
Dynamic upscaling of decomposition kinetics for carbon cycling
models
Arjun Chakrawal1,2, Anke M. Herrmann 3, Johannes Koestel 3, Jerker Jarsjö 1,2, Naoise Nunan 4, Thomas
Kätterer 5, and Stefano Manzoni1,2

1Department of Physical Geography, Stockholm University, Svante Arrhenius väg 8C, Frescati, SE-106 91 Stockholm,
Sweden
2Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
3Department of Soil & Environment, Swedish University of Agricultural Sciences, P. O. Box 7014, 75007 Uppsala, Sweden
4Institute of Ecology and Environmental Sciences - Paris, Sorbonne Université-CNRS-IRD-INRA-P7-UPEC, 4 place Jussieu,
75005 Paris, France
5Department of Ecology, Swedish University of Agricultural Sciences, P. O. Box 7044, 75007 Uppsala, Sweden

Correspondence: Arjun Chakrawal (arjun.chakrawal@natgeo.su.se)

Abstract. The distribution of organic substrates and microorganism in soils is spatially heterogeneous at the micro-scale. Most

soil carbon cycling models do not account for this micro-scale heterogeneity, which may affect predictions of carbon (C) fluxes

and stocks. In this study, we hypothesize that the mean respiration rate R at the soil-core scale (i) is affected by the micro-

scale spatial heterogeneity of substrate and microorganisms and (ii) depends upon the degree of this heterogeneity. To assess

theoretically the effect of spatial heterogeneities on R, we contrast highly heterogeneous conditions with isolated patches of5

substrate and microorganisms versus spatially homogeneous conditions equivalent to those assumed in most soil C models.

Moreover, we distinguish between biophysical heterogeneity, defined as the non-uniform spatial distribution of substrate and

microorganisms, and full heterogeneity, defined as the non-uniform spatial distribution of substrate quality (or accessibility) in

addition to biophysical heterogeneity.

Four commonly used formulations for decomposition kinetics (linear, multiplicative, Michaelis-Menten, and inverse Michaelis-10

Menten) are considered in a coupled substrate-microbial biomass model valid at the micro-scale. We start with a 2D domain

characterized by a heterogeneous substrate distribution and numerically simulate organic matter dynamics at each cell in the

domain. To interpret the mean behavior of this spatially-explicit system, we propose an analytical scale transition approach in

which micro-scale heterogeneities affect R through the second order spatial moments (spatial variances and covariances).

It was not possible to capture the mean behavior of the heterogeneous system when the model assumed spatial homogeneity,15

because the second order moments cause the heterogeneous system to deviate from the behavior attained under homogeneous

conditions. Consequently, R in the heterogeneous system can be higher or lower than the respiration of the homogeneous

system, depending on the sign of the second order spatial moments. This effect of the spatial heterogeneities appears in the
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upscaled nonlinear decomposition formulations, whereas the upscaled linear decomposition model deviates from homogeneous

conditions only when substrate quality is heterogeneous. Thus, this study highlights the inadequacy of applying at the macro-

scale the same decomposition formulations valid at the micro-scale, and proposes a scale transition approach as a way forward

to capture micro-scale dynamics in core-scale models.

1 Introduction5

Soil organic substrates and microorganisms are heterogeneously distributed in the soil medium (Nunan et al., 2002; Peth et al.,

2014; Raynaud and Nunan, 2014; Rawlins et al., 2016). The importance of this heterogeneous distribution in soil organic

matter (SOM) dynamics has been shown both experimentally and in modeling studies. Early experimental results show that

the mineralization of SOM is affected by the non-uniform distribution of the substrates within macro and micro pores (Killham

et al., 1993). The recognition that spatial location of substrates and microorganisms constrains decomposition and thus C10

persistence is causing a paradigm shift from the previous emphasis on chemical composition of organic substrates to a focus on

the biophysical environment in which decomposition occurs (Schmidt et al., 2011; Don et al., 2013; Schnecker et al., 2019). Soil

pore structure is emerging as a fundamental property that integrates these biophysical constraints on decomposition (Dungait

et al., 2012; Falconer et al., 2015; Fraser et al., 2016). The biophysical and biochemical properties of the pore structure such as

pore connectivity, tortuosity of water and air diffusion pathways, and adsorption/desorption, limit the access decomposers have15

to organic substrate. As a result, these micro-scale constraints create a spatially heterogeneous landscape with highly variable

distributions of substrate and microbial C. In the following, we refer to this type of variability as micro-scale heterogeneity.

Despite the importance of micro-scale heterogeneities, most SOM decomposition models are based on reaction kinetics that

are valid for reactions in well-mixed media, including C cycling schemes implemented in ecosystem and Earth system models.

