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Abstract. Two international projects, ISIMIP (Inter-sectoral Impact Model Inter-comparison Project) and CORDEX 

(Coordinated Regional Climate Downscaling Experiment), have been established to assess the impacts of global climate 

change and improve our understanding of regional climate, respectively. Model selection from the GCMs (general circulation 10 

models) within CMIP5 (fifth phase of the Coupled Model Inter-comparison Project) was conducted by the different approaches 

for each project: one is a globally consistent model subset used in ISIMIP and another is a region-specific model subset for 

each region of interest used in CORDEX. We evaluated the ability to reproduce the regional climatological state by comparing 

the subsets with the full set of CMIP5 multimodel ensemble. We also investigated how well the subsets captured the uncertainty 

in the climate change projected by the full set, to provide increased credibility for the scientific outcomes from each project. 15 

The spreads of the biases and Taylor’s skill scores from the ISIMIP and CORDEX subsets are smaller than that from the full 

set for the regional means of surface air temperature and precipitation. However, the spreads in ISIMIP and CORDEX extend 

beyond the spreads from high performance models from full set, despite using a small number of models. It was shown that 

better subsets exist that would have smaller biases and/or higher scores than the current subset. The ISIMIP subset captures 

the uncertainty range of the regional mean of temperature change projections by the full set better than the CORDEX subsets 20 

in 10 of 14 terrestrial regions worldwide. Compared with the randomly selected 10,000 arbitrary subset samples, the CORDEX 

subset shows low coverage of the uncertainty for the temperature change projections in some regions, and the ISIMIP subset 

high coverage in all regions. On the other hand, for the precipitation change projections, the CORDEX subsets show lower 

coverage in half of the regions than the arbitrary subsets, but tend to cover the uncertainty wider than the ISIMIP subset. In 

the regions where CORDEX used nine models or more, good coverage (>50%) is evident for the projections of both 25 

temperature and precipitation. The globally consistent model subset used in ISIMIP could have difficulty in capturing 

uncertainties in the regional precipitation change projections, whereas it widely covers uncertainties in the temperature change 

projections. The region-specific model subset, like CORDEX, can cover the uncertainties in both temperature and precipitation 

changes well compared to the global common subset, but a large number of models is needed. By changing the number of 

models from the current ensemble members to at least nine members, high coverage for both uncertainties can be also obtained 30 

in the other regions and this information would help model selections in the next generations. 
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1 Introduction 

A global dataset of climate change projections has been generated by the Coupled Model Inter-comparison Projects (CMIP). 

Using this dataset, numerous climatological studies have been in progress to advance our understanding of the increasingly 

severe problems associated with climate change. Regarding regional climate change, dynamical and statistical downscaling 

experiments have been conducted to create high-resolution climate products derived from the global CMIP dataset via a 5 

regional climate model. In addition, impact studies and examinations of adaptation planning have progressed in close parallel 

with the climate studies, using those climate products at both global and regional scales. 

When we conduct an impact assessment of climate change and consider possible adaptation or mitigation measures, the 

information regarding the largest potential change in the climate is required to consider the most severe states of climate change, 

in addition to information regarding how the climate changes on average. Although the CMIP multiple global climate model 10 

(GCM) ensemble is the ensemble of opportunity and do not necessarily represent the full uncertainty in the climate projections 

(Knutti 2010), they are useful for investigating the uncertainty in the future projections. By using the climate projections from 

the CMIP ensemble, it is at least possible to examine the maximum−minimum climate change scenarios within the ensemble. 

Although it is desirable to use GCMs as much as possible, due to limitations in computing resources, relatively small subsets 

of the models are generally used in regional downscaling studies and impact assessments. The subset is selected under the 15 

conditions that the simulation accuracy is better for the climatological state of interest or the data required for the study is 

readily available. Methods of specifying the best subset, based on the accuracy of the historical climate simulations and/or 

capturing the possible maximum range in the variation of projections among the models (hereafter uncertainty), have been 

proposed (Reichler and Kim 2008; Cannon 2015; Mendlik and Gobiet 2016). The optimum method, however, remains to be 

determined because the interests depend on the studies, for instance, how the model performance is considered, which 20 

climatological or extreme variables are used and which region is interested. When the sample size of a subset is limited, 

appropriate strategies are necessary to select subsets of GCMs that have smaller biases in the historical climate simulations 

and cover the widest possible uncertainty range of future projections. Without such a strategy, we might erroneously interpret 

the information regarding climate change and impact assessment obtained from the subsets. 

The inter-sectoral impact model inter-comparison project (ISIMIP; https://www.isimip.org) was designed as a framework to 25 

assess the impacts of climate change in different sectors and at different scales (Schellnhuber et al. 2014). This project used 

consistent climate and socio-economic input data to multiple impact models. Five GCMs were selected in the fast track of 

ISIMIP: HadGEM2-ES, GFDL-ESM2, IPSL-CM5A-LR, MIROC-ESM-CHEM, and NorESM1-M. The main selection 

condition was that the climate data generated by the models was available at the relevant stage of the project, with the attempt 

of broadly capturing the global change in surface air temperature (hereafter referred to as ‘temperature’ for simplicity) and 30 

precipitation (Warszawski et al. 2014; ISIMIP protocol 2018). After that, the five GCMs had been changed to four GCMs in 

the next round simulations (ISIMIP2b; Frieler et al. 2017) because of a lack of wind data for NorESM1-M and a higher 

horizontal resolution and the better representation of various fields (e.g., El Niño–Southern Oscillation and the monsoon) in 



3 
 

MIROC5 than in MIROC-ESM-CHEM. A feature of the uncertainty range identified from the five GCMs in the fast track was 

investigated in detail by McSweeney and Jones (2016) (hereafter MJ2016), who indicated that the subset covers the uncertainty 

in the projected changes in the temperature and precipitation expressed from 36 CMIP5 GCMs wider than the other five-GCM 

subsets which were randomly sampled. They also illuminated that region-specific subsets generally cover more the uncertainty 

than globally consistent subsets in 26 global regions. 5 

One subset of GCMs was globally used in ISIMIP, but in the coordinated regional climate downscaling experiment (CORDEX; 

http://www.cordex.org) project, a GCM subset was selected for each defined region to generate a regional climate dataset for 

climate studies and impact assessments (Giorgi et al. 2009; Giorgi and Gutowski 2015). Fourteen regions of interest were 

defined and subsets of between 3 and 15 GCMs were used for each region. The conditions required here were that input data 

to a regional climate model (RCM) were available and easily acquired, and they also tended to select GCMs that were 10 

developed at the institute located in the region of interest. The advantage of CORDEX is that it enables a regional climate 

assessment using a dataset from ‘optimal’ multi-GCMs and multi-RCMs for the region of interest. However, Gutowski et al. 

(2016) pointed out as one of the problems in the first phase of CORDEX that the different models, especially the number of 

models, among the regions make difficulty to provide the consistent climate scenario among their regions. Therefore, in the 

next generation of CORDEX to be included in the sixth phase of CMIP, they have an intention to downscale projections from 15 

a core set of GCMs as a minimum model set that is common across the regions, similar to the approach in ISIMIP (CORDEX 

CORE; Gutowski et al. 2016). 

A globally consistent GCM subset will facilitate discussion of climate change and its impacts beyond regional divisions. 

However, it is unclear whether the globally consistent subset adequately represents the phenomena that characterize the climate 

in the region of interest. In particular, the spatial pattern of a projected change in precipitation is strongly dependent on the 20 

GCMs selected (Giorgi and Gutowski 2015; McSweeney et al. 2015). Therefore, the possibility of insufficiently capturing the 

regional climate change and its valid uncertainty could be increased, as noted by MJ2016. In contrast, a region-specific GCM 

subset can include GCMs which more precisely reproduce the target regional climate (McSweeney et al. 2015). However, it 

does not enable discussions about the difference among regions and the interaction of impacts across the regions. Although 

there are advantages to both approaches to select a subset, it is necessary that we understand the characteristics of the current 25 

subsets selected using the approaches of the ongoing projects if we are to improve the process in the next generations of the 

projects. 

In this study, we assessed the current subsets of CMIP5 multi-GCM ensemble being used in ISIMIP and CORDEX by 

clarifying the climatological characteristics expressed by each subset from two points of view: how high the ability to 

reproduce the historical climate is (i.e., model performance) and how extent the uncertainty in the projections obtained from 30 

the subsets covers the uncertainty from the full set. We examined temperature and precipitation climatologies in a simple 

method, but the clarification of characteristics is important for understanding the basic nature of dataset and increasing the 

credibility of the scientific outcomes from each project. In addition, with reference to MJ2016, we also explored whether the 
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subset used was able to capture the uncertainty from the full set more widely than the other model subsets when using the same 

sample size. 

The ability for the ISIMIP subset was not mentioned by MJ2016 and thus we investigated that in region-by-region. We 

analysed four GCMs selected in ISIMIP2b (unless specified otherwise, hereafter refers to as ISIMIP) here. Thus, discussion 

about the projections is also updated from MJ2016. The GCMs used in CORDEX have been assessed by region in previous 5 

studies, but are limited (e.g., Haensler et al. 2013 for Africa; Bartók et al. 2017 for Europe; Karmalkar 2018 for North America). 

Even simple assessment conducted is needed for the present CORDEX. Furthermore, uniform assessment across regions 

permits to discuss the difference of characteristics among the regions and the possibility of heterogeneous scenario as 

mentioned above. By using the subsets from the two programs, we can explore the difference between the original subset in 

CORDEX and the subset selected with assuming CORDEX CORE, which is helpful information for the model selection in 10 

CORDEX CORE. 

2 Data and Methods 

2.1 Dataset 

We analysed the historical runs of 50 atmosphere–ocean GCMs (AOGCMs) and the Representative Concentration Pathways 

(RCP) 8.5 scenario runs of 42 AOGCMs participating in CMIP5 (Taylor et al. 2012). A single ensemble member, r1i1p1, was 15 

selected for each model, except for CESM1-WACCM (r2i1p1), CSIRO-Mk3L-1-2 (r1i2p1) and EC-EARTH (r8i1p1). It is 

because the member, r1i1p1, of CESM1-WACCM and CSIRO-Mk3L-1-2 were not available and temperature change from 

r1i1p1 of EC-EARTH was over two-standard deviation of the changes from the 42 models in more than 60% of our target 

regions. In the followings, the full set of the multi-GCM ensemble indicates the 50 historical runs when we assessed the ability 

to reproduce the historical climate (CMIPFull_Hist), while does the 42 future projections which are estimated from both historical 20 

and rcp85 runs when we discussed the future projections (CMIPFull_Future). 

