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Abstract.  

Anthropogenic land-use and land-cover change activities play a critical role in Earth system dynamics through significant 

alterations to biogeophysical and biogeochemical properties at local to global scales. To accurately quantify the magnitude of 15 

these impacts, climate models need consistent land-cover and land-cover change time-series at a global scale, based on land-

use information from observations or dedicated land-use change models. However, a specific land-use change cannot be 

unambiguously mapped to a specific land-cover change. Here, various transition rules are evaluated based on assumptions 

about the way land-use change could potentially impact land-cover. Building upon the latest Land Use Harmonization dataset 

(LUH2), land-cover dynamics, particularly in forest cover and carbon stock, were simulated based on each rule from 850 to 20 

2015 globally, at quarter degree spatial resolution. The resulting forest cover, carbon density, and carbon emissions for each 

rule were compared with those from remote sensing observations, U.N. Food and Agricultural Organization reports, and other 

studies. Examinations at global, country, and grid scales indicate that the optimal transition rule is for vegetation growing in 

primary and secondary land (including both forest and non-forest) to be completely cleared during the expansion of cropland, 

urban land, and managed pasture, and to remain during rangeland expansion only if the land was originally non-forested. This 25 

confirms the transition rules suggested earlier in the HYDE dataset underlying LUH2. According to this rule, global forest 

area is estimated as 37.42 106 km2, and forest area estimates at global and country scales both stay within the range derived 

from remote sensing products. This rule also mitigates the anomalously high carbon emissions observed in previous studies in 

the 1950s. 

 30 
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1 Introduction 

Historical land-use activities have been significantly affecting the global carbon budget in both direct and indirect ways, and 

changing Earth’s climate through altering land surface properties (e.g. surface albedo, surface aerodynamic roughness, and 

forest cover) (Betts, 2001;Bonan, 2008;Feddema et al., 2005;Guo and Gifford, 2002;Post and Kwon, 2000;Pongratz et al., 

2010;Brovkin et al., 2006;Claussen et al., 2001). During the past 300 years, >50% of the land surface has been affected by 5 

human land-use activities, >25% of forest has been permanently cleared, and 10-44 106 km2 of land are recovering from 

previous human land-use disturbances (Hurtt et al., 2006). Impacts on the carbon cycle result from several processes: 

deforestation removes natural forest and its corresponding carbon biomass is used for wood products, burning, or decay by 

microbial decomposition (DeFries et al., 2002). Afforestation, in contrast, recovers forest which accumulates carbon but has a 

lower maximum potential biomass than primary forest (Nilsson and Schopfhauser, 1995). Wood harvesting is one of the largest 10 

source contributing gross carbon emission by modifying the litter input into various soil pools, stand age, and biomass of 

secondary forest(Dewar, 1991;Nave et al., 2010;Hurtt et al., 2011). Cumulatively, land-use activities during 1870-2017 have 

contributed to a net flux of 190 Pg C carbon to the atmosphere (Houghton and Nassikas, 2017). While these emissions only 

account for 10% of current anthropogenic carbon emissions, they were a dominant contributor to increasing the atmospheric 

CO2 above pre-industrial levels before 1920 (Ciais et al., 2014).  15 

Quantification of historical Land-Use and Land-Cover Change (LULCC) is important because it serves as the basis for 

examining the role of human activities in the global carbon budget and the resulting impacts to Earth’s climate system. For 

this purpose, LULCC reconstructions enter Earth System Models (ESMs) (e.g., see (Lawrence et al., 2016) for land-use specific 

model simulations in the Coupled Model Intercomparison Project 6 (CMIP6), and (Brovkin et al., 2013) for CMIP5), Dynamic 

Global Vegetation Models (DGVMs) (e.g., see (Le Quéré et al., 2018) for simulations with 16 DGVMs for the annual carbon 20 

budget estimates), and bookkeeping models (see (Le Quéré et al., 2018) for usage of the bookkeeping models by (Hansis et 

al., 2015) and (Houghton and Nassikas, 2017) to quantify the net land-use change carbon flux). Considerable efforts have been 

devoted to modelling historical land-use states (e.g. HYDE, SAGE) (Goldewijk et al., 2017;Kaplan et al., 2009) and land-use 

transitions (Hurtt et al., 2006;Hurtt et al., 2011;Houghton, 1999). In particular, the recent Land-Use Harmonization 2 (LUH2) 

dataset(Hurtt et al., 2017b) harmonizes the most up-to-date historical data with 6 different future scenarios and provides global 25 

gridded land-use states and transitions in a consistent format for use in ESMs as part of CMIP6 experiments. However, large 

uncertainties still exist in the carbon/climate studies based on many of the above LULCC products (Houghton et al., 2012;Chini 

et al., 2012;Pongratz et al., 2014). For example, LULCC carbon emissions in CMIP5 have an anomalous spike during the years 

1950-1960(Shevliakova et al., 2013). These anomalous emission estimates by ESMs (hereinafter referred to as the “pasture 

anomaly”) are caused by an implausible high conversion rate of natural and secondary vegetation to pasture, with the 1950s 30 

having double the conversion rate of the 40’s or 60’s (Shevliakova et al., 2013). Because of this, the simulated terrestrial land 

flux has a two decade delay in the switch from a land carbon source to a land carbon sink compared to observations 

(Shevliakova et al., 2013).   
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One reason for the above uncertainties is the lack of explicit global rules that translate land-use change estimates into land-

cover changes, which is critical for ESM models (Di Vittorio et al., 2014;Di Vittorio et al., 2018;Brovkin et al., 2013;de Noblet-

Ducoudré et al., 2012). Although land-use changes are generally associated with a change in land-cover and carbon stocks, 

these two changes are not always equivalent (see Figuere.1 in (Pongratz et al., 2018)),�and the degree of land-cover alteration 

varies with the types of land-use changes. For example, the conversion from forested land to managed pasture and/or cropland 5 

tends to be associated with the full removal of native vegetation due to intensive human management, whereas vegetation may 

be less disturbed during the land conversion from non-forest (e.g. grassland) to rangeland. To enable the inclusion of such 

land-cover change processes, the HYDE 3.2 dataset has redefined the former pasture category used in CMIP5 into the two 

sub-categories of “managed pasture” and “rangeland” (with the total being termed “grazing land”). This redefinition intends 

to suggest different treatments of vegetation and carbon removal in ESMs for these two types of land-use changes(Klein 10 

Goldewijk et al., 2017). However, explicit suggestions for land-cover and carbon stock modifications resulting from these new 

defined land-use types are not yet provided and the current split is based on an aridity index and population density (Klein 

Goldewijk et al., 2017) rather than actual information on underlying natural vegetation being transformed in their land-cover 

(e.g., clearing of forest for pasture) vs keeping their land-cover while being put under a different use (e.g., shrubland being 

grazed without a transformation to a grassland). An inconsistent land-cover translation of these land-use products within an 15 

ESM or DGVM will potentially produce very different land-cover dynamics, which will impact the land surface biophysical 

and biochemical processes.  

To reduce the uncertainties in estimating land-cover dynamics, this study investigates the impacts of land-use change on land-

cover. Several alternative sets of transition rules are proposed and integrated into the Global Land use Model 2 (GLM2) model 

(Hurtt et al., 2019, 2017b;Hurtt et al., 2017a) to simulate the forest cover and carbon dynamics. These simulations are then 20 

evaluated against estimates of contemporary forest cover and carbon density from remote sensing observations, and the 

resulting cumulative LULCC carbon emissions are compared with a range of other independent estimates. The goal is to 

propose an optimal transition rule for converting historical land-use changes (from LUH2) to land-cover changes for use in 

ESMs and DGVMs. This optimal rule combined with LUH2 could improve estimates of forest area and carbon stock at global, 

country and grid-cell scales when compared to remote sensing data and reduce the 1950s pasture anomaly. 25 

2 Methodology 

In this study, two key land-cover properties (i.e. forest cover and vegetation carbon) are simulated by combining historical 

land-use change with transition rules. The historical land-use change information is specified by the LUH2 dataset (v2h, 

available at http://luh.umd.edu/) which serves as the forcing data for a new generation of advanced ESMs as part of CMIP6. 

Section 2.1 describes the details of land-use change characterization, and section 2.2 defines each transition rule. The resulting 30 

forest cover and vegetation carbon is tracked at each grid cell (0.25×0.25˚) for the year 850 to 2015 using methods described 

in section 2.3 and 2.4. The simulated forest cover and vegetation carbon are then compared with multiple published datasets 
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of land-cover, including Global Land Cover Characterization (GLCC)(Loveland et al., 2000), Global Land Cover 

(GLC2000)(Bartholomé and Belward, 2005), GlobCover(Bicheron et al., 2008), the MODIS Land Cover Product(Friedl et al., 

2010), forest cover products(DeFries et al., 2000;Hansen et al., 2010;FAO, 2015) carbon stock(Ruesch and Gibbs, 

2008;Baccini et al., 2012), and estimates of land-use change emission(Pongratz et al., 2009;Houghton, 2010;Le Quéré et al., 

2018;Stocker et al., 2011;Reick et al., 2010;Shevliakova et al., 2013;Houghton and Nassikas, 2017).  5 

2.1 Land-use change characterization 

LUH2 (version v2h) provides global, annual, gridded land-use states and transitions for the historical period 850-2015, and 

connects continuously to 6 different future scenarios from Integrated Assessment Models for the years 2015-2100 (Hurtt et al., 

2017b). LUH2 accounts for diverse human-induced land-use activities including agricultural management, deforestation, and 

urbanization. LUH2 also includes bi-directional changes between natural forest and managed land (pasture and cropland) 10 

within a grid cell, including the effects of wood harvest and shifting cultivation. Since the rate of carbon loss due to 

deforestation is much faster than the carbon accumulation rate in the recovery process, using these gross land-use transitions 

helps to correct the underestimation of LULCC carbon emissions based only on the net transitions (Arneth et al., 2017). 

The LUH2 dataset was generated with the GLM2 (Hurtt et al., 2017b;Hurtt et al., 2017a;Hurtt et al., 2019) which estimates 

annual sub-grid-cell land-use states and transitions using an accounting-based method. This model determines the fraction of 15 

every grid cell transitioning between each land-use type (e.g. primary land, cropland, urban) at each time step using multiple 

data-driven constraints including gridded patterns of historical land-use from the HYDE database(Goldewijk et al., 2017), 

historical national wood harvest reconstructions and potential biomass and recovery rates (Hurtt et al., 2006). Building upon 

previous work from CMIP5, for which the original LUH1 dataset was used, LUH2 has updated inputs from HYDE for 

historical agricultural patterns (Klein Goldewijk et al., 2017), a new historical wood harvest reconstruction, new maps and 20 

rates of shifting cultivation, extends the timespan to 850-2100 at 0.25×0.25˚, and constrains the forest cover gross transitions 

using remote sensing observations (Hansen et al., 2010). In addition, LUH2 includes 12 different land-use types (i.e. forested 

and non-forested primary and secondary land, cropland of C3 annual, C3 perennial, C4 annual, C4 perennial and C3 nitrogen-

fixing, urban, managed pasture and rangeland) and includes transitions between all combinations of these categories.  

In LUH2, “primary” refers to land previously undisturbed by any human activities, while “secondary” refers to land undergoing 25 

a transition or recovering from previous human activities. Global secondary land area was specified as zero in 850. Note that 

primary and secondary lands are further sub-divided into forested and non-forested grids using a definition based on the 

potential aboveground biomass density (forested land requiring an aboveground biomass density ³2 kg C/m2). 

2.2 Transition rules 

Nine transition rules are proposed (Table 1) to analyse the effects of land-use change on land-cover dynamics, whereby each 30 

rule differs in treatment of vegetation cover and vegetation carbon stock during land-use changes. Rules 1-4 all assume 

complete clearance of vegetation for cropland and vary on vegetation clearance for managed pasture and rangeland. The rules 
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5-9 are added for analytical purposes, rather than as realistic possibilities. For example, rule 3 presumes all land-use changes 

alter land-cover and reduce carbon stock, and this rule would produce the least global forest cover and carbon stock. Rule 1 

and 2 differ in treatment of vegetation in forested land when converted to managed pasture, and the resulting difference 

between their forest and carbon stocks indicate the impact of managed pasture expansion on forests, and also tests whether the 

disaggregation of grazing land into managed pasture and rangeland will address the pasture anomaly issue in 1950-1960. Rule 5 

1 (clearance of all vegetation for cropland and managed pasture, and only forest clearance for rangeland) is in fact the rule 

suggested in the underlying HYDE dataset and its distinction between pasture and rangeland (Klein Goldewijk et al 2017). For 

simplicity, we do not consider partial removal of vegetation in this study; vegetation is either fully removed or fully remains 

as these land-cover transitions represent the maximum and minimum bounds for land-cover alteration. In this study, the 

transition rules are applied to all regions and are constant across the whole simulation period. Although the impacts of land-10 

use change on land-cover may vary in different regions, the discussion of region-varied and time-varied transition rules is 

beyond the scope of this study. 

It is important to note that these nine rules are not equally realistic, and the purpose of including some rules (labelled as 

analytical rules) is to investigate individual or joint contributions of cropland, managed pasture and rangeland expansion on 

forest and carbon. For example, forest and carbon dynamic resulting from analytical rule 6 could suggest individual impact of 15 

cropland expansion. 

2.3 Simulation of land-cover change 

In this study, land-cover change is simulated within the GLM2 by combining land-use transition rates from LUH2 with each 

transition rule (Table 1) to track forest cover change and carbon dynamics at 0.25º spatial resolution. GLM2, a global extension 

of the Miami ecosystem model(Lieth, 1975) is used to estimate the historical potential distribution of vegetation carbon stocks 20 

and carbon recovery rates of primary natural vegetation. The Miami model was run globally at 0.25×0.25˚ resolution using 

MSTMIP climatology(Wei et al., 2014), environmental factors were not taken into consideration such as CO2 fertilization or 

nitrogen limitation. It resulted in an estimated global vegetation carbon stock (including above- and belowground) of 718 Pg 

C, and the resulting potential biomass map is shown in Figure 1a. For comparison, global potential vegetation carbon stock 

was estimated as 557 Pg C in (Kucharik et al., 2000), 772 Pg C in (Pan et al., 2013) and 923 Pg C in (Sitch et al., 2003). 25 

Forested land in GLM2 is defined as land which has aboveground potential biomass of at least 2 Kg C/m2(Hurtt et al., 2011). 

With this definition, global potential forest area was estimated as 47.82 million km2, and the resulting potential forest cover 

map is shown in Figure 1b. For comparison, global potential forest area was estimated as 48.68 million km2 in (Pongratz et 

al., 2008), and potential forests and woodlands area was 55.3 million km2 in (Ramankutty and Foley, 1999). 

When land is converted to cropland, managed pasture, and/or rangeland, each transition rule indicates that vegetation in 30 

primary and secondary may be cleared or remain intact as the result of land-use changes. For example, for a given land-use 

transition rate from forest to pasture, if the applied transition rule indicates to clear the vegetation completely, then the resulting 

grid cell vegetation fraction in forest land-use type is reduced equal to the amount of pasture gained. If the rule indicates not 
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to clear vegetation, then only the land-use type will be changed to pasture and the vegetation area will be unchanged, but the 

vegetation will be influenced by the management in terms of stand age/biomass, which are assumed to cease growing due to 

pressure from subsequent human management. If this pasture land is further converted to other non-primary and non-secondary 

land (e.g. cropland, rangeland or urban), the vegetation remaining from previous forest-pasture conversion then will be totally 

cleared. Therefore, the vegetation fraction existing within the cropland, managed pasture, rangeland and urban of each grid-5 

cell can be tracked via the following equation: 

!(#, % + 1) = !(#, %) + !	+,-./0(#, %) − !2345(#, %), (# = 5,6,7,8) ,      (1) 

Where !(#, %) is the fraction of grid-cell that is vegetated in land-use type i (i.e. classes 5-8: cropland, managed pasture, 

rangeland, urban) at time t, !+,-./0(#, %) and !2345(#, %) are the vegetation fractions gained or lost to/from land-use type i, and 

they could be calculated: 10 

!+,-./0(#, %) = ∑ ;-<=-<>
<?@ , (# = 5,6,7,8; 	B = 1,2,3,4) ,      (2) 

!2345(#, %) = F(-,5)

2(-,5)
∑ ;G-H
G?@,GI- , (# = 5,6,7,8; 	J = 1,2,⋯ ,8) ,      (3) 

The possible values of i, j and k are 1, 2, … , 8 representing primary forested land, primary non-forested land, secondary 

forested land, secondary non-forested land, cropland, managed pasture, rangeland and urban respectively. ;-< is the land-use 

transition fraction estimate by LUH2 from land-use type j (i.e. primary forested land, primary non-forested land, secondary 15 

forested land, secondary non-forested land) to land-use type i, =-< represents the translator factor to convert land-use change 

to land-cover change, it equals to 1 if the transition rule in Table 1 indicates an ‘X’ or ‘F’ for this land-use change. For example, 

=-< is 1 for land-use change from primary land (forested, non-forested grids) to cropland in rules 1 and 2, but 0 for the same 

type of change in rules 8 and 9. This translator factor is 1 for all types of land-use change in rule 3 since all vegetation is 

cleared during all land-use changes. L(#, %) is the fraction of land-use type i at time t, and this fraction is larger than its 20 

vegetation fraction. 

Vegetation in primary and secondary land can be recovered through the process of abandonment of these non-primary and 

non-secondary land-use. Note that reforestation but not afforestation is also considered in this study. The former is to re-

establish forest on the land which has been forested before, while the latter is an anthropogenic activity to establish forests on 

land which has never been forested. Thus, the vegetation of primary and secondary land is tracked by the following equation: 25 

!(#, % + 1) = !(#, %) − !2345(#, %) + !+,-./0(#, %), (# = 1,2,3,4) ,     (4) 

!2345(#, %) = ∑ ;<-=<-H
<?M , (# = 1,2,3,4; B = 5,6,7,8)	 ,       (5) 

!+,-./0(#, %) = ∑ F(G,5)

2(G,5)
;-GH

G?M,GI- , (# = 1,2,3,4; J = 5,6,7,8)	 ,      (6) 
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Where !(#, %) is fraction of vegetation at land-use category i (primary forested land, primary non-forested land, secondary 

forested land, secondary non-forested land) at time t. ;<- is land-use transition fraction from primary and secondary land to 

cropland, managed pasture, rangeland and urban in LUH2, =<- is the translator factor, as is =-< in Eq.2; both indicate whether 

to clear the vegetation during land-use changes. !(J, %) and L(J, %) are vegetation fraction and land-use fraction in land-use 

type k (i.e. cropland, managed pasture, rangeland, urban), and ;-G  is land-use transition due to land-use abandonment. 5 

Therefore, the forest cover at time t in these nine rules includes the vegetation originally growing in primary and secondary 

forested land, vegetation recovered from abandoned cropland, managed pasture and rangeland, and vegetation remaining in 

cropland, managed pasture, rangeland and urban which is not cleared during land-use change. 

2.4 Simulation of vegetation carbon dynamics 

Forest carbon stocks fluctuate through releasing and accumulating carbon in response to natural growing conditions, 10 

disturbances, and anthropogenic land-use changes, which can vary widely in terms of their carbon impacts. For land-use 

changes associated with clearing or harvesting vegetation, the forest biomass is either released immediately (e.g. burning) or 

stored in soil pools or as timber products (both of which eventually decay over decades). However, when managed land is 

abandoned and allowed to recover, the vegetation takes up CO2 from the atmosphere through photosynthesis, resulting in 

increasing carbon stocks in vegetation and possibly soils. The magnitude of each of these bi-directional carbon flows ultimately 15 

determine if the land is a net carbon sink or carbon source. In this study, the temporal dynamics of carbon fluxes after land-

use change are simplified, with all biomass (above- and below-ground) being released instantaneously to the atmosphere. Note 

that the biomass stock change is a rough proxy of actual net land-use change fluxes, for which delayed emissions from litter 

and soil carbon and product pools needed to be accounted for as well as instantaneous emissions from burning biomass. (Erb 

et al., 2018) noted that changes in soil carbon associated with loss of vegetation biomass are usually associated with carbon 20 

losses, but are likely less important than biomass changes, as are net fluxes from product pool changes.  

Similar to land-cover change simulation in section 2.3, if transition rules indicate vegetation clearing at expansion of cropland, 

managed pasture, rangeland or urban land, vegetation biomass is totally released as a carbon emission, and its mean age is set 

as zero. If vegetation is not cleared based on transition rules, the biomass remains but ceases to increase, and the mean age of 

this vegetation also remains unaffected, because the mean age is used in this model only for the calculation of biomass density. 25 

Keeping age fixed corresponds to keeping biomass from further growing, which represents the influences of management. If 

the land is abandoned and converted back to secondary land, the biomass regrows towards equilibrium, and the mean age of 

vegetation increases year by year. Thus, the biomass density in secondary vegetation is calculated for each grid cell using its 

stand age, potential biomass, and potential NPP: 

N(%) = NO(1 − PQRSST×V(5)/XT)	 ,      (7) 30 

Where N(%) is the aboveground biomass density of vegetation at secondary land at time t, and NO is the potential aboveground 

biomass density from Miami model and varied by grid location (shown in Figure.1a), and YZZO is the potential NPP of the 
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wood fraction, and [(%) is the mean age of secondary vegetation. Note that NO and YZZO is constant over simulation period 

from 850 to 2015. Above- to below-ground biomass ratio is assumed as 3:1 when converting aboveground biomass to total 

biomass (above- and belowground), and biomass density is converted to carbon by a ratio of 0.5. 

Plants cultivated by human management (e.g. crops and orchards) are not tracked in this study; zero biomass is assigned to 

cropland, managed pasture, rangeland and urban use types. However, carbon is tracked for vegetation remaining from primary 5 

or secondary due to the land-cover transition rules, as well as lands that convert from human management back to natural 

lands. Thus, the total carbon stocks in this study should be lower than other estimates (Houghton, 2003;Saatchi et al., 2011), 

especially in the grids with a higher fraction of non-primary and non-secondary land-use. 

2.5 Diagnostics for evaluating transition rules 

To evaluate which transition rules best translate land-use changes to land-cover changes, the simulation results were compared 10 

with contemporary forest cover and carbon density maps from remote sensing observations and other estimates, as well as 

LULCC carbon emissions from other studies using different models. Contemporary values of forest cover and carbon density 

are used for two reasons. First is the lack of multiple diagnostics of forest cover and carbon density across the whole simulation 

period (i.e. 850 to 2015). Second is that contemporary values could potentially reflect cumulative error in converting land-use 

change to land-cover change since 850. We assume that if a transition rule produces a best match with the diagnostic maps of 15 

forest cover and carbon density, then it would also produce the best estimate for the historical period.  

To produce a reference map of contemporary forest cover, six widely used satellite-based land-cover and tree coverage datasets 

(Loveland et al., 2000;Bartholomé and Belward, 2005;Bicheron et al., 2008;Friedl et al., 2010;DeFries et al., 2000;Hansen et 

al., 2010) (see Table 2) are collected as well as the Global Forest Resources Assessment (FRA) 2015 (FAO, 2015). In Table 

2, GLC, GLC2000, GlobCover and MODIS LC are land-cover datasets rather than tree cover and were produced based on 20 

different classification schemes resulting in different land-cover legends. Prior to being used as diagnostics in this study, they 

needed further reclassification of their land-cover legends into a common representation of forest canopy cover at the same 

spatial resolution (0.25˚) by the following procedures: First, the GLCC, GLC2000, GlobCover and MODIS LC were converted 

to tree cover fraction based on Table S1 at their native resolutions (Song et al., 2014). Then, all six datasets were resampled to 

1 km resolution and translated to a binary (forest versus non-forest) map by applying a 30% tree-cover threshold (Sexton et 25 

al., 2016). Through counting the percentage of pixels marked as forest within each 0.25x0.25˚ grid cell, six global gridded 

forest cover maps at 0.25º spatial resolution were generated. As these satellite-based datasets were developed from different 

sensors (e.g. AVHRR, SPOT-4, MERIS, MODIS, Landsat) and models (regression trees, decision tree, clustering labels and 

random forests), an averaged map (hereinafter referred to as ‘Averaged satellite-based forest cover’) was generated to examine 

spatial pattern of contemporary forest cover simulated by each transition rule. In addition, since FAO only reports national 30 

forest cover (not spatially explicit), these data were only used for comparison at the country level. 

Carbon density maps are employed as the second metric to evaluate the transition rules. Two datasets were employed: the 

IPCC Tier-1 biomass carbon map for the year 2000 (Ruesch and Gibbs, 2008) and a pantropical biomass map (hereinafter 
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referred to as the Baccini product (Baccini et al., 2012). The former, a global above- and below-ground carbon density map, 

is created by dividing the globe into 124 carbon zones by land-cover, continental regions, eco-floristic zones, and forest age 

and assigning each zone a unique carbon stock value. The latter is estimated by combining ground plots, GLAS LiDAR 

observations and optical reflectance of MODIS. This dataset employs the empirical relationship between aboveground biomass 

and tree diameter at breast height and estimates aboveground biomass density for pantropical regions (40˚S-30˚N). Both carbon 5 

density maps were resampled to 0.25˚ before evaluation. 

In addition, the ability of the transition rules to reproduce LULCC carbon emissions is also assessed. The estimates of LULCC 

carbon emissions were compiled from published papers (Table 3) (Reick et al., 2010;Stocker et al., 2011;Houghton, 

2010;Houghton and Nassikas, 2017;Shevliakova et al., 2009;Pongratz et al., 2009;Le Quéré et al., 2018). These studies have 

significant discrepancy in emissions estimates as they employed various methods (e.g. book-keeping methods and different 10 

process-based models), LULCC datasets, and considered different types of land-use change activities. They also differ in 

treatment of environmental change, for example, (Reick et al., 2010;Stocker et al., 2011;Shevliakova et al., 2009;Pongratz et 

al., 2009) include effects of evolving climate or atmospheric CO2 concentration on LULCC emissions, which is not accounted 

for in bookkeeping mode based studies(Houghton, 2010;Houghton and Nassikas, 2017). In this study, only the range of these 

estimates during the pre-industrial and industrial periods are chosen to evaluate the transition rules. We posit that the optimal 15 

transition rule should not produce anomalous carbon emissions that are outside the compiled range. 

In summary, the GLM2-based estimates of forest cover and carbon density in the year 2000 and LULCC carbon emissions 

during the periods 850-1850 and 1850-2000, based on nine different transition rules are compared with the above three types 

of diagnostics. The final determined optimal transition rules should produce: 1) the most accurate forest cover that has the 

smallest difference with diagnostic maps at global, country and grid scale, and the total forest cover at global and country level 20 

should be within the range of diagnostics; 2) the closest carbon density map compared to diagnostics with the smallest 

difference and total carbon stock as well; and 3) reasonable LULCC carbon emissions within the range from other diagnostic 

estimates and minimizing the anomalous emissions during 1950-1960. Finally, if several rules have a reasonably good fit to 

these three diagnostics, other criteria, such as the definition characteristics for managed pasture and rangeland has handled in 

HYDE(Klein Goldewijk et al., 2017) will also be taken into account in identifying the optimal rule. 25 

3 Results 

3.1 Forest cover evaluation 

The global gridded forest cover maps resulting from rules 1-4 in 2000 are generally consistent in forest extent with satellite-

based observations (shown in Figure 2). For example, they all estimate higher forest cover in tropical rainforest and northern 

boreal forests but lower cover in western USA, eastern Australia, Eastern Europe and Central Asia. As rules 1, 2, and 3 only 30 

differ in whether to clear vegetation and carbon in the conversion from non-forest to pasture or rangeland, the forest cover 

resulting from rules 1, 2, and 3 are the same. 
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The total area of global forest in 850 amounts to 47.82 million km2 according to the Miami model (Figure 1b and Figure 3a) 

when all forested lands were in a primary state by definition and decreased thereafter (Figure 3a). Forest loss has accelerated 

since the beginning of the Industrial Revolution and shows relatively high annual change rates (shown in Figure 3c). The 

transition rules produce a wide range of global forest cover in 2000 from 37.42 to 45.89 million km2. In rules 1, 2, and 3, the 

global forest is lost at the highest rate due to all land-use change activities on forested land resulting in the clearing of forest, 5 

and only 37.42 million km2 of global forest is left in 2000 under these three rules. In contrast, under rule 4 forest remains 

during conversion to rangeland expansion, and this would result in greater forest cover (e.g. 41.80 million km2 in 2000, Table 

4). 

Six satellite-based forest cover datasets and FAO data report the global forest area around the year 2000 ranging from 35.79 

to 42.74 million km2. One of major reason underlying the discrepancy in global forest area is the difference in defining ‘forest’, 10 

particularly in the regions with intermediate tree cover (Sexton et al., 2016). The global forest area in the year 2000 resulting 

from our transition rules are compared to the range of seven diagnostic estimates (Figure 3b). The forest cover based on 

analytical rules 7, 8 and 9 is beyond the range of the diagnostics, indicating that these rules underestimate the impacts of land-

use change on land-cover and overestimate the global forest existing in the present day. The excessive remaining forest cover 

in these three rules also rejects these rules’ assumptions that only a particular type of land-use change would alter the land-15 

cover. In contrast, rules1-4 produced estimates of global forest area within the range of diagnostics. 

The forest cover estimation from transition rules are further compared with diagnostic datasets at the country level. In the 

diagnostic forest cover datasets, three-fourths of global forest cover lies within eight countries: the Russian Federation, Brazil, 

Canada, United of States of America, China, Democratic Republic of the Congo, Indonesia and Peru. Rules 1-4 also produce 

the same pattern of locating most forest land within these eight countries (Table 4). The forest cover estimates from rules 1-4 20 

are generally well within the range of diagnostics for most of the eight countries (e.g. Brazil, Indonesia, and United States of 

America) in terms of forest area and slightly overestimated in the Russian Federation and Canada, where the estimates of rules 

1-3 are closer to the upper bound of the diagnostics than rule 4.  

These comparisons evaluate the accuracy of the transition rules in translating land-use change to land-cover change in terms 

of gross forest cover at global and country level. Further examination at the grid level is also needed. Since the FAO report 25 

only provides national forest cover, the averaged satellite-based forest cover map was used to calculate the average of absolute 

difference across global grids (Figure 4). Rules 1, 2, and 3 produce the smallest overall difference (i.e. below 90 km2) with the 

averaged satellite-based forest cover map. 

 

3.2 Evaluation of carbon dynamics 30 

The net carbon emissions of the nine transition rules was calculated over two periods (850 to 1850 and 1850 to 2000) and 

compared to other studies (Table 5). Rules 1-4 produced similar patterns to other studies, specifically that global carbon 

emissions of 1850-2000 are twice as large as that of 850-1850. However, the emissions estimates of each period varied among 
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rules 1-4, from 55 to 77 Pg C during 850-1850 and from 142 to 185 Pg C during 1850-2000, due to the assumptions for clearing 

vegetation during land-use change. For example, rule 3 produced the largest emissions as the carbon in both forested and non-

forested land is released for all land-use changes, and rule 1 produces fewer emissions since the vegetation is not cleared and 

carbon is not released when non-forested land is converted to rangeland. In general, rules 1, 2, 3 and 4 estimated comparable 

emissions with other studies, while the emissions of the analytical rules 6-9 are out of range (Table 5). 5 

Carbon emissions from pasture expansion were calculated for LUH1 (Hurtt et al., 2011) and this is used as a baseline to assess 

the improvement of transition rules on the pasture anomaly. Rules 1-4 estimate fewer emissions during this decade and decrease 

the anomaly between 4 to 10 Pg C. In LUH1, the anomalous emissions spike during 1950-1960 mainly arises from 

overestimating the emissions from pasture expansion, especially in four regions and countries (i.e. west and central Africa, 

China, former USSR and South America excluding Brazil). The carbon flux from expansion of managed pasture and rangeland 10 

in LUH2 was significantly reduced at global (Figure 5) and regional (Figure 6) scales in simulations based on rules 1, 2, and 

3. Note that the pasture land in LUH1 corresponds to rangeland and managed pasture together in LUH2. Rule 2 reduces the 

anomalous emissions more significantly than rule 1 (reduced 6 Pg C in rule 1 and 7 Pg C in rule 2), because rule 1 completely 

clears vegetation when transitioning to managed pasture, whereas rule 2 only removes vegetation if the preceding land cover 

is primary or secondary forest. 15 

Rules 1-4 generally capture the spatial pattern that carbon density in tropical rainforest regions is much higher than northern 

boreal forests (Figure 7). To further examine the spatial pattern of estimated carbon density, the estimates from all rules were 

compared to the carbon density maps of IPCC Tier 1 (above- and belowground) globally and the Bacchini’ dataset (only 

aboveground) at the pantropical scale by calculating averaged absolute difference (Figure 8). According to this comparison, 

rules 1 and 2 still best capture the carbon density heterogeneity with the bias less than 2.2 Kg C/m2 at global comparison and 20 

produce bias less than 2 Kg C/m2 for aboveground biomass at pantropical comparison. 

The total carbon stock, grouped by forest cover using the averaged satellite-based forest cover map, from rules 1, 2, and 3 are 

compared with IPCC Tier1 and the Baccini product (Figure 9). Rules 1 and 2 still produce the closet carbon stock compared 

to the two diagnostic datasets, especially for grids with higher forest fraction (e.g. >50%), and slightly underestimate for grids 

with higher fraction of non-forest land-use which may result from zero biomass assigned to these lands after land-use change. 25 

4 Discussion and Conclusions 

This study discussed possible alterations of land-cover as a result of prescribed land-use change and simulated the resulting 

forest cover and carbon dynamics through GLM2 model. The comparisons on forest cover, carbon stock and LULCC emissions 

ultimately indicates that both rules 1 and 2 could accurately translate land-use change to land-cover change and reproduce the 

majority of current forest cover and plant carbon stock. Specifically, these rules state that the vegetation growing in primary 30 

and secondary land (both forested and non-forested) is completely cleared and all carbon released during the expansion of 

cropland and urban land, but vegetation remains only during rangeland expansion on non-forested land (rule 1) or remains 
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during managed pasture and rangeland expansion if the land is non-forested originally (rule 2). The vegetation remaining in 

managed pasture and rangeland is cleared when the land is subsequently converted to non-primary and non-secondary land 

(i.e. cropland, urban, managed pasture and rangeland). As a result, based on rule 1 (2), forest area decreased to 37.42 million 

km2 in 2000, LULCC results in 70 (72) Pg C carbon emissions during 850-1850 and 170 (175) Pg C during 1850-2000, further 

reducing pasture anomaly emissions by 6 (7) Pg C in 1950-1960s.  5 

A key feature of this study is to explicitly link land-use change and land-cover change and to suggest a suitable method to 

incorporate the LUH2 land-use transition dataset into ESMs and DGVMs. The information from this study could facilitate 

reconstruction of historical land-cover change; building upon LUH2, the suggested transition rules could reproduce the 

smallest difference in contemporary forest cover and carbon stock with independent estimates from remote sensing.  Currently, 

rule 1 is recommended by LUH2 to translate the land-use change transitions into land-cover transitions in ESMs or DGVMs. 10 

While transition rule 2 generates a global forested area which is closer to the averaged remote sensing-based estimates, the 

difference in the forested area simulated by rules 1 and 2 is within the margin of uncertainty for remote sensing-based products, 

and is therefore scientifically insignificant. Therefore, recommendation of rule 1 over rule 2 is based on an assumption about 

the way in which rangeland versus managed pasture is established and managed� which is also consistent with the 

recommendation in  HYDE 3.2 dataset(Klein Goldewijk et al., 2017) that removes all vegetation when establishing cropland, 15 

urban land, or managed pasture, and leaves all vegetation when establishing rangeland, regardless of the underlying vegetation 

type. 

More rigorous evaluation of the land-cover dynamics resulting from various transition rules from 850 to present is difficult 

because the available diagnostic datasets only document the land-cover and carbon stock in recent decades. For example, most 

global satellite-based observations only estimate land-cover after 1980 (DeFries et al., 2000;Loveland et al., 2000;Bartholomé 20 

and Belward, 2005;Bicheron et al., 2008;Friedl et al., 2010;Hansen et al., 2010). Alternatively, contemporary measurements 

were used as diagnostics to assess the translation accuracy of each transition rule. This is because, in principle, the effects of 

prior land-use change activities before 2000 are manifested in the current state of land-cover (e.g. forest cover and carbon 

stock). As the current land-cover state is the cumulative sum of natural state and alterations from previous land-use change, 

the error of incorrect translation of land-use change to alterations on land-cover will also be accumulated throughout and 25 

eventually result in a biased estimation when compared to diagnostics. Therefore, the optimal transition rule should reproduce 

the current land-cover state. In addition, multiple estimates of land-cover and carbon density from independent studies were 

employed to reduce the inherent uncertainties of diagnostics. Six widely used global land-cover datasets were integrated into 

an average map aiming to reduce the uncertainties that stem from a particular model or sensor observation. Similarly, for 

assessing carbon stock, two different and independent datasets were collected.  30 

It is important to note that the determined transition rules strongly depend on the land-use change dataset and the diagnostics 

used for evaluation. Rule 1 and rule 2 only serve to translate the changes for the LUH2 dataset to land-cover change. These 

two rules provide the best match of forest cover and terrestrial carbon stock from LUH2. This evaluation was only based on 

two critical properties of land-cover (i.e. forest cover and carbon stock) due to their significance in the exchange of water, 
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mass, and energy between atmosphere and land surface. In addition to carbon stock, the dynamics of forest cover from past to 

present highly interact with climate change, which is not considered in this study. In addition, the forest area and the LULCC 

carbon emissions and carbon density as resulting from LUH2 and the transition rules in this study are based on a simple global 

terrestrial model (i.e. Miami-LU model) and its uncertainties. Although the Miami-LU model includes the spatial heterogeneity 

in vegetation regrowth rate and tracks subgrid-scale heterogeneity of carbon density in a manner similar to the more advanced 5 

Ecosystem Demography (ED) model (Hurtt et al., 1998;Moorcroft et al., 2001), the carbon emission estimates using the same 

transition rules and land-use change dataset would be different if other DGVMs or carbon accounting models were used. For 

example, the emissions from other studies in Table 3 may include emissions from soil pool decomposition, which is not 

accounted for in our model. In addition, rules other than 1 and 2 may produce better regional land-cover dynamics; new studies 

aimed at determining continental-, country- or grid-specific transition rules are needed. Finally, the transition rules are defined 10 

as hard-clearing, meaning the vegetation would be totally removed or left totally intact. However, soft-clearing may be more 

realistic, in which part of the vegetation (quantified as the clearance ratio) is cleared. Future studies could focus on optimizing 

the clearance ratio using multiple land-cover type datasets. 

This study determines an optimal rule that matched forest cover and carbon stock estimates from multiple vetted sources. 

However, more research is needed to investigate the improvement of this rule on LULCC carbon emission estimates. To further 15 

reduce uncertainties in estimating land-cover dynamics, research could be expanded with emphasis on spatially and temporally 

varying rules. In addition to forest cover and carbon, more land-cover characteristics (e.g. forest age and tree height) are 

encouraged to be integrated to determine and constrain the optimal transition rules. 

 

Code and data availability. The source code of GLM2 is available at http://luh.umd.edu/code.shtml, LUH2 dataset is 20 

available at http://luh.umd.edu/data.shtml. IPCC Tier biomass is available at https://cdiac.ess-

dive.lbl.gov/epubs/ndp/global_carbon/carbon_documentation.html, Baccini aboveground biomass is available at 

https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1337. TCCF, MODIS LC, GLCC, GFC, GLC2000 and GlobCover can be 

obtained from http://www.landcover.org/data/treecover/ , http://www.landcover.org/data/lc/ , 

https://edcftp.cr.usgs.gov/project/glcc/globdoc2_0.html , https://earthenginepartners.appspot.com/science-2013-global-25 

forest/download_v1.6.html , https://forobs.jrc.ec.europa.eu/products/glc2000/data_access.php, 

http://due.esrin.esa.int/page_globcover.php respectively. All other data are available from authors upon reasonable request. 
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Figures & Tables 

 

 

Figure 1. Potential biomass density (a) and potential forest cover (b) in 850 estimated by Miami model. 
  5 
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Figure 2. Global forest cover in 2000 estimated by the 9 transition rules and the averaged satellite-based forest cover 

map. (a) Averaged satellite-based forest cover map; (b) Rule 1, 2, 3; (c) Rule 4. 
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Table 1.  Rules for vegetation clearance during cropland, pasture and rangeland expansion. ‘X’ indicates complete 

removal of vegetation if the primary and secondary land state is altered. ‘O’ indicates no vegetation removal when 

land-use change occurs. ‘F’ indicates that vegetation is only removed if the preceding land cover is primary or 

secondary forest. 

 5 

 
  

Transition 

Rule 

Rule 

1 

Rule 

2 

Rule 

3 

Rule 

4 

Analytical 

rule 5 

Analytical 

rule 6 

Analytical 

rule 7 

Analytical 

rule 8 

Analytical 

rule 9 

->Crop X X X X X X O O O 

->Managed 

pasture 
X F X X O O X X O 

->Rangeland F F X O X O X O X 
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Table 2. Summary of land cover products used in this study including six satellite-based datasets and FAO FRA report. 

 

Product 
Global Forest Area 

(106 km2) 
Time Publication Data Type/Classification Scheme 

GLCC 40.89 1992-1993 Loveland et al. 2000 Land Cover (IGBP) 

GLC2000 35.79 1999-2000 
Bartholome et al. 

2005 
Land Cover (GLC 2000) 

GlobCover 37.38 2004-2006 Bicheron et al. 2008 Land Cover (GlobCover) 

MODIS LC 38.60 2001 Friedl et al. 2010 Land Cover (IGBP) 

1 Kilometer Tree 

Cover Continuous 

Fields (TCCF) 

42.74 1992-1993 DeFries et al. 2000 Tree Percentage 

Global Forest 

Change (GFC) 
41.93 2000 Hansen et al. 2010 Tree Percentage 

FAO 40.55 2000 FRA 2015 National Censuses 
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Table 3. Summary of carbon emissions due to LULCC from available studies at pre-industrial and industrial period. 

 

 

  

Reference 
Time 

span 
Carbon Emissions (Pg C) LULCC types 

Pre-industrial Period 

Reick et al., 2010 

(bookkeeping model) 
1100-1850 80 

Cropland/Pasture Change 
Reick et al., 2010 

(DGVM) 
1100-1850 47 

Pongratz et al., 2009 850-1850 53 Cropland/Pasture Change 

Stocker et al., 2011 until 1850 69 Cropland/Pasture Change, Urban 

Industrial Period 

Houghton 2010 1850-2005 156 Cropland/Pasture Change, shifting cultivation in tropics, and wood harvest 

Houghton and Nassikas, 

2017 
1850-2015 145 Cropland/Pasture Change, shifting cultivation in tropics, and wood harvest 

Shevliakova et al.,2009 1850-2000 164 - 188 Cropland/Pasture Change, shifting cultivation in tropics, and wood harvest 

Pongratz et al.,2009 1850-2000 108 Cropland/Pasture Change 

Reick et al.,2010 

(bookkeeping model) 
1850-1990 153 

Cropland/Pasture Change 

Cropland/Pasture Change Reick et al.,2010 

(DGVM) 
1850-1990 110 

Stocker et al., 2011 1850-2004 164 Cropland/Pasture Change, Urban 

Le Quéré et., 2018 1850-2014 195 Cropland/Pasture Change, shifting cultivation in tropics, and wood harvest 
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Figure 3. (a) Global forest area resulting from transition rules from 850 to 2015; (b) Comparison of global forest area 

in 2000 between remote sensing and FAO (shown as black bars) and results of transition rules (colored bars); (c) Annual 
change rate from 1850 to 2000. Positive value indicates the forest loss. 

  5 
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Table 4. Forest area (106 km2) in 2000 of eight countries with the largest forest area, and all other countries combined 

(‘Others’), estimated by the 9 transition rules, range compiled from satellite-based datasets and FAO report.  

 

 

 5 
  

Country 

Forest Area (106 km2) Range from 

satellite-based 

products and 

FAO 

Rule  

1, 2, 3 

Rule 

4 

Analytical 

rule 5 

Analytical 

rule 6 

Analytical 

rule 7 

Analytical 

rule 8 

Analytical 

rule 9 

Russian 

Federation 
8.76 9.18 8.84 9.27 9.05 9.48 9.13 6.41-8.44 

Brazil 4.63 5.70 4.90 5.98 5.07 6.14 5.34 4.21-5.95 

Canada 5.62 5.67 5.63 5.67 5.80 5.84 5.80 3.41-4.41 

United States of 

America 
2.83 2.96 3.08 3.21 3.65 3.78 3.90 2.53-3.19 

China 2.05 3.23 2.45 3.62 2.46 3.64 2.86 1.43-2.07 

Democratic 

Republic  

of the Congo 

1.57 1.61 1.60 1.64 1.63 1.67 1.66 1.57-2.12 

Indonesia 1.32 1.34 1.37 1.40 1.60 1.62 1.65 0.99-1.70 

Peru 0.76 0.78 0.78 0.80 0.77 0.79 0.79 0.70-0.80 

Others 9.88 11.33 10.72 12.17 11.49 12.93 12.33 11.43-16.75 

World 37.42 41.80 39.38 43.76 41.52 45.89 43.48 35.79-42.74 
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Figure 4. Average of absolute difference in global forest area between maps estimated by transition rules and the 

averaged satellite-based forest cover map. 
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Table 5. Summary of LULCC carbon emissions estimated by the 9 transition rules and those from other studies in 

Table 4 

 

 
  5 

Transition Rule 

Carbon Emissions Estimation (Pg C)  
Emission Range from 

Table 4 

 Estimation using 

LUH1 

850-1850 1850-2000 1950-1960  
850-

1850 
1850-2015 

 
1950-1960 

Rule 1 72 175 20  

47-80 108-195 

 

26 

Rule 2 70 170 19  

Rule 3 77 185 22  

Rule 4 55 142 16  

Analytical rule 5 63 146 17  

Analytical rue 6 41 104 11  

Analytical rule 7 28 107 13  

Analytical rule 8 5 65 7  

Analytical rule 9 13 67 7  

https://doi.org/10.5194/gmd-2019-146
Preprint. Discussion started: 17 July 2019
c© Author(s) 2019. CC BY 4.0 License.



 26 

 

Figure 5. Carbon emission due to vegetation (forests and non-forests) removal in expansion of managed pasture and 

rangeland. Red dash line represents emission from pasture expansion in LUH1. Blue, green and black solid lines 

represent emission from expansion of managed pasture and rangeland in LUH2 estimated by rule1, 2 and 3 

respectively, and blue, green and black dash lines are emission from managed pasture expansion only by rule1, 2 and 5 

3 respectively. Note that the pasture category in LUH1 corresponds to managed pasture and rangeland together in 

LUH2. 
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Figure 6. As in Figure 5 but four regions and countries: (a) West and central Africa; (b) China; (c) Russian Federation; 

(d) South America.  
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Figure 7. (a) IPCC Biomass Tier 1 density; (b) Baccini’s product (only aboveground) at pantropical; global carbon 

density (above- and below-ground) maps estimated by rule 1-4 from (c) to (f).
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Figure 8. Average of absolute difference in carbon density between estimations of the 9 transition rules and two 

diagnostic maps: global comparison with IPCC biomass density map (incl. above- and below-ground); tropical 

comparison with Baccini’s carbon density map (only aboveground).  
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Figure 9. Total carbon stock grouped by forest fraction from averaged satellite-based forest cover map. (a) global; (b) 

pantropical.
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