In well-mixed systems, the mean concentrations of substrate and microbial C, and the rates defined using these mean values20

are assumed to be representative of the system. Most existing SOM models embrace this assumption regardless of whether

they are microbial implicit (i.e., based on first order kinetics) or microbial explicit (i.e., based on multiplicative and enzyme

kinetics) (Manzoni and Porporato, 2009). This approach is often referred to as mean-field approximation and is meant to

describe spatially averaged SOM dynamics at soil core- to plot-scales. There is an underlying, but untested, assumption that

the kinetics that are valid under well mixed conditions at fine scales also hold at larger scales, where conditions are often far25

from well-mixed. For this assumption to hold, a spatially averaged C flux should be equal to the average flux when organic C is

uniformly distributed throughout the system. This is not the case when C concentrations are heterogeneously distributed and the

kinetics are nonlinear (Chesson, 1998; Melbourne and Chesson, 2006; Morozov and Poggiale, 2012; Van Oijen et al., 2017).
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For example, even in the simple case of only two soil patches, the overall C fluxes follow more complex behaviors than within

an individual homogeneous patch, requiring the use of kinetics that differ from those applied at the micro-scale (Manzoni et al.,

2008). The use of the same decomposition kinetics across a wide range of spatial scales is therefore questionable in systems

that are spatially heterogeneous and regulated by nonlinear kinetics.

To understand at which scale a model developed for well-mixed conditions is expected to work, both the spatial scale at5

which heterogeneities become important and the scale at which homogeneity can be assumed must be identified. The average

inter-cell distance in soil is in the order of 10 µm (Raynaud and Nunan, 2014) and the median length of spatial correlation

of SOM varies between approximately 40 and 175 µm (Rawlins et al., 2016). Furthermore, it has been argued that the pore

class with diameters between 30 and 150 µm is the most important for microbial activity (Kravchenko and Guber, 2017). This

heterogeneity occurring at scales from ∼10 to 200 µm, is generally neglected in C cycling models. Below the ∼50 µm scale,10

diffusion time scales can be assumed to be faster than advection and reaction time scales (Watt et al., 2006). Thus, it can be

argued that below∼50 µm the assumption of homogeneity is likely to hold, while it is no longer valid above this threshold (see

Section 2.1.1 for details). If homogeneity cannot be assumed, how should decomposition kinetics be described in soil cores or

at larger scales that include strong spatial heterogeneity?

Including micro-scale heterogeneities in the kinetics of SOM models is recognized as a much needed advancement in the15

field (Manzoni and Porporato, 2009; Sierra and Muller, 2015; Wieder et al., 2015), though only a few attempts have been

made in this direction (Ebrahimi and Or, 2016; Van Oijen et al., 2017). In contrast, there are several examples of upscaling

schemes for chemical reactions networks (Tang and Riley, 2013, 2017).The challenge is therefore to develop spatially up-

scaled models that describe SOM decomposition at the macro-scale while taking into account the micro-scale heterogeneities.

Mathematically, this upscaling problem is equivalent to spatial averaging of the mass balance equations based on the well-20

mixed assumption written at the micro-scale.

Three types of upscaling approaches are often used for dynamical systems such as those used to describe soil biogeochemical

processes: (i) spatial averaging of known numerically simulated C flux fields, (ii) definition of effective parameters to capture

fine-scale heterogeneity, and (iii) scale transition theory or volume averaging of the equations at the micro-scale. Spatial

averaging of simulated dynamics at the micro-scale is common (Allison, 2012; Kaiser et al., 2014; Yan et al., 2016; Wang25

and Allison, 2019), but this approach does not lend itself to analytical solutions that would offer insights into the effects of

heterogeneity on macroscopic properties. The effective parameter approach, more common in sub-surface hydrology (e.g.

Dagan (1987)), has been used to relate the macroscopic decomposition rate to the characteristic parameters of micro-scale

heterogeneity, but only in a minimal ‘lumped’ model (Manzoni et al., 2008). The estimated effective parameters tend to be
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specific to studied scenarios and difficult to generalize. Here, we focus mainly on the third method based on scale transition

theory, because this approach provides a dynamic link between micro- and macro-scale using spatial moment approximations

(SMA). Using scale transition theory, it is possible to obtain an analytical, but approximate representation of dynamics at the

macro-scale by accounting for the nonlinear dynamics at micro-scale.

Scale transition theory is based on spatial averaging of the dynamical equations themselves (as opposed to averaging known5

fluxes as in point (i)). For example, this approach has been used to study predator-prey population dynamics at the patch and

regional scales (Bergström et al., 2006; Englund and Leonardsson, 2008; Barraquand and Murrell, 2013). The macroscopic

(regional) population dynamics is controlled by the mean population densities of predator and prey, which in turn relate to the

spatial statistics of population densities at the micro-scale (patch). Similar approaches are also used in hydrology to calculate

average hydrologic fluxes when soil and micro-climatic conditions are spatially heterogeneous (Albertson and Montaldo, 2003;10

Fatichi et al., 2015), and in groundwater hydrology to derive transport equations at the Darcy- or field-scale (in this field the

approach is called ‘volume averaging’ (Dentz et al., 2011)). We are aware of only one study using similar techniques to scale

up C and N fluxes in from plot to regional scale (Van Oijen et al., 2017). Specifically, an empirical nonlinear function was used

to link methane and nitrous oxide fluxes to soil moisture and temperature in each grid cell (corresponding to the micro-scale

model) and the scale transition theory was applied to calculate the mean fluxes at the regional scale. However, an explicit15

expression linking fluxes to C pools at any time point is not always available. In most C cycle models, the fluxes are calculated

by solving first the mass balance equations for the C pools (i.e., a system of differential equations). Therefore, to proceed,

these differential equations at micro-scale must be scaled-up. This upscaling exercise is expected to yield a set of differential

equations describing the mass balances of the spatially averaged C compartments, including kinetics for the macro-scale C

fluxes that depend on the degree of micro-scale heterogeneity.20

Using scale transition theory, here we develop a general theoretical approach to link micro- and macro-scales in SOM de-

composition models. Two types of micro-scale heterogeneity are identified and accounted for: biophysical and biochemical.

Biophysical heterogeneity is caused by the non-uniform spatial distribution of substrate and microorganisms (i.e., heteroge-

neous distribution of the state variables), and biochemical heterogeneity is a result of spatial variations in substrate quality and

thus turnover rates (i.e., heterogeneous distribution of the values of kinetic constants). With the proposed upscaling approach,25

we test the hypotheses that the rate of decomposition (i) is affected by the micro-scale spatial heterogeneity of substrate and mi-

crobial C and (ii) depends upon the degree of spatial heterogeneity. Scale transition theory is applied to four types of micro-scale

decomposition kinetics commonly employed in C cycling models: conventional linear, multiplicative (M), Michaelis-Menten
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(MM), and inverse Michaelis-Menten (IMM). Considering these kinetic laws allow us to assess the consequences of neglecting

spatial heterogeneities in the most common C cycling models. Our specific objectives are

1. To develop an analytical upscaling solution for a two pool C model

2. To quantify the impact of different spatial structures of substrate Cs, microbial biomass Cb and kinetic parameters k on

the C dynamics5

3. To compare the results of a spatially-explicit heterogeneous model with the homogeneous equivalent as a function of the

degree of heterogeneity

While the proposed upscaling approach is general, we apply it in this contribution to scale up pore-scale processes to the

scale of a small soil core or laboratory soil sample. These theoretical developments can be applied to SOM models employed

to study respiration and microbial responses to perturbations at this relatively small spatial scale, or in models describing10

dynamics at a larger scale over relatively uniform spatial domains.

2 Methods

2.1 Theory

We distinguish between ‘micro-scale’ equations valid at the small scale where the well-mixed assumption holds, from ‘macro-

scale’ equations valid at a larger scale of interest, which result from spatial averaging of the microscopic equations. While our15

derivations are general, in the presented model setup and results, we interpret ’macro-scale’ as the scale of a small soil core.

The goal of spatial upscaling is to derive the macro-scale soil C dynamics by spatial averaging of the micro-scale dynamics.

To obtain the macro-scale dynamics we employ two approaches: (i) a numerical approach based on grid-scale simulations

followed by spatial averaging (upper panel Fig. 1) and (ii) an analytical approach based on scale transition theory (lower panel

Fig. 1). The first, computationally demanding approach requires solving the micro-scale equations at each cell of the domain20

grid. Spatial averages and variances are thus calculated numerically over the domain at each time point in the simulation. With

the analytical approach, the dynamic equations are first averaged and then solved directly for the mean state variables. The

obtained analytical expressions are used to interpret the results of the numerical simulations.

To proceed, the spatial average operator for our 2D domain is defined as,

χ(t) =

∫ ∫
χ(x,y, t)dxdy∫ ∫

dxdy
≈ 1

NxNy

Nx∑
i=1

Ny∑
j=1

χi,j(t), (1)25
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Scale 
transition
theory

Numerical results are 

explained using results 

from analytical upscaling 

Figure 1. Schematic of two upscaling approaches used to study the C dynamics at the macro-scale. Numerical spatial averaging (top panel):
the micro-scale model is applied at each grid cell of the heterogeneous domain; the mean C pools (substrate and microbial biomass), their
mean fluxes, and second order spatial moments

(
σ2
Cs
,σ2

Cb
,C′

sC
′
b

)
are estimated by Eq. (24)–(29) at each time step. This approach is

referred to as ‘distributed model’. Analytical upscaling (bottom panel): the micro-scale decomposition flux is dynamically scaled up using
scale transition theory, which provides the mean C fluxes as a function of mean C concentrations (mean-field approximation) and second order
spatial moments representing the degree of heterogeneity. The deviations from the mean-field approximation are denoted as ‘second order
terms’ (SOT) in the expressions for the mean decomposition fluxes (D, where overbar represents mean quantities). The numerical results
obtained from the distributed model are explained using the mathematical expression derived from analytical upscaling. This upscaling
scheme is applied to four types of decomposition kinetics (linear, multiplicative, Michaelis-Menten, and inverse Michaelis-Menten), shown
at the bottom of the lower panel.
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where the double integral extends to the whole 2D domain, χ is a generic variable (Cs or Cb) or C flux, and Nx and Ny are

the number of grid cells in the x and y direction. The second equality allows estimating χ using the simulated time series of

variable of interest in each grid cell (denoted by χi,j). In contrast to numerically solving the problem at each grid cell, the

second approach derives the dynamics of the macro-scale variables and fluxes using scale transition theory, discussed in the

following sections.5

2.1.1 Micro-scale model of soil carbon dynamics

The dynamics of soil organic C in a homogeneous medium are characterized by specific reaction kinetics that define organic

C fluxes, and the number and arrangement of the soil C pools. For simplicity, we use a two pool model that subdivides organic

carbon into two pools: (i) soil organic carbon substrate (Cs) and (ii) microbial biomass carbon (Cb) (Manzoni and Porporato,

2007; German et al., 2012). This simple structure was selected because it is at the core of most microbial explicit models10

(Zelenev et al., 2000; Schimel and Weintraub, 2003). The typical time scale of diffusive fluxes is given by τdiff = x2/D

where x is the length scale of space discretization and D is the diffusion coefficient (Hunt and Manzoni, 2015) and the typical

time scale of reactive fluxes is given by the turnover time of the substrate; i.e., τreact. The ratio of the two time scales defines

the Damköhler number, Da= τdiff/τreact, which provides the relative importance of mass transport of substrate via diffusion

vs. reaction (Dentz et al., 2011). For a relevant substrate such as glucose, D is the order of 10−11m2/s (Watt et al., 2006),15

the turnover time is in the order ∼1 day and the length scale of the order of ∼ 50 µm. With these values, Da << 1, which

characterizes a reaction-limited system in well-mixed conditions. The result of this approximated calculation would not change

with reaction time scales in the order of a few hours. Thus, the well-mixed assumption is valid at the scale of a pore ∼ 50 µm

and we refer to this model as a ‘micro-scale model’ (Fig. 1).

To explicitly include spatial fluxes across grid cells, we implemented a generic mass transfer mechanism. This mechanism20

is implemented by assuming that a fraction α of the decomposition rate D (i.e., αD) is transferred in equal amounts to the four

neighboring grid cells. Hence, in each cell microorganisms take up C from neighboring cells at a rate α
4 (Di−1,j +Di+1,j +

Di,j−1 +Di,j+1). This choice is motivated by the observation that the products of de-polymerization are more soluble than

stable organic matter and thus are more likely to be transported away from the site of decomposition. Therefore, instead of

modeling mobile carbon explicitly, we assumed that a fraction of the decomposition rate is transported to neighboring cells.25

This mass transfer mechanism can be interpreted as a consequence of various types of spatial redistribution, including diffusion
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or bio-turbation. The micro-scale equations at one grid cell (control volume) take the following form,

dCsi,j
dt

= I −Di,j +Ti,j (2)

dCbi,j
dt

= Y
[
(1−α)Di,j +

α

4
(Di−1,j +Di+1,j +Di,j−1 +Di,j+1)

]
−Ti,j (3)

dCO2i,j

dt
= (1−Y )

[
(1−α)Di,j +

α

4
(Di−1,j +Di+1,j +Di,j−1 +Di,j+1)

]
(4)

where I is the rate of external input of organic C, D is the rate of decomposition, T is the microbial mortality, and Y is the5

microbial carbon use efficiency. The substrate Cs and microbial carbon Cb are the state variables of the micro-scale model,

and their mass balances, Eq. (2) and (3), describe their temporal evolution. If α= 0, no mass transfer occurs and the model

reduces to a simplified reactive system with two C pools, where grid cells are disconnected and thus independent. If α > 0,

mass transfer among the grid cells occurs. In this way, by changing the value of α, the effect of spatial redistribution on mean

carbon dynamics can be assessed. With α= 0, the general mathematical description of the simplified microscale model is given10

by

dCs
dt

= I −D+T, (5)

dCb
dt

= Y D−T, (6)

The rate of decomposition is described by four commonly used formulations: linear (Eq.7), multiplicative (Eq.8), MM (Eq.9),

and IMM (Eq.10) (comparisons among these formulations can be found in Schimel and Weintraub (2003); Wutzler and Reich-15

stein (2008); Manzoni and Porporato (2009)),

D = kLCs, (7)

D = kMCsCb, (8)

D = kMM
CsCb

KMM +Cs
(9)

D = kIMM
CsCb

KIMM +Cb
, (10)20

where kL, kM , kMM , and kIMM are the decomposition rate constants for linear, multiplicative, MM, and IMM kinetics

respectively; and KMM and KIMM are the half saturation constant for the MM and IMM kinetics respectively. Table 1

summarizes the functional forms of D and corresponding steady state solutions for each case. Microbial mortality is assumed
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Table 1. Summary of the microscopic decomposition functions and steady state solutions

Conventional
(subscript L)

Multiplicative
(subscript M)

Michaelis-Menten
(subscript MM)

Inverse
Michaelis-Menten

(subscript IMM)

D kLCs kMCsCb
kMMCsCb
Cs+KMM

kIMM
CsCb

KIMM+Cb

T kBCb kBCb kBCb kBCb

Steady state
C∗

s

I
(1−Y )kL

kB
Y kM

KMMkB
Y kMM−kB

KIMMkB(1−Y )+Y I
Y (1−Y )kB

Steady state
C∗

b

Y I
(1−Y )kB

Y I
(1−Y )kB

Y I
(1−Y )kB

Y I
(1−Y )kB

to follow first order kinetics (T = kBCb). We assume constant temperature and soil moisture conditions so that D is only a

function of Cs and Cb. This assumption facilitates assessing the role of spatial heterogeneity of C substrates and microbial

biomass in our idealized system. The analytical upscaling theory developed in the following section is based on the simplified

micro-scale model given by Eq. (5) and (6). For the mass-transfer model, only the numerical averaging method is used.

2.1.2 Spatial upscaling of soil carbon dynamics: scale transition theory5

The scale transition theory is applied to study the C dynamics at micro- and macro-scale, and derive the changes in the structure

of the equations describing the C pools and their fluxes at macro-scale. To upscale the micro-scale model, the spatial averaging

operator given by Eq. (1) is applied to Eq. (5) and (6), leading to the governing equations at the macro-scale,

dCs
dt

= I −D+T , (11)

dCb
dt

= Y D−T , (12)10

where the overbars denote the spatially averaged micro-scale quantities, so that D and T are the macro-scale rates of decom-

position and microbial mortality. Since the order of averaging and differentiation can be exchanged, the right hand side of Eq.

(11) and (12) can be written as dCs

dt and dCb

dt . Moreover, we assume that Y and I are spatially invariant, so that averaging does

not alter their values. The final mass balance equations for substrate and microbial C at macro-scale are thus given by

dCs
dt

= I −D+T , (13)15

dCb
dt

= Y D−T , (14)

R=
dCO2

dt
= (1−Y )D. (15)

9



where R is the mean respiration at macro-scale. In Eq.(13)-(15), the macro-scale variables Cs and Cb can be obtained once

the average fluxes D and T are known. The next step is therefore to express D and T as a function of macro-scale (Cs, Cb),

and micro-scale state variables (Cs, Cb).

We can generalize the problem and consider a generic microscopic C flux (i.e. D or T ) as a nonlinear (and smooth) function

F of state variablesCs,Cb and a parameter vector k ([k1,k2, ...,kn]), where n is the number of parameters. The spatial averages5

of Cs, Cb and k are denoted as Cs, Cb and k ([k1,k2, ...,kn]). Applying the averaging operator given by Eq. (1) to a multi-

variate Taylor’s series expansion of F (Cs,Cb,k) around the spatial average value of Cs, Cb and k and truncating the series to

second order gives the macroscopic C flux (detailed derivation is provided in Appendix A1),

F (Cs,Cb,k) = F (Cs,Cb,k)+
1

2

∂2F

∂C2
s

∣∣∣∣
Cs,Cb,k

σ2
Cs

+
1

2

∂2F

∂C2
b

∣∣∣∣
Cs,Cb,k

σ2
Cb

+

n∑
i=1

n∑
j=1

∂2F

∂ki∂kj

∣∣∣∣
Cs,Cb,k

k
′
ik

′
j+

∂2F

∂Cs∂Cb

∣∣∣∣
Cs,Cb,k

C ′
sC

′
b+

n∑
i=1

∂2F

∂ki∂Cs

∣∣∣∣
Cs,Cb,k

k
′
iC

′
s+

n∑
i=1

∂2F

∂ki∂Cb

∣∣∣∣
Cs,Cb,k

k
′
iC

′
b, (16)10

where F (Cs,Cb,k) is the macroscopic C flux, σ2
Cs

and σ2
Cb

are the spatial variances of substrate and microbial C respectively;

k
′
ik

′
j is the spatial variance (if i= j) or spatial covariance (if i 6= j) between the micro-scale parameters; C ′

sC
′
b, k

′
iC

′
s and k′

iC
′
b

are the spatial covariances between micro-scale substrate and microbial C, substrate and parameters, and microbial biomass

and parameters, respectively.

In Eq. (16), the first term on the right hand side, F (Cs,Cb,k), represents the first order approximation of F (Cs,Cb,k),15

also known as ‘mean-field’ approximation (MFA). The MFAs for the chosen models are: kMCsCb for multiplicative kinetics;

kMMCsCb/(KMM+Cs) for Michaelis-Menten kinetics; kIMMCsCb/(KIMM+Cb) for inverse Michaelis-Menten kinetics.

Most C cycling models neglect all the other terms in Eq. (16). The remaining six spatial variance and covariance terms in Eq.

(16) are collectively referred to as ‘second order terms’ (SOT). When the system is well-mixed, all variances and covariance

terms vanish, leaving only the MFA. Therefore, only considering the MFA is equivalent to assuming well-mixed conditions at20

the macro-scale (i.e., Eq. (5) and (6) are equivalent to Eq. (13) and (14)).

Equation (16) provides a proof that the ‘mean-field’ approximation is a specific case of the more general expression for a

macroscopic C flux that also depends on spatial heterogeneity through the SOT. The MFA is valid only when either of the

following two conditions are met. First, the micro-scale decomposition rate is assumed to follow first order kinetics, because

when F is a linear function of substrate and microbial C, the second order partial derivatives in Eq. (16) are zero. Second,25

Cs,Cb and kinetic parameters are spatially homogeneous, because in this case all the second order moments (spatial variances

and covariances) are zero. However, if F is nonlinear, the second order partial derivatives are non-zero; similarly, if any type of
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micro-scale biophysical or biochemical heterogeneity is present, the SOT in Eq. (16) play a role in determining the macroscopic

C dynamics.

Equation (16) illustrates the advantage of using scale transition theory as it provides an approximate analytical relation

between the micro- and macro-scale quantities, which allows an immediate assessment of the role of both nonlinearities in the

C flux formulations and spatial heterogeneities. Importantly, in some cases, Eq. (16) yields an exact (rather than approximated)5

equation for macro-scale quantities, as shown in the following section.

2.2 Effect of micro-scale heterogeneities on macro-scale dynamics

Depending upon the kinetics of the micro-scale decomposition model (Table 1), the macro-scale D is expected to take differ-

ent forms. Using different kinetic models, we now discuss some specific cases of micro-scale heterogeneities based on their

biophysical or biochemical nature. Biophysical heterogeneity is characterized by the spatially heterogeneous distribution of10

substrate and microbial C, whereas biochemical heterogeneity is characterized by the spatially heterogeneous distribution of

substrate quality and microbial properties, captured by the kinetic parameters. The inaccessibility of SOM can result in C

persistence. Therefore, inaccessibility can be modelled (at least at a conceptual level) through kinetic rate constants, similar to

biochemical properties. In the simple model used here, accessibility to substrates or chemical recalcitrance are not mechanisti-

cally distinguished, so variations in substrate ‘quality’ in the broadest sense can be interpreted as spatial heterogeneity in either15

chemical characteristics or accessibility at the microscale.

First, we focus on systems with only biophysical heterogeneity of substrate and microbial C. For the first order kinetics

model, the rate of decomposition is given by D = kLCs, and using Eq. (16) and substituting F =D = kLCs, we obtain

D = kLCs. (17)

In Eq. (17), D has the same form as D, indicating that microbial-implicit first order kinetic models do not show any sensitivity20

to spatial heterogeneities because of the linearity of the decomposition function. For the multiplicative model, the rate of

decomposition at the micro-scale is given by Eq. (8), inserting Eq. (8) into Eq. (16) gives

D = kMCsCb+ kMC
′
sC

′
b. (18)

In Eq. (18), the biophysical heterogeneities play a role through the covariance term C ′
sC

′
b. Note that Eq. (18) is an exact

equation because all the spatial moments of order higher than two are zero. Thus, only the mean state variables and the spatial25
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covariance are needed to fully characterize the macro-scale dynamics for this case. Furthermore, a positive spatial covariance

(i.e. co-location of substrates and microorganisms) would increase the mean decomposition rate (D), whereas a negative spatial

covariance (i.e. spatial separation between substrates and microorganisms) would decrease it.

Similar to the multiplicative decomposition model, also in models based on MM and IMM kinetics the rate of decomposition

at the macro-scale depends on the covariance term C ′
sC

′
b and additional terms representing the spatial variances of the substrate5

and microbial C (Table 2). The spatial variance term is always negative because variances are positive quantities and the partial

derivatives multiplying the variances are negative in all decomposition functions that saturate at high substrate concentration.

In contrast, the spatial covariance term is positive or negative based on the sign of C ′
sC

′
b. Therefore, when using the MM

kinetics, D can be the approximated by the MFA only if variance and covariance balance each other or are both negligible.

Second, we consider only biochemical heterogeneity. In this case, model parameters Cb and k ([k1,k2, ...,kn]) vary spatially10

but the initial value of state variablesCs andCb are constant everywhere in the domain. With linear decomposition, substituting

D = kLCs into Eq. (16) yields

D = kL Cs+ k
′
LC

′
s. (19)

Equation (19) shows that for a biochemical heterogeneous system, even the simplest linear model requires an additional covari-

ance term to describe the governing equations at the macro-scale. This covariance term might change the linear microscopic15

model into a nonlinear macroscopic model. For the multiplicative model (Eq. (8)), Eq. (16) yields

D = kMCsCb+Cb k
′
MC

′
s+Cs k

′
MC

′
b, (20)

where k′
MC

′
s and k

′
MC

′
b are respectively the spatial covariances between the state variables Cs, Cb and the rate constant

parameter kM . These two additional spatial covariance terms capture the effects of biochemical heterogeneity caused by the

spatial variation in the rate constants of decomposition.20

Lastly, we consider a heterogeneous system with combined biophysical and biochemical heterogeneities, denoted as ‘fully

heterogeneous’. Again, we use the multiplicative model to illustrate the relation between the dynamics at the micro- and macro-

scale. Now, all the state variables and parameters in D at the micro-scale are spatially variable. For the multiplicative kinetics,

kM , Cs and Cb are spatially variable, so that inserting Eq. (8) into Eq. (16) gives

D = kMCsCb+Cb k
′
MC

′
s+Cs k

′
MC

′
b+ kM C ′

sC
′
b. (21)25
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This generalized case includes all the spatial covariances between parameters and the state variables, thereby capturing bio-

physical and biochemical heterogeneities simultaneously. Moreover, Eq. (20) and (21) are second order approximations, but an

exact equation can be obtained by including a third order term k
′
MC

′
sC

′
b. A similar derivation is described for MM and IMM

kinetics in the Appendix; however, an exact expression for the macro-scale decomposition rate for these two kinetics cannot be

found and we only use the second order approximation. Table 2 provides a summary of the theoretical results for the discussed5

heterogeneous cases and for all four types of decomposition kinetics.

Similar derivations can be done for the microbial mortality rate (F = T). The Taylor expansion of microbial mortality is

simpler because we assume T to follow first order kinetics implying that all the second order terms are equal to zero. Therefore,

the mean field approximation is exact and the spatial variance of microbial C has no effect on the macro-scale dynamics,

T = kBCb. (22)10

To illustrate how macro-scale decomposition kinetics are affected by spatial heterogeneity, we define a macro-scale specific

growth rate (SGR) which is calculated by dividing the mean respiration rate by mean microbial C in the system.

SGR=
R

Cb
= (1−Y )

D

Cb
. (23)

To summarize, we started with the spatial averaging of the SOM dynamics equations at micro-scale and applied scale

transition theory to derive relations between the micro- and macro-scale C fluxes, which depend on both mean state variables15

and their spatial statistics (Table 2). Thus, to solve the macro-scale Eq. (13) and (14), we still need information regarding

the second order moments i.e., σ2
Cs

and C ′
sC

′
b. To close the problem mathematically, these moments can be regarded as extra

state variables requiring additional differential equations describing their dynamics (Keeling et al., 2002; Murrell et al., 2004;

Barraquand and Murrell, 2013). Alternatively, the second order moments can be parameterized as empirical functions of first

order terms Cs , Cb and k (Bergström et al., 2006). Here, our goal is to quantify how heterogeneities alter C fluxes in idealized20

systems, so we leave the closure problem for a future contribution and use instead the numerically simulated dynamics at the

micro-scale to calculate the spatial moments and SOT.

2.3 Model setup

As in previous spatially explicit models (Ginovart and Valls, 1996; Allison, 2005; Kaiser et al., 2014), we start with a 2D

domain characterized by an initial heterogeneous field of the substrate and numerically simulate the dynamics of SOM with25
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Table 2. Summary of macro-scale equations for the decomposition rate (D)

Biophysical heterogeneity Biochemical heterogeneity Full-heterogeneity

Linear kLCs kL Cs + k
′
LC

′
s kL Cs + k

′
LC

′
s

Multiplicative∗
kMCsCb

+ kMC′
sC

′
b

kMCsCb

+Cs k
′
MC

′
b

+Cb k
′
MC′

s

+ k
′
MC′

sC
′
b

kMCsCb

+Cs k
′
MC

′
b

+Cb k
′
MC′

s

+ kMC′
sC

′
b

+ k
′
MC′

sC
′
b

Michaelis-Menten

kMMCsCb

KMM +Cs

+

1

2

[
−2kMMKMMCb

(KMM +Cs)3

]
σ2
Cs

+[
kMMKMM

(Cs +KMM )2

]
C′

sC
′
b

Eq.(A8) Eq.(A9)

Inverse Michaelis-Menten

kIMMCsCb

KIMM +Cb

+

1

2

[
−2kIMMKIMMCb

(KIMM +Cb)3

]
σ2
Cb

+[
kIMMKIMM

(Cb +KIMM )2

]
C′

sC
′
b

* The expression of D for multiplicative kinetics in each heterogeneity case is exact.

the micro-scale two pool model in Eq. (5) and (6) at each cell in the domain. The 2D domain has 100× 100 square grid cells

with an edge length of 50 µm, and we populate it with randomly generated initial substrate fields. This numerical model is

referred to as ‘distributed model’ (see, Fig. 1). From the solution of the distributed model, the mean behavior of the system
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(Cs,Cb,D,σ2
Cs
,σ2
Cb

, and C ′
sC

′
b) can be calculated at each time step by using sample statistics of Cs and Cb

Cs(t)≈
1

NxNy

Nx∑
i=1

Ny∑
j=1

Csi,j (t), (24)

Cb(t)≈
1

NxNy

Nx∑
i=1

Ny∑
j=1

Cbi,j (t), (25)

D(t)≈ 1

NxNy

Nx∑
i=1

Ny∑
j=1

kMi,jCsi,j (t)Cbi,j (t), (26)

σ2
Cs

(t)≈ 1

NxNy

Nx∑
i=1

Ny∑
j=1

[
Csi,j (t)−Cs(t)

]2
, (27)5

σ2
Cb
(t)≈ 1

NxNy

Nx∑
i=1

Ny∑
j=1

[
Cbi,j (t)−Cb(t)

]2
, (28)

C ′
sC

′
b(t)≈

1

NxNy

Nx∑
i=1

Ny∑
j=1

[
Csi,j (t)−Cs(t)

][
Cbi,j (t)−Cb(t)

]
, (29)

where D is specified for multiplicative kinetics; a similar approach was applied for MM kinetics. Table A1 in the appendix

lists all the parameters related to different kinetic models used in simulations. We performed the simulation in mass units fg

(fg= 10−15g) and later converted the state variables to concentration units i.e. mgC/g of soil.10

2.4 Initial 2D random fields of SOM and kinetic parameters

Two-dimensional spatially heterogeneous distributions of substrates and microbial C were generated to run the distributed

model. The obtained distributions were based on following constraints: i) the total amount of organic C is set, ii) the total

amount of microbial C is 1% of total organic C, iii) the maximum amount of C in a cell is set (Eq. (A12)), and iv) some grid

cells have no microbial biomass. For details regarding the procedure to generate the microbial C field, see Appendix A2.15

To study the effects of degree of heterogeneity on C decomposition, random fields of substrate C with different degrees of

correlation with microbial C were generated. We created three cases where substrate and microbial C were initially positively

correlated, negatively correlated or uncorrelated. The three cases were obtained by applying a linear operator on the microbial

C fields with positive and negative slope to obtain positively and negatively correlated substrate C fields, respectively. The

uncorrelated substrate C field was generated independently from the microbial C field and can be interpreted as the result of20

external disturbances disrupting preexisting spatial correlations. The case of positive initial correlation between substrate and

microbial C would result in a heterogeneous system with spatial co-occurrence of substrate and microbial C, whereas initial
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Figure 2. Steady state simulation: Examples of the homogeneous (a) and the heterogeneous distributions of substrate C constrained to
have the same amount of total substrate (b–d). The fields in b–d were obtained by imposing different degrees of correlation with the initial
heterogeneous distributions of microbial C, shown in (e).

negative correlation would result in isolated patches of substrate and microbial C. In all scenarios, the substrate distributions are

normalized to have the same amount of Cs,total, thereby allowing for comparisons among different degrees of heterogeneity

(Figure 2).

To generate a heterogeneous random field for kinetic parameters, we considered a uniform distribution for KMM and a

log-uniform distribution for kM , kMM , and kIMM (Forney and Rothman, 2012; Manzoni et al., 2012). The log-uniform5

distributions were defined so that the mean kinetic constants were equal to those of the homogeneous system (Table A1) and

their variances were tuned to characterize different degrees of heterogeneity. To generate the random fields, Nx×Ny random

numbers were extracted from the chosen distributions and placed into the 2D domain. Figure A7 in the appendix shows the

probability densities for two different standard deviations for kMM and kM (the parameters of the distributions are listed in

Tables A2 and A3).10

2.5 Estimation of kinetic parameters

To choose parameter values for the linear and multiplicative kinetics that allow comparisons with the MM model, we first

simulated the substrate C dynamics at micro-scale for a given initial condition and using MM kinetics. Second, we fit the linear

and multiplicative kinetics models to the time series obtained using MM kinetics (using the optimization toolbox in MATLAB).

In this procedure, we assumed that the microbial mortality constant (kB) was the same for all choices of the decomposition15

model. The parameters of the inverse MM are chosen (by trial and error) so that the respiration rate in the homogeneous system

is comparable to that in the heterogeneous system.
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2.6 Simulation scenarios

Two scenarios (Fig. 3), based on varying initial conditions (IC) were implemented to investigate the effects of micro-scale

heterogeneities on macroscopic decomposition.

Scenario 1 (steady state simulation - SS): In this scenario, the initial heterogeneous field of substrate and microbial C was

generated as described in section 2.4. The spatial mean of the initial substrate and microbial C match their steady state values5

given by the micro-scale equations (Eq. (5) and (6)) forced with a constant substrate input. Additionally, a minimum amount

of microbial C was set in each cell (values at least one order of magnitude lower than those at steady state) to ensure that OM

could be decomposed, albeit at a slower rate than elsewhere.

Scenario 2 (high substrate simulation - HS): In the scenario, the initial heterogeneous field of substrate C was perturbed

around a value much larger than the steady state as described in section 2.4.10

In the HS scenario, simulations were based on three nonlinear decomposition models (multiplicative, MM, and IMM kinet-

ics). However, in the SS scenario, we present results only for multiplicative kinetics because MM kinetics can be approximated

by multiplicative kinetics when the substrate is much smaller than the half-saturation constant (KMM ), as is the case with

the chosen initial heterogeneous substrate field and the parameter KMM . Results using the linear decomposition model are

not shown because with this model the spatially-averaged fluxes are equal to the macro-scale flux calculated at the mean C15

concentration (Eq. (17)).

In both scenarios, we explore the effects of biophysical and full heterogeneity on the temporal evolution of the mean state

variables (substrate and microbial C) and their associated rates. We used the distributed model to estimate the mean quantities

and second order spatial moments (and thus SOT) for three degrees of biophysical heterogeneity. A homogeneous system in

which the initial substrate and microbial C, as well as kinetic parameters, are spatially uniform was always used as a control.20

The combined effect of biophysical and biochemical heterogeneity was simulated by imposing the spatially heterogeneous

kinetic parameters along with the heterogeneous initial substrate and microbial C.

3 Results

3.1 Scenario 1: steady state simulation (SS)

Figure 4 illustrates the temporal evolution of the macroscopic decomposition dynamics for the three different heterogeneous25

cases with varying degrees of initial correlation between substrate and microbial C in comparison to the homogeneous system.

In figure 4, the left and right panels respectively show the effects of biophysical heterogeneity and full heterogeneity on the
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Figure 3. Two scenarios were implemented based on initial spatial distribution of substrate and microbial C. In scenario 1, substrate and
microbial C are perturbed around the steady state of the micro-scale differential equations and simulations are only carried out with the
multiplicative (M) kinetics. In scenario 2, substrate and microbial C are perturbed to values larger than the steady state, and simulations
are conducted for multiplicative (M), Michaelis-Menten, (MM) and inverse Michaelis-Menten (IMM) kinetics. For each scenario and type
of heterogeneity, three different initial distributions of substrate and microbial biomass are considered as representative of micro-scale
heterogeneities (positively correlated (+), negatively correlated (-), and uncorrelated (0) fields of substrate and microbial C).

mean C pools and fluxes (kM is based on the case ’biochemical heterogeