
Response to the comments from Anonymous Referee #1 for the manuscript: 
“Uncertainties in climate change projections covered by the ISIMIP and CORDEX model subsets from 
CMIP5” by Ito et al. 
 
We would like to appreciate your careful review and constructive comments and suggestions for 
improving our manuscript. We almost agree with them. We have made modifications through our 
manuscript according to the responses. Please check our detailed responses below. The numbers of page 
and line are corresponding to the number in the original file (https://www.geosci-model-dev-
discuss.net/gmd-2019-143/gmd-2019-143.pdf). Revised sentences according to your and the other 
reviewer’s comments are colored by orange and blue in the following revised manuscript, respectively. 
Green-colored sentences represent the revised sentences by ourselves. 
 
In this modification, we added a CMIP5 model of CSIRO-Mk3L-1-2, to the original 49 models for the 
historical run we analyzed. It is because there is no member of r1i1p1 by CSIRO-Mk3L-1-2, but there 
is r1i2p1 as well as CESM1-WACCM which was already used. The results did not change from the 
original manuscript by this modification. I apologize for the change. 
 
In this revision, McSweeney and Jones (2016) have referred to as MJ2016 except for the first reference. 
 
Thank you once again for your review. 
We would be glad to respond to any further comments you may have. 
 
--- Summary and General comments 

The paper by Ito et al. investigates the uncertainty ranges in projections from the ISIMIP and 
CORDEX projects. Both of these projects selected a sub-sample from CMIP5 Global Climate Models 
(GCMs) to bias correct and then drive impact models (ISIMIP) or to downscale the GCM’s (CORDEX). 
ISIMIP and CORDEX have different goals and also the number of models selected and the approach to 
sub-select the GCMs were different. The authors look into how well these two projects cover the 
uncertainty ranges provided by the original CMIP5 model set. They show that the ISIMIP and CORDEX 
uncertainty ranges are smaller than the original range but still larger than from a subset only selecting 
well performing models, even though the number of models selected in ISIMIP and CORDEX was 
smaller than the number of well performing models they were compared to. The authors also conclude 
that better subsets with smaller biases and/or higher scores would be possible than the current ISIMIP 
and CORDEX selections. 

While it is interesting to see how different the uncertainty ranges of different model selections are, I 
am not necessarily sure if the comparison is fair, given that as far as I know neither ISIMIP nor CORDEX 
selected their GCMs based on these criteria. Among other points explained below, I am also missing a 
clear recommendation that would help the next rounds of ISIMIP and CORDEX to sub-select their 
GCMs. 

 
We glad to hear your interests in our study. We have made our response to the comments about the 

unfair comparison between the subsets from ISIMIP and CORDEX and about the recommendations 
towards the next rounds, as the responses to specific comment #1 and #4 respectively. Please find below. 

 
--- Specific comments 
1. For ISIMIP the main constraint in choosing GCMs was data availability, and they needed many 

more variables than the ones the authors consider in this study. Hence, even if “better” subsets in 
terms of performance based on precipitation and temperature would be possible, that does not 
necessary mean these subsets would have been an option for the ISIMIP project. For CORDEX data 
availability was also a major constraint, so again, even if better subsets based on temperature and 
precipitation would have been possible, if the data to drive the RCMs was not available that would 
not have helped the CORDEX project. These aspects should at least be discussed in the manuscript. 

We appreciate your accurate comments. Our explanation was not sufficient. The “better subset” is based 
only on the model bias and Taylor's skill score in our analysis. From an additional analysis in this 
revision, it is found that such a subset can be obtained under the condition without considering the data 



availability and with focusing on one variable of temperature or precipitation. We have described the 
following sentence to the section of discussion which made in this revision. 

(P8 L23) “… a much better model subset, regarding to biases and skill scores, can be selected with 
making use of the advantage of the small number of models. However, such a selection can be conducted 
when there are no constraints of data availability which was the main constraint to select the current 
subsets in ISIMIP and CORDEX and when we use one variable of either temperature or precipitation.” 

 
As you noted, ISIMIP and CORDEX select their subset under the different constraints at the present. 

We have also added the followings in the section of discussion: 
 
(P8 L23)“In this study, we assessed the current ISIMIP and CORDEX subsets to investigate whether 

the subset indicates small biases in the historical climatology and covers the uncertainty in the future 
projections widely using temperature and precipitation. Both variables are most frequently used in future 
projections and also weather forecasts. The evaluation for such a principal variable is important for the 
studies of ISIMIP and CORDEX. It should be noted, however, that ISIMIP needs the dataset with 
reasonable for multiple variables used in their impact assessment and with enable to discuss the 
uncertainty in the projections. CORDEX requires the dataset with based on a plausible mechanism of 
the climatology as the input data for RCMs. Thus, there is a possibility that a good subset which we 
presented based on the model performance for temperature and precipitation will be an option of their 
future subsets.” 

 
2. I was also missing the link from the performance in the historical projections to the projected 

uncertainty ranges. Do the sub-sampling based on lower bias/higher score cover larger, smaller or 
similar uncertainty ranges in the projections? The data is all there in the figures, but it is not 
discussed in the text. 

We had mentioned the uncertainty range for the temperature change obtained from the subsets on P6, 
L24-26 and on the other hand, for the precipitation change on P6, L30. Especially for precipitation, there 
was less explanation. We have added the description below to P6, L29. With the addition, we have 
modified a whole of the paragraph more understandably. 

 
“The subsets of ΔP(CMIP¢lowB) and ΔP(CMIP¢highS) cover 70% and 60% of the full range of uncertainty 

from CMIPFull_Future as the average over 14 regions, respectively, with totally covering the full range in 
Australasia. The largest difference between the coverages from ΔP(CMIP¢lowB) and ΔP(CMIP¢highS) 
appears in East Asia. Therefore, we need to pay attention that, when the model performance is the 
condition to select subsets, the uncertainty changes depending on which evaluation index are used, like 
at least the bias or the skill score.” 

 
3. I also find it hard to believe that neither the ISIMIP nor the different CORDEX regions did any 

analysis similar to what the authors provide here? At least for ISIMIP McSweeney and Jones (2016) 
seem to already have done this in a very comprehensive way. What is this study adding on top of 
that? 

McSweeney and Jones (2016) (hereafter MJ2016) have discussed the uncertainty in the projections 
but not mentioned the ability to represent the present-day climate and the projections itself which we 
have investigated. Also, as the update from MJ2016, we have analysed four GCMs used in the newer 
round of ISIMIP, instead of the GCMs analysed in MJ2016. On the other hand, as you pointed out, there 
are some CORDEX regions where their GCM subsets have been assessed but the assessments are limited. 

Uniform assessment over the regions permits to discuss the difference of performance among the 
regions. In addition, Gutowski et al. (2016) have mentioned there is a possibility of the heterogeneity 
on climate information among the regions as one of the main problems in CORDEX. This study has 
indicated that the subsets can widely capture the uncertainty in both projections of temperature and 
precipitation in the regions with a large ensemble. Thus, it is found the heterogeneity exists in the current 
dataset when focusing on the uncertainty. Furthermore, from the added results in this revision, we 
suggest that nine model members are needed to solve the heterogeneity of the uncertainty. 

From the assessment of the subsets selected in each program in the same method, we understand how 
different the climate information from a global consistent subset is from the original one by using the 



ISIMIP subset in the CORDEX framework, with assuming CORDEX CORE. 
We have added the above contents to P4 L3. 
 
“The ability for the ISIMIP subset was not mentioned by MJ2016 and thus we investigated that in 

region-by-region. We analysed four GCMs selected in ISIMIP2b (unless specified otherwise, hereafter 
refers to as ISIMIP) here. Thus, discussion about the projections is also updated from MJ2016. The 
GCMs used in CORDEX have been assessed by region in previous studies, but are limited (e.g., 
Haensler et al. 2013 for Africa; Bartók et al. 2017 for Europe; Karmalkar 2018 for North America). 
Even simple assessment conducted is needed for the present CORDEX. Furthermore, uniform 
assessment across regions permits to discuss the difference of characteristics among the regions and the 
possibility of heterogeneous scenario as mentioned above. By using the subsets from the two programs, 
we can explore the difference between the original subset in CORDEX and the subset selected with 
assuming CORDEX CORE, which is helpful information for the model selection in CORDEX CORE.” 

 
4. On page 8, lines 19-22, the authors mention results what would happen if a larger number of models 

would have been used in the Central Asia region. This result, I imagine something similar to Figure 
3 in McSweeney and Jones (2016) but for the CORDEX regions, would have been very interesting. 
I think it would allow to show how many models would need to be selected to cover a certain 
uncertainty range, which would help to make a recommendation for the next round of CORDEX. I 
would also be curious to see if these numbers differ between different regions. 

We appreciate your constructive suggestion to gain more insight into our results. We added the results 
about the change of coverage depending on the number of models in each region to Section 3.3. We 
have referred the idea by McSweeney and Jones (2016). They have changed the number of models to 
explore how the coverage changes with the number of models when a subset covers the uncertainty in 
each grid most widely over the globe or regions. On the other hand, in this study, to consider making 
better use of the current subsets, we have changed the number of models from the current model 
members and explored how the coverage changes. The details are as what followings: 

 
(P8 L19) “From Fig. 4, the subsets with nine models or more can capture the uncertainty of projections 

in both temperature and precipitation widely, implying that there is a heterogeneity on the dataset by a 
different number of models (Gutowski et al. 2016). We explored whether a similar tendency can be 
obtained in the other regions when the number of models changed. The same approach was performed 
by MJ2016. They focused on a subset covering the uncertainty in each grid most widely over the globe 
or regions and investigated how the coverage changes with the number of models. On the other hand, 
in this study, to consider making better use of the current subsets, we investigated how the coverage 
changes with changing the number of models from the current model members. 

Figure 5 shows the change of coverage performance with the number of models changing in each 
region. When the number of models is larger than the current number, we added models randomly 
selected to the current members. By contrast, when the number of models is less, we removed models 
randomly selected from the current members. Here we focused on the median of the FRA values 
obtained from the possible 10,000 random samples, meaning the FRA value obtained with a possibility 
of 50% when selected subsets randomly. For the temperature change, the median exceeds 60% in all 
regions when changing the number of models from the current four ISIMIP members to seven members 
which are less than nine members (Fig. 5a). The median above 60% is also obtained in 13 regions 
(except for Antarctica) when changing the number from the current CORDEX members to nine 
members. For the precipitation change, the coverage in nine members is above 50% in 10 regions and 
in 12 regions by changing the number of models from the current members in ISIMIP and CORDEX, 
respectively (Fig. 5b). Even when using nine members, the median is less than 50% in Four regions of 
MENA, Africa, and South and East Asia for the change of number from the ISIMIP subset and in two 
regions of MENA and North America for that from the CORDEX subset.  

The IQR for ΔT shifts to a high FRA smoothly with the number of models in all regions. By contrast, 
the IQR for ΔP sometimes gets large suddenly and/or shifts sharply, for instance, MENA and Africa. 
The discontinuous change is caused by a large variance of ΔP from each model member. That is to say, 
when there are model members indicating a large change ratio relative to the other members, the 
coverage largely differs depending on the inclusion of the member with the large ratio or not. The change 



amounts, ΔT are similar among the model members and the variance is small. Thus, the FRA increases 
with the number of models and the IQR also increases smoothly. To prevent selecting the subset with a 
large change of the coverage depending on a model with extremely large or small change amount, 
investigating the variance of the projections in each region is needed when the number of models is 
decided.” 

 
(P9 L18) “The current CORDEX subsets can capture both uncertainties for temperature and 

precipitation in the regions with a relatively large ensemble. However, it is found that changing the 
number of models from the current CORDEX members to nine members can capture more than half of 
the full uncertainty in both projections of temperature and precipitation in more than 85% of all regions, 
with a possibility of 50%. Furthermore, the same is also shown as for the ISIMIP subset, but for 70% of 
all regions. Focusing on the uncertainty in the future projections, this result proposes that the current 
number of models need to be changed to discuss a similar uncertainty range among the regions.” 

 
--- Technical corrections 

1. Figures: While I kind of like the illustration of the graphs on the map it takes up quite a lot of 
space while the graphs itself are rather small. I wonder if the graphs could be increased but would 
take up less space in a more classical arrangement? 

We appreciate your suggestion. We can understand a lot of space, especially in Supplement 4 and 5. 
We deeply considered the modification but the graphs on the map is good from the point of seeing the 
property corresponding to the region at a glance. We have redrawn the figures with reducing the space 
as much as possible. 

 
2. Supplement 1: I find this table not very informative, I would be more interested to know in which 

regions which models were used than in how many regions each model was used. 
The table has been changed to a table presenting the models used in each CORDEX regions. Please 

check the modified manuscript. 
 
3. Supplement 4 and 5: I think the Obs are missing in these Figures. 
Differed with the precipitation, one observation dataset, CRU, is used as the temperature reference 

data as indicated on P4, L26-27. Thus, there is no plot for the observation. 
 
-------------------------- 
We have revised our manuscript to address comments from Anonymous Reviewer #1. 



Response to the comments from Anonymous Referee #2 for the manuscript: 
“Uncertainties in climate change projections covered by the ISIMIP and CORDEX model subsets from 
CMIP5” by Ito et al. 
 
We would like to appreciate your careful review and constructive comments and suggestions for 
improving our manuscript. We almost agree with them. We have made modifications through our 
manuscript according to the responses. Please check our detailed responses below. The numbers of page 
and line are corresponding to the number in the original file (https://www.geosci-model-dev-
discuss.net/gmd-2019-143/gmd-2019-143.pdf). Revised sentences according to your and the other 
reviewer’s comments are colored by blue and orange in the following revised manuscript, respectively. 
Green-colored sentences represent the revised sentences by ourselves. 
 
In this modification, we added a CMIP5 model of CSIRO-Mk3L-1-2, to the original 49 models for the 
historical run we analyzed. It is because there is no member of r1i1p1 by CSIRO-Mk3L-1-2, but there 
is r1i2p1 as well as CESM1-WACCM which was already used. The results did not change from the 
original manuscript by this modification. I apologize for the change. 
 
In this revision, McSweeney and Jones (2016) have referred to as MJ2016 except for the first reference. 
 
Thank you once again for your review. 
We would be glad to respond to any further comments you may have. 
 
--- General comments 
This manuscript aims to quantify the spread of CMIP5 projections and biases covered by the subsets of 
models used in the ISIMIP and CORDEX experiments. The first section of the results examines the 
spread of model performance in reproducing the temperature and precipitation over the historical period 
(1986-2005), relative to a range of observational and reanalysis products. The rest of the results 
examines the spread in projected end-of-21st-century changes in annual mean temperature and 
precipitation, and how it compares to the spread covered by randomly selected subsets. The main 
findings are that (i) the small ensembles used in ISIMIP and CORDEX generally perform well over the 
historical period but are not optimal in minimizing historical biases, and (ii) the ISIMIP ensemble 
outperforms the CORDEX and randomly selected ensembles in covering the full CMIP5 range of 
projected temperature changes, but both ISIMIP and CORDEX cover a smaller spread of precipitation 
changes than randomly selected subsets. 
This manuscript presents a valuable study to put the CORDEX and ISIMIP subsets in the context of the 
full CMIP5 ensemble. At this stage, it is mostly descriptive and would greatly benefit from a more 
comprehensive discussion, including the benefits/limitations of the metrics used, and the implications 
of its findings. Please clarify how this specific study sets itself apart from existing studies such as 
McSweeney & Jones (2016), and how your results fit into the context of the existing literature. Minor 
adjustments to language and sentence structure are needed to improve the readability of the manuscript. 
We appreciate your useful comments to improve our manuscript. We have made our response to the 
general comments as the response to the following specific comments: 
- the benefits/limitations of the metrics used and the implications of its findings (#11, #15) 
- how this specific study sets itself apart from existing studies such as McSweeney & Jones (2016) and 
how your results fit into the context of the existing literature (#2, #14). 
Also, we have added a section to discuss the results and provide our considerations. 
Please find below. 
 
--- Specific comments 
□ Section 1 Introduction 
1. P2 L. 19: Please specify what these previous studies have found, and why we have yet to reach a 

consensus on the method to select small ensembles. Also, revisiting these papers in a discussion 
section would provide the necessary context to interpret the results and whether the methodology 
used in this study is distinct from, or improves upon, the ones used in these studies. 

In the previous study, the condition for selecting subsets depends on their purpose. For example, whether 



the model performance is considered, which climatological or extreme variables are used and which 
region is interested. Thus, we have yet to reach a consensus. Our purpose in this study, however, is to 
indicate the property of ISIMIP and CORDEX subsets for the ability to reproduce the present-day 
temperature and precipitation and for their future change, and is not suggestions of model selection 
methodology (P3 L23-25). In P2 L19-21, we have described that, although there are various methods, 
it is most desirable for the methods to select subsets of GCMs that have smaller biases in the historical 
climate simulations and cover the widest possible uncertainty range of future projections. We have 
discussed whether the current subsets in ISIMIP and CORDEX are such a subset. 
We have just modified the related sentence as the response to “why we have yet to reach a consensus on 
the method to select small ensembles”; 
 
(P2, L19) “... Gobiet 2016). The optimum method, however, remains to be determined because the 
interests depend on the studies, for instance, how the model performance is considered, which 
climatological or extreme variables are used and which region is interested.” 
 
2. P3 L. 23-36 Please clarify what is specific to this study: is some aspect of the methodology new? Is 

this performing an existing analysis to a new set of data? Is the added value of the manuscript to 
specifically address whether region-specific subsets (CORDEX) outperform a globally consistent 
sub-set (ISIMIP)? Stating this explicitly would improve the value and readability of the manuscript. 

The methodology is not new. The analysed subset has been changed from the subset analysed in 
McSweeney and Jones (2016) by following the updated selection in ISIMIP. The added value of our 
manuscript is following, which have been added to P4 L2: 
 
(P4 L2) “The ability for the ISIMIP subset was not mentioned by MJ2016 and thus we investigated that 
in region-by-region. We analysed four GCMs selected in ISIMIP2b (unless specified otherwise, 
hereafter refers to as ISIMIP) here. Thus, discussion about the projections is also updated from MJ2016. 
The GCMs used in CORDEX have been assessed by region in previous studies, but are limited (e.g., 
Haensler et al. 2013 for Africa; Bartók et al. 2017 for Europe; Karmalkar 2018 for North America). 
Even simple assessment conducted is needed for the present CORDEX. Furthermore, uniform 
assessment across regions permits to discuss the difference of characteristics among the regions and the 
possibility of heterogeneous scenario as mentioned above. By using the subsets from the two programs, 
we can explore the difference between the original subset in CORDEX and the subset selected with 
assuming CORDEX CORE, which is helpful information for the model selection in CORDEX CORE.” 
 
From an additional analysis in this revision, we suggest that nine models are needed to solve the 
heterogeneity of the uncertainty. This result can provide suggestions to the next generations of model 
selections. 
 
(P9 L18) “The current CORDEX subsets can capture both uncertainties for temperature and 
precipitation in the regions with a relatively large ensemble. However, it is found that changing the 
number of models from the current CORDEX members to nine members can capture more than half of 
the full uncertainty in both projections of temperature and precipitation in more than 85% of all regions, 
with a possibility of 50%. Furthermore, the same is also shown as for the ISIMIP subset, but for 70% of 
all regions. Focusing on the uncertainty in the future projections, this result proposes that the current 
number of models need to be changed to discuss a similar uncertainty range among the regions.” 
 
□ Section 2.1 
3. P4 L. 18 Why focus on land area only? Regional precipitation, including over the seas/ocean, is 

relevant for impact studies. Please clearly state the scope (and the application) of this study. 
The impacts of climate change appear over the land and ocean as you mentioned. The reason why 
focusing on land is that the assessment sectors in ISIMIP are mainly over land, and it is important for 
both programs because of the relevance to human activities. We have added the sentence below: 
(P4, L18) “… we focused on the global land area, considering the importance for both programs because 
of the relevance to human activities.” 
 



4. P4 L. 22 Can you justify why you excluded low-precipitation models from the precipitation 
analysis? I understand these models significantly bias your ensemble but this undermines the stated 
aim of the study (i.e. to quantify the spread of the full CMIP5 ensemble covered by the ISIMIP and 
CORDEX subsets). You arbitrarily reduced the model spread covered in this study. Please at least 
provide more information as to how many models were excluded (and thus the size of your 
remaining ensemble), why 0.1mm/day was chosen as a threshold, and the reasoning to exclude these 
models from the precipitation study but to keep them for temperature (if the argument is that the 
climate they produce is too unrealistic to be a plausible representation of today’s climate). 

We have expressed the future change of precipitation as a change ratio of the future precipitation to the 
present-day precipitation. The expression, which has been often used, is highly sensitive in dry grids. 
Even if the change amount is quantitatively small, the ratio is extremely large. Such a large ratio leads 
to a large regional average. The large ratio by a small change in dry grids is difficult to explain the 
validity, and thus we took the dry grids out of consideration. The threshold can be permitted the 
exclusion of grids with the ratio of 100% over around the Sahara, and be suppressed the exclusion under 
5% of all analyzed grids. We added the following sentence to explain the exclusion: 
 
(P4, L22) “The future change of precipitation expressed in a ratio here. That is the change ratio tend to 
be large at too dry grid even when the change is quantitatively extreme small. Such a large ratio is 
difficult to explain its meanings physically. By applying the threshold, the grid indicating an extremely 
large ratio, for instance, 100% were excluded. The total number of the excluded grids is approximately 
5% of all target grids as an average over the used members.” 
 
5. P4 L. 32 Please include a definition of the skill score used here, or a reference to a published paper 

using the exact same skill score. In Taylor (2001), two examples of skill scores are used, to illustrate 
that the skill score can be adjusted depending on whether you value high correlation or matching 
the variability most. In addition, it is explicitly stated that the value of Ro should be reported every 
time a skill score is used. 

We appreciate your pointing out. The definition below has been added to P4, L32, 
 
(P4, L32) “… we used the skill score proposed by Taylor (2001) (hereafter referred to as skill score) as 
follows: 
S=4(1+R)/{(σ+σ-1)2(1+R0)}, (1) 
where R is the spatial correlation coefficient between referred observation and simulation, σ is the 
standard deviation of simulation normalized by the reference spatial pattern and R0 is the maximum 
correlation attainable. The value of R0 was assumed to 1 here.” 
 
6. P5 L5 Is R the min-max range of a given subset? Please clarify. Using ‘uncertainty range’ is 

misleading; it sounds like you are sampling your ensemble. If I understand correctly, you generate 
10,000 values of RSub, then look at ensemble spread (in Fig 4). 

The value, Rsub which we used here, is the max.-min. ranges of the uncertainty estimated from the 
ISIMIP subset, the CORDEX subset, or the 10,000 random subset samples from CMIPFull_Future. The 
corresponding parts have been modified as follows: 
 
(P5 L4) “The FRC from the regional averages (FRA) was defined as the fraction of the maximum-
minimum range of the uncertainty in the regional averaged projections from a subset of CMIPFull_Future 
(RSub) to the range from CMIPFull_Future (RFull), as follows: 
(Equation 2) 
The range of RSub was computed from the ISIMIP and CORDEX subsets and also arbitrary subset 
samples we generated. From the comparison with the arbitrary samples, we can investigate how well 
the ISIMIP and CORDEX subsets captured the uncertainty range of projections. McSweeney and Jones 
(2016) presented the comparison using their 500 samples as ‘representation’. Our arbitrary samples were 
generated by randomly selected n models without repetition from CMIPFull_Future 10,000 times, where n 
is the sample size of subsets in ISIMIP (n = 4) or CORDEX (n depends on the regions; see Table 1). 
Then, the variance of the FRA was estimated from the 10,000 random samples of the subset of 
CMIPFull_Future and compared with the FRA from the ISIMIP and CORDEX subsets.” 



 
□ Section 3 
7. This section is entitled ‘Results and Discussion’ but mostly contains the description of the results. 

Regardless of whether it is included in this section or a separate section, the manuscript needs a 
more comprehensive discussion (see other comments below). 

We have made an additional section in this revision for the discussions. Please check the responses 
below. 
 
□ Section 3.1 
8. P.5, L. 28-29 Please include the top 50% ensembles in the supplementary material, so that future 

model selection can rely on your analysis to select less biased models. 
We appreciate your constructive suggestion. We have added the high performance subsets as an 
supplementary material. The material has been refereed in P5, L19 (“The models included in the high 
performance subset is shown in Supplement 3.”). 
 
10. P5 L29-30 Can you suggest why the spread is different between the two ensembles over the 

Northern Hemisphere? In Fig.1, the spread for ISIMIP is sometimes significantly larger, sometimes 
significantly smaller than CORDEX. Could this be due to the number of models in CORDEX? Do 
some of the regions have models that overlap across ISIMIP and CORDEX? Simply stating that 
they are different in some regions is not very informative. 

We appreciate your accurate indication. As you pointed out, we have found that part of the characteristics 
of the difference in the spread has a relationship to the overlapping of model members used. The 
sentence has been modified and added more explanation: 
 
(P5 L29-30) “The difference in the spread between the ISIMIP and CORDEX subsets has a characteristic 
in region-by-region and part of them relates to the overlapping of model members used across ISIMIP 
and CORDEX. For example, in five regions of Central and South America, Europe, Africa and South 
Asia, the CORDEX subsets include more than three of four ISIMIP models and the ensemble is large in 
CORDEX than in ISIMIP (Supplement 1). As the result, the variance of biases estimated from the 
CORDEX subset covers that from the ISIMIP subset. Especially in Europe, the difference of the variance 
between the CORDEX and ISIMIP subsets is large and it is found that the models used in the CORDEX 
subset but not included in the ISIMIP subset make the variance increase. Focusing on the regions where 
the CORDEX subsets include only two models in the ISIMIP subset, the variance from the CORDEX 
subset tends to be larger than that from the ISIMIP subset, especially in the regions with large ensemble 
of the CORDEX subsets, like North America, SEA and Australasia. By contrast, the variance from the 
CORDEX subsets is relatively small in the regions with small ensemble of the CORDEX subsets, like 
MENA and Central Asia. In East Asia, the variance is small in CORDEX despite using seven models in 
contrast to four models in ISIMIP. Thus the biases from the seven models are almost same.” 
 
Also, we have modified the sentence about the spread of the temperature bias: 
 
(P6 L9-11) “The spread of B(T(ISIMIP)) is covered by that of B(T(CORDEX)) in the same four regions 
as the bias in the precipitation except for Europe, because of the overlapping of model members used. 
The spreads of B(T(ISIMIP)) and B(T(CORDEX)), however, resemble each other compared with the 
precipitation bias, indicating that CORDEX used models with a quantitatively similar performance to 
ISIMIP, despite using more models than ISIMIP except for Central Asia.” 
 
11. P6 L1-3 This paragraph would benefit from an earlier explanation about how the skill and bias 

metrics are different and the insight gained by using both. Include some interpretation of why the 
model ensembles that perform relatively well in a bias metric perform less well in the skill metric. 
(same comment for P6 L11) 

Thank you for your suggestion. The skill score quantifies the similarity of the spatial pattern by a 
correlation coefficient and a standard deviation. The bias evaluates the quantity itself by the regional 
average of the difference from the observation. Thus there is a case with large positive and negative 
biases in each grid even when the spatial average is small, that is to say, the spatial pattern is different 



from the observation. The ensemble showing a small bias and a low score represents the quantity closed 
to the observation as the spatial average but a low similarity of the pattern. Therefore both metrics are 
needed to assess how well the ensemble represents the reality. We have added the following sentences 
in each part: 
 
(P4, L32) “In addition to the skill score, we use the model bias to evaluate the quantity itself. The usage 
of the two metrics enables the assessment of both the spatial pattern and the quantity.” 
(P6, L2) “That is to say, ISIMIP and CORDEX subsets include the member showing a low similarity of 
the spatial pattern to the observation.” 
(P6, L11) “Therefore, relative to CMIPhighS, the subsets can quantitatively represent the observed 
temperature as a regional average well but the spatial pattern represented by some members in the 
subsets has not much resembled the observation.” 
 
12. P6, L. 15-16 Please include the top 50% ensembles in the supplementary material. In addition, 

please include in the discussion whether the ‘best performing models’ perform well both in 
temperature and precipitation, and whether selecting according to high skill or low bias makes a 
difference. As you state that a better ensemble can be selected, please give the evidence from your 
results that this can be done robustly. 

We appreciate your constructive suggestion. We have added the top 50% models as Supplement 3 
(Response #8). The comparison between the top 50% ensembles for the bias and skill score is interesting. 
From Supplement 3, when we focus on one variable of either temperature or precipitation, 13 models in 
25 all high-performance models are included in both subsets of high-performance models for the bias 
and skill score. Thus, the model with a small bias indicates a high score with 50% of the possibility. We 
have described this explanation to Section of discussion which we have added in this revision: 
 
(P8 L23) “Focusing on one variable of either temperature or precipitation, 13 models in 25 all high-
performance models are included in both subsets of high-performance models for the bias and skill score 
(Supplement 3). In addition to the two indices of bias and skill score for one variable, the number of 
models indicating the high performance for both two variables of temperature and precipitation is 0 at 
the minimum in Southeast Asia and the Arctic and 9 at the maximum in Africa. The averaged number 
over the regions is approximately 4. Therefore, although the model with a small bias indicates a high 
score with 50% of the possibility, it is difficult to select models with a high performance for both 
variables of temperature and precipitation.” 
 
In addition, explanation and discussion were not enough for the description of selecting a better 
ensemble. We have added the limitation. 
 
(P8 L23) “ … a much better model subset, regarding to biases and skill scores, can be selected with 
making use of the advantage of the small number of models. However, such a selection can be conducted 
when there are no constraints of data availability which was the main constraint to select the current 
subsets in ISIMIP and CORDEX and when we use one variable of either temperature or precipitation.” 
 
□ Section 3.2 
13. P6, L.25 Please place this into context by mentioning other studies that have looked at emergent 

constraints, even if it’s only in specific regions (e.g. Bracegirdle et al, 2018 for Southern Ocean 
winds; Bracegirdle and Stephenson 2013 for Arctic warming). 

As you noted, we have added related previous studies and modified the sentence, 
 

(P6 L25) “… suggesting that the bias and skill score are not good emergent constraints to reduce the 
uncertainty of ΔT in this study though the previous studies have showed the reduction of the uncertainty 
(e.g. Smith and Chandler 2010; Bracegirdle and Stephenson 2013; Bracegirdle et al., 2013; Simpson et 
al. 2016)” 
 
□ Section 3.3 
14. In general, this section is confusing. It would benefit from clearly stating what is being compared, 



and referring to specific aspects of Fig 4 to support your statements. Specifically: P8 L1-2: Please 
clarify which metric you use to make that statement (i.e. the total coverage on the y-axis). I got 
confused because the performance of FRACORDEX remains low compared to FRARandom_C, 
even as the number of models increases. Please state explicitly where you are comparing it to the 
full range, or to Random_C (3 sentences later). P8 L16: Please specify which FRA you are talking 
about: the median of FRARandom_C? Or FRACORDEX? Or both? P8 L19-22: This is an 
interesting point, but if you make the point that increasing the number of models produces a higher 
FRA, please show the evidence for it. The latter part of the description is unclear so adding the 
technical details and a figure would make a stronger point. 

We have modified each sentence you pointed out as what follows: 
 
(P8 L1-2) “A relatively high coverage, above ~50%, is shown on FRACORDEX for both changes of 
temperature and precipitation in eight regions when using nine models or more, except for temperature 
in Antarctica (Fig. 4a, b): that is to say, the CORDEX subset captures more than half of the range from 
CMIPFull_Future.” 
(P8 L16) “…and thus the large model ensemble results in an increase in FRACORDEX and FRARandom_C.” 
(P8 L19-22) We have added the figure for the change of FRA with the number of models not only in 
Central Asia but also in the other regions. Please check Figures 5 and 6. 
 
□ Summary and Conclusions 
15. This section provides a general summary of the findings, but would benefit from providing context 

as to how these results compared to other studies (e.g. those cited in the introduction), and how the 
findings advance the general understanding of the field. In addition, statements in P9 L4-5 and P9 
L 15-16 seems to indicate CORDEX performance to be bad relative to randomly selected ensembles, 
while P9 L8-9 states ‘relatively wide coverage of both uncertainties’. Please clarify so that the 
message is not ambiguous. For example, it is ok to state that CORDEX is not performing well 
compared to the randomly selected ensembles, but is marginally better than ISIMIP at sampling 
uncertainties in projected change in precipitation. 

 
Regarding the comparison with other studies, as mentioned in P7 L9, “... global consistent four models 
used in ISIMIP2b, which are taken into consideration of the ability of reproduction, still remains difficult 
to capture the uncertainties in regional precipitation change, as in McSweeney and Jones (2016) which 
analysed for five models in the fast track.” The result of assessing the CORDEX subset was not able to 
compare with other studies because of the difference in the variables, part of the regions and seasons. 
For results from an additional analysis conducted in this revision, we referred to the approach in 
McSweeney and Jones (2016) but the results couldn't compare each other. It is because “They focused 
on a subset covering the uncertainty in each grid most widely over the globe or regions and investigated 
how the coverage changes with the number of models. On the other hand, in this study, to consider 
making better use of the current subsets, we investigated how the coverage changes with changing the 
number of models from the current model members.” (Added to Section 3.3) 
 
Thanks for your suggestion on the ambiguous statement. We have added the following statement to P9 
L14 and have modified the statement on P9 L15-16. 
(P9 L14) “The CORDEX subset is not performing well compared to the randomly selected samples but 
is marginally better than ISIMIP at covering uncertainties in the projected change in precipitation when 
a large model ensemble used.” 
(P9 L15-16) “The region-specific model subset, like CORDEX, captures coverage of both uncertainties 
well compared to the global common subset, but large ensemble is needed.” 
 
16. Please include a more comprehensive discussion of your methods and results, including: 

Two metrics for “good performance” are used in parallel throughout the study (low bias and high 
skill score). Please comment as to how similar/distinct these two metrics are, and on the insights 
gained by using both (qualitatively or quantitatively). Similarly, how different are the ‘top 50%’ 
ensembles? i.e. does using skill or bias for selection of the best performing models significantly 
affect the ensemble? 



We appreciate your comments. 
First, how similar/distinct these two metrics are, and on the insights gained by using both? 
As described in Response #11, we can evaluate the abilities to represent the spatial pattern and the 
quantity itself by using the two metrics. How similar these two metrics are can be estimated by how 
many the models selected by each metric overlap. Because 13 models in 25 all high-performance models 
are included in both subsets of high-performance models for the bias and skill score, the similarity is 
not so high, around 50%. The number of overlapped models is described in Section of discussion added 
in this revision. (P8 L23) 
 
Second, how different are the ‘top 50%’ ensembles? 
How different are the top 50% ensembles have been shown in Response #11. Please check. The model 
with a small bias indicates a high score with 50% of the possibility. Thus a significant influence appears 
on the selected ensembles. 
 
17. The results section 3.1 focuses mostly on whether the ISIMIP and CORDEX fall within the 

observational spread (e.g. L. 2-3 on page 6). It would be helpful to distinguish whether this is mainly 
due to a large spread in the model ensembles, or whether a systematic bias is seen in certain regions 
(e.g. Fig 1 shows model ensembles overestimate precipitation in most regions). Also, please include 
a discussion of the expected variance of model ensembles. In coupled models, the timing of climate 
variability modes is unlikely to match that of observations, so the variance over a 20-year period is 
likely to be higher in model ensembles than observations. 

Here, the observational spread is the spread of the 20-year averaged precipitation calculated from seven 
observational datasets, not the variance over a specific period. Therefore we cannot discuss the different 
variance between the model and observations, resulted from the timing of climate variability. 
 
18. In this study, the performance of CORDEX and ISIMIP are considered independently for the 

temperature and precipitation changes (with precipitation being scaled by the temperature change). 
Please discuss whether there is any evidence that a selection on one variable (e.g. precipitation) is 
sufficient to select good performing models, or whether a combined approach is necessary to select 
models. In climate impacts, people care about the plausibility and diversity of climate sampled, not 
a single variable. 

We appreciate your important suggestion. In this revision, we confirmed a quite small number of models 
indicating a high performance for both principal variables of temperature and precipitation. In addition, 
we considered that the evaluation for the simulated principal variables is needed for the studies of 
ISIMIP and CORDEX, but not possibly sufficient for model selections. Because the large-scale 
circulation characterized the regional climate, its performance is also important. When we can obtain 
the reference data, the method used in this study can be applied to the evaluation of the performance. To 
select subsets in the next generations with the performance considered, it is necessary to construct a 
combined approach that can take into account multiple variables. We have described this explanation to 
Section of discussion which we have added: 
 
(P8 L23) “…Therefore, although the model with a small bias indicates a high score with 50% of the 
possibility, it is difficult to select models with a high performance at the quantity and the spatial pattern 
for both variables of temperature and precipitation. 
In this study, we assessed the current ISIMIP and CORDEX subsets to investigate whether the subset 
indicates small biases in the historical climatology and covers the uncertainty in the future projections 
widely using temperature and precipitation. Both variables are most frequently used in future projections 
and also weather forecasts. The evaluation for such a principal variable is important for the studies of 
ISIMIP and CORDEX. It should be noted, however, that ISIMIP needs the dataset with reasonable for 
multiple variables used in their impact assessment and with enable to discuss the uncertainty in the 
projections. CORDEX requires the dataset with based on a plausible mechanism of the climatology as 
the input data for RCMs. Thus, there is a possibility that a good subset which we presented based on the 
model performance for temperature and precipitation would be an option of their future subsets. 
Although ISIMIP and CORDEX have tight constraints for model selection at the present, both programs 
will select the subset showing a reasonable climate based on a plausible mechanism in the future. In the 



case, two variables of temperature and precipitation are not possibly sufficient for model selections. At 
least for the regional climatological studies and the assessment of its impact, it is important to reproduce 
large-scale circulations which characterize the regional climate. Especially, the spatial pattern of 
precipitation depends on the accuracy of the circulation. Indeed, model change in ISIMIP from the fast 
track to ISIMIP2b has already been performed with a consideration of the ability to reproduce ENSO 
and monsoon (Frieler et al. 2017). The evaluation method used in this study can be applied to the other 
variables when we can obtain the reference data. For instance, Taylor's skill score which we used to 
evaluate the pattern of temperature and precipitation can also apply to the pattern of circulation. 
However, as more variables and evaluation indices are employed, it is more difficult to obtain the CMIP5 
models with high accuracy as described above. 
It is preferable to select subsets in the next generations based on a combined approach that can consider 
not only the ability to reproduce the principal variables of temperature and precipitation but also the 
other ones which are also important to characterize the regional climate. Construction of such an 
approach would be one of the important tasks for both programs.” 
 
In addition, we described the following sentence to Summary: 
 
(P9 L18) “In this study, we have assessed the subsets using the principal variables of temperature and 
precipitation. It is not sufficient for selecting subsets in the next generations. We suggest that it is 
preferable a combined approach that can consider the ability not only for temperature and precipitation 
but also for the other ones which are also important to characterize the regional climate. Construction 
of such an approach would be urgently demanded for both programs.” 
 
--- Technical corrections 
P1 L18 (and after) High performed models -> high performance models or high-fidelity models 
We have modified them as the referee mentioned. Thanks. 
 
P1 L20-25 Please rework this section to clarify the meaning. As you have not previously introduced the 
10,000 sampling strategy, these two sentences are confusing. 
I am sorry for the confusing. The section has been rephrased, 
“Compared with the randomly selected 10,000 arbitrary subset samples, the CORDEX subset shows 
low coverage of the uncertainty for the temperature change projections in some regions, and the ISIMIP 
subset high coverage in all regions. On the other hand, for the precipitation change projections, the 
CORDEX subsets show lower coverage in half of the regions than the arbitrary subsets, but tend to 
cover the uncertainty wider than the ISIMIP subset.” 
 
P2 L33 Please rephrase this sentence for better readability. For example: “In addition, paper X and Y 
showed that combining region-specific subsets covers more uncertainty than a single, globally 
consistent, subset of models.” 
The sentence has been rephrased as follows: 
“They also illuminated that region-specific subsets generally cover more the uncertainty than globally 
consistent subsets in 26 global regions.” 
 
P5, L11 Please rephrase that last sentence for readability. 
The sentence has been rephrased as follows: 
“Then, the variance of the FRA was estimated from the 10,000 random subset samples of CMIPFull_Future 
and compared with the FRA from the ISIMIP and CORDEX subsets.” 
 
P7, L9-12 This sentence needs to be reworked for readability. 
The sentence has been rephrased as follows: 
“Therefore, the subset of four models used in ISIMIP2b shows the difficulty of capturing the 
uncertainties in regional precipitation change. This result is the same as stated using the subset of five 
models used in the fast track of ISIMIP discussed by MJ2016, despite two of the five models changed.” 
 
P7, L15 “with those of the 10,000” -> remove “the” 



We have modified them as the referee mentioned. Thanks. 
 
P7 L16 “randomly sampled subsets” of what? 
We have rephrased to “randomly samples subsets of CMIPFull_Future”. 
 
P9 L17 Be more specific: ‘it depends on the number of models used’ is too vague to be informative -> 
“FRA increases with the number of models used”, or “regions covered by bigger ensembles generally 
have higher FRA”. . . 
We agree with the comments. The sentence has been modified to “large model ensemble is needed”. 
 
P13 L8 “areal mean of the reference data” -> normalized by the regional average of GPCC data. 
We appreciate your revised. We have modified the sentence as you mentioned. 
 
P14 Figure 2 Why does Antarctica have no top 50% in temperature? Explain that somewhere (main text 
or figure caption). 
We apologize for missing the explanation. The reference data of temperature does not cover the 
Antarctica, and thus we cannot indicate the results for the top 50%. We have added the sentence below 
in the caption of Figure 2 and also Supplement 4. 
“The top 50% of the CMIP5 models cannot be plotted over Antarctica because of missing the CRU 
reference data.” 
 
P16 Figure 4 “uncertainty range” -> range Also, why are red dots missing in some regions in Fig 4a? 
We have changed to “range”. Red dots look missing because the dots overlap where the coverage is the 
same between ISIMIP (blue dot) and CORDEX (red dot). “The ISIMIP and CORDEX coverages in (a) 
overlaps in MENA, N. America and Africa.” is added to the caption. 
 
-------------------------- 
We have revised our manuscript to address comments from Anonymous Reviewer #2. 
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Abstract. Two international projects, ISIMIP (Inter-sectoral Impact Model Inter-comparison Project) and CORDEX 

(Coordinated Regional Climate Downscaling Experiment), have been established to assess the impacts of global climate 

change and improve our understanding of regional climate, respectively. Model selection from the GCMs (general circulation 10 

models) within CMIP5 (fifth phase of the Coupled Model Inter-comparison Project) was conducted by the different approaches 

for each project: one is a globally consistent model subset used in ISIMIP and another is a region-specific model subset for 

each region of interest used in CORDEX. We evaluated the ability to reproduce the regional climatological state by comparing 

the subsets with the full set of CMIP5 multimodel ensemble. We also investigated how well the subsets captured the uncertainty 

in the climate change projected by the full set, to provide increased credibility for the scientific outcomes from each project. 15 

The spreads of the biases and Taylor’s skill scores from the ISIMIP and CORDEX subsets are smaller than that from the full 

set for the regional means of surface air temperature and precipitation. However, the spreads in ISIMIP and CORDEX extend 

beyond the spreads from high performed performance models from full set, despite using a small number of models. It was 

shown that better subsets exist that would have smaller biases and/or higher scores than the current subset. The ISIMIP subset 

captures the uncertainty range of the regional mean of temperature change projections by the full set better than the CORDEX 20 

subsets in 10 of 14 terrestrial regions worldwide. Compared with the randomly selected 10,000 arbitrary subset samples, the 

CORDEX subset shows low coverage of the uncertainty for the temperature change projections in some regions, and the 

ISIMIP subset high coverage in all regions. On the other hand, for the precipitation change projections, the CORDEX subsets 

show lower coverage in half of the regions than the arbitrary subsets, but tend to cover the uncertainty wider than the ISIMIP 

subset. In the regions where CORDEX used nine models or more, good coverage (>50%) is evident for the projections of both 25 

temperature and precipitation. The globally consistent model subset used in ISIMIP could have difficulty in capturing 

uncertainties in the regional precipitation change projections, whereas it widely covers uncertainties in the temperature change 

projections. The region-specific model subset, like CORDEX, can cover the uncertainties in both temperature and precipitation 

changes well compared to the global common subset, but a large number of models is needed. By changing the number of 

models from the current ensemble members to at least nine members, high coverage for both uncertainties can be also obtained 30 

in the other regions and this information would help model selections in the next generations. 
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1 Introduction 

A global dataset of climate change projections has been generated by the Coupled Model Inter-comparison Projects (CMIP). 

Using this dataset, numerous climatological studies have been in progress to advance our understanding of the increasingly 

severe problems associated with climate change. Regarding regional climate change, dynamical and statistical downscaling 

experiments have been conducted to create high-resolution climate products derived from the global CMIP dataset via a 5 

regional climate model. In addition, impact studies and examinations of adaptation planning have progressed in close parallel 

with the climate studies, using those climate products at both global and regional scales. 

When we conduct an impact assessment of climate change and consider possible adaptation or mitigation measures, the 

information regarding the largest potential change in the climate is required to consider the most severe states of climate change, 

in addition to information regarding how the climate changes on average. Although the CMIP multiple global climate model 10 

(GCM) ensemble is the ensemble of opportunity and do not necessarily represent the full uncertainty in the climate projections 

(Knutti 2010), they are useful for investigating the uncertainty in the future projections. By using the climate projections from 

the CMIP ensemble, it is at least possible to examine the maximum−minimum climate change scenarios within the ensemble. 

Although it is desirable to use GCMs as much as possible, due to limitations in computing resources, relatively small subsets 

of the models are generally used in regional downscaling studies and impact assessments. The subset is selected under the 15 

conditions that the simulation accuracy is better for the climatological state of interest or the data required for the study is 

readily available. Methods of specifying the best subset, based on the accuracy of the historical climate simulations and/or 

capturing the possible maximum range in the variation of projections among the models (hereafter uncertainty), have been 

proposed (Reichler and Kim 2008; Cannon 2015; Mendlik and Gobiet 2016). The optimum method, however, remains to be 

determined because the interests depend on the studies, for instance, how the model performance is considered, which 20 

climatological or extreme variables are used and which region is interested. When the sample size of a subset is limited, 

appropriate strategies are necessary to select subsets of GCMs that have smaller biases in the historical climate simulations 

and cover the widest possible uncertainty range of future projections. Without such a strategy, we might erroneously interpret 

the information regarding climate change and impact assessment obtained from the subsets. 

The inter-sectoral impact model inter-comparison project (ISIMIP; https://www.isimip.org) was designed as a framework to 25 

assess the impacts of climate change in different sectors and at different scales (Schellnhuber et al. 2014). This project used 

consistent climate and socio-economic input data to multiple impact models. Five GCMs were selected in the fast track of 

ISIMIP: HadGEM2-ES, GFDL-ESM2, IPSL-CM5A-LR, MIROC-ESM-CHEM, and NorESM1-M. The main selection 

condition was that the climate data generated by the models was available at the relevant stage of the project, with the attempt 

of broadly capturing the global change in surface air temperature (hereafter referred to as ‘temperature’ for simplicity) and 30 

precipitation (Warszawski et al. 2014; ISIMIP protocol 2018). After that, the five GCMs had been changed to four GCMs in 

the next round simulations (ISIMIP2b; Frieler et al. 2017) because of a lack of wind data for NorESM1-M and a higher 

horizontal resolution and the better representation of various fields (e.g., El Niño–Southern Oscillation and the monsoon) in 
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MIROC5 than in MIROC-ESM-CHEM. A feature of the uncertainty range identified from the five GCMs in the fast track was 

investigated in detail by McSweeney and Jones (2016) (hereafter MJ2016), who indicated that the subset covers the uncertainty 

in the projected changes in the temperature and precipitation expressed from 36 CMIP5 GCMs wider than the other five-GCM 

subsets which were randomly sampled. In addition, a higher coverage of the uncertainty range had been shown to appear as 

an average of 26 global regions, in region-specific subsets than in globally consistent subsets which are consistent with the 5 

aim of ISIMIP. They also illuminated that region-specific subsets generally cover more the uncertainty than globally consistent 

subsets in 26 global regions. 

One subset of GCMs was globally used in ISIMIP, but in the coordinated regional climate downscaling experiment (CORDEX; 

http://www.cordex.org) project, a GCM subset was selected for each defined region to generate a regional climate dataset for 

climate studies and impact assessments (Giorgi et al. 2009; Giorgi and Gutowski 2015). Fourteen regions of interest were 10 

defined and subsets of between 3 and 15 GCMs were used for each region. The conditions required here were that input data 

to a regional climate model (RCM) were available and easily acquired, and they also tended to select GCMs that were 

developed at the institute located in the region of interest. The advantage of CORDEX is that it enables a regional climate 

assessment using a dataset from ‘optimal’ multi-GCMs and multi-RCMs for the region of interest. Meanwhile, However, 

Gutowski et al. (2016) pointed out as one of the problems in the first phase of CORDEX that the different models, especially 15 

the number of models, among the regions make difficulty to provide the consistent climate scenario among their regions. 

Therefore, in the next generation of CORDEX to be included in the sixth phase of CMIP, they have an intention to downscale 

projections from a core set of GCMs as a minimum model set that is common across the regions, similar to the approach in 

ISIMIP (CORDEX CORE; Gutowski et al. 2016). 

A globally consistent GCM subset will facilitate discussion of climate change and its impacts beyond regional divisions. 20 

However, it is unclear whether the globally consistent subset adequately represents the phenomena that characterize the climate 

in the region of interest. In particular, the spatial pattern of a projected change in precipitation is strongly dependent on the 

GCMs selected (Giorgi and Gutowski 2015; McSweeney et al. 2015). Therefore, the possibility of insufficiently capturing the 

regional climate change and its valid uncertainty could be increased, as noted by MJ2016. In contrast, a region-specific GCM 

subset can include GCMs which more precisely reproduce the target regional climate (McSweeney et al. 2015). However, it 25 

does not enable discussions about the difference among regions and the interaction of impacts across the regions. Although 

there are advantages to both approaches to select a subset, it is necessary that we understand the characteristics of the current 

subsets selected using the approaches of the ongoing projects if we are to improve the process in the next generations of the 

projects. 

In this study, we assessed the current subsets of CMIP5 multi-GCM ensemble being used in ISIMIP and CORDEX by 30 

clarifying the climatological characteristics expressed by each subset, which is an important aspect for increasing the credibility 

of the scientific outcomes from each project. By comparing the simulations of the subsets and also the full set of the multi-

GCM ensemble with observed data, we evaluated their ability to reproduce the historical climate (i.e., model performance). 

We also compared the projected change of climate between the subsets and the full set, and clarified how extent the uncertainty 
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in the projections obtained from the subsets covers the uncertainty from the full set. In addition, with reference to McSweeney 

and Jones (2016), we also explored whether the subset used was able to capture the uncertainty from the full set more widely 

than the other model subsets when using the same sample size. Although the five GCMs analysed by McSweeney and Jones 

(2016) were selected in the fast track of ISIMIP, this has been changed to four GCMs in the next round of the ISIMIP 

simulations (ISIMIP2b; Frieler et al. 2017). Frieler et al. (2017) explained that NorESM1-M was removed from the five GCMs 5 

because of a lack of near-surface wind data, and MIROC-ESM-CHEM was changed to MIROC5 because of the horizontal 

resolution and improvements in the representation of various fields (e.g., El Niño–Southern Oscillation and the monsoon) in 

the historical experiments. Therefore, we used the four GCMs from ISIMIP2b here, and ISIMIP refers to ISIMIP2b hereafter 

unless specified otherwise. 

In this study, we assessed the current subsets of CMIP5 multi-GCM ensemble being used in ISIMIP and CORDEX by 10 

clarifying the climatological characteristics expressed by each subset from two points of view: how high the ability to 

reproduce the historical climate is (i.e., model performance) and how extent the uncertainty in the projections obtained from 

the subsets covers the uncertainty from the full set. We examined temperature and precipitation climatologies in a simple 

method, but the clarification of characteristics is important for understanding the basic nature of dataset and increasing the 

credibility of the scientific outcomes from each project. In addition, with reference to MJ2016, we also explored whether the 15 

subset used was able to capture the uncertainty from the full set more widely than the other model subsets when using the same 

sample size. 

The ability for the ISIMIP subset was not mentioned by MJ2016 and thus we investigated that in region-by-region. We 

analysed four GCMs selected in ISIMIP2b (unless specified otherwise, hereafter refers to as ISIMIP) here. Thus, discussion 

about the projections is also updated from MJ2016. The GCMs used in CORDEX have been assessed by region in previous 20 

studies, but are limited (e.g., Haensler et al. 2013 for Africa; Bartók et al. 2017 for Europe; Karmalkar 2018 for North America). 

Even simple assessment conducted is needed for the present CORDEX. Furthermore, uniform assessment across regions 

permits to discuss the difference of characteristics among the regions and the possibility of heterogeneous scenario as 

mentioned above. By using the subsets from the two programs, we can explore the difference between the original subset in 

CORDEX and the subset selected with assuming CORDEX CORE, which is helpful information for the model selection in 25 

CORDEX CORE. 

2 Data and Methods 

2.1 Dataset 

We analysed the historical runs of 50 atmosphere–ocean GCMs (AOGCMs) and the Representative Concentration Pathways 

(RCP) 8.5 scenario runs of 42 AOGCMs participating in CMIP5 (Taylor et al. 2012). A single ensemble member, r1i1p1, was 30 

selected for each model, except for CESM1-WACCM (r2i1p1), CSIRO-Mk3L-1-2 (r1i2p1) and EC-EARTH (r8i1p1). It is 

because the member, r1i1p1, of CESM1-WACCM and CSIRO-Mk3L-1-2 were not available and temperature change from 
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r1i1p1 of EC-EARTH was over two-standard deviation of the changes from the 42 models in more than 60% of our target 

regions. In the followings, the full set of the multi-GCM ensemble indicates the 50 historical runs when we assessed the ability 

to reproduce the historical climate (CMIPFull_Hist), while does the 42 future projections which are estimated from both historical 

and rcp85 runs when we discussed the future projections (CMIPFull_Future). 

We compared the simulations of the subsets of GCMs used in ISIMIP and CORDEX with the full ensemble. ISIMIP used four 5 

GCMs for their various impact assessments: GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and MIROC5 (Frieler et al. 

2017). On the other hand, CORDEX used the subset in which the combination of GCMs were altered for each defined region. 

The number of GCMs used in each of the defined regions is listed in Table 1, and each GCM is listed in Supplement 1. The 

regional classification used to investigate the regional performance and the projection was based on the classification in 

CORDEX shown in Supplement 2. In this study, we focused on global land area only, considering the importance for both 10 

programs because of the relevance to human activities. 

The analysis periods were the year 1986–2005 (but 1985–2004 for HadGEM2-CC and HadGEM2-ES) for the historical runs 

and the year 2081–2100 (but 2080–2099 for MRI-AGCM60 and CESM1-WACCM) for the RCP8.5 runs. Monthly mean 

temperature and precipitation data over these periods were interpolated onto a 2.5° × 2.5° grid for each model. ‘Too dry’ grids 

(then mean precipitation are < 0.1 mm/day in each member) were excluded from the analyses using precipitation. The future 15 

change of precipitation expressed in a ratio here. That is the change ratio tends to be large at too dry grid even when the change 

is quantitatively extreme small. Such a large ratio is difficult to explain its meanings physically. By applying the threshold, the 

grid indicating an extremely large ratio, for instance, 100% were excluded. The total number of the excluded grids is 

approximately 5% of all target grids as an average over the used members. 

To validate the model representations, we compared the simulated estimates with the observed datasets. With respect to 20 

precipitation, Sun et al. (2018) highlighted differences among the observational datasets. Consequently, to avoid a misreading 

of the model performance due to such discrepancies, we used multi-precipitation products that covered the global land area 

over the period of interest. The observation products were the Climatic Research Unit Timeseries (CRU) v.4.01 (Harris et al. 

2014) for temperature and precipitation, and the following for precipitation only: the global unified gauge-based analysis by 

NOAA Climate Prediction Center (CPC) v.1.0 (Xie et al. 2010), the Global Precipitation Climatology Centre (GPCC) full data 25 

reanalysis v.7.0 (Schneider et al. 2016), NOAA’s Precipitation reconstruction over Land (PRECL) v.1.0 (Chen et al. 2002), 

the CPC Merged Analysis of Precipitation (CMAP; Xie and Arkin, 1997), the Global Precipitation Climatology Project 

(GPCP) v.2.2 (Huffman et al. 2015), and the Multi-Source Weighted-Ensemble Precipitation (MSWEP) v2.1 (Beck et al. 2019). 

To quantify the ability to reproduce spatial patterns of the observations, we used the skill score proposed by Taylor (2001) 

(hereafter referred to as skill score) as follows: 30 

S=4(1+R)/{(σ+σ-1)2(1+R0)},                                                                                                                               (1) 

where R is the spatial correlation coefficient between referred observation and simulation, σ is the standard deviation of 

simulation normalized by the reference spatial pattern and R0 is the maximum correlation attainable. The value of R0 was 
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assumed to 1 here. In addition to the skill score, we use the model bias to evaluate the quantity itself. The usage of the two 

metrics enables the assessment of both the spatial pattern and the quantity. 

2.2 Coverage of uncertainty and random selection 

Coverage was estimated from a comparison between the full uncertainty range of the projections made by two model sets, 

which was defined by McSweeney et al. (2015) as a fractional range coverage, FRC. In this study, we computed the regionally 5 

averaged projections for each model, and then the FRC were estimated using the regional averages for each model. The FRC 

from the regional averages (FRA) was defined as the fraction of the uncertainty range of the regionally averaged projections 

obtained from each model subset (RSub) to the range from CMIPFull_Future (RFull), as follows: The FRC from the regional 

averages (FRA) was defined as the fraction of the maximum−minimum range of the uncertainty in the regional averaged 

projections from a subset of CMIPFull_Future (RSub) to the range from CMIPFull_Future (RFull), as follows: 10 

FRA= RSub
RFull

.             (2) 

To investigate how well the model subsets used in ISIMIP and CORDEX captured the uncertainty range of projections 

compared with the other arbitrary subsets, which McSweeney and Jones (2016) presented as ‘representation’, we randomly 

selected n models without repetition from CMIPFull_Future 10,000 times, where n is the sample size of subsets in ISIMIP (n 

= 4) or CORDEX (n depends on the regions; see Table 1). Then, the 10,000 of RSub values and the spread from the 10,000 of 15 

the FRA were estimated from the samples. The range of RSub was computed from the ISIMIP and CORDEX subsets and also 

arbitrary subset samples we generated. From the comparison with the arbitrary samples, we can investigate how well the 

ISIMIP and CORDEX subsets captured the uncertainty range of projections. MJ2016 presented the comparison using their 

500 samples as ‘representation’. Our arbitrary samples were generated by randomly selected n models without repetition from 

CMIPFull_Future 10,000 times, where n is the sample size of subsets in ISIMIP (n = 4) or CORDEX (n depends on the regions; 20 

see Table 1). Then, the variance of the FRA was estimated from the 10,000 random subset samples of CMIPFull_Future and 

compared with the FRA from the ISIMIP and CORDEX subsets. 

3 Results and discussion 

3.1 Performance in reproducing historical climate 

Using model biases and skill scores, we evaluated the historical climate reproduced by the GCM subsets used in ISIMIP and 25 

CORDEX. The GCM subsets used in ISIMIP and CORDEX are hereafter referred to as the ISIMIP subsets and CORDEX 

subsets, respectively. For the evaluations, we also used two high performed performance subsets: one is composed of models 

with lower bias than the 50th percentile (median) of the CMIPFull_Hist biases: the other is models with higher skill score than 

the median of the CMIPFull_Hist scores (referred to CMIPlowB and CMIPhighS, respectively). The models included in the high 
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performance subset is shown in Supplement 3. B(v(E)) and S(v(E)) indicate the regional mean biases and skill scores for 

variable v and ensemble subset E, respectively. 

Figure 1 shows the model bias associated with the annual mean precipitation in the 14 CORDEX regions over a 20-year period. 

Compared with the maximum values of B(P(CMIPFull_Hist)) for the precipitation (v=P), the maximum values of B(P(ISIMIP)) 

and B(P(CORDEX)) are clearly small, especially in the Mediterranean (MED), Southeast Asia (SEA), and the polar regions. 5 

The spreads of B(P(ISIMIP)) and B(P(CORDEX)) in MED are within the spread of the discrepancy among the observations, 

which suggests that the model selection works effectively to select models with high ability to reproduce the observed regional 

mean precipitation quantitatively. However, compared with the high performed performance subsets, some models in the 

ISIMIP and CORDEX subsets have a bias exceeding the maximum values of B(P(CMIPlowB)), or B(P(CMIPhighS)) in some 

regions, despite the small number of models used in ISIMIP and CORDEX. Therefore, our results indicate that less bias models 10 

could be selected than those currently being used. The difference in the spread between the ISIMIP and CORDEX subsets is 

large in the high- and mid- latitude Northern Hemisphere regions, regardless of the number of models. The difference in the 

spread between the ISIMIP and CORDEX subsets has a characteristic in region-by-region and part of them relates to the 

overlapping of model members used across ISIMIP and CORDEX. For example, in five regions of Central and South America, 

Europe, Africa and South Asia, the CORDEX subsets include more than three of four ISIMIP models and the ensemble is 15 

large in CORDEX than in ISIMIP (Supplement 1). As the result, the variance of biases estimated from the CORDEX subset 

covers that from the ISIMIP subset. Especially in Europe, the difference of the variance between the CORDEX and ISIMIP 

subsets is large and it is found that the models used in the CORDEX subset but not included in the ISIMIP subset make the 

variance increase. Focusing on the regions where the CORDEX subsets include only two models in the ISIMIP subset, the 

variance from the CORDEX subset tends to be larger than that from the ISIMIP subset, especially in the regions with large 20 

ensemble of the CORDEX subsets, like North America, SEA and Australasia. By contrast, the variance from the CORDEX 

subsets is relatively small in the regions with small ensemble of the CORDEX subsets, like MENA and Central Asia. In East 

Asia, the variance is small in CORDEX despite using seven models in contrast to four models in ISIMIP. Thus the biases from 

the seven models are almost same. 

With respect to the spatial pattern of the annual mean precipitation, ISIMIP and CORDEX incorporate some models with a 25 

worse score than the minimum value of S(P(CMIPhighS)) (Supplement 3). That is to say, ISIMIP and CORDEX subsets include 

the member showing a low similarity of the spatial pattern to the observation. S(P(ISIMIP)) and S(P(CORDEX)) fall within 

the observational spread only in the Arctic. 

We also assessed model performance for the annual mean temperature (v=T). The spread of B(T(CMIPFull_Hist)) is greater in 

the high- and mid-latitude Northern Hemisphere regions than in the low-latitude Northern and Southern hemisphere regions, 30 

which would be related to the magnitude of seasonal variability (Supplement 4). The same spatial pattern of spread is also 

evident in B(T(ISIMIP)) and B(T(CORDEX)). The maximum values of B(T(ISIMIP)) and B(T(CORDEX)) are smaller, or 

equal to the maximum value of B(T(CMIPhighS)) (except for the CORDEX subsets in East Asia and North America), but are 

larger than the maximum value of B(T(CMIPlowB)). The spreads of B(T(ISIMIP)) and B(T(CORDEX)) are similar, indicating 
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that CORDEX used models with a similar performance to ISIMIP, despite using more models than ISIMIP (except for Central 

Asia). The spread of B(T(ISIMIP)) is covered by that of B(T(CORDEX)) in the same four regions as the bias in the 

precipitation except for Europe, because of the overlapping of model members used. The spreads of B(T(ISIMIP)) and 

B(T(CORDEX)), however, resemble each other compared with the precipitation bias, indicating that CORDEX used models 

with a quantitatively similar performance to ISIMIP, despite using more models than ISIMIP except for Central Asia. Both 5 

subsets included models with a worse score than the minimum value of S(T(CMIPhighS)) in 85% of the regions (Supplement 

5). Therefore, relative to CMIPhighS, the subsets can quantitatively represent the observed temperature as a regional average 

well but the spatial pattern represented by some members in the subsets has not much resembled the observation. 

Even though the model selections conducted in ISIMIP and CORDEX narrow the spreads of model bias and the score from 

CMIPFull_Hist, the largest bias and the worst score from the ISIMIP and CORDEX subsets distribute beyond the biases and the 10 

scores from high performed performance models in the full set. Therefore, a much better model subset, regarding to biases and 

skill scores, can be selected with making use of the advantage of the small number of models. 

3.2 Uncertainty range of the projected changes in annual mean temperature and precipitation 

Future projections obtained from the ISIMIP and CORDEX subsets were compared with those from the full set, and also from 

high performed performance models, as with the evaluations in Section 3.1. Because the small biases or high skill scores 15 

models used in this section are composed of the models included in CMIPFull_Future, we refer as CMIP¢lowB and CMIP¢highS instead 

of CMIPlowB and CMIPhighS. Projected change of annual mean temperature and precipitation are designated by ΔT(E) and ΔP(E), 

respectively. 

Figure 2 shows the uncertainty range of the projected increments of the temperature for each GCM subset. Although ISIMIP 

used fewer models than CORDEX, the uncertainty range of ΔT(ISIMIP) exceeds that of ΔT(CORDEX) except for South Asia, 20 

Australasia, South America, and Central America. The uncertainty ranges of ΔT(CMIP¢lowB) and ΔT(CMIP¢highS) broadly cover 

the range of ΔT(CMIPFull_Future), suggesting that the bias and skill score are not good emergent constraints to reduce the 

uncertainty of ΔT in this study though the previous studies have showed the reduction of the uncertainty (e.g. Smith and 

Chandler 2010; Bracegirdle and Stephenson 2013; Bracegirdle et al. 2013; Simpson et al. 2016). 

The uncertainty range associated with the projected change in annual precipitation is shown in Fig. 3. Compared with ΔT in 25 

Fig. 2, model selection has a large impact on the reduction of the uncertainty in ΔP, as was also found by MJ2016 using five 

GCMs used in the fast track of ISIMIP. The subsets of ΔP(CMIP¢lowB) and ΔP(CMIP¢highS) cover 70% and 60% of the full range 

of uncertainty from CMIPFull_Future as the average over 14 regions, respectively, with totally covering the full range in 

Australasia (yellow and orange plots in Fig. 3). The largest difference between the coverages from ΔP(CMIP¢lowB) and 

ΔP(CMIP¢highS) appears in East Asia. Therefore, we need to pay attention that, when the model performance is the condition to 30 

select subsets, the uncertainty changes depending on which evaluation index are used, like at least the bias or the skill score. 

The CORDEX subsets capture more than 50% of the full range in eight regions (Europe, MED, Africa, SEA, Australasia, 



9 
 

Central America, South America and the Antarctica). On the other hand, the ISIMIP subsets capture the full range less than 

60% in all regions. In 11 regions, the CORDEX subsets capture the wider range than the ISIMIP subsets, differing from broad 

coverage by the ISIMIP subset for ΔT as seen in Fig. 2. Therefore, the subset of four models used in ISIMIP2b shows the 

difficulty of capturing the uncertainties in regional precipitation change. This result is the same as stated using the subset of 

five models used in the fast track of ISIMIP discussed by MJ2016, despite two of the five models changed. 5 

The uncertainty range is narrowed by using the subsets, but the interquartile range of ΔP(CORDEX), IQR(ΔP(CORDEX)), 

shows a high coincidence with the IQR(ΔP(CMIPFull_Future)), as well as with the IQR(ΔP(CMIP¢lowB)) and IQR(ΔP(CMIP¢highS)). 

The maximum−minimum range of ΔP(ISIMIP) also captures the IQR(ΔP(CMIPFull_Future)). Therefore, the CORDEX and 

ISIMIP subsets can capture the average tendency of the change projected by the 25th to 75th percentile of CMIPFull_Future. In 

addition, the median of the uncertainty range is similar between the CORDEX subset and CMIPFull_Future. Only in Central Asia 10 

does the maximum−minimum range of ΔP(CORDEX) extend below the 25th percentile of ΔP(CMIPFull_Future) and, in contrast, 

the maximum−minimum range of ΔP(ISIMIP) covers the IQR(ΔP(CMIPFull_Future)). Thus, three models of the CORDEX subset 

in Central Asia cannot capture the average tendency of the change projected by CMIPFull_Future, despite being able to select 

suitable models to discuss the climate change in Central Asia, differing from ISIMIP. 

3.3 Comparison of uncertainty of the projected changes using randomly sampled models 15 

We investigated whether the ISIMIP or CORDEX subsets were more suitable for capturing the uncertainty range obtained 

from CMIPFull_Future by comparing the fractional coverage of uncertainty, FRA, of each subset with those of 10,000 randomly 

sampled subsets of CMIPFull_Future. As the result, the ISIMIP subset (four models) shows high coverage for the temperature 

change in all regions compared with the random samples. By contrast, the CORDEX subset yields relatively wide coverage 

for the temperature and precipitation changes, but this depends on the number of models used. 20 

Figure 4 illustrates FRA of the ISIMIP and CORDEX subsets (referred to FRAISIMIP and FRACORDEX, respectively) in each 

region. Along the x-axis, the name of regions is arranged in ascending order of the number of models used in CORDEX. The 

number of models used in CORDEX is indicated in each parenthesis after the name, and by contrast, the number in ISIMIP is 

four in all regions. The y-axis indicates FRA of the uncertainty from each subset relative to that from the full set. The bar 

presents distribution of the FRA values obtained from the possible 10,000 random samples (FRARandom). The blue bar means 25 

the distribution using the subsets with four models (FRARandom_I), as large as the ISIMIP subset, and the red bar means that 

with the same number of models used in CORDEX (FRARandom_C). Both ends of the bar indicate the lowest and highest values 

of FRA, and both ends of the bar with a dark color and horizontal line in the bar denotes the 25th and 75th percentiles and the 

median, respectively. 

For the temperature change, ΔT, FRAISIMIP and FRACORDEX (blue and red dots, respectively) exceed 60% in 13 and 10 regions, 30 

respectively (Fig. 4a). However, FRACORDEX locates around the 25th percentile or less of FRARandom_C (the bottom of dark red 

bar) in MED, East Asia, SEA, Europe, and the polar regions where FRACORDEX is lower than FRAISIMIP. In the region with 

larger model ensemble in CORDEX, FRACORDEX tends to be less than the median of FRARandom_C (horizontal red line). On the 
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other hand, FRAISIMIP is typically around the 75th percentile (the top of dark blue bar) or higher than the median (horizontal 

blue line) of FRARandom_I for all regions. 

A relatively high coverage, above ~50%, is shown on FRACORDEX for both changes of temperature and precipitation in eight 

regions when using nine models or more, except for temperature in Antarctica (Fig. 4a, b): that is to say, the CORDEX subset 

captures more than half of the range from CMIPFull_Future. The value of FRACORDEX for ΔP is lower than that for ΔT. A high 5 

coverage of more than 70%, however, can be gained by the CORDEX subset for ΔP in MED, South America, Europe, 

Australasia and Africa, which also indicates a high coverage compared with the median of FRARandom_C (except for Europe) 

(Fig. 4b). In half of the regions, FRACORDEX are in the range of the 25th percentile or less of FRARandom_C (four regions of Asia, 

MENA, the Arctic, and North America). In Central and East Asia, and North America of these regions, FRACORDEX is smaller 

than FRAISIMIP, even though CORDEX has the advantages of selecting suitable models for the region and also more models 10 

can be used, especially in East Asia and North America. The ISIMIP subsets in Antarctica and Australasia show a larger 

coverage than the 75th percentile of FRARandom_I, but the FRAISIMIP of 60% is less than that for ΔT. In more than 60% of all 

regions, FRAISIMIP is less than the median of FRARandom_I; the averaged FRAISIMIP over all regions is 33%. 

From the FRA distributions estimated from the possible random samples regarding to both changes, ΔT and ΔP, the IQR of 

FRARandom_C itself rises toward a FRA of 100% as larger model ensemble are used. When random samples are composed of a 15 

subset with 15 models as large as subsets in CORDEX-Africa and -South Asia, the 75th percentile of FRARandom_C is more than 

90% in ΔT (Fig. 4a). In addition, the width of the IQR for ΔT is narrowed with increasing the number of models. The 

relationship between the number of models and FRA is clearly evident in ΔT because there is a small difference in RFull among 

regions for ΔT compared with ΔP (Fig. 2), and thus the larger model ensemble results in an increase in FRACORDEX and 

FRARandom_C. And also, we found that the probability of selecting model subsets with a low coverage was higher for 20 

precipitation than for temperature, even if the number of models selected increases. 

The number of models used in CORDEX are unequal among the regions, especially only three in Central Asia (Gutowski et 

al. 2016). When we add three, five, or seven randomly selected models to the three current models in Central Asia, the FRA 

for ΔP increases from 15% to 30%, 50%, and 65%, respectively, at the median of the FRAs from the random samples (not 

shown). 25 

From Fig. 4, the subsets with nine models or more can capture the uncertainty of projections in both temperature and 

precipitation widely, implying that there is a heterogeneity on the dataset by a different number of models (Gutowski et al. 

2016). We explored whether a similar tendency can be obtained in the other regions when the number of models changed. The 

same approach was performed by MJ2016. They focused on a subset covering the uncertainty in each grid most widely over 

the globe or regions and investigated how the coverage changes with the number of models. On the other hand, in this study, 30 

to consider making better use of the current subsets, we investigated how the coverage changes with changing the number of 

models from the current model members. 

Figure 5 shows the change of coverage performance with the number of models changing in each region. When the number of 

models is larger than the current number, we added models randomly selected to the current members. By contrast, when the 
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number of models is less, we removed models randomly selected from the current members. Here we focused on the median 

of the FRA values obtained from the possible 10,000 random samples, meaning the FRA value obtained with a possibility of 

50% when selected subsets randomly. For the temperature change, the median exceeds 60% in all regions when changing the 

number of models from the current four ISIMIP members to seven members which are less than nine members (Fig. 5a). The 

median above 60% is also obtained in 13 regions (except for Antarctica) when changing the number from the current CORDEX 5 

members to nine members. For the precipitation change, the coverage in nine members is above 50% in 10 regions and in 12 

regions by changing the number of models from the current members in ISIMIP and CORDEX, respectively (Fig. 5b). Even 

when using nine members, the median is less than 50% in Four regions of MENA, Africa, and South and East Asia for the 

change of number from the ISIMIP subset and in two regions of MENA and North America for that from the CORDEX subset.  

The IQR for ΔT shifts to a high FRA smoothly with the number of models in all regions. By contrast, the IQR for ΔP sometimes 10 

gets large suddenly and/or shifts sharply, for instance, MENA and Africa. The discontinuous change is caused by a large 

variance of ΔP from each model member. That is to say, when there are model members indicating a large change ratio relative 

to the other members, the coverage largely differs depending on the inclusion of the member with the large ratio or not. The 

change amounts, ΔT are similar among the model members and the variance is small. Thus, the FRA increases with the number 

of models and the IQR also increases smoothly. To prevent selecting the subset with a large change of the coverage depending 15 

on a model with extremely large or small change amount, investigating the variance of the projections in each region is needed 

when the number of models is decided. 

4 Discussion 

From the evaluation of the ability to reproduce the regional temperature and precipitation, it is found that the ISIMIP and 

CORDEX subsets include the models indicating a larger bias and a worse score than high performed models in the full set. 20 

Therefore, a much better model subset, regarding to biases and skill scores, can be selected with making use of the advantage 

of the small number of models. However, such a selection can be conducted when there are no constraints of data availability 

which was the main constraint to select the current subsets in ISIMIP and CORDEX and when we use one variable of either 

temperature or precipitation. Focusing on one variable of either temperature or precipitation, 13 models in 25 all high-

performance models are included in both subsets of high-performance models for the bias and skill score (Supplement 3). In 25 

addition to the two indices of bias and skill score for one variable, the number of models indicating the high performance for 

both two variables of temperature and precipitation is 0 at the minimum in Southeast Asia and the Arctic and 9 at the maximum 

in Africa. The averaged number over the regions is approximately 4. Therefore, although the model with a small bias indicates 

a high score with 50% of the possibility, it is difficult to select models with a high performance at the quantity and the spatial 

pattern for both variables of temperature and precipitation. 30 

In this study, we assessed the current ISIMIP and CORDEX subsets to investigate whether the subset indicates small biases in 

the historical climatology and covers the uncertainty in the future projections widely using temperature and precipitation. Both 

variables are most frequently used in future projections and also weather forecasts. The evaluation for such a principal variable 
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is important for the studies of ISIMIP and CORDEX. It should be noted, however, that ISIMIP needs the dataset with 

reasonable for multiple variables used in their impact assessment and with enable to discuss the uncertainty in the projections. 

CORDEX requires the dataset with based on a plausible mechanism of the climatology as the input data for RCMs. Thus, there 

is a possibility that a good subset which we presented based on the model performance for temperature and precipitation will 

be an option of their future subsets. 5 

Although ISIMIP and CORDEX have tight constraints for model selection at the present, both programs will select the subset 

showing a reasonable climate based on a plausible mechanism in the future. In the case, two variables of temperature and 

precipitation are not possibly sufficient for model selections. At least for the regional climatological studies and the assessment 

of its impact, it is important to reproduce large-scale circulations which characterize the regional climate. Especially, the spatial 

pattern of precipitation depends on the accuracy of the circulation. Indeed, model change in ISIMIP from the fast track to 10 

ISIMIP2b has already been performed with a consideration of the ability to reproduce ENSO and monsoon (Frieler et al. 2017). 

The evaluation method used in this study can be applied to the other variables when we can obtain the reference data. For 

instance, Taylor's skill score which we used to evaluate the pattern of temperature and precipitation can also apply to the 

pattern of circulation. However, as more variables and evaluation indices are employed, it is more difficult to obtain the CMIP5 

models with high accuracy as described above. 15 

It is preferable to select subsets in the next generations based on a combined approach that can consider not only the ability to 

reproduce the principal variables of temperature and precipitation but also the other ones which are also important to 

characterize the regional climate. Construction of such an approach would be one of the important tasks for both programs. 

5 Summary and conclusions 

We explored the ability for the subsets of CMIP5 multimodel ensemble used in ISIMIP2b and CORDEX to reproduce the 20 

observed temperature and precipitation, and how the subsets capture the uncertainty in projected change of temperature and 

precipitation obtained from the full set of the ensemble. In addition, we discussed whether each subset shows a high coverage 

of the uncertainty in projected climate change compared with the possible subsets generated using 10,000 random samples. 

The spreads of the bias and Taylor’s skill score from the subsets used in ISIMIP and CORDEX are smaller than those obtained 

from the full set of CMIP5 ensemble for the annual mean temperature and precipitation. However, despite of the smaller model 25 

ensemble in ISIMIP and CORDEX, the largest bias and the worst skill score distribute beyond the biases and the scores 

obtained from the half member subsets with less bias or high score of the full set. Therefore, although the ISIMIP and CORDEX 

approaches were able to select models that acceptably performed to represent the historical state, our results suggest that better 

subsets can be selected by focusing on smaller biases and/or higher scores for representing the historical climate. Note that 

such a selection can be performed when there are no constraints for the selection and when we use one variable of either 30 

temperature or precipitation as the evaluation index. 

For the projected change in annual mean temperature, the subsets capture more than 60% of the uncertainty for the full set in 

the 13 terrestrial regions in ISIMIP and the 10 regions in CORDEX, from the total of 14 regions. The coverage of the 
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uncertainty range by the ISIMIP subset is larger and equal to the coverage by the CORDEX subset in 10 regions by using only 

four models that are common to all regions. The FRA of the current CORDEX subset tends to be lower than the 50th percentile 

of the FRAs obtained from the possible 10,000 random samples in the regions where a large model ensemble is used. ISIMIP 

selected the subset of models with relatively high coverage of the uncertainty from the full set in all regions, compared with 

the 50th percentile from the random samples. 5 

On the other hand, for the projected change in annual mean precipitation, the FRA for the CORDEX subset are around the 

25th percentile or less of the FRAs from the random samples with the same number of models in half of all regions. However, 

CORDEX broadly captures the uncertainty range more than ISIMIP, differing from the temperature change. Additionally, a 

relatively high coverage (>50%) was obtained for the projections of both temperature and precipitation in eight regions when 

using nine models or more. 10 

Compared with the random samples, the ISIMIP subset shows high coverage for the temperature change in all regions and, by 

contrast, low coverage for the precipitation change in more than 60% of the regions. The CORDEX subset is not performing 

well compared to the randomly selected samples but is marginally better than ISIMIP at covering uncertainties in the projected 

change in precipitation when a large model ensemble used. Therefore, the global common model set used in ISIMIP could 

have difficulty in capturing the uncertainty in regional precipitation change projections with capturing most of the uncertainty 15 

in the temperature change projections. The region-specific model subset, like CORDEX, yields relatively wide coverage of 

both uncertainties, but this depends on the number of models used. The region-specific model subset, like CORDEX, captures 

coverage of both uncertainties compared to the global common subset, but large model ensemble is needed. 

The current CORDEX subsets can capture both uncertainties for temperature and precipitation in the regions with a relatively 

large ensemble. However, it is found that changing the number of models from the current CORDEX members to nine members 20 

can capture more than half of the full uncertainty in both projections of temperature and precipitation in more than 85% of all 

regions, with a possibility of 50%. Furthermore, the same is also shown as for the ISIMIP subset, but for 70% of all regions. 

Focusing on the uncertainty in the future projections, this result proposes that the current number of models need to be changed 

to discuss a similar uncertainty range among the regions. 

In this study, we have assessed the subsets using the principal variables of temperature and precipitation. It is not sufficient for 25 

selecting subsets in the next generations. We suggest that it is preferable a combined approach that can consider the ability not 

only for temperature and precipitation but also for the other ones which are also important to characterize the regional climate. 

Construction of such an approach would be urgently demanded for both programs. 
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CPC (https://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/), GPCC (https://www.dwd.de/EN/ourservices/gpcc/gpcc.html), 

PRECL (http://ftp.cpc.ncep.noaa.gov/precip/50yr/gauge/), CMAP (https://ftp-cpc.ncep.noaa.gov/precip/cmap), GPCP 
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Supplement 1 is a list of the CMIP5 models used in CORDEX. 

Supplement 2 describes the regional classification defined in CORDEX. 

Supplement 3 describes the models with the top 50% of the CMIP5 models for the model bias and Taylor’s skill score. 

Supplement 4 describes the skill score for annual mean model precipitation over land. 

Supplement 5 describes the annual mean model temperature bias over land. 20 

Supplement 6 describes the skill score for the annual mean model temperature over land. 
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Table 1: Number of CMIP5 models used in the CORDEX regions. 

Region   Region  

Europe 13   Southeast Asia 12  
Mediterranean 5   Australasia 13  
Middle East and North Africa (MENA) 5   North America 6  
Africa 15   Central America 10  
Central Asia 3   South America 9  
South Asia 15   Arctic 5  
East Asia 7   Antarctica 9  

 10 
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Figure 1: Normalized annual mean model precipitation bias over land from the GPCC reference data (%). The bias was normalized 
using the areal mean of the reference data by the regional average of GPCC data. The whiskers of the box plots show the range 
between the maximum and the minimum biases. The boxes and the lines within the boxes indicate the 25th to 75th percentile range 10 
and the median, respectively. Green plots indicate the deviations of six observation data from the reference data. The other plots 
indicate the model bias in the full set of 50 CMIP5 model set (black), the model sets with a bias with is less than the 50th percentile 
of biases of the full set (yellow), the model sets with Taylor’s skill score with is larger than the 50th percentile of the scores of the full 
set (orange), and the model sets selected for ISIMIP (blue) and CORDEX (red). 
  15 
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Figure 2: Annual mean temperature increments in the future climate projection (K). The whiskers of the box plots show the range 
between the maximum and the minimum biases. The boxes and the lines within the boxes show the 25th to 75th percentile range and 
the median, respectively. Box plots indicate the model bias in the full set of 42 CMIP5 models (black), the model sets with the top 10 
50% of the CMIP5 models for the bias (yellow) or Taylor’s skill score (orange), and the model sets selected for ISIMIP (blue) and 
CORDEX (red). The top 50% of the CMIP5 models cannot be plotted over Antarctica because of missing the CRU reference data. 
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Figure 3: As for Figure 2, but for the projected change in annual mean precipitation scaled to the regional mean temperature 
increment over the land (% K–1). 
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Figure 4: Coverage performance of the ISIMIP and CORDEX subsets compared with the range of the full set of CMIP5 models for 5 
(a) annual mean temperature increment and (b) precipitation change scaled to the regional mean temperature increment. Blue and 
red dots indicate the coverage in ISIMIP and CORDEX, respectively for each region. Blue bars indicate the spread of coverage 
(FRA) when four models, as in ISIMIP, are selected randomly in 10,000 times. Red bars indicate the spread when randomly selecting 
the same number of models as in CORDEX; e.g., 10 models in Central America. The full range of the coloured bars indicates the 
minimum to maximum coverage. Dark blue and red bars indicate the 25th to 75th percentile range of the FRA spread. Horizontal 10 
lines in the dark blue and red regions indicate the median. Numbers in parentheses are the number of models used in CORDEX. 
The ISIMIP and CORDEX coverages in (a) overlaps in MENA, N. America and Africa. 
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Figure 5: Change of coverage performance of the ISIMIP and CORDEX subsets depending on the numbers of selected models in 
each region for (a) annual mean temperature increment and (b) precipitation change scaled to the regional mean temperature 
increment. As in Fig. 4 but the x-axis denotes the number of selected models. 
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Supplement 1: List of CMIP5 GCMs used in CORDEX. 

Model / Region 

N
orth A

m
erica 

C
entral 

A
m

erica 

S outh 
 A

m
erica 

Europe 

M
ED

 

M
EN

A
 

A
frica 

C
entral A

sia 

East A
sia 

South A
sia  

SEA
 

A
ustralasia 

A
rctic 

A
ntarctica 

ACCESS1-0          ◯ ◯ ◯  ◯ 

ACCESS1-3    ◯        ◯   

BNU-ESM       ◯        

CCSM4    ◯      ◯ ◯ ◯  ◯ 

CMCC-CM     ◯          

CNRM-CM5  ◯  ◯ ◯ ◯ ◯  ◯ ◯ ◯ ◯  ◯ 

CSIRO-Mk3-6-0  ◯ ◯ ◯      ◯ ◯ ◯   

CanESM2 ◯ ◯ ◯ ◯   ◯   ◯ ◯ ◯ ◯  

EC-EARTH ◯ ◯ ◯ ◯  ◯ ◯  ◯ ◯ ◯ ◯ ◯ ◯ 

FGOALS-g2         ◯      

FGOALS-s2       ◯        

GFDL-CM3          ◯  ◯  ◯ 

GFDL-ESM2G       ◯        

GFDL-ESM2M† ◯ ◯ ◯ ◯  ◯ ◯ ◯  ◯     

GISS-E2-R    ◯           

HadGEM2-AO         ◯  ◯    

HadGEM2-CC            ◯   

HadGEM2-ES† ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯  ◯ 

IPSL-CM5A-LR†          ◯ ◯    

IPSL-CM5A-MR  ◯ ◯ ◯ ◯  ◯   ◯     

MIROC-ESM       ◯        

MIROC-ESM-CHEM       ◯        

MIROC5†  ◯ ◯ ◯   ◯   ◯  ◯   

MPI-ESM-LR ◯ ◯ ◯ ◯ ◯ ◯ ◯  ◯ ◯ ◯ ◯ ◯ ◯ 

MPI-ESM-MR ◯       ◯  ◯ ◯  ◯  

MRI-CGCM3       ◯       ◯ 

MRI-AGCM60         ◯  ◯    

NorESM1-M  ◯ ◯ ◯   ◯   ◯  ◯ ◯ ◯ 

               † denotes the ISIMIP2b model. 
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Supplement 2: Regional classification defined in CORDEX. (Coordinate information is available from: 
http://www.cordex.org/domains/; last accessed 8 Nov. 2018). 
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Supplement 3: Models with the top 50% of the CMIP5 models for the model bias and Taylor’s skill score in each CORDEX region. 
The numbers on the x-axis correspond to the individual model number in the bottom box. The y-axis denotes the models with low 
bias and with high score for temperature (T(CMIPlowB) and T(CMIPhighS)) and for precipitation (P(CMIPlowB) and P(CMIPhighS)) 5 
from the upper to the bottom. Gray square indicates the models fits the condition on the y-axis and black square indicates the 
inclusion in the CORDEX subset. Light gray bar in Antarctica indicates the missing data because of missing the CRU reference data. 
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Supplement 4: Skill score for annual mean model precipitation over land. Reference data are from GPCC. The whiskers of the box 
plots show the range between the maximum and the minimum biases. The boxes and the lines within the boxes indicate the 25th to 
75th percentile range and the median, respectively. Green plots indicate the spread of the score of six observed data; CRU, CPC, 5 
PRECL, CMAP, GPCP 1dd and MSWEP. The other plots indicate the model bias in the full set of 50 CMIP5 model set (black), the 
model sets with the top 50% of the CMIP5 models for the bias (yellow) or Taylor’s skill score (orange) and the model sets selected 
for ISIMIP (blue) and CORDEX (red). 
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Supplement 5: Annual mean model temperature bias over land (K). Reference data are from CRU TS. The whiskers of the box plots 5 
show the range between the maximum and the minimum biases. The boxes and the lines within the boxes show the 25th to 75th 
percentile range and the median, respectively. The other plots indicate the model bias in the full set of 50 CMIP5 model set (black), 
the model set with the top 50% of the full set for the bias (yellow) or Taylor’s skill score (orange), and the model sets selected for 
ISIMIP (blue) and CORDEX (red). The top 50% of the CMIP5 models cannot be plotted over Antarctica because of missing the 
CRU reference data. 10 
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Supplement 6: As for Supplement 4, but for the skill score for the annual mean model temperature over land. 


	Reply to referee #1_1011
	Reply to referee #2_1011
	spreadCORDEX_20191011_highlight