We compared the simulations of the subsets of GCMs used in ISIMIP and CORDEX with the full ensemble. ISIMIP used four 

GCMs for their various impact assessments: GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and MIROC5 (Frieler et al. 

2017). On the other hand, CORDEX used the subset in which the combination of GCMs were altered for each defined region. 

The number of GCMs used in each of the defined regions is listed in Table 1, and each GCM is listed in Supplement 1. The 25 

regional classification used to investigate the regional performance and the projection was based on the classification in 

CORDEX shown in Supplement 2. In this study, we focused on global land area, considering the importance for both programs 

because of the relevance to human activities. 

The analysis periods were the year 1986–2005 (but 1985–2004 for HadGEM2-CC and HadGEM2-ES) for the historical runs 

and the year 2081–2100 (but 2080–2099 for MRI-AGCM60 and CESM1-WACCM) for the RCP8.5 runs. Monthly mean 30 

temperature and precipitation data over these periods were interpolated onto a 2.5° × 2.5° grid for each model. ‘Too dry’ grids 

(then mean precipitation are < 0.1 mm/day in each member) were excluded from the analyses using precipitation. The future 
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change of precipitation expressed in a ratio here. That is the change ratio tends to be large at too dry grid even when the change 

is quantitatively extreme small. Such a large ratio is difficult to explain its meanings physically. By applying the threshold, the 

grid indicating an extremely large ratio, for instance, 100% were excluded. The total number of the excluded grids is 

approximately 5% of all target grids as an average over the used members. 

To validate the model representations, we compared the simulated estimates with the observed datasets. With respect to 5 

precipitation, Sun et al. (2018) highlighted differences among the observational datasets. Consequently, to avoid a misreading 

of the model performance due to such discrepancies, we used multi-precipitation products that covered the global land area 

over the period of interest. The observation products were the Climatic Research Unit Timeseries (CRU) v.4.01 (Harris et al. 

2014) for temperature and precipitation, and the following for precipitation only: the global unified gauge-based analysis by 

NOAA Climate Prediction Center (CPC) v.1.0 (Xie et al. 2010), the Global Precipitation Climatology Centre (GPCC) full data 10 

reanalysis v.7.0 (Schneider et al. 2016), NOAA’s Precipitation reconstruction over Land (PRECL) v.1.0 (Chen et al. 2002), 

the CPC Merged Analysis of Precipitation (CMAP; Xie and Arkin, 1997), the Global Precipitation Climatology Project 

(GPCP) v.2.2 (Huffman et al. 2015), and the Multi-Source Weighted-Ensemble Precipitation (MSWEP) v2.1 (Beck et al. 2019). 

To quantify the ability to reproduce spatial patterns of the observations, we used the skill score proposed by Taylor (2001) 

(hereafter referred to as skill score) as follows: 15 

S=4(1+R)/{(σ+σ-1)2(1+R0)},                                                                                                                               (1) 

where R is the spatial correlation coefficient between referred observation and simulation, σ is the standard deviation of 

simulation normalized by the reference spatial pattern and R0 is the maximum correlation attainable. The value of R0 was 

assumed to 1 here. In addition to the skill score, we use the model bias to evaluate the quantity itself. The usage of the two 

metrics enables the assessment of both the spatial pattern and the quantity. 20 

2.2 Coverage of uncertainty and random selection 

Coverage was estimated from a comparison between the full uncertainty range of the projections made by two model sets, 

which was defined by McSweeney et al. (2015) as a fractional range coverage, FRC. In this study, we computed the regionally 

averaged projections for each model, and then the FRC were estimated using the regional averages. The FRC from the regional 

averages (FRA) was defined as the fraction of the maximum−minimum range of the uncertainty in the regional averaged 25 

projections from a subset of CMIPFull_Future (RSub) to the range from CMIPFull_Future (RFull), as follows: 

FRA= RSub
RFull

.             (2) 

The range of RSub was computed from the ISIMIP and CORDEX subsets and also arbitrary subset samples we generated. From 

the comparison with the arbitrary samples, we can investigate how well the ISIMIP and CORDEX subsets captured the 

uncertainty range of projections. MJ2016 presented the comparison using their 500 samples as ‘representation’. Our arbitrary 30 

samples were generated by randomly selected n models without repetition from CMIPFull_Future 10,000 times, where n is the 
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sample size of subsets in ISIMIP (n = 4) or CORDEX (n depends on the regions; see Table 1). Then, the variance of the FRA 

was estimated from the 10,000 random subset samples of CMIPFull_Future and compared with the FRA from the ISIMIP and 

CORDEX subsets. 

3 Results 

3.1 Performance in reproducing historical climate 5 

Using model biases and skill scores, we evaluated the historical climate reproduced by the GCM subsets used in ISIMIP and 

CORDEX. The GCM subsets used in ISIMIP and CORDEX are hereafter referred to as the ISIMIP subsets and CORDEX 

subsets, respectively. For the evaluations, we also used two high performance subsets: one is composed of models with lower 

bias than the 50th percentile (median) of the CMIPFull_Hist biases: the other is models with higher skill score than the median of 

the CMIPFull_Hist scores (referred to CMIPlowB and CMIPhighS, respectively). The models included in the high performance subset 10 

is shown in Supplement 3. B(v(E)) and S(v(E)) indicate the regional mean biases and skill scores for variable v and ensemble 

subset E, respectively. 

Figure 1 shows the model bias associated with the annual mean precipitation in the 14 CORDEX regions over a 20-year period. 

Compared with the maximum values of B(P(CMIPFull_Hist)) for the precipitation (v=P), the maximum values of B(P(ISIMIP)) 

and B(P(CORDEX)) are clearly small, especially in the Mediterranean (MED), Southeast Asia (SEA), and the polar regions. 15 

The spreads of B(P(ISIMIP)) and B(P(CORDEX)) in MED are within the spread of the discrepancy among the observations, 

which suggests that the model selection works effectively to select models with high ability to reproduce the observed regional 

mean precipitation quantitatively. However, compared with the high performance subsets, some models in the ISIMIP and 

CORDEX subsets have a bias exceeding the maximum values of B(P(CMIPlowB)), or B(P(CMIPhighS)) in some regions, despite 

the small number of models used in ISIMIP and CORDEX. Therefore, our results indicate that less bias models could be 20 

selected than those currently being used. The difference in the spread between the ISIMIP and CORDEX subsets has a 

characteristic in region-by-region and part of them relates to the overlapping of model members used across ISIMIP and 

CORDEX. For example, in five regions of Central and South America, Europe, Africa and South Asia, the CORDEX subsets 

include more than three of four ISIMIP models and the ensemble is large in CORDEX than in ISIMIP (Supplement 1). As the 

result, the variance of biases estimated from the CORDEX subset covers that from the ISIMIP subset. Especially in Europe, 25 

the difference of the variance between the CORDEX and ISIMIP subsets is large and it is found that the models used in the 

CORDEX subset but not included in the ISIMIP subset make the variance increase. Focusing on the regions where the 

CORDEX subsets include only two models in the ISIMIP subset, the variance from the CORDEX subset tends to be larger 

than that from the ISIMIP subset, especially in the regions with large ensemble of the CORDEX subsets, like North America, 

SEA and Australasia. By contrast, the variance from the CORDEX subsets is relatively small in the regions with small 30 

ensemble of the CORDEX subsets, like MENA and Central Asia. In East Asia, the variance is small in CORDEX despite using 

seven models in contrast to four models in ISIMIP. Thus the biases from the seven models are almost same. 
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With respect to the spatial pattern of the annual mean precipitation, ISIMIP and CORDEX incorporate some models with a 

worse score than the minimum value of S(P(CMIPhighS)) (Supplement 3). That is to say, ISIMIP and CORDEX subsets include 

the member showing a low similarity of the spatial pattern to the observation. S(P(ISIMIP)) and S(P(CORDEX)) fall within 

the observational spread only in the Arctic. 

We also assessed model performance for the annual mean temperature (v=T). The spread of B(T(CMIPFull_Hist)) is greater in 5 

the high- and mid-latitude Northern Hemisphere regions than in the low-latitude Northern and Southern hemisphere regions, 

which would be related to the magnitude of seasonal variability (Supplement 4). The same spatial pattern of spread is also 

evident in B(T(ISIMIP)) and B(T(CORDEX)). The maximum values of B(T(ISIMIP)) and B(T(CORDEX)) are smaller, or 

equal to the maximum value of B(T(CMIPhighS)) (except for the CORDEX subsets in East Asia and North America), but are 

larger than the maximum value of B(T(CMIPlowB)). The spread of B(T(ISIMIP)) is covered by that of B(T(CORDEX)) in the 10 

same four regions as the bias in the precipitation except for Europe, because of the overlapping of model members used. The 

spreads of B(T(ISIMIP)) and B(T(CORDEX)), however, resemble each other compared with the precipitation bias, indicating 

that CORDEX used models with a quantitatively similar performance to ISIMIP, despite using more models than ISIMIP 

except for Central Asia. Both subsets included models with a worse score than the minimum value of S(T(CMIPhighS)) in 85% 

of the regions (Supplement 5). Therefore, relative to CMIPhighS, the subsets can quantitatively represent the observed 15 

temperature as a regional average well but the spatial pattern represented by some members in the subsets has not much 

resembled the observation. 

Even though the model selections conducted in ISIMIP and CORDEX narrow the spreads of model bias and the score from 

CMIPFull_Hist, the largest bias and the worst score from the ISIMIP and CORDEX subsets distribute beyond the biases and the 

scores from high performance models in the full set. 20 

3.2 Uncertainty range of the projected changes in annual mean temperature and precipitation 

Future projections obtained from the ISIMIP and CORDEX subsets were compared with those from the full set, and also from 

high performance models, as with the evaluations in Section 3.1. Because the small biases or high skill scores models used in 

this section are composed of the models included in CMIPFull_Future, we refer as CMIP¢lowB and CMIP¢highS instead of CMIPlowB 

and CMIPhighS. Projected change of annual mean temperature and precipitation are designated by ΔT(E) and ΔP(E), respectively. 25 

Figure 2 shows the uncertainty range of the projected increments of the temperature for each GCM subset. Although ISIMIP 

used fewer models than CORDEX, the uncertainty range of ΔT(ISIMIP) exceeds that of ΔT(CORDEX) except for South Asia, 

Australasia, South America, and Central America. The uncertainty ranges of ΔT(CMIP¢lowB) and ΔT(CMIP¢highS) broadly cover 

the range of ΔT(CMIPFull_Future), suggesting that the bias and skill score are not good emergent constraints to reduce the 

uncertainty of ΔT in this study though the previous studies have showed the reduction of the uncertainty (e.g. Smith and 30 

Chandler 2010; Bracegirdle and Stephenson 2013; Bracegirdle et al. 2013; Simpson et al. 2016). 

The uncertainty range associated with the projected change in annual precipitation is shown in Fig. 3. Compared with ΔT in 

Fig. 2, model selection has a large impact on the reduction of the uncertainty in ΔP, as was also found by MJ2016 using five 
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GCMs used in the fast track of ISIMIP. The subsets of ΔP(CMIP¢lowB) and ΔP(CMIP¢highS) cover 70% and 60% of the full range 

of uncertainty from CMIPFull_Future as the average over 14 regions, respectively, with totally covering the full range in 

Australasia (yellow and orange plots in Fig. 3). The largest difference between the coverages from ΔP(CMIP¢lowB) and 

ΔP(CMIP¢highS) appears in East Asia. Therefore, we need to pay attention that, when the model performance is the condition to 

select subsets, the uncertainty changes depending on which evaluation index are used, like at least the bias or the skill score. 5 

The CORDEX subsets capture more than 50% of the full range in eight regions (Europe, MED, Africa, SEA, Australasia, 

Central America, South America and the Antarctica). On the other hand, the ISIMIP subsets capture the full range less than 

60% in all regions. In 11 regions, the CORDEX subsets capture the wider range than the ISIMIP subsets, differing from broad 

coverage by the ISIMIP subset for ΔT as seen in Fig. 2. Therefore, the subset of four models used in ISIMIP2b shows the 

difficulty of capturing the uncertainties in regional precipitation change. This result is the same as stated using the subset of 10 

five models used in the fast track of ISIMIP discussed by MJ2016, despite two of the five models changed. 

The uncertainty range is narrowed by using the subsets, but the interquartile range of ΔP(CORDEX), IQR(ΔP(CORDEX)), 

shows a high coincidence with the IQR(ΔP(CMIPFull_Future)), as well as with the IQR(ΔP(CMIP¢lowB)) and IQR(ΔP(CMIP¢highS)). 

The maximum−minimum range of ΔP(ISIMIP) also captures the IQR(ΔP(CMIPFull_Future)). Therefore, the CORDEX and 

ISIMIP subsets can capture the average tendency of the change projected by the 25th to 75th percentile of CMIPFull_Future. In 15 

addition, the median of the uncertainty range is similar between the CORDEX subset and CMIPFull_Future. Only in Central Asia 

does the maximum−minimum range of ΔP(CORDEX) extend below the 25th percentile of ΔP(CMIPFull_Future) and, in contrast, 

the maximum−minimum range of ΔP(ISIMIP) covers the IQR(ΔP(CMIPFull_Future)). Thus, three models of the CORDEX subset 

in Central Asia cannot capture the average tendency of the change projected by CMIPFull_Future, despite being able to select 

suitable models to discuss the climate change in Central Asia, differing from ISIMIP. 20 

3.3 Comparison of uncertainty of the projected changes using randomly sampled models 

We investigated whether the ISIMIP or CORDEX subsets were more suitable for capturing the uncertainty range obtained 

from CMIPFull_Future by comparing the fractional coverage of uncertainty, FRA, of each subset with those of 10,000 randomly 

sampled subsets of CMIPFull_Future. As the result, the ISIMIP subset (four models) shows high coverage for the temperature 

change in all regions compared with the random samples. By contrast, the CORDEX subset yields relatively wide coverage 25 

for the temperature and precipitation changes, but this depends on the number of models used. 

Figure 4 illustrates FRA of the ISIMIP and CORDEX subsets (referred to FRAISIMIP and FRACORDEX, respectively) in each 

region. Along the x-axis, the name of regions is arranged in ascending order of the number of models used in CORDEX. The 

number of models used in CORDEX is indicated in each parenthesis after the name, and by contrast, the number in ISIMIP is 

four in all regions. The y-axis indicates FRA of the uncertainty from each subset relative to that from the full set. The bar 30 

presents distribution of the FRA values obtained from the possible 10,000 random samples (FRARandom). The blue bar means 

the distribution using the subsets with four models (FRARandom_I), as large as the ISIMIP subset, and the red bar means that 
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with the same number of models used in CORDEX (FRARandom_C). Both ends of the bar indicate the lowest and highest values 

of FRA, and both ends of the bar with a dark color and horizontal line in the bar denotes the 25th and 75th percentiles and the 

median, respectively. 

For the temperature change, ΔT, FRAISIMIP and FRACORDEX (blue and red dots, respectively) exceed 60% in 13 and 10 regions, 

respectively (Fig. 4a). However, FRACORDEX locates around the 25th percentile or less of FRARandom_C (the bottom of dark red 5 

bar) in MED, East Asia, SEA, Europe, and the polar regions where FRACORDEX is lower than FRAISIMIP. In the region with 

larger model ensemble in CORDEX, FRACORDEX tends to be less than the median of FRARandom_C (horizontal red line). On the 

other hand, FRAISIMIP is typically around the 75th percentile (the top of dark blue bar) or higher than the median (horizontal 

blue line) of FRARandom_I for all regions. 

A relatively high coverage, above ~50%, is shown on FRACORDEX for both changes of temperature and precipitation in eight 10 

regions when using nine models or more, except for temperature in Antarctica (Fig. 4a, b): that is to say, the CORDEX subset 

captures more than half of the range from CMIPFull_Future. The value of FRACORDEX for ΔP is lower than that for ΔT. A high 

coverage of more than 70%, however, can be gained by the CORDEX subset for ΔP in MED, South America, Europe, 

Australasia and Africa, which also indicates a high coverage compared with the median of FRARandom_C (except for Europe) 

(Fig. 4b). In half of the regions, FRACORDEX are in the range of the 25th percentile or less of FRARandom_C (four regions of Asia, 15 

MENA, the Arctic, and North America). In Central and East Asia, and North America of these regions, FRACORDEX is smaller 

than FRAISIMIP, even though CORDEX has the advantages of selecting suitable models for the region and also more models 

can be used, especially in East Asia and North America. The ISIMIP subsets in Antarctica and Australasia show a larger 

coverage than the 75th percentile of FRARandom_I, but the FRAISIMIP of 60% is less than that for ΔT. In more than 60% of all 

regions, FRAISIMIP is less than the median of FRARandom_I; the averaged FRAISIMIP over all regions is 33%. 20 

From the FRA distributions estimated from the possible random samples regarding to both changes, ΔT and ΔP, the IQR of 

FRARandom_C itself rises toward a FRA of 100% as larger model ensemble are used. When random samples are composed of a 

subset with 15 models as large as subsets in CORDEX-Africa and -South Asia, the 75th percentile of FRARandom_C is more than 

90% in ΔT (Fig. 4a). In addition, the width of the IQR for ΔT is narrowed with increasing the number of models. The 

relationship between the number of models and FRA is clearly evident in ΔT because there is a small difference in RFull among 25 

regions for ΔT compared with ΔP (Fig. 2), and thus the larger model ensemble results in an increase in FRACORDEX and 

FRARandom_C. And also, we found that the probability of selecting model subsets with a low coverage was higher for 

precipitation than for temperature, even if the number of models selected increases. 

From Fig. 4, the subsets with nine models or more can capture the uncertainty of projections in both temperature and 

precipitation widely, implying that there is a heterogeneity on the dataset by a different number of models (Gutowski et al. 30 

2016). We explored whether a similar tendency can be obtained in the other regions when the number of models changed. The 

same approach was performed by MJ2016. They focused on a subset covering the uncertainty in each grid most widely over 

the globe or regions and investigated how the coverage changes with the number of models. On the other hand, in this study, 
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to consider making better use of the current subsets, we investigated how the coverage changes with changing the number of 

models from the current model members. 

Figure 5 shows the change of coverage performance with the number of models changing in each region. When the number of 

models is larger than the current number, we added models randomly selected to the current members. By contrast, when the 

number of models is less, we removed models randomly selected from the current members. Here we focused on the median 5 

of the FRA values obtained from the possible 10,000 random samples, meaning the FRA value obtained with a possibility of 

50% when selected subsets randomly. For the temperature change, the median exceeds 60% in all regions when changing the 

number of models from the current four ISIMIP members to seven members which are less than nine members (Fig. 5a). The 

median above 60% is also obtained in 13 regions (except for Antarctica) when changing the number from the current CORDEX 

members to nine members. For the precipitation change, the coverage in nine members is above 50% in 10 regions and in 12 10 

regions by changing the number of models from the current members in ISIMIP and CORDEX, respectively (Fig. 5b). Even 

when using nine members, the median is less than 50% in Four regions of MENA, Africa, and South and East Asia for the 

change of number from the ISIMIP subset and in two regions of MENA and North America for that from the CORDEX subset.  

The IQR for ΔT shifts to a high FRA smoothly with the number of models in all regions. By contrast, the IQR for ΔP sometimes 

gets large suddenly and/or shifts sharply, for instance, MENA and Africa. The discontinuous change is caused by a large 15 

variance of ΔP from each model member. That is to say, when there are model members indicating a large change ratio relative 

to the other members, the coverage largely differs depending on the inclusion of the member with the large ratio or not. The 

change amounts, ΔT are similar among the model members and the variance is small. Thus, the FRA increases with the number 

of models and the IQR also increases smoothly. To prevent selecting the subset with a large change of the coverage depending 

on a model with extremely large or small change amount, investigating the variance of the projections in each region is needed 20 

when the number of models is decided. 

4 Discussion 

From the evaluation of the ability to reproduce the regional temperature and precipitation, it is found that the ISIMIP and 

CORDEX subsets include the models indicating a larger bias and a worse score than high performed models in the full set. 

Therefore, a much better model subset, regarding to biases and skill scores, can be selected with making use of the advantage 25 

of the small number of models. However, such a selection can be conducted when there are no constraints of data availability 

which was the main constraint to select the current subsets in ISIMIP and CORDEX and when we use one variable of either 

temperature or precipitation. Focusing on one variable of either temperature or precipitation, 13 models in 25 all high-

performance models are included in both subsets of high-performance models for the bias and skill score (Supplement 3). In 

addition to the two indices of bias and skill score for one variable, the number of models indicating the high performance for 30 

both two variables of temperature and precipitation is 0 at the minimum in Southeast Asia and the Arctic and 9 at the maximum 

in Africa. The averaged number over the regions is approximately 4. Therefore, although the model with a small bias indicates 
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a high score with 50% of the possibility, it is difficult to select models with a high performance at the quantity and the spatial 

pattern for both variables of temperature and precipitation. 

In this study, we assessed the current ISIMIP and CORDEX subsets to investigate whether the subset indicates small biases in 

the historical climatology and covers the uncertainty in the future projections widely using temperature and precipitation. Both 

variables are most frequently used in future projections and also weather forecasts. The evaluation for such a principal variable 5 

is important for the studies of ISIMIP and CORDEX. It should be noted, however, that ISIMIP needs the dataset with 

reasonable for multiple variables used in their impact assessment and with enable to discuss the uncertainty in the projections. 

CORDEX requires the dataset with based on a plausible mechanism of the climatology as the input data for RCMs. Thus, there 

is a possibility that a good subset which we presented based on the model performance for temperature and precipitation will 

be an option of their future subsets. 10 

Although ISIMIP and CORDEX have tight constraints for model selection at the present, both programs will select the subset 

showing a reasonable climate based on a plausible mechanism in the future. In the case, two variables of temperature and 

precipitation are not possibly sufficient for model selections. At least for the regional climatological studies and the assessment 

of its impact, it is important to reproduce large-scale circulations which characterize the regional climate. Especially, the spatial 

pattern of precipitation depends on the accuracy of the circulation. Indeed, model change in ISIMIP from the fast track to 15 

ISIMIP2b has already been performed with a consideration of the ability to reproduce ENSO and monsoon (Frieler et al. 2017). 

The evaluation method used in this study can be applied to the other variables when we can obtain the reference data. For 

instance, Taylor's skill score which we used to evaluate the pattern of temperature and precipitation can also apply to the 

pattern of circulation. However, as more variables and evaluation indices are employed, it is more difficult to obtain the CMIP5 

models with high accuracy as described above. 20 

It is preferable to select subsets in the next generations based on a combined approach that can consider not only the ability to 

reproduce the principal variables of temperature and precipitation but also the other ones which are also important to 

characterize the regional climate. Construction of such an approach would be one of the important tasks for both programs. 

5 Summary and conclusions 

We explored the ability for the subsets of CMIP5 multimodel ensemble used in ISIMIP2b and CORDEX to reproduce the 25 

observed temperature and precipitation, and how the subsets capture the uncertainty in projected change of temperature and 

precipitation obtained from the full set of the ensemble. In addition, we discussed whether each subset shows a high coverage 

of the uncertainty in projected climate change compared with the possible subsets generated using 10,000 random samples. 

The spreads of the bias and Taylor’s skill score from the subsets used in ISIMIP and CORDEX are smaller than those obtained 

from the full set of CMIP5 ensemble for the annual mean temperature and precipitation. However, despite of the smaller model 30 

ensemble in ISIMIP and CORDEX, the largest bias and the worst skill score distribute beyond the biases and the scores 

obtained from the half member subsets with less bias or high score of the full set. Therefore, although the ISIMIP and CORDEX 

approaches were able to select models that acceptably performed to represent the historical state, our results suggest that better 
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subsets can be selected by focusing on smaller biases and/or higher scores for representing the historical climate. Note that 

such a selection can be performed when there are no constraints for the selection and when we use one variable of either 

temperature or precipitation as the evaluation index. 

For the projected change in annual mean temperature, the subsets capture more than 60% of the uncertainty for the full set in 

the 13 terrestrial regions in ISIMIP and the 10 regions in CORDEX, from the total of 14 regions. The coverage of the 5 

uncertainty range by the ISIMIP subset is larger and equal to the coverage by the CORDEX subset in 10 regions by using only 

four models that are common to all regions. The FRA of the current CORDEX subset tends to be lower than the 50th percentile 

of the FRAs obtained from the possible 10,000 random samples in the regions where a large model ensemble is used. ISIMIP 

selected the subset of models with relatively high coverage of the uncertainty from the full set in all regions, compared with 

the 50th percentile from the random samples. 10 

On the other hand, for the projected change in annual mean precipitation, the FRA for the CORDEX subset are around the 

25th percentile or less of the FRAs from the random samples with the same number of models in half of all regions. However, 

CORDEX broadly captures the uncertainty range more than ISIMIP, differing from the temperature change. Additionally, a 

relatively high coverage (>50%) was obtained for the projections of both temperature and precipitation in eight regions when 

using nine models or more. 15 

Compared with the random samples, the ISIMIP subset shows high coverage for the temperature change in all regions and, by 

contrast, low coverage for the precipitation change in more than 60% of the regions. The CORDEX subset is not performing 

well compared to the randomly selected samples but is marginally better than ISIMIP at covering uncertainties in the projected 

change in precipitation when a large model ensemble used. Therefore, the global common model set used in ISIMIP could 

have difficulty in capturing the uncertainty in regional precipitation change projections with capturing most of the uncertainty 20 

in the temperature change projections. The region-specific model subset, like CORDEX, captures coverage of both 

uncertainties compared to the global common subset, but large model ensemble is needed. 

The current CORDEX subsets can capture both uncertainties for temperature and precipitation in the regions with a relatively 

large ensemble. However, it is found that changing the number of models from the current CORDEX members to nine members 

can capture more than half of the full uncertainty in both projections of temperature and precipitation in more than 85% of all 25 

regions, with a possibility of 50%. Furthermore, the same is also shown as for the ISIMIP subset, but for 70% of all regions. 

Focusing on the uncertainty in the future projections, this result proposes that the current number of models need to be changed 

to discuss a similar uncertainty range among the regions. 

In this study, we have assessed the subsets using the principal variables of temperature and precipitation. It is not sufficient for 

selecting subsets in the next generations. We suggest that it is preferable a combined approach that can consider the ability not 30 

only for temperature and precipitation but also for the other ones which are also important to characterize the regional climate. 

Construction of such an approach would be urgently demanded for both programs. 
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Table 1: Number of CMIP5 models used in the CORDEX regions. 

Region   Region  

Europe 13   Southeast Asia 12  
Mediterranean 5   Australasia 13  
Middle East and North Africa (MENA) 5   North America 6  
Africa 15   Central America 10  
Central Asia 3   South America 9  
South Asia 15   Arctic 5  
East Asia 7   Antarctica 9  

 20 
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Figure 1: Normalized annual mean model precipitation bias over land from the GPCC reference data (%). The bias was normalized 
by the regional average of GPCC data. The whiskers of the box plots show the range between the maximum and the minimum biases. 
The boxes and the lines within the boxes indicate the 25th to 75th percentile range and the median, respectively. Green plots indicate 10 
the deviations of six observation data from the reference data. The other plots indicate the model bias in the full set of 50 CMIP5 
model set (black), the model sets with a bias with is less than the 50th percentile of biases of the full set (yellow), the model sets with 
Taylor’s skill score with is larger than the 50th percentile of the scores of the full set (orange), and the model sets selected for ISIMIP 
(blue) and CORDEX (red). 
  15 
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Figure 2: Annual mean temperature increments in the future climate projection (K). The whiskers of the box plots show the range 
between the maximum and the minimum biases. The boxes and the lines within the boxes show the 25th to 75th percentile range and 
the median, respectively. Box plots indicate the model bias in the full set of 42 CMIP5 models (black), the model sets with the top 10 
50% of the CMIP5 models for the bias (yellow) or Taylor’s skill score (orange), and the model sets selected for ISIMIP (blue) and 
CORDEX (red). The top 50% of the CMIP5 models cannot be plotted over Antarctica because of missing the CRU reference data. 
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Figure 3: As for Figure 2, but for the projected change in annual mean precipitation scaled to the regional mean temperature 
increment over the land (% K–1). 

  10 



20 
 

 

 

 

 

Figure 4: Coverage performance of the ISIMIP and CORDEX subsets compared with the range of the full set of CMIP5 models for 5 
(a) annual mean temperature increment and (b) precipitation change scaled to the regional mean temperature increment. Blue and 
red dots indicate the coverage in ISIMIP and CORDEX, respectively for each region. Blue bars indicate the spread of coverage 
(FRA) when four models, as in ISIMIP, are selected randomly in 10,000 times. Red bars indicate the spread when randomly selecting 
the same number of models as in CORDEX; e.g., 10 models in Central America. The full range of the coloured bars indicates the 
minimum to maximum coverage. Dark blue and red bars indicate the 25th to 75th percentile range of the FRA spread. Horizontal 10 
lines in the dark blue and red regions indicate the median. Numbers in parentheses are the number of models used in CORDEX. 
The ISIMIP and CORDEX coverages in (a) overlaps in MENA, N. America and Africa. 
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Figure 5: Change of coverage performance of the ISIMIP and CORDEX subsets depending on the numbers of selected models in 
each region for (a) annual mean temperature increment and (b) precipitation change scaled to the regional mean temperature 
increment. As in Fig. 4 but the x-axis denotes the number of selected models. 
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