We derived the climatology from a reanalysis of atmospheric composition produced by the

Copernicus Atmosphere Monitoring Service (CAMS). As an example of application into
:
in

:
a global atmospheric model, we

discuss the technical aspects of the implementation in the Integrated Forecasting System of European Centre for Medium

Range Weather Forecasts (ECMWF-IFS) and the impact of the new climatology on the medium-range weather forecasts and5

one-year simulations. The new aerosol climatology was derived by combining a set of model simulation
::::::::::
simulations with con-

strained meteorological conditions and an atmospheric composition reanalysis for the period 2003-2014 produced by the IFS.

The aerosol fields of the re-analysis
::::::::
reanalysis are constrained by assimilating Aerosol

::
the

::::::
aerosol

:
optical thickness (AOT) re-

trievals product by the MODIS instruments. In a further step, we used modelled aerosol fields to correct the aerosol speciation

and the vertical profiles of the aerosol reanalysis fields. The new climatology provides the monthly-mean mass mixing ratio of10

five aerosol species constrained by assimilated MODIS AOT. Using the new climatology in the ECMWF-IFS leads to changes

in direct aerosol radiative effect compared to the climatology previously implemented, which have a small, but non-negligible

:::
not-

:
impact on the forecast skill of large-scale weather patterns in the medium-range. However, details of the regional distri-

bution of aerosol radiative forcing can have a large local impact. This is the case for the area of the Arabian Peninsula and the

northern Indian Ocean. Here changes in the radiative forcing of the mineral dust significantly improve the Summer Monsoon15

:::::::
monsoon

:
circulation.

1 Introduction

Aerosols have an important impact on the radiative budget of the Earth-Atmosphere system. They participate in the atmospheric

radiative transfer directly by scattering and absorbing electromagnetic radiation and indirectly by interacting with cloud mi-

crophysics (e.g. Haywood and Boucher, 2000; Bellouin et al., 2005). The uncertainty in the total radiative forcing by natural20

and anthropogenic aerosols remains large (Boucher et al., 2013) and most recent global climate models include more or less

sophisticated prognostic aerosol schemes to explicitly take into account the direct radiative impact of aerosols on radiation

and their interaction with cloud microphysics and other components of the Earth system (e.g. Bellouin et al., 2011; Donner et

al., 2011; Stier et al., 2005). The impact of aerosols on the skill of numerical weather prediction (NWP) models is less clear

1



(?Mulcahy et al., 2014)
:::::::::::::::::::::::::::::::::::::
(Baklanov et al., 2018; Mulcahy et al., 2014) and conclusions vary depending on the diagnostics used

(Reale et al., 2011) and on the spatio-temporal scales analysed (e.g. Rémy et al., 2015). Global and regional NWP models

employ often an approximate treatment of aerosol radiative forcing based on a climatological description of their spatial dis-

tribution. This choice is mainly due to the fact that coupling an NWP to an atmospheric composition model with a significant

number (usually O(10)) of additional prognostic variables increases significantly the computational burden of the system but it5

might not translate directly into a clear improvement of the forecast skill (Morcrette et al., 2011; Mulcahy et al., 2014). More-

over, extra difficulties arise when assimilating real time observations to constrain the initialization of the prognostic aerosol

field and because some species require an accurate prediction of their sources, as in the case of anthropogenic and natural

fires. A realistic representation of the mean climatological distribution of the most important aerosols can already improve the

forecast skill both on a regional scale and globally (Rodwell and Jung, 2008).10

With an increasing availability of large computer resources and the improvement of chemical transport models, an increasing

number of studies explored the impact of including various levels of complexity in the representation of aerosol radiative

effect in NWP models (?)
::::::::::::::::::
(Baklanov et al., 2014). Mulcahy et al. (2014) concluded that including both direct and first indirect

radiative effects of prognostic aerosols in a global NWP model results mainly in a reduction in radiation and temperature biases

on regional scale, with limited impact on weather forecast skill. The representation of the aerosol-clouds interaction remains15

uncertain and so its impact on NWP models.

The largest impact on weather forecast skill of a prognostic aerosols scheme coupled to an NWP model is in case of events

associated with large aerosol optical depths such as dust storms or wildfires. In these situations a realistic representation of the

aerosol distribution differs significantly from the average climatology and it can improve forecasts locally, especially close to

the surface. Additionally, feed-backs
::::::::
feedbacks

:
linked to the direct aerosol radiative forcing can affect the production of the20

aerosol itself (Rémy et al., 2015). Similarly, Toll et al. (2015) and Zhang et al. (2016) showed that capturing the distribution of

aerosols during extreme fires events has a significant impact on near-surface weather forecasts for the affected areas.

In the operational configuration of the European Centre for Medium Range Weather Forecasts - Integrated Forecasting

System (ECMWF-IFS) the aerosol direct radiative effect has always been treated using climatological aerosol distributions

with no attempts at representing the interaction between aerosols and cloud microphysics
:::::
(Table

::
1). The IFS has employed25

since 2003 a monthly-mean climatology of five main aerosol species based on one of the first multi aerosol
::::::::::
multi-aerosol

:
model

simulations by Tegen et al. (1997) (”TG97” in the following) and this substituted an earlier simpler annual mean distribution

based on Tanré et al. (1984)
:::::
(Table

::
1). When the more detailed TG97 climatology was introduced, it improved the model

forecast skills mainly on a regional scale but, thanks to tele-connection feedbacks, it also affected the large scale mean flow

(Rodwell and Jung, 2008). The tropical regions and in particular the monsoon areas of Western Africa and India showed the30

largest sensitivity to the change in aerosol radiative forcing, resulting in improvements in the precipitation bias (Tompkins et

al., 2005).

Prognostic aerosols were introduced in the IFS for the first time with the GEMS project in 2005 (Hollingsworth et al., 2008)

as part of the development of a real-time operational assimilation and forecast capability for aerosols, greenhouse and reactive

gases. The aerosol assimilation and forecast model (Morcrette et al., 2009; Benedetti et al., 2009) has been further refined in35
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the subsequent MACC projects (Simmons, 2010) and it is now maintained and developed within the Copernicus Atmosphere

Monitoring Service (CAMS) as a suite of on-line integrated modules for aerosol and chemistry in the IFS (Flemming et al.,

2015; Morcrette et al., 2009; Rémy et al., 2019). Morcrette et al. (2011) used an early version of the aerosol scheme in the IFS

to explore the impact of coupled prognostic aerosol on the quality of the operational IFS forecasts. Both direct and indirect

radiative effects were included, the latter impacting the number concentration of liquid cloud droplets according to Menon et al.5

(2002). They found that compared to the TG97 climatology, the changes in medium-range large-scale forecast skill caused by

having the prognostic aerosols interacting with radiation and cloud microphysics were small, although near-surface parameters

showed local improvements. The inclusion of the full prognostic aerosol model had a prohibitive impact on the efficiency

of the IFS, increasing the whole computational cost of the model by more than 50%. However, no attempt at optimizing the

implementation was made.10

Table 1.
::::::::
Evolution

:
in
:::
the

:::::::
treatment

::
of

:::::::
radiative

::::
effect

::
of
:::::::
aerosols

::
in

::
the

:::::::
ECMWF

:::
IFS

::::::
forecast

::::::
model.

::::
years

::
in

::
use

: :::::
aerosol

:::::
model

: ::::::::::
characteristics

:

::::
2000

:
-
::::
2003

::::
Tanre

::
et

::
al.

::::
1984

: :
4
:::::::

aerosol
::::::

types
:::::::

(desert,
::::::::::

continental,
:::::::::

maritime,

::::::::
industrial),

::::::
annual

:::::::
average,

:::::
total

:::::::::
integrated

:::::
AOD

::::
2003

:
-
:::::
7/2017

: ::::
Tegen

::
et

::
al.

::::
1997

: :
5
::::::
aerosol

::::
types

:::::
(dust,

:::::::
organic,

::::::
sulfate,

:::::
black

::::::
carbon,

::::::::
maritime),

::::::
monthly

::::::
average,

::::
total

::::::::
integrated

::::
AOD

:::::
7/2017

:
-
::::::
present

:::::
CAMS

: :
5
::::
main

:::::
aerosol

:::::
types

::::
(dust [3

::::
size

:::
bins],

::::::
organic,

::::::
sulfate,

::::
black

::::::
carbon,

:::
sea

:::
salt [

:
3

:::
size

:::
bins]

:
).
:::::::
Monthly

:::::::
averages.

::::::::
Distinction

:::::::
between

::::::::::
hydrophilic

::::
and

:::::::::::
hydrophobic

::::::
species.

::::
Total

::::::::
integrated

::::
AOD

::::::
before

::::
2019

::::
then

::::
mass

:::::
mixing

::::
ratio

:::::
profile

::
at

:::
each

::::
grid

::::
point.

:

A climatological description of aerosol distribution is still a viable option to capture the monthly-mean aerosol radiative

effect for a NWP model (Toll et al., 2016). Improvements in aerosol climatologies are tied to improvement in chemical transport

models and observations and it can be represented as a two- or three-dimensional spatial distribution of aerosol mass or optical

properties. A climatology can be built with a strong emphasis on surface observations using model fields to fill the gaps

between the sparse network of measurement sites (e.g. Kinne et al., 2013), or merging model fields, satellite data and surface15

observations using empirical methods (e.g. Liu et al., 2005). A further option is to rely on a data assimilation system, which is

the approach followed in this work.

The MACC Reanalysis
::::::::
reanalysis of reactive trace gases and aerosols (MACCRA, Inness et al., 2013) was the first multi-year

atmospheric composition reanalysis effort developed with the MACC system taking advantage of the 4-D
::
4D

:
variational assim-
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ilation system for atmospheric composition (Benedetti et al., 2009). Total aerosol optical thickness (AOT) was constrained by

assimilating the AOT retrieved from the Moderate resolution Imaging Spectroradiometer (MODIS) observations. CAMS is cur-

rently updating MACCRA with a new high-resolution atmospheric composition reanalysis (the CAMS Reanalysis
::::::::
reanalysis,

CAMSRA) and as an interim product between MACCRA and CAMSRA, a new dataset (CAMS Interim reanalysis, CAM-

SiRA, Flemming et al., 2017) was produced. CAMSiRA shows a good agreement with the latest surface AOT observations,5

combines the most recent advances in global aerosol modelling and satellite retrieval and so it represents an improvement with

respect to the current TG97 climatology as well as MACCRA. It also provides a better framework to evaluate the impact of

coupling the IFS prognostic aerosol model to the operational forecast system.

This document describes the development of a three-dimensional monthly-mean climatology of five aerosol species based

on CAMSiRA (section 2). A comparison of the climatological values against daily aerosol optical thickness observations will10

be discussed in section 3. As an example of application, in section 4 we describe its implementation in the IFS discussing the

impact on the climatology on the mean model climate and on its forecast skills. The aerosol climatology is intended for public

use and it will be available through the CAMS data service.

2 CAMS aerosol climatology

The aerosol model implemented in the CAMS system is based on the model developed at the Laboratoire d’Optique Atmo-15

sphérique (LOA) Laboratoire de Météorologie Dynamique (LMD) (Boucher et al., 2002; Reddy et al., 2005) with modifications

by ECMWF during the GEMS and MACC projects. Details of the model can be found in Morcrette et al. (2009), Benedetti et

al. (2009) and Rémy et al. (2019). Only a brief summary is given here.

Five types of tropospheric aerosols are considered: sea salt (SS), dust (DU), hydrophilic and hydrophobic organic mat-

ter (OM), black carbon (BC) and sulfate (SU) aerosols. Prognostic aerosols of natural origin, such as mineral dust and sea20

salt are described using three size bins each (the size bins range is defined by the radius of the aerosol particle in microns,

0.03,0.55,0.9,20.0 for dust and 0.03,0.5,5.0,20.0 for sea-salt) represented by three separate prognostic variables each. Hygro-

scopic effects are taken into account for sulfates, sea salt and organic matter. This means that the CAMS system computes

a total of 11 prognostic variables. Emissions of dust depend on the surface wind (as measured at 10m), soil moisture, the

surface albedo in the UV-visible range and the fraction of snow-free land covered by vegetation, with a correction to account25

for wind gusts (Morcrette et al., 2008a).
:::::::::::::::::::::::::::::::::::
(Morcrette et al., 2008a; Rémy et al., 2019).

::::
The

::::::
surface

::::::
albedo

::
in

:::
this

::::
case

::::::
selects

:::
the

:::
area

::::
that

:::
can

:::::
emit

::::
dust

:::
and

:::::::
weights

:::
the

:::::::
strength

::
of

:::
the

::::::::
emission

:::::
itself

:::::::::::::::::
(Rémy et al., 2019) Emissions for Sea-salt depend on

a source function based on Monahan et al. (1986) and representative at 80% relative humidity. Sources for the other aerosol

types which are linked to emissions from domestic, industrial, power generation, transport and shipping activities, are taken

from MACCity annual- or monthly-mean climatologies (Granier et al., 2011). Emissions of OM, BC and SO2
:::
SO2:

linked to30

fire emissions are obtained using the GFAS system based on MODIS satellite observations of fire radiative power, as described

in Kaiser et al. (2011).
:::
The

::::
OM

::::::
species

:::::::
include

::::::::::
contribution

::::
from

:::::::
organic

:::::
carbon

:::::
from

::::::
biofuel,

:::::
fossil

::::
fuel

:::
and

:::::::
biomass

:::::::
burning

::::
with

:
a
:::::
small

::::::::::
contribution

:::
of

::::::::
secondary

:::::::
organic

:::::::
aerosols

::::
from

::::::::
biogenic

:::::::
sources

:::::
(based

:::
on

::::::
terpene

::::::::::
emissions).

::::::
Sulfate

:::::::
aerosol
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::
are

::::::
linked

::
to

::::
SO2::::::::

emissions
::::::::
currently

::
in

::
a

:::::
simple

::::
way

:::::::::::
parametrized

::
in

:::::
terms

::
of

::::::::::
temperature

::::
and

::::::
relative

::::::::
humidity

::
to

:::::
allow

:::
for

::
the

::::::::::::
representation

::
of

:::
the

::::::
diurnal

::::::
cycle.

::::::
Further

::::::
details

:::::
about

:::
the

:::::::::::::
parametrization

::
of

:::
the

:::::::::
conversion

:::
rate

:::::::
between

::::::
sulfur

:::::::
di-oxide

:::
and

::::::
sulfate

:::::::
aerosols

:::
can

::
be

::::::
found

::
in

::::::::::::::::
Rémy et al. (2019).

MODIS AOT data at 550 nm are routinely assimilated in a 4D-Var framework extended to include aerosol total mixing ratio

as extra control variable using a variational bias correction based on the operational set-up for the assimilation of radiances5

following Dee and Uppala (2008). The reader interested in the details of its implementation in the IFS should refer to Benedetti

et al. (2009) and Benedetti and Fisher (2007).

As discussed in Flemming et al. (2017), the total AOT in CAMSiRA shows a good agreement with surface-based AERONET

:::::::
(Aerosol

:::::::
RObotic

:::::::::
NETwork,

::::::::::::::::::::::
Holben et al. (1998, 2001),

::::::::::::::::::::::::
https://aeronet.gsfc.nasa.gov,

:::
last

:::::::
access:

::
31

:::::::
October

:::::
2019)

:
observa-

tions. However, problems have been identified with the way the data assimilation distributes the contribution of the various10

species to the total AOT, in particular introducing unrealistic high sulfate burden over the oceans. We therefore derived the

climatological distribution of the 11 prognostic CAMS aerosol types using the Control Run (CR) set up alongside CAMSiRA

and covering the period 2003-2014. This experiment uses the same meteorological fields
:::
data

:
and emission as CAMSiRA

but without data assimilation, hence leaving the aerosol species free to evolve. We then used the total AOT from CAMSiRA

to constrain this climatological AOT by scaling the monthly mean distribution of the individual species to reproduce the total15

AOT computed in the reanalysis. Therefore, each monthly-mean AOT for the single species i at the grid-point (x,y) is adjusted

following the simple relation:

AOTi,clim(x,y) =
AOTRA(x,y)

AOTCR(x,y)
∗AOTi,CR(x,y) (1)

where AOTRA indicates the total AOT at 550 nm from the reanalysis, AOTCR the total AOT from CR. Each species is

therefore scaled according to its contribution to the total AOT in a particular grid point.20

The scaling computed from the AOT also applies to the mass mixing ratio, because consistent optical properties
::::::::
extinction

:::::::::
coefficients

:
are used between CR and CAMSiRA.

The
:::
The

::::::::::::
climatological

::::::
scaled

::::
AOT

::
is
:::::

used
::::
only

::
as

:::::::::
diagnostic

::::
data

::
in
::::

this
:::::
work,

:::::
while

::::
the

:::::
actual

:
aerosol climatology is

computed in terms of a gridded monthly spatial distribution of the mass volumetric concentration [kg/m3]
:::::::::::::
layer-integrated

::::
mass

:::::::::::
concentration

::::::::
[kg/m2] for each aerosol component over 60 vertical levels.

:::
We

::::::
provide

:::
the

:::::
mass

:::::::::::
concentration

:::
per

:::::
layer25

::::::
because

::
it
::::
will

::
be

:::::::
directly

::::::::::
proportional

::
to

:::
the

::::
AOT

:::::
given

::
a

::::
mass

::::::::
extinction

:::::::::
coefficient

::
in
::::::::
[m2/kg],

:::::
since

:::
we

::::::
believe

:::
this

::::::
would

::
be

:::
the

:::::::
primary

::::
use

::
of

:::::
such

:
a
:::::::::::
climatology.

::
A

:::
set

:::
of

::::::
gridded

:::::::::::::
monthly-mean

:::::::
pressure

:::::::
profiles

::
is
::::
also

::::::::
provided

::
to

::::::
allow

:::
the

:::::::::
conversion

::
to

::::
mass

::::::
mixing

:::::
ratio

::::::
[kg/kg]

::::
and

:::
the

:::::::::::
interpolation

::
to

::::
other

:::::::
vertical

:::::
grids. The native horizontal grid of CAMSiRA

is a reduced Gaussian grid with 80 grid points between the Equator and the Poles (N80), equivalent to a linear grid resolution

of approximately 1.125◦ × 1.125◦.30

For the native CAMSiRA horizontal grid the full 3D distribution over 60 vertical levels has a size of ∼3 Gb. The grid can

be coarsened according to the desired resolution and for a
::
we

::::::
found

:::
that

:::
an horizontal grid of 3x3 degrees the size reduces to
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::::
with

:
a
::::
total

::::
size

::
of ∼450 Mb

:::
500

::::
Mb

:::
was

::::::::::
appropriate

:::
for

:::
the

:::::::::::::
implementation

::
in

:
a
::::::::
relatively

::::
high

:::::::::
resolution

:::::
global

::::::
model

::::
such

::
as

:::
the

:::::::
ECMWF

::::
IFS

::::
with

:
a
::::::
spatial

::::::::
resolution

:::::::::
equivalent

::
to

::
∼

::
9
:::
km.

2.1 Spatial and vertical distribution of mass mixing ratio

The spatial distribution of the integrated mass for each individual type and for their sum shows marked regional and seasonal5

variations (Fig. 1). The largest contribution to the total global aerosol mass comes from mineral dust due to the large emissions

over land especially across the arid areas of Northern Africa and central-east Asia in the Northern-Hemisphere summer months.

Sea salt is the most widespread specie
:::::
species

:
and it represents the second largest contribution to the total global mass, with

the highest concentrations found in the storm track areas of the Northern and Southern Hemisphere. The organic matter and

black carbon associated to the emissions from various anthropogenic and natural processes displays a large seasonal variation10

and highly localized regional distribution. The sulfates are generally
::::::
mostly distributed over the Northern Hemisphere but the

largest concentration is found close to the sources of anthropogenic emissions.

Each aerosol specie
:::::
species

:
exhibits a characteristic vertical distribution with a distinct seasonal cycle, shown in Fig. 2 as

zonal-average profiles. Sea salt is confined close to the surface and it is strongly linked to the strength of the mid- and high-

latitude winds with a separate maximum around 15 degrees N associated with the Indian Monsoon
:::::::
monsoon. Mineral dust is15

transported vertically over the major desert areas of North Africa and Australia during the respective summer seasons, with a

significant amount of mass up to 600 hPa in the Northern Hemispheric Summer. The seasonal variation in the strength of the

biomass burning
:::::::::::
anthropogenic

::::
and

::::::
natural

::::::
organic

:
emissions controls the amount and vertical extent of the organic and black

carbon specie
::::::
species with the main source located around the Equator and a June-July-August maximum in the Northern

Hemisphere linked to the fire season in the high latitudes. Sulphate
:::::
sulfate

:
emission, mostly from the industrialized areas peak20

during the Northern Hemisphere Summer with a maximum just below 700 hPa.

A small amount (< 1e-3 g/m2 per layer) of aerosol mass is present in the upper tropospheric and lower stratospheric layers,

mostly at high latitude. This process is likely to be overestimated in the CAMS model due in large part to a combination of not

efficient coupling between convective transport and scavenging and the limitations in the speciation and vertical distribution of

analysis increments. Also, the
:::
the lack of any effective removal process for high-altitude aerosol (except for coarse dust and sea25

salt which are subject to sedimentation).
:::::

This means that any excess of aerosol mass tends
:::
that

:::
the

::::::
model

::::::
places

::
in

:::
the

:::::
upper

:::::::::::::::
troposphere/lower

::::::::::
stratosphere

::::
tend to have a long residence time .

:::
and

::
it

:::::
affect

:::
the

::::
way

:::
the

::::::::::
assimilation

::::::
scheme

:::::::::::
redistributes

::::::::
vertically

:::
the

::::
total

::::::
optical

:::::
depth

::::::::::
increments.

::::
This

:::::
small

:::::::
amount

::
of

:::::::::::
stratospheric

::::::
aerosol

::
is
::::::::
therefore

:::
not

:::
to

::
be

:::::::::
considered

:::
as

:::::::::::
representative

:::
of

:::
the

::::::::::
contribution

:::
of

:::::::::::
stratospheric

:::::::
injection

:::::
from

:::::
large

:::::::
volcanic

::::::::
eruption.

::::
The

:::::
AOT

:::::
linked

:::
to

:::::::::::
stratospheric

:::::::
volcanic

:::::::
aerosols

:::::
needs

::
to

::
be

::::::::
provided

::::::::
separately

:::
as

:::
the

::::::
present

::::::::::
climatology

::::
only

:::::::::
represents

:::
the

::::::::::
tropospheric

::::::
aerosol

:::::::
species.

:
30

It is also possible to compute a characteristic climatological scale height for each specie
:::::
species

:
to describe the bulk of their

vertical extent. This could be used to compute a simplified climatological vertical distribution for applications that do not need

a detailed description of the full 3-dimensional fields. Appendix B
:
A

:
briefly discusses the details of the derivation of such a

parameter from the CR. The result is shown in Fig A3 and, as seen in the zonal-mean profiles, it highlights regions where the

aerosol species are transported away from the
::::::::::
near-surface sources to higher levels.
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Figure 1. Seasonal vertically-integrated aerosol mass (g/m2) from the CAMS Interim reanalysis control run, scaled to conserve the total

AOT of the assimilation run. The top row shows the total integrated mass for all aerosol types and the other rows the contribution from the

single species for each season (see text for the abbreviations). Indicated in the top right of each map is the global average. Notice that values

for the black carbon type (BC) have been multiplied by 10 for better visualization
::::
while

:::
the

:::::
global

::::::
average

:::::
shows

::
the

:::::::
unscaled

::::
value.
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Until recently the IFS used an implementation of the climatology from Tegen et al. (1997) which relied on an analytical

function of type (p/p0)
(H/ξ) to redistribute vertically the aerosol optical depth. The function depends on the atmospheric

pressure p, the surface pressure p0 and the ratio between the scale height of the standard atmosphere H = 8.4 km and a fixed

global-mean scale height ξ for each aerosol component. A comparison of the vertical distribution of the aerosol mass in the5

CAMS climatology using this approach to the real mean 3-dimensional distribution is shown in Fig. 3. Although in general

the vertical profile is reproduced reasonably well, the simplified analytical approach does not capture the elevated maximum

between 850 hPa and 700 hPa observed in the model data and stretches too high the upper boundary of the distribution. For

species with non negligible
:::::::::::
not-negligible

:
absorption in the solar spectrum such as mineral dust and organic matter, this means

a vertical displacement in the solar heating rate profile which impacts the temperature profile.10

2.2 Spatial distribution of optical thickness

When looking at the total aerosol optical thickness (AOT), the contribution from the various aerosol types depends on the

combination of their mass load and their extinction efficiency. Since in principle any choice of optical properties can be

associated to the climatological distribution of aerosol mass mixing ratio, we will not attempt here a thorough discussion of

possible refractive indices and micro-physical models to describe the radiative properties of each aerosol specie
::::::
species. Instead,

we will briefly focus on the difference between the optical properties used for the CAMS aerosols in the implementation

example discussed in the following sections and those used for the aerosol climatology employed until recently in the IFS.

Until cycle 43r3 (2017) the radiative effect of aerosols in the ECMWF IFS was computed using a monthly mean climatology5

of total AOT based on the total mass load from TG97. The AOT vertical profile was computed analytically with an exponential

function as described in section 2.1 using a constant scale height ξ for each species with ξ = 3000 for dust and ξ = 2000 for

the other species. The climatology was coupled to the ECMWF radiation scheme (Morcrette et al. (2008a), Hogan and Bozzo

(2018)) using optical properties derived from OPAC (Hess et al., 1998) and computed over a set of six coarse broad band

intervals with no dependence on the relative humidity from the model and a spatial resolution of 4x5 degrees.10

To implement the radiative effect of the CAMSiRA aerosols in the IFS we adopted the set of optical properties currently

used in the IFS to diagnose the AOT from the CAMS aerosol forecasts. The details of the choices of size distributions and

refractive indices for each specie
::::::
species are discussed in more detail in Appendix A

:
B.

The largest differences in the optical properties used for the TG97 and CAMSiRA climatologies are found for the hydrophilic

species organic matter and sulphates
::::::
sulfates and for the hydrophobic mineral dust (Fig.A2). In the old climatology sulphates15

::::::
sulfates

:
and organic matter aerosols were combined in a single specie

::::::
species, resulting in a generally larger absorption in the

short-wave range when compared to the separate contribution from organic matter and sulphates
::::::
sulfates in the CAMSiRA

climatology. The old optical properties for dust represented an average of what can be expected across the three size bins used

in the CAMS climatology, but with significantly more absorption across the solar spectrum between 2.0 µm and 0.4 µm ad
:::
and

a much smaller total extinction at infrared wavelengths.20

The total AOT distribution for CAMSiRA climatology is shown in Fig. 4 compared to the AOT from the old TG97 clima-

tology. The picture reflects the mass distribution seen in Fig. 1 with a strong seasonal variations both over land and over ocean.
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Figure 2. Zonal-mean layer-integrated mass profiles (g/m2), weighted by the total integrated mass at every grid point. Monthly average for

January (left) and July (right). Notice that for black carbon and sulphates
:::::
sulfates

:
values have been multiplied by 10 for better visualization.
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Figure 3. Zonal-mean layer-integrated mass profiles (g/m2) average for July, weighted by the total integrated mass at every grid point for

Mineral
::::::
mineral dust (top row) and organic matter (bottom row). The left column shows the zonal mean from CR fields,

:
the right column

shows the vertical profiles computed using an exponential function applied to the total integrated mass (see text). The scale height used for

dust is 3 km while for organic matter
:
it
:
is 2 km.

Compared to the AOT from the TG97 climatology, we notice a larger contribution from sea salt and a significantly different

distribution over land. In particular the CAMS climatology has a larger AOT over the desert regions of Northern Africa and

Central Asia as well as in the biomass burning areas of Central Africa, North America, Northern Asia and South America, the25

latter also showing a different seasonal cycle. The AOT is also larger over industrialized areas in India and Eastern Asia while

it is smaller over Europe
:::
due

::
to

:::::::
changes

::
in

:::
the

::::::::
industrial

::::::::
emissions

::::
over

:::::
these

:::::::
regions,

:::::::::
dominated

::::::
mostly

::
by

:::::::
sulfates.

We observe even larger differences in the absorption AOT (AAOT,
::::
Fig.

:
5), resulting from the combination of changes in the

mass distribution and in the optical properties. The CAMS climatology captures with a finer resolution the emission of black

:::::
carbon

:
and organic aerosols in Central and Eastern Asia while shows

:::::::
showing significantly less absorption over Europe. Also30

significantly different is the AAOT distribution over Africa and the Middle-East where the TG97 climatology has a maximum

in JJA over the Horn of Africa while the CAMS climatology has its maximum over Central Africa and Western Sahara.
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Figure 4.
::::::
Seasonal

::::
total

::::::::
extinction

::::::
aerosol

::::::
optical

:::::::
thickness

::
at
:::::::

550nm.
::::::
CAMS

::::::
Interim

::::::::
reanalysis

::::::
control

:::
run,

:::::
scaled

:::
to

:::::::
conserve

:::
the

::::::::
assimilated

::::
AOT

::::
(top

::::
row)

:::
and

:::
the

:::::
TG97

:::::::::
climatology

::::::
(middle

:::::
row).

:::
The

::::::
bottom

:::
row

::::::
shows

::
the

::::::::
difference

:::::::
between

:::
the

::::::
CAMS

:::
and

:::
the

::::
TG97

::::::::::
climatology.

Figure 5. Seasonal total extinction (a) and absorption (b) aerosol optical depth at 550nm
::
As

:::
Fig. CAMS interim reanalysis control run, scaled

to conserve the assimilated AOT (top row) and the TG97 climatology operational before Summer 2017 (bottom row). Notice the different

color scale
:
4
:::
but for the two panels.

::::::::
absorption

:::::
optical

:::::::
thickness

:
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3 Verification of the climatological aerosol distribution against surface observations

The accuracy of the total AOT in the CAMSiRA reanalysis
:::::::::
CAMSiRA

:::::::::
reanalysis

:::
and

:::
the

::::::
CAMS

::::::
aerosol

::::::
model is discussed in

Flemming et al. (2017) and ?
:::::::::::::::::::::::::::::::::::::::::::::::::::
Flemming et al. (2017); Inness et al. (2019); Rémy et al. (2019) in terms of global and regional

bias and correlation against surface observations
:
in
:::::

terms
:::

of
::::
AOT

::::
and

:::::::::
particulate

::::::
matter. Since the AOT computed from the

climatology of mass mixing ratio discussed in this work is based on the same reanalysis
:::::
model, it has the same mean bias

::
as

:::
the

::::::
CAMS

::::::
Interim

:::::::::
reanalysis when evaluated over a multi-year time interval. What we want to show here is how a monthly mean5

climatology compares to a full prognostic aerosol scheme in terms of daily and intra-annual variability of aerosol distribution

for a particular year.

To answer this question we used the observation from the AERONET network (Holben et al., 1998)
::::::::::::::::::::::
(Holben et al., 1998, 2001) for

the year 2008 and compare them to the aerosol fields from the monthly mean CAMS climatology and from the AOT for 2008

in the CAMS Interim reanalysis. We also included in the comparison the TG97 climatology used in the IFS until CY43R310

(2017
::
pre

:::::
2018). The monthly mean climatologies are linearly interpolated between the mid of each month.

The overall results over the whole globe and for five macro-areas are summarized in Table 2. The CAMSiRA climatology has

a mean bias and correlation comparable to the corresponding reanalysis for the year 2008, with the lowest correlations observed

over North America and Europe and the largest mean error over North and South America. Between the two climatologies

CAMSiRA has in almost all of the regions higher correlations and lower mean bias than TG97.15

The results from the global and regional scores can be understood looking more in detail at how a climatological description

of the total AOT
:::
and

:::
the

::::::
AAOT compares with the intra-annual variability observed in a particular year for a few single locations

.
:::::::
locations

:::::
(Fig.

:::
7). We choose sites characterized by a dominant aerosol species and with different seasonal characteristics.

:::
The

::::::::
locations

::
of

:::
the

::::
sites

:::
are

::::::
shown

::
in

:::
Fig.

::
6
:::::::
together

::::
with

:::
the

::::::::::
contribution

::
of

:::
the

::::
five

::::
main

::::::
CAMS

:::::::
aerosol

::::::
species.

:

:::
For

:::
the

::::::::::
comparison

::
in
::::::

terms
::
of

::::::
AAOT

:::
we

::::
use

:::
the

:::::
L2.0,

:::::::
version

::
2

::
of

:::
the

::::::::::
almucantar

:::::::
retrieval

:::
at

::::
each

::::::::::
AERONET

::::
site20

:::::::::::::::::::::::::::::::::::
(Dubovik et al., 2002; Holben et al., 2006).

:::::
Given

::::
that

:::
the

:::::::
retrieval

::::::::
producst

:::
are

::::::::
available

::::
with

::::::
lower

::::::::
frequency

::::
than

::::::
direct

::::
AOT

::::::::::
observation,

:::
we

::::
used

::
an

:::::::
average

::::
over

:::
the

:::
five

:::::
years

:::::::::
2006-2010

::
to

:::::::
increase

:::
the

::::
data

::::::::
coverage.

:::
The

:::::::::
evaluation

::
of

:::
the

::::::
AAOT

:::::::
strongly

:::::::
depends

:::
on

:::
the

::::::
choice

::
of

:::
the

:::::::
optical

::::::::
properties

:::::::::
associated

:::
to

:::
the

::::::::::
climatology

::::
and

::::::::
therefore

::
in

:::
the

::::
case

:::::::::
discussed

:::
here

::
it
::::::
mostly

:::::::
reflects

:::
the

:::::
single

::::::::
scattering

::::::
albedo

:::::::
applied

::
in

:::
the

:::::::::::::
implementation

::
of

:::
the

:::::::::::
climatology

:::::
within

:::
the

::::::::
ECMWF

::::
IFS

:::::::::
(Appendix

::
B).

::::
The

:::::::::
absorption

::::::::::::
characteristics

::
of

:::
the

::::::
aerosol

::::::
species

:::
are

::::
very

:::::::
sensitive

::
to

:::
the

::::::::
refractive

:::::
index

::
to

::::::::
associate

::
to

::::
each25

:::::
specie

:::
and

::
a
:::::::
thorough

:::::::::
discussion

::
of
:::
the

::::::
quality

:::
of

:::::::
different

:::
sets

:::
of

::::::
optical

::::::::
properties

::
is

::::::
beyond

:::
the

:::::
main

:::::
scope

::
of

:::
this

:::::
work.

:

In the island of Midway in the Pacific Ocean, the AOT is dominated by sea salt (Fig. 7a)
::::
with

:::::
some

::::::::::
contribution

:::::
from

:::::
sulfate

:::::::
aerosols

:
and both climatologies have comparable total AOT. Since the optical properties implemented for the CAMS

climatology depend on the local relative humidity, here and for the other sites as well the daily AOT computed from the CAMS

monthly mean mixing ratio distribution inherits the synoptic variability of the humidity field.
:::
The

::::::::::
comparison

:::
for

:::
the

::::::
AAOT30

::::::
against

:::::::::
AERONET

::
is
:::
not

::::::
shown

:::::::
because

:::
the

:::::::
aerosols

::::::::::
dominating

:::
this

::::
site

::::
have

:
a
::::
very

::::
low

:::::::::
absorption

::
at

::::::
visible

:::::::::::
wavelengths,

::
yet

:::
we

::::
can

:::
see

::::
that

:::
the

:::::::::::::
implementation

::
of

:::
the

::::::
TG97

::::::::::
climatology

:::
has

:::::
likely

::
a
:::
too

::::
high

:::::
mean

:::::::::
absorption

::::
also

::
in
:::::

areas
::::::
which

:::::
should

:::
not

:::
be

::::::::
subjected

::
to

::::
large

::::::::
amounts

::
of

::::::::
absorbing

:::::::
species.

12



Figure 6.
:::::::
Location

::
of

::
the

:::::::::
AERONET

::::
sites

::::
used

:
in
:::
the

:::::::
analysis.

:::
The

::::::
shading

:::::
shows

:::
the

:::::
annual

::::
mean

::::
AOT

::
of

:::
the

:::
five

:::::
CAMS

::::::
aerosol

::::::
species

::
sea

:::
salt

::::
(SS),

::::::
mineral

::::
dust

::::
(DU),

::::::
organic

:::::
matter

:::::
(OR),

::::
black

::::::
carbon

::::
(BC)

:::
and

::::::
sulfates

::::
(SU).
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Chiang-Mai in northern Thailand (Fig. 7b) represents a site with a seasonal influence from biomass burning
::::::
organic

::::::::
emission

:::
and

::::::::
industrial

::::::::
pollution

:
in SE Asia. The seasonality

:
in

::::
both

:::::
AOT

:::
and

::::::
AAOT

:
is not captured in the TG97 climatology while35

the CAMS climatology, although underestimates the
:::::
clearly

:::::::::::::
underestimates

:::
the

::::::
peaks

:
AOT for the year in question, does

reproduce the peak
:::::
period

::::
with

::::
large

:::::::
aerosol

::::::
amount

:
between February and May.

::
On

:::::::
average

:::
the

:::::::
strength

::
of

:::
the

:::::::::
absorption

::
is

::::::::::::
underestimated

::
at

:::
the

::::
peak

:::::::
aerosol

::::
load.

:

In the Indian sub-continent both climatologies reproduce the seasonal variation on the AOT linked to the Monsoon
::::::::
monsoon

circulation and the anthropogenic emissions. Both climatologies tend to underestimate the total AOT in the northern India-5

Pakistan with the CAMS climatology having an overall lower bias. As an example, at the site of Karachi(Fig. 7c)
:
,
:::::::::
influenced

::
by

::::
dust

::::
and

::::::::::::
anthropogenic

:::::::::
emissions, the two climatologies have comparable total AOT but the CAMS climatology shows

a slightly larger AOT maximum between June and August.
:::
The

::::::
AAOT

:::::
curve

::::::
shows

:::::
much

:::::
larger

::::::::::
differences

::::
than

:::
for

:::::
AOT

:::::::
between

:::
the

:::
two

::::::::::::
climatologies,

::::
with

::::
too

:::::
much

:::::::::
absorption

:::
for

:::
the

:::::
TG97

::::::::::
climatology

:::::
when

:::::::::
compared

::::::
against

:::
the

::::::::::
AERONET

:::::::
retrieval

:::
for

::::
most

:::
of

:::
the

::::
year.

:::::
Both

::::::::::::
climatologies

:::::
seem

::
to

:::::::::::
understimate

:::
the

:::::::::
absorption

::::::
during

:::
the

::::::
winter

:::::::
month,

::::::
despite

::
a10

:::::::
relatively

::::
low

::::
AOT

:::::
bias.

Mongu, Zambia(Fig. 7d), shows a peak in AOT between August and October linked to the seasonal biomass burning. The

AOT from CAMSiRA with fully prognostic aerosol does a good job in representing the daily variability linked to the biomass

burning
::::::
organic

::::::
species emissions while the climatologies are able to represent the increase in mean AOT from July-August to

October while obviously missing the variability linked to the single events.
:::
The

:::::::::::::
underestimation

::
of

:::
the

::::
AOT

::::::
results

::
in

:
a
:::::::
slightly15

::::::::::::
underestimated

::::::
AAOT

::::
near

:::
the

:::::::::::::
August-October

:::::
peak

:::
but

:
it
:::::
gives

:
a
:::::
good

:::::::::::
representation

:::
of

::
the

:::::::
average

:::::::::
absorption

:::::::::
conditions

::
at

::
the

::::
site.

:

Other areas show a very different representation of the seasonal cycle in AOT between the two climatologies, especially over

South America and Australia(Lake Argyle , Fig. 7e). Here the
:
.
:::
For

:::::::
example

::
at

:::
the

::::
Lake

::::::
Argyle

:::::::
station,

:::::
under

:::
the

::::::::
influence

::
of

::::::
mineral

::::
dust

::::
from

:::
the

:::::::::
australian

::::::
interior

::::
and

::::::
organic

::::::
matter

::
to

:::
the

:::::
north,

:::
the

:
CAMS climatology does a good job in capturing20

the minimum AOT over the Southern Hemisphere winter months while TG97 is
::::::
appears out of phase, perhaps due to the now

out-dated emission inventories used in their
::::
those

:
earlier aerosol transport experiments.

:::
Not

:::::
many

::::
data

:::
are

::::::::
available

:::
for

:::
the

:::::
AAOT

::::::::::
comparison

::
at

::::
this

:::
site,

::::::
though

:::
the

::::
few

::::
close

::
to
:::
the

:::::
peak

:::::
period

::::::::::::::::::
September-November

:::::::
suggest

::
an

:::::::::::::
understimation

::
in

:::
the

::::
total

::::::::
absorption

:::
by

::::
both

::::::::::::
climatologies.

:::::
Again

::
in

:::
the

::::::::
southern

:::::::::::
Hemisphere

:::
the

::::::
station

::
of

:::::
Alta

:::::::
Floresta

::
in

::::::
South

:::::::
America

::::::
shows

::
a
::::::
strong

:::::::
seasonal

:::::
peak

::::::
during25

::
the

::::::::
biomass

::::::
burning

::::::
season

::::::::::::::::
August-November.

::::::::
Although

::::
the

::::::
CAMS

::::::::::
climatology

::::
does

:::::::
capture

:::
this

:::::
peak

:::::
fairly

:::::::::
accurately,

::
it

::::::::::
nevertheless

:::::::::::
overestimates

::
it
::::
both

::
in

::::
term

:::
of

::::
total

::::
AOT

::::
and

::::::::
especially

::::::
AAOT.

::::
The

::::
fact

:::
that

::::::
AAOT

:::
has

::
a
::::
large

:::::::
positive

::::
bias

::
is

:::::::
partially

:::
due

::
to

:::
the

:::::::::::::
overestimation

::
in

:::
the

::::
AOT

:::
and

::::::::
possibly

:::::::
partially

:::
due

::
to
::::
too

::::
large

:::::::::
absorption

:::::::::
associated

::
to

:::
the

::::::
organic

::::
and

::::
black

::::::
carbon

:::::::
species.

::::
This

::
is

::::::
related

::
to

:::::
some

::
of

:::
the

::::::::
problems

::::
with

:::
the

::::::::::::
representation

::
of

:::::::
biomass

:::::::
burning

:::::
events

:::
in

:::
the

::::::
CAMS

::::::
model,

:::
as

::::::::
discussed

::
in

:::
the

::::::
section

:::
4.3.

:
30

:::::::::
Dominated

::
by

::::::
desert

::::
dust,

:::::
Solar

::::::
Village

::
in

:::::
Saudi

::::::
Arabia

:::::
shows

::
a
::::
very

:::::::
variable

::::
AOT

:::::::::
timeseries

::::::::
reflecting

:::
the

:::::
nature

::
of

:::::
large

:::
dust

:::::::
plumes

::::::::
measured

::
in
:::

the
:::::::

region.
::::
The

::::::
CAMS

::::::::::
climatology

:::
has

::
a
:::::
larger

:::::
AOT

::::
than

:::::
TG97

:::::
with

:
a
::::::::
seasonal

::::
cycle

:::::::::
capturing

::
the

::::::
larger

:::
dust

:::::::
activity

::::
over

:::
the

:::::::::::
April-August

::::::
period.

::::
The

::::::
AAOT

::
in

:::
the

::::::
CAMS

::::::::::
climatology

:::::::
slightly

:::::::::::
overestimates

:::
the

:::::::
average

14



::::::::
conditions

::::::::
retrieved

:::
by

::::::::::
AERONET

:::
but

::::
does

:::::::::::
significantly

:::::
better

::::
than

:::
the

:::::
TG97

::::::::::
climatology

::::::
which

::::::
greatly

::::::::::::
overestimates

:::
the

::::::::
absorption

::::::::
between

::::
May

::::
and

:::::::
August.

::::
This

::
is

:::
an

::::::::
important

:::::::::
difference

::::::
which

:::
can

::::
have

::
a
:::::
large

::::::
impact

:::
on

::::
local

:::::::::::
atmospheric

:::::::::
circulation,

::
as

::::::::
discussed

::::
later

::
in
:::::::
section

:::
4.4.

:

A final example representative of Central and Eastern Europe
:::::
where

::::::::
industrial

:::::::
aerosols

::::::::
dominate, the observations at Sev-

astopol on the Crimean peninsula (Fig. 7f) reveal a systematic bias in the TG97 climatology with an overestimation in the AOT5

::::
both

:::
the

::::
AOT

:::
and

:::
the

::::::
AAOT

:
for the whole year. This bias is likely linked to the industrial emissions used in TG97 for Europe

based on the GEIA database relative to the year 1985 (Benkovitz et al., 1996) and not representative of the emissions in the

period 2003-2014
:::::::
toghether

::::
with

::
a
:::
too

::::
high

:::::::::
absorption

::::::::::::
characteristics

::::::::
associated

:::
to

::
the

:::::::::
industrial

::::::
species.

Table 2. Comparison between model and observation AOT for year 2008 at AERONET sites. Model values are from the
::::::::
prognostic

::::
AOT

:::
from

:::
the

::::::
CAMS

::::::
Interim

::::::::
reanalysis

:
(CAMSiRA

::::
2008)

:
and two climatological fields derived from TG97 and CAMSiRA as described in

this
::::
from

::
the

::::::
current work

::::::::
(CAMSiRA

::::::
CLIM). The columns report the mean error and the correlation coefficient for five macro areas and

globally for all sites. The size of the sample used to compute these statistics is reported in brackets in the OBS column.

OBS 2008 CAMSiRA 2008 Tegen et al. (1997) CAMSiRA CLIM

mean err corr mean err corr mean err corr

N America 0.1341 (1425) 0.032 0.6678 0.037 0.369 0.040 0.4907

S America 0.1603 (370) -0.006 0.8356 0.047 0.316 0.040 0.814

Europe 0.176 (1112) 0.009 0.6992 0.135 0.4187 0.015 0.4954

Africa 0.2689 (566) 0.009 0.7926 0.004 0.5373 0.005 0.7395

SE Asia 0.4329 (780) -0.056 0.6786 -0.142 0.4165 -0.07 0.6462

Global 0.215 (4259) 0.004 0.77 0.025 0.439 0.009 0.725

4 The CAMS aerosol climatology in a global NWP model: implementation in the ECMWF IFS

As an example of the use of the CAMS aerosol climatology in a complex global atmospheric model, we briefly discuss its10

implementation in the ECMWF global weather forecasting system (IFS).

We implemented in the IFS the full 3-dimensional CAMS climatology with the optical properties computed as described in

Appendix A
::
B and we will discuss here the impacts of the new climatology compared to the IFS configuration using the old

climatology based on TG97.

:::
The

:::::::::::::
implementation

::
of

:::
the

:::::
TG97

::::
and

:::::::::
CAMSiRA

::::::::::
climatology

:::
in

:::
the

:::
IFS

::::::::
radiation

::::::
scheme

:::::
differ

::
in

:
a
:::::::
number

::
of

:::::
ways.

:::::
Both15

:::::::::::
climatologies

:::
are

:::::::::
represented

:::
in

::
the

::::::::
radiation

:::::::
scheme

::
in

:::::
terms

::
of

:::
the

::::
three

::::
bulk

:::::::
ratiative

:::::::::
properties

::::
mass

:::::::::
extinction

:::::::::
coefficient

15
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Figure 7.
:::::::::
Comparison

::
of

::::
daily

::::
mean

::::
total

::::
AOT

::
at

:::
500

:::
nm

::
for

:::
the

:::
year

::::
2008

::::::::
computed

::::
from

::
the

:::::::::
climatology

::::::::
presented

::
in

:::
this

::::
work

:::
(red

::::
line)

,
::::

from
:::
the

:::::
TG97

:::::::::
climatology

:::::
(green

::::
line)

:::
and

::::
from

::
the

::::::
CAMS

::::::
Interim

:::::::
reanalysis

::::::::
prognostic

:::::
fields

::::
(grey

::::
line)

:
at
:::::

eight
::::::::
AERONET

::::
sites.

::::
The

::::::::
AERONET

::::
L2.0

::::
daily

:::::
mean

:::::::::
observations

:::
are

:::::
shown

::
as

:::
blue

::::
dots.

:::::
Please

:::::
notice

:::
the

::::::
different

::
Y

:::
axis

:::
for

::::
each

:::
plot.

:

::::::::
(m2/kg),

:::::
single

::::::::
scattering

::::::
albedo

:::
and

:::::::::
asymmetry

:::::::::
parameter

::
at

::::
each

::
of

:::
the

::
30

:::::::
spectral

:::::
bands

::
of

:::
the

::::::::
radiation

::::::
scheme.

::::
For

:::::
TG97

::
the

::::::
optical

:::::::::
properties

::::
were

:::::::::
computed

:::::
based

::
on

:::
the

::::::
OPAC

:::::::
database

:::::::::::::::::
(Hess et al., 1998) at

::
a

::::
fixed

:::::
value

::
of

::::::
relative

::::::::
humidity.

:

:::
For

:::
the

::::::::::
CAMSiRA

::::::::::
climatology

:::
the

::::::
optical

:::::::::
properties

:::
are

::::::::
computed

:::::::::
according

::
to

:::
the

::::::::::
description

::
in

:::::::::
Appendix

::
B.

::::
For

:::
the

:::::::::
hydrophilic

:::::::
species

:::
the

::::::
optical

::::::::
properties

:::
are

:::::::::::
interpolated

::
to

:::
the

::::::
relative

::::::::
humidity

:::::
value

::::::::
provided

::
by

::::
the

:::
IFS

::::::
model

::
at

:::::
every

:::
grid

:::::
point

:::
and

:::::::
vertical

::::
level.

:

::::::::
Moreover,

::
as

:::::::
already

:::::::::
mentioned,

::::::::::
CAMSiRA

::::::::::
climatology

::
is

::::::
defined

:::
for

::::
each

::::
grid

::::
point

::::
and

::::::
vertical

::::
level

:::::
while

:::
for

:::::
TG97

:::
an5

::::::::
empirical

::::::
vertical

::::::::::
distribution

::
is

:::::::
assumed

::::
(see

::::::
section

:::
2.1)

:

The different impact of the two climatologies in the IFS depends therefore on the combined effect of different aerosol spatial

and vertical distribution and different radiative properties.
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Figure 8. Comparison of daily mean total AOT computed
:::::
AAOT

::
at

:::
500

:::
nm

:
from the CAMSiRA

:::::
CAMS

:
climatology of mass mixing

ratio
:::
(red

::::
line), the TG97 climatology and

:::::
(green

::::
line)

::::
both

::
as

::::::::::
implemented

::
in the original CAMSiRA AOT

:::::::
ECMWF

:::
IFS

::::
(see

:::::::
appendix

:
B
:

for the year 2008 at six
:::::
details)

:::
and

:
AERONET sites

:::
data

::::
(blue

:::::
dots).

::::::
Aeronet

::::
data

:::
are

::::
from

:::::
L2.0,

::::::
version

::
2
:::::::
retrieval

:::::::
products

::::::::::::::::::::::::::::::::::::::
(Holben et al., 2006; Dubovik et al., 2002) averaged

:::
over

:
5
:::::
years

::::::
between

::::
2006

:::
and

:::::
2010.

:::::
Please

:::::
notice

::
the

:::::::
different

::
Y

:::
axis

:::
for

:::
each

::::
plot.

4.1 Model experiments setup

In the following sections we will show the impact of the CAMS climatology on the IFS both in terms of changes in mean bias10

and in forecast skill, as measured by the correlation between modelled and observed large-scale atmospheric circulation.

All experiments are performed using the ECMWF model version 43R3 (operational from July 2017) with 137 vertical levels

and prescribed sea surface temperature. We found that the results do not depend on the model horizontal resolution as long as

this is high enough to represent well sub-continental atmospheric circulations. This is because, as we will see in the following,

the climatological aerosol radiative effect acts on broad areas with largest impact on the bulk features of regional circulations.5

Therefore we adopted for these experiments an horizontal cubic-octahedral grid at an equivalent resolution of 0.2 degrees for

efficiency. The CAMSiRA climatology was implemented with an horizontal resolution of 3x3 degrees and the native vertical

17



grid of 60 levels. The fields are interpolated on-line to the horizontal grid used in the radiation scheme (Hogan and Bozzo,

2018). This resolution allows minimal impact on the model I/O while still being able to resolve the regional AOT features.

Only the direct radiative effect of aerosol is taken into account in the IFS with no attempt at representing indirect effects on the

cloud droplet concentration and effective size.

We assess the model changes using two type of experiments: changes in mean radiative fluxes and model mean state are5

assessed using a small ensemble of four one-year runs over the period 2001-2004 where the IFS is left running unconstrained

for a full year. We will refer to these experiments as "climate runs".

The impact of changes in the aerosol climatology on the forecast skill is measured with a set of 10-day forecasts separated

by 24 hours over the three months period June-August
::::::
periods

:::::::::::
May-August

:
and December-February

::::
2016, run twice, once

with the new CAMSiRA climatology and once the older TG79
:::::::::
climatology. Each forecast is initialized from the operational10

ECMWF analysis at 00 UTC and verified against the operational analysisfields. We will call these experiments "forecast runs".

4.2 Impact on radiative fluxes

The change from the TG97 to the CAMSiRA climatology affects radiative fluxes in the long-wave (LW) and short-wave (SW)

both via direct interaction between aerosol and radiation and indirectly via changes in the clouds distribution due to diabatic

forcing on temperature. Using the "climate runs" we find that at the surface the net SW flux decreases in places by up to 20-3015

W/m2 in the larger AOT in the biomass burning areas
:::::
areas

::
of

:::::
large

::::::
organic

:::::::
species

::::::::
emissions

:
and over the deserts (Fig 9

bottom). Although the large amount of sea-salt
:::
sea

:::
salt

:
aerosols over the oceans also contributes to a reduction of the surface

net clear-sky SW radiation (by about 2-4 W/m2) this is less significant given the larger contribution of cloud cover in those

regions.

At the top of the atmosphere (TOA) the CAMS climatology increases the clear-sky reflected SW radiation globally with20

respect to TG97 by about 1-2 W/m2 (not shown) but the effect on global all-sky fluxes is small and the largest impacts are

confined to small areas affected by large dust plumes transported from the Sahara desert over the Atlantic Ocean. Changes

observed over the Indian Ocean and South-East Asia (see Fig. 9 third row) depend mainly on local changes in the cloud

distribution associated with aerosol-induced differences in regional atmospheric circulation. This aspect will be discussed in

section ??
:::
4.4.25

The impact on the LW fluxes is small but it is significant in the regions with the largest mineral dust AOT, especially in the

Northern Hemisphere summer months. The implementation of the CAMS climatology with the optical properties described

in the Appendix A
:
B
:
brings in our tests an increase of down-welling LW radiation at the surface which reaches more than

10 W/m2 over the Western Sahara and Saudi Arabia. This in part offsets the reduction in incoming SW radiation at surface

in those areas, which is of the order of 10 − 15 W/m2. At the TOA significant differences in LW fluxes between the two30

climatologies are found only where clear-sky dominates. Over the deserts high-level dust layers reduce the upward emission to

space and the effect is stronger for the CAMS climatology which has a larger amount of dust mass over the deserts.

Most of the bias in TOA fluxes computed from the IFS operational cycle 43R3 against
::
the

:::
top

::
of

::::::::::
atmosphere

:::::
fluxes

::::::::
provided

::
by

:::
the

:
CERES-EBAF (first two rows in Fig 9

::::::
project

:::::::
(Clouds

:::
and

::::
the

::::::
Earth’s

:::::::
Radiant

::::::
Energy

:::::::
System

::::::
Energy

::::::::
Balanced

::::
and
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:::::
Filled,

::::::::::::::::::::::::::::::::::::::::::::::::::
https://ceres.larc.nasa.gov/products.php?product=EBAF-TOA

:::
last

::::::::
accessed

::
31

:::::::
October

:::::
2019) are due to errors in cloud

cover and cloud amount (e.g. Ahlgrimm et al., 2018) and aerosols only play a small role
::::
(first

:::
two

:::::
rows

::
in

:::
Fig

::
9). Therefore the

modification in the aerosol distribution brings only small local improvements. In particular the change in the dust distribution

over the Western Sahara and Central-East Atlantic brings some local reduction in both LW and SW TOA flux bias by increasing5

by about 5 − 10W/m2 the reflected SW radiation and slightly decreasing by about 5W/m2 the out-going LW radiation. Some

further small changes in TOA fluxes are observed over the Indian Ocean, but this time not related to changes in the clear sky

radiation. Instead, a slight reduction in the cloud cover on the western coast of India indirectly improves the TOA fluxes

by reducing the reflected SW radiation and at the same time increasing the outgoing LW radiation. This change in the total

cloud cover in the area is related to changes in the aerosol radiative forcing which modifies the Summer Monsoon
::::::::
monsoon10

circulation, as discussed in section ??
:::
4.4.

4.3 Impact on forecast errors and skill

Using the "forecast runs" we can measure to what extent changes in the direct aerosol radiative effect affect measures of

forecast skill scores. The direct impact of a new aerosol climatology is to alter the radiative heating rate profiles and the surface

energy budget. The former dominates the change in forecasts errors, and it affects the mid-to-lower tropospheric temperatures.15

The latter impacts mostly the surface temperature. Although the change in AOT is spatially highly in-homogeneous and locally

large, this does not appear to be enough to impact the variability of the large-scale circulation.

Two main regions show the largest impact on on the lower tropospheric temperature, and these are dominated by dust and

biomass burning
:::::::::::
organic/black

::::::
carbon

:
aerosols. Because of the combination of the difference in total AOT and in optical

properties, for the same AOT the CAMSiRA climatology reduces the absorption of SW radiation in dust-affected regions with

respect to TG97. This induces a widespread decrease in temperature of about 0.1 K below 700 hPa after 48h (Fig 10) growing

to more than 0.2 K at day five. In the ECMWF model this helps reducing by about a third the positive temperature bias observed5

in the Mediterranean region and the Middle-East. The effect is larger in the summer months due to the stronger mean solar

radiation and the larger dust AOT.

Another significant temperature change is observed below 850 hPa over the Gulf of Guinea and Central Africa where the

relatively large amount of biomass burning aerosol in the CAMSiRA climatology significantly absorbs SW radiation. In this

case the ECMWF model already suffers of a positive temperature bias in the region and the extra heating provided by the new10

aerosol AOT further increases the pre-existing bias. The radiative impact of the biomass burning
::::::
organic

::::
and

:::::
black

::::::
carbon

species have generally a small but positive impact on the upper-air temperature biases over Northern Canada in the summer

months, although in these areas the seasonal variability of the forest fires is naturally impossible to capture in a climatological

distribution. Single events can be very significant and they need prognostic treatment to accurately take into account their

impact on local weather parameters (Toll et al., 2015).15

Surface temperatures are affected by the change in aerosol climatology only locally over Central and North Africa and part

of Asia (Fig 10), where changes in the AOT between the two climatologies is the largest (see Fig 4 ). In the biomass burning

regions of Central Africa the decrease in surface SW radiation causes a decrease in the surface temperature which helps
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Figure 9. Changes in multi-annual mean (2001-2004) net radiative fluxes (in W/m2) at the top of atmosphere (TOA) and surface for the

short-wave (left column) and long-wave (right column) in the IFS. The top two rows show the errors in the TOA fluxes respectively when

using TG97 and CAMS climatologies compared to CERES-EBAF observations. The last two rows show the change in the TOA and surface

fluxes between the experiment using the CAMS climatology and the experiment using the TG97 climatology. Values above(below) 4(-4)

W/m2 indicate systematic features larger than the natural variability of the field.
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Figure 10. Temperature at 850 hPa (K, top row) and 2 m (K, bottom row) for forecast time t+48 hours averaged during the two months period

July-August .
::::
2016.

:
The left column shows the error of the operational model, the right column shows the difference between a forecast

experiment with CAMS climatology and the operational model using TG97. Model errors are computed against operational analysis.

reducing the pre-existing positive bias. In North Africa and Middle-East the change in dust AOT is significant in the summer

months, with surface cooling over the West Sahara and localized surface warming over Saudi Arabia where the significant20

increase in down-welling LW compensates the smaller decrease in down-welling SW. Other significant temperature changes

are found in Australia, where the reduction in dust AOT in the CAMSiRA climatology causes surface warming and in the

Taklamakan desert
:
in

::::::
China, where the large dust AOT causes surface cooling.

The variability and forecast skill of large-scale extra-tropical weather patterns are not significantly affected by these regional

changes in temperature. Measures of the forecast skill such as the anomaly correlation of mid-tropospheric geopotential, show25

virtually no impact (not shown), corroborating similar results of Morcrette et al. (2011).

Measurable impacts on hemispheric scores are found only for the temperature RMSE in the lower troposphere during NH

summer (fig
:::
Fig 11), due to the aforementioned changes in SW absorption by mineral dust and biomass burning

::::::
organic

::::::
species.

In particular, the temperature RMSE generally improves in the Northern Hemisphere by about 1% in summer thanks to less

SW absorption over the deserts which reduces the persistent warm bias affecting the IFS in the Northern Hemispheric Summer30

between the surface and 700 hPa.

In the Tropics and partly in the Southern Hemisphere we found an increase by ∼ 1%− 0.5% in the 850 hPa temperature

RMSE relative to the RMSE using TG97. This is dominated by the localized increase in forecast errors over the Gulf of Guinea

(local increase in the RMSE up to 20%) which in turn affects the forecast skills over the tropical belt.
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The scarce availability of continuous observations in this area makes it difficult to have a good estimate of the real aerosol35

radiative effect, but the impact on the "forecast runs" suggests a bias in the CAMSiRA aerosols over the Gulf of Guinea

given the significant departure from the temperature profile of the operational analysis. Independent estimates of AAOT for

Central Africa (e.g. Bond et al., 2013) seem indeed to suggest a large overestimation in the CAMS model in the summer

months over Central Africa. We identify as likely contributors to this bias (i) possible incorrect vertical distribution of all

aerosols (including absorbing types) in the forecast model driven in part by the operator splitting of
:
an

::::::::
incorrect

::::::
weight

:::
of5

::
the

:::::::::::
contribution

::
by

:
convective transport and scavenging, (ii) a tendency for the assimilation to assign far too much positive

increment
:::::
relative

::::::::::
importance

:
to black carbon in the tropics

:::
over

:::
the

:::::
other

::::::
species, (iii) errors in the emission for organic and

black carbon aerosols and (iv) too large absorption in the optical properties associated to the biomass burning
::::::
organic

:::
and

:::::
black

:::::
carbon

:
species. These problems are currently being addressed and improvements have been incorporated in the most recent

CAMS reanalysis (?)
::::::::::::::::
(Inness et al., 2019).10

 2−May−2016 to 13−Aug−2016 from 188 to 207 samples. Verified against own−analysis.
 Confidence range 95% with AR(2) inflation and Sidak correction for 4 independent tests

CAMSaerV2 − cntl

T: SH −90° to −20°, 50hPa

0 1 2 3 4 5 6 7 8 9 10
−0.04
−0.02

0.00

0.02

0.04

N
or

m
al

is
ed

 d
iff

er
en

ce T: Tropics −20° to 20°, 50hPa

0 1 2 3 4 5 6 7 8 9 10
−0.010
−0.005

0.000
0.005
0.010
0.015

T: NH 20° to 90°, 50hPa

0 1 2 3 4 5 6 7 8 9 10
−0.03
−0.02

−0.01

0.00

0.01

T: SH −90° to −20°, 100hPa

0 1 2 3 4 5 6 7 8 9 10
−0.03
−0.02
−0.01

0.00
0.01
0.02
0.03

N
or

m
al

is
ed

 d
iff

er
en

ce T: Tropics −20° to 20°, 100hPa

0 1 2 3 4 5 6 7 8 9 10
−0.010
−0.005

0.000
0.005
0.010
0.015

T: NH 20° to 90°, 100hPa

0 1 2 3 4 5 6 7 8 9 10
−0.02
−0.01

0.00

0.01

0.02

T: SH −90° to −20°, 200hPa

0 1 2 3 4 5 6 7 8 9 10
−0.03
−0.02
−0.01

0.00
0.01
0.02
0.03

N
or

m
al

is
ed

 d
iff

er
en

ce T: Tropics −20° to 20°, 200hPa

0 1 2 3 4 5 6 7 8 9 10
−0.020
−0.015
−0.010
−0.005

0.000
0.005

T: NH 20° to 90°, 200hPa

0 1 2 3 4 5 6 7 8 9 10
−0.02
−0.01

0.00
0.01
0.02
0.03

T: SH −90° to −20°, 500hPa

0 1 2 3 4 5 6 7 8 9 10
−0.02
−0.01

0.00
0.01
0.02
0.03

N
or

m
al

is
ed

 d
iff

er
en

ce T: Tropics −20° to 20°, 500hPa

0 1 2 3 4 5 6 7 8 9 10
−0.03
−0.02

−0.01

0.00

0.01
T: NH 20° to 90°, 500hPa

0 1 2 3 4 5 6 7 8 9 10
−0.03
−0.02
−0.01

0.00
0.01
0.02

T: SH −90° to −20°, 850hPa

0 1 2 3 4 5 6 7 8 9 10
−0.02
−0.01

0.00
0.01
0.02
0.03

N
or

m
al

is
ed

 d
iff

er
en

ce T: Tropics −20° to 20°, 850hPa

0 1 2 3 4 5 6 7 8 9 10
−0.02
−0.01

0.00
0.01
0.02
0.03

T: NH 20° to 90°, 850hPa

0 1 2 3 4 5 6 7 8 9 10
−0.03
−0.02

−0.01

0.00

0.01

T: SH −90° to −20°, 1000hPa

0 1 2 3 4 5 6 7 8 9 10
Forecast day

−0.03
−0.02
−0.01

0.00
0.01
0.02
0.03

N
or

m
al

is
ed

 d
iff

er
en

ce T: Tropics −20° to 20°, 1000hPa

0 1 2 3 4 5 6 7 8 9 10
Forecast day

−0.02
−0.01

0.00
0.01
0.02
0.03

T: NH 20° to 90°, 1000hPa

0 1 2 3 4 5 6 7 8 9 10
Forecast day

−0.03
−0.02

−0.01

0.00

0.01

Figure 11. Normalized temperature RMSE difference at 1000 hPa and 850 hPa for a set of forecasts runs using the new CAMS climatology

against the operational configuration. The experiments cover a summer season (2-May-2016 to 13-Aug-2016) and are verified against the

operational analysis. Confidence range 95% with AR(2) inflation and Sidak correction for 4 independent tests (Geer, 2016). These experi-

ments were done using a cubic-octahedral spectral truncation TCo399 but the main results are independent on the model resolution. Values

< 0 mean that the forecasts with the CAMS climatology are better than those with the TG97 climatology.

This analysis shows that although the impact of a change in the aerosol climatology are small in terms of large-scale forecast

skill scores, nevertheless they can be not negligible
:::::::::::
not-negligible, especially in areas where the model has pre-existing biases

or where the model has particularly low errors and is therefore sensitive to small changes in the local radiation budget. On

the other hand, impacts at regional scale can be large. The most robust changes are found over the Indian Ocean during the

summer Monsoon
::::::::
monsoon season and are forced predominantly by a modified radiative forcing by the desert dust which15
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brings a reduction in the near-surface wind errors. Section ??
::
4.4

:
presents in more details the feed-backs between the Monsoon

:::::::
monsoon

:
circulation and changes to the local AOT.

4.4 Impacts on local circulations: the summer Indian Monsoon
::::::::
monsoon

The area of the Northern Indian Ocean during the summer Monsoon
::::::::
monsoon season shows the largest feedback between

changes in aerosol radiative forcing and regional-scale circulation. In this region the CAMS climatology has a different impact

on radiative fluxes than the TG97 climatology as implemented in the IFS (Fig 4 and Fig 9). The largest change occurring5

with the CAMS climatology during summer is a decrease in total SW absorption over the Middle-East and East Africa of

approximately 4-8 W/m2 on average, but exceeding 30 W/m2 over the Horn of Africa. This is due to both a change in the

distribution of mineral dust mass in the region and to the higher dust reflectivity we adopted in the CAMS climatology.

Numerous studies have explored the sensitivity of the summer Indian Monsoon
:::::::
monsoon

:
to aerosol radiative forcing from

both anthropogenic and natural sources (Bollasina et al., 2011; Lau and Kim, 2006; Wang et al., 2009). By using a combination10

of model and satellite data Vinoj et al. (2014) showed that the radiative effect of mineral dust over Eastern Africa and Arabian

Peninsula affects the Monsoon
::::::::
monsoon circulation over the Indian Ocean. The heating rate perturbation induced by the dust

layer can modulate the strength of low level westerly zonal winds and moisture transport towards Eastern and Central India

over time scales of weeks. The feedback was successively explored in detail by Jin et al. (2015) and Jin et al. (2016) showing

the thermodynamic mechanism that links the dust radiative effect over the Iranian Plateau and precipitation variability on15

sub-seasonal time scales over western India. This implies that a realistic representation of the aerosol radiative effect in the

region can potentially have a significant impact on the predictability of the Monsoon
:::::::
monsoon

:
circulation in medium-range

and seasonal forecasts.

In the operational configuration pre-CY43R3 with un-coupled sea-surface temperatures, the IFS has a too strong near-surface

westerly jet across the northern Indian ocean, from the Eastern Africa to the Western India (Fig 12a) which in turns causes20

too wet conditions over Western India during the summer months. This brings a positive precipitation bias in the region of 1-2

mm/day over land in the three month period June-August as compared to various estimates of surface precipitation (Table 3).

The same circulation bias is also responsible for part of the errors in the top-of-atmosphere LW and SW fluxes (Fig 9) observed

in the "climate runs", related to too much cloudiness over Western India.

The CAMS climatology brings changes in the mean winds and temperature below 700 hPa and this reduces the forecasts

errors in the area both for the wind strength at all lead times (Fig 12b) and also for the accumulated seasonal errors in pre-

cipitation amounts (Table 3). Further evidence of an improved mean model state come also from the assimilation cycle. The5

increase in surface temperature and pressure over the Persian Gulf and Saudi Arabia helps reducing the
:::
error

:::
of

:::
the

:::::::
forecast

first-guess departures
:::
with

::::::
respect

::
to
:::
the

:::::::::::
observations

::::
used

::
in

:::
the

::::::::::
assimilation

:::::
step, indicating an improvement in the analysis

fields because the model is closer to the observations (not shown).

Near-surface westerly zonal wind strength decreases in the northern part of the Indian Ocean and increases to the south

(Fig 12b), implying a weakening and southward shift of the low-level jet. The changes grow larger at longer lead times due to10

the cumulative contribution of the modified radiative forcing acting from the very beginning of the forecast. These circulation
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Table 3. Mean precipitation over Western India (region boundaries: lat 25N-6N;lon 67E-77E) for JJA estimated by different products and

model bias for two forecast experiments for the period 2001 to 2004. Data are in mm/day.

:::::
GPCP

:::::
v2.2(1)

: :::::::
HOAPS3

:::::
v6*(2)

: :::::::
SSMI*(3)

: ::::::
TRMM

::::::
3B43(4)

::::
OBS

::
5.5

: ::
5.1

: ::
2.5

::
6.4

:

::::::::
TG97-OBS

::
2.1

: ::
0.2

: ::
4.1

::
1.3

:

:::::::::
CAMS-OBS

: ::
1.4

: :::
-0.3

::
3.8

::
0.5

:

*values not defined on land grid points

:::::::
(1)Global

::::::::
Precipitation

:::::::::
Climatology

:::::
Project,

:::::::::::::::
(Huffman et al., 2015)

::::::::
(2)Hamburg

:::::
Ocean

::::::::
Atmosphere

:::::::
Parameters

:::
and

:::::
Fluxes

:::
from

::::::
Satellite

::::
Data,

::::::::::::::::
(Andersson et al., 2010)

:::::::
(3)Special

:::::
Sensor

::::::::::::
Microwave/Imager

:::
and

::::::
Sounder,

:::::::::::::
(Wentz et al., 2012)

::::::::
(4)Tropical

:::::
Rainfall

:::::::
Measuring

::::::
Mission

::::::::::
Multi-Satellite

::::::::
Precipitation

:::::::
Analysis,

:::::::::::::::::::
(Huffman et al., 2007, 2010)
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Figure 12. Near surface (925 hPa) zonal wind for the period 1st of May 21st of August 2016 over the northern Indian Ocean for forecast day

2 (top row) and forecast day 10 (bottom row). Model bias using TG97 (left), CAMS climatology (middle) and difference between forecasts

using the CAMS climatology and TG97 climatology (right). Notice the different scale in the right-hand side panels. Bold colors indicate

areas significant at the 5% level using a paired T-test with AR(1) noise. The units are indicated above each figure.

changes are the result of a combination of large-scale and more localized perturbations to the temperature gradients between

the Indian Ocean and the land areas.

In the CAMS climatology less SW radiation is absorbed by the dust layer causing a decrease in the lower tropospheric

temperature over the Eastern Africa/Arabic peninsula region (see Fig. 10), a key driver of the Monsoon circulation in
::::::::
monsoon15

:::::::::
circulation

::::
over the Indian Ocean (Vinoj et al., 2014; Jin et al., 2016, 2015). Following this lower tropospheric cooling, the
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Figure 13. As Fig. 12 but for the geopotential height at 925 hPa (m
:::

2/s2).

geopotential height decreases over land above 500 hPa inducing upper level convergence and localized descending motion

which partially balances the radiative cooling. This causes an increase in the surface pressure and geopotential height at low

levels over the Middle-East and Arabian peninsula, improving the model bias by up to 30%-50% (Fig 13). The higher pressure

below 800 hPa reduces the low-level convergent flow over the continental areas resulting in a weaker north-eastward circulation20

in the northern section of the Indian Ocean.

::::::::
Moreover,

::::::::
although

::
in

:::
the

:::
IFS

::::::
aerosol

::::::::::::
concentration

::
do

:::
not

:::::::
directly

::::::
impact

:::::
cloud

::::::::::::
microphysics,

::
yet

:::
the

:::::::
changes

::
in
:::
the

:::::
local

::::::::::
atmospheric

:::::::::
circulation

:::
and

:::
the

::::::
vertical

::::::::::
distribution

::
of

::::::
heating

:::::
rates

:::
can

:::::
cause

::
an

::::::
indirect

::::::
impact

::
of

:::::::
aerosol

::
on

:::::::::
cloudiness.

:::::
Over

::
the

::::::
Indian

::::::
Ocean

:::
the

::::::
weaker

::::::::
monsoon

::::::::::
circulation

::::::
implies

::
a

:::::::
reduced

::::::
average

::::::::::
cloudiness

::::
with

:
a
:::::
clear

::::::
impact

::
in

:::
the

::::::::
radiative

:::::
fluxes

::
at

:::
the

:::
top

::
of

::::::::::
atmosphere,

::
as

::::::::
observed

::
in

::::::
section

::::
4.2.25

We tested how much these effects depend on the absorption properties of dust using the optical properties computed from

different the refractive indices such as Dubovik et al. (2002), with less absorption at shorter wavelengths (see Table A3), and

we found that very weak absorbing dust produces an even stronger decrease in the Monsoon
:::::::
monsoon

:
circulation (not shown),

confirming the previous findings (Vinoj et al., 2014). This sensitivity, together with the fact that in our experiments the SST

are prescribed and that we do not explicitly simulate the interaction between aerosol and cloud microphysics, indicates that the30

direct atmospheric heating by the dust layer is the main factor behind the observed circulation changes.
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5 Conclusions

This work documents a new monthly-mean climatology of aerosol distribution based on the interim Reanalysis
::::::
Interim

::::::::
reanalysis

:
from CAMS (CAMSiRA, Flemming et al., 2017) and its control run. The data set represents a monthly-mean

distribution of mass mixing ratio of 5 aerosol species sub-divided into 11 types over 60 vertical levels. The climatology is

available at full native resolution for the 3-dimensional fields or at any coarser horizontal grid. The user can associate the

radiative properties of choice to the aerosol distribution, and we computed
:::
here

:::
we

:::::::
present

:::::
results

::::
used

:
the bulk properties for

each species
::::::::
computed

:
for the 30 radiative bands of the ECMWF radiative scheme (Hogan and Bozzo, 2018).5

We tested the impact of the CAMS climatology on the ECMWF Integrated Forecasting System in comparison to the aerosol

climatology operational until Summer 2017 which was derived from Tegen et al. (1997).

Compared to AERONET observations over a full year
::::::
number

::
of

:::::
years, the CAMSiRA climatology captures fairly well the

mean seasonal variation of the aerosol burden and total AOT .
:::
total

:::::
AOT

:::::
while

:::
the

::::::::::
dependence

::
of

:::
the

::::::
optical

::::::::
properties

:::
on

:::
the

::::::
relative

::::::::
humidity

:::::
helps

::::::::
capturing

::
at

::::
least

::::
part

::
of

:::
the

:::::
daily

:::::::::
variability.

:::
We

::::
used

:::
the

::::::
AAOT

::::::::
retrieved

:::::
from

:::::::::
AERONET

:::::
sites

::
to10

:::
test

:::
the

::::::
AAOT

:::::::
resulting

::::
from

::::::::::
associating

:::
the

::::::
optical

::::::::
properties

::::
used

::
in

:::
the

::::::::
radiation

::::::
scheme

::
of

:::
the

::::::::
ECMWF

::::
IFS

::
to

::
the

:::::::
present

::::::::::
climatology.

::::
The

:::::::::
comparison

:::::::
showed

::::::::
generally

:
a
:::::

good
:::::::::
agreement,

:::
but

::
it
:::
did

::::
also

::::::::
highlight

:::
the

:::::::::
uncertainty

::
in

:::
the

:::::::::
definition

::
of

::
the

::::::
single

::::::::
scattering

::::::
albedo

::::
over

::::::
various

:::::::
regions,

::
in

::::::::
particular

:::::
when

:::::::::
dominated

::
by

:::::::
biomass

:::::::
burning

::::::
events.

:::
We

:::
did

:::
not

:::::::
attempt

:
a
::::::::
thorough

::::::::
discussion

:::
of

:::
the

::::::
variaty

::
of

::::::::
refractive

::::::
indices

::
to

::::::::
associate

::
to

:::
the

::::::
various

::::::
species

::::
and

:::
the

::::
user

:::
has

:::
the

::::::::::
opportunity

::
to

:::::::::
experiment

::::
with

:::::::
different

::::::
optical

:::::::::
properties.

:
15

When implemented in the ECMWF IFS, the new CAMSiRA aerosol climatology affects the radiative fluxes and brings

small improvements locally to biases both in the short-wave and in the long-wave spectrum compared to satellite observations.

These changes in aerosol radiative forcing with respect to the ECMWF implementation of the Tegen et al. (1997) climatology

are due to a different spatial distribution, different radiative properties and different representation of the size distribution of

each aerosol specie
::::::
species.20

In the ECMWF IFS the change in the climatological representation of aerosol distribution has a limited impact on commonly

used measures of hemispheric forecast skill scores and it does not affect significantly the variability of the large-scale synoptic

circulation, in agreement with recent studies (e.g. Morcrette et al., 2011; Mulcahy et al., 2014; Toll et al., 2016). Locally,

temperature changes in the lower troposphere can be of similar order of magnitude of the pre-existing model biases and and

can therefore affect the model mean state.25

Larger impacts are found in areas where there is a stronger link between clear-sky radiative perturbations and local circu-

lation. In the ECMWF model the Summer Indian Monsoon
::::::
summer

::::::
Indian

::::::::
monsoon over the Indian Ocean shows a marked

sensitivity to the mineral dust radiative forcing over Eastern Africa and Saudi Arabia. The magnitude of the absorption by

mineral dust modifies the strength of the temperature and pressure gradients over the Indian Ocean affecting
:::::
mean

::::::::::
temperature

:::
and

::::::::::
geopotential

:::::
over

:::
the

::::::::::
Middle-East

:::::
land

::::
areas

::::
and

:::
the

::::::
Indian

::::::
Ocean

:::::
which

:::
in

:::
turn

::::::
affects

:
the north-eastward branch of30

the the Indian Monsoon
:::::::
monsoon. In the ECMWF model this reduces by about 30% the mean model bias in temperature
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:::::::::::::::
lower-tropospheric

:::::::::::
geopotential and zonal wind, also improving the representation of precipitation over the northern Indian

Ocean and South-Western
:::::::::
south-west India.

The CAMS prognostic aerosol model is in continuous development and future releases of this aerosol climatology will

incorporate the latest improvements in aerosol modelling and data assimilation.

6 Code availability5

Upon request the code to compute the optical properties of the aerosol species is available contacting the authors. The IFS

source code is available subject to a licence agreement with ECMWF; see also Flemming et al. (2015)
:::::::::::::::::::::::::::::::::::
Flemming et al. (2015); Rémy et al. (2019) for

details.
:::
The

::::
code

::::
used

::
to

::::::::
generate

::
the

::::::
optical

:::::::::
properties

::
for

::::
each

::::::
aerosol

:::::::
species

:
is
:::::
based

:::
on

::
the

::::::::
standard

:::::::::::::::::::::
Wiscombe (1980) scheme

::
for

::::
Mie

:::::::::
scattering.

7 Data availability10

The climatological dataset
:::
Two

:::::::
datasets

:
described in this work is

:::
are available from the CAMS data repository:

:::
the

::::::::
monthly

::::
mean

::::::::::::::
layer-integreted

::::
mass

:::::::
mixing

::::
ratio

::
of

:::
all

::::::
aerosol

:::::::
species

::
at

::
a

::::::::
resolution

:::
of

:::
3x3

:::::::
degrees

:::
and

:::
60

:::::::
vertical

:::::
levels

::::
and

:::
the

:::::
optical

:::::::::
properties

::::::::
computed

:::
for

::::
each

::::::
species

:::
for

:::
the

:::
30

::::::
spectral

:::::
band

::
of

:::
the

:::::::
ECMWF

::::::::
radiation

::::
code

::::::::::::::::::::::
(Hogan and Bozzo, 2018).

:::
The

::::
data

:::
are

::::::
hosted

:::
on

:::
the

::::::
CAMS

::::
data

::::::
archive

::
at
:::

the
:::::::

address
:
https://atmosphere.copernicus.eu/catalogue#/. For information

and future updates please contact the CAMS user support at copernicus-support@ecmwf.int.15
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the
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CAMS
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types25
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::
We

:::
can

::::::
derive

::
an

:::::::
estimate

::
of

::
the

:::::
scale

:::::
height

:
ξ
:::

for
::::
each

::::::
aerosol

::::
type

::::
from

:::
the

::::::
vertical

::::::::
distribution

:::
of

::
the

:::::
mass

:::::
mixing

::::
ratio

::
in
:::

the
::::
CR.

:::::::
Generally

::
ξ

::::::
depends

::
on

:::
the

::::::
aerosol

:::::
spatial

:::::::::
distribution

:::
and

:::
the

:::::
season

:::
and

::
it
:::
can

::
be

:::::
found

::
by

:::::::::
calculating

::
at

::::
every

::::
grid

::::
point

:::
the

:::::
height

::
at

::::
which

:::
the

:::::::::
normalized

:::::::::
cumulative

::::
mass

:::::::::
distribution

::::::
reaches

:::
the

::::
value

::::
1/e.

:::
The

::::::
spatial

::::::::
distribution

:::
of

:
ξ
::
is

:::::
shown

::
in
:::
Fig

:::
A3

:::
for

:::
July

::::
and

::::::
January

::
for

::
all

::::::
aerosol

:::::
types.

:::
The

::::
scale

:::::
height

::
of

::::::
mineral

:::
dust

::::::
exhibits

:::
the

:::::
largest

:::::
spatial

:::
and

:::::::
seasonal

:::::::
variations

::::::
because

::
of
:::
the

:::::
strong

:::::::::
dependence

::
of

::
the

::::
dust

:::::::
emission

:::
and

::::::
transport

:::
on

::
the

:::::
height

::
of
:::
the

:::::::
boundary

::::
layer

::::::
mixing

::::
over

::
the

::::::
deserts

:::
and

:::
the

::::::
seasonal

::::::
patterns

::
of

:::::::::
large-scale

::::::
synoptic

:::::::::
circulations.

::::
The

:::
dust

::::::
species

::
is

::
the

::::
only

:::
one

::::::::
exhibiting

:
a
::::

large
:::::::

seasonal
:::::
cycle,

::::
with

:
ξ
::::::
ranging

::::
from

::::
∼ 2

::
km

::
in
:::::
winter

:::::
rising

::
to

:::
∼ 3

:::
km

::
in
:::::::
summer.

:::
For

:::
the

::::
other

:::::
species

::
ξ
:::
can

::
be

:::::::::::
approximated

::
by

:
a
:::::::
constant

::::
value

:::::::::
throughout

::
the

::::
year.

::::
Sea

:::
salt

::::::
aerosols

:::
and

:::::
black

:::::
carbon

:::
are

:::::::
generally

:::::::
confined

::
to5

::
the

:::::
lower

::::
levels

::::
with

:::::
ξ ∼ 1

:::
km,

::::
while

:::
the

::::::
organic

:::::
matter

::::::
extends

:::::
higher

::::
with

::::
ξ ∼ 2

::::
km.

::
As

:::::
sulfate

::
is

::::::
formed

::::
from

::::
SO2,

:::::
which

:::
has

::::::
sources

:::
from

::::
both

:::::::::::
anthropogenic

:::::::
activities

:::
and

::::
from

::::::
oceanic

:::::::
dimethyl

:::::
sulfate,

::
it

:::::
occurs

:::::
further

::::
over

::::
most

::
of

:::::
oceans

:::
and

::::::::
continents

:::
and

::::
tends

::
to

::::
have

:
a
::::
more

::::::::::
homogeneous

:::::::::
distribution

::::
with

::::
ξ ∼ 3

:::
km

:::
(Fig

::::
A3).

:

:::
The

::::
scale

:::::
height

:::
can

:::
be

:::
used

:::
to

:::::::
distribute

:::::::
vertically

:::
the

::::::
species

::
in

::::
case

:::
only

::
a
:::::::::::::
two-dimensional

:::::::::
distribution

::
of

:::
total

:::::
mass

::::
needs

::
to
:::

be

:::
used

::::
with

:::
less

:::::::
accurate

::::::
vertical

:::::::::
distribution.

::::
The

::::
older

::::::::::::
implementation

::
of

:::
the

:::::
TG97

:::::::::
climatology

::
in

:::
the

:::
IFS

::::
used

:
a
:::::
simple

::::::::::::
pressure-based10

::::::::
exponential

:::::::
function

::
of

:::
type

:

(p/p0)
:::::

(H/ξ),
::::

(A1)

:::
with

::
p0:::::::

pressure
::
at

::
the

::::::
lowest

:::::
model

::::
level,

:::::::
H = 8.4

::
km

:::
the

::::
scale

:::::
height

::
of

:::
the

::::::
standard

:::::::::
atmosphere

:::
and

::
ξ

::
the

::::
scale

:::::
height

::
of
:::
the

::::::
aerosol

::::::::
component.

::::
The

::::
most

::::::::
significant

:::::::::
contribution

::
to

:::
bias

:::::
related

::
to

:
a
::::
less

::::::
accurate

::::::::
description

::
of
:::
the

::::::
aerosol

::::::
vertical

:::::
profile

:
is
:::::::
expected

::::
from

:::
the

:::::::
absorbing

::::::
species

:::::
which

:::::::
determine

:::
the

::::::
vertical

:::::
profile

::
of

::::::::
short-wave

::::::
heating

::::
rate.15

Appendix B: Optical properties

Here we briefly describe the set we used in the IFS implementation described in this work. The user can customize the the optical properties to

associate to the aerosol climatology according to the specific needs of the application, but any large departure from the extinction coefficients

described here will reflect in a change to the total AOT from the one obtained in CAMSiRA. The aerosol optical properties are computed for

each of the 14 short-wave (SW) and 16 long-wave (LW) bands of the RRTM (cite AER inc.) radiation scheme on which the IFS radiation20

scheme is based (ECRAD, Hogan and Bozzo, 2018). Spherical shape is assumed for all species, with a number size distribution described

by a log-normal function similar to the original version of the aerosol scheme (Reddy et al., 2005) and defined as:

n(r) =
dN(r)

dr
=

N√
2πr ln(σ)

exp

(
− ln2(r/rmod)

2 ln2(σ)

)
(B1)

with N total particle number concentration, σ geometric standard deviation and rmod mode radius.

Table A1 lists the relevant parameters of the distribution for each species. The bulk optical properties (mass extinction coefficient, single25

scattering albedo (ω) and asymmetry parameter (g)) are computed with a standard code for Mie scattering based on Wiscombe (1980). For

28



the hydrophilic types the optical properties change with the relative humidity due to the swelling of the water soluble component in wetter

environments. The refractive index (m) and density (ρ) of the aerosol particle change according to the relations (Koepke et al., 1997):

ρ= ρdry ∗ r3dry/r3 + ρwater ∗ (r3− r3dry)/r3 (B2a)

m=mwater +(mdry −mwater) ∗ r3dry/r3 (B2b)30

with rdry and r the mode radius respectively of the dry particle and at a relative humidity value. The size distribution is modified applying

growth factors (Table A2) to the mode radius and to the limits of integration, maintaining the same geometric standard deviation. The mass

mixing ratio in the climatology is defined for the dry mass for sulfates and organic matter but for a mass relative to 80 % relative humidity

for Sea Salt
:::
sea

:::
salt. The optical properties are computed taking this into account.

A brief description of the refractive index associated to each aerosol type is given in the following paragraphs.

Organic matter: The optical properties are based on the “continental” mixtures described in Hess et al. (1998). The mixture represents

aerosols over continental areas influenced by anthropogenic and natural emissions. We used a combination of 13% in mass of insoluble

soil and organic particles, 84% of water soluble particles originated from gas to particle conversion containing sulfates, nitrates and organic5

substances and a 3% of soot particles. The combination gives optical properties representing an average of biomass and anthropogenic

organic carbon aerosols. The refractive indices and the parameters used in the particle size distribution of each component are as described

in Hess et al. (1998). The hydrophobic organic matter type uses the same set of optical properties but for a fixed relative humidity of 20%.

Black carbon: The refractive index used in the Mie computations is based on the OPAC SOOT model. At the moment the hydrophilic

type of the black carbon species is not implemented and both types are treated as independent from the relative humidity. The single particle10

properties are integrated with a log-normal particle size distribution for sizes between 0.005 and 0.5 µm.

Sulfate: The sulfate type represents aerosol originated from sulfur emissions from industrial and fossil fuel combustion, biomass burning

and natural sources (volcanic and biogenic). The refractive index is taken from the Global Aerosol Climatology Project (GACP, http://gacp.

giss.nasa.gov/data_sets/) and it is representative of dry ammonium sulfate (NH4)2SO4. The hygroscopic growth is parameterized after Tang

and Munkelwitz (1994) and reported in Table A2.15

Mineral dust: The large uncertainty in mineral dust composition (e.g. Colarco et al., 2014) means that it is difficult to represent the

radiative properties of this species with a single refractive index fitting different part of the World. We show here three choices spanning

different SW absorption properties. Woodward (2001) combined measurements from different locations and provides the largest absorption

in the visible range with an imaginary refractive index at 500 nm of ni,500 = 0.0057. Fouquart et al. (1987) propose a much smaller value

ni,500 = 0.0013 and it represents the lower bound for mineral dust absorption. Dubovik et al. (2002) used AERONET measurements to20

retrieve the refractive index of mineral dust in different locations. For the Sahara region they report ni,500 ∼ 0.0022 representing a value in

between the previous two. The optical properties are computed individually for each of the three size intervals in the CAMS mineral dust

model, using a log-normal size distribution with particle radius limits 0.03, 0.55, 0.9, 20 µm. For the IFS implementation described in this

work we adopted Woodward (2001) as it resulted in the best overall impact on the IFS scores.

Sea salt: The refractive index for sea water is as in the OPAC database and the optical properties are integrated across the three size ranges25

in the CAMS model, using bi-modal lognormal distributions with particle radius limits 0.03, 0.05
::
0.5, 5, 20 µm as in Reddy et al. (2005) and

with the same hygroscopic factors according to Tang (1997), Table A2.

The complete set of bulk optical properties for all aerosol types, is shown in Figure A1 for the full range of spectral bands used in ECRAD.

In Figure A2 the optical properties used in CAMSiRA climatology are compared to the properties used in the IFS for the TG97 climatology.
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Appendix C: Vertical scale height of the CAMS aerosol types30

We can derive an estimate of the scale height ξ for each aerosol type from the vertical distribution of the mass mixing ratio in the CR.

Generally ξ depends on the aerosol spatial distribution and the season and it can be found by calculating at every grid point the height at

which the normalized cumulative mass distribution reaches the value 1/e. The spatial distribution of ξ is shown in Fig A3 for July and

January for all aerosol types.

The scale height of mineral dust exhibits the largest spatial and seasonal variations because of the strong dependence of the dust emission

and transport on the height of the boundary layer mixing over the deserts and the seasonal patterns of large-scale synoptic circulations. The

dust species is the only one exhibiting a large seasonal cycle, with ξ ranging from ∼ 2 km in winter rising to ∼ 3 km in summer. For the5

other species ξ can be approximated by a constant value throughout the year. Sea salt aerosols and black carbon are generally confined to the

lower levels with ξ ∼ 1 km, while the organic matter extends higher with ξ ∼ 2 km. As sulfate is formed from SO2, which has sources from

both anthropogenic activities and from oceanic Dimethyl Sulfate, it occurs further over most of oceans and continents and tends to have a

more homogeneous distribution with ξ ∼ 3 km (Fig A3).

The scale height can be used to distribute vertically the species in case only a two-dimensional distribution of total mass needs to be10

used with less accurate vertical distribution. The older implementation of the TG97 climatology in the IFS used a simple pressure-based

exponential function of type

(p/p0)
(H/ξ),

with p0 pressure at the lowest model level, H = 8.4 km the scale height of the standard atmosphere and ξ the scale height of the aerosol

component. The most significant contribution to bias related to a less accurate description of the aerosol vertical profile is expected from the15

absorbing species which determine the vertical profile of short-wave heating rate.
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Table A1. Refractive index and parameters of the size distribution associated to each aerosol type in the CAMS

model (rmod =mode radius, ρ=particle density, σ=geometric standard deviation). Values are for the dry aerosol a

part from sea salt which is given at 80%RH. The organic matter type is represented by a mixture of three OPAC

types similar to the average continental mixture, as described in Hess et al. (1998).

Aerosol
::::::
aerosol type size bin limits Refr. index ρ rmod σ

(sphere radius, µm) source (kg/m3) (µm)

0.03-0.5

Sea Salt*
::::
salt* 0.5-5.0 OPAC 1.183e3 0.1992,1.992 1.9,2.0

(80% RH) 5.0-20

0.03-0.55 Dubovik et al. 2002 or

Dust 0.55-0.9 Woodward et al. 2001 or 2.61e3 0.29 2.0

0.9-20 Fouquart et al. 1987

Black carbon 0.005-0.5 OPAC (SOOT) 1.0e3 0.0118 2.0

Sulfates 0.005-20 Lacis et al. (GACP) 1.76e3 0.0355 2.0

WASO+ 1.8e3 0.0212 2.24

Organic matter+ 0.005-20 OPAC INSO+ 2.0e3 0.471 2.51

SOOT 1.0e3 0.0118 2.00

*Sea salt is described by a bi-modal log-normal distribution with fixed number concentrations of 70 cm−3 and 3 cm−3 for the

small and the large mode respectively.
+The species are mixed by number concentration. The individual number concentrations are 12000 cm−3 (WASO), 0.1 cm−3

(INSO), 8300 cm−3 (SOOT) The hydrophobic component of organic matter uses the same optical properties but for a fixed

relative humidity of 20%

Table A2. Growth factors used to characterize the size distributions of sea salt, sulfates and organic matter

RH (%) 0 10 20 30 40 50 60 70 80 85 90 95

Sea salt 1.0 1.0 1.0 1.0 1.44 1.55 1.666 1.799 1.988 2.131 2.36 2.877

Sulfates 1.0 1.0 1.0 1.0 1.169 1.220 1.282 1.363 1.485 1.581 1.732 2.085

WASO 1. 1.05 1.09 1.14 1.19 1.24 1.29 1.34 1.44 1.54 1.64 1.88

growth factors for sea salt are from Tang (1997), growth factors for sulfates are from Tang and Munkelwitz (1994), growth

factors for the OPAC species WASO are from Hess et al. (1998).
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Table A3. Dust optical properties for the ECRAD band 400-700 nm computed using different refractive indices (mass extinction coefficient

k,m2/g, single scattering albedo ω and asymmetry parameter g). Data are for each of the three size bins of the CAMS aerosol model (bin

limits in terms of particle radious: 0.03, 0.55, 0.9, 20 µm)

::
RI

:
k

:
ω

:
g

::::::::::::::
Woodward (2001)

:::::::::
2.5,0.95,0.4

:::::::::::
0.96,0.90,0.83

:::::::::::
0.68,0.67,0.80

::::::::::::::::
Dubovik et al. (2002)

:::::::::
2.4,0.98,0.4

:::::::::::
0.98,0.96,0.92

:::::::::::
0.65,0.67,0.76

Figure A1. Optical properties of the aerosol species in the CAMS model for the 30 spectral bands of the ECMWF radiation scheme. For the

hydrophilic species the mass extinction coefficient is computed with respect to the dry aerosol mass. The top row shows the mass extinction

coefficient, the middle row shows the single scatter albedo and the bottom row shows the asymmetry parameter. The first column is for the

hydrophobic species and the middle and right columns are for the hydrophilic species at two values of RH.
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Figure A2. Comparison of optical properties used to describe the radiative effect of the aerosol species in the CAMS model (coloured lines)

and in the old climatology based on TG97 (black lines). Values are for the 30 spectral bands of the ECMWF radiation scheme. For the

hydrophilic species the mass extinction coefficient is computed with respect to the dry aerosol mass. The top row shows the mass extinction

coefficient and the bottom row shows the single scatter albedo. The first column is for the hydrophobic specie
:::::
species

:
mineral dust and the

middle and right columns are for the hydrophilic species organic matter and sulphates
:::::
sulfates

:
and for the CAMS climatology are shown at

two values of relative humidity.
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Figure A3. Scale height (color shade) and AOT (red contours) for each aerosol type for January (left) and July (right) computed from the

CAMS Control Run over the years 2003-2014 and with the total AOT scaled to preserve the CAMS reanalysis total AOT. The scale height is

shown only for the grid points with an AOT for that aerosol type larger than 0.01. Contour lines values are 0.01,0.05,0.1,0.4,0.8,1
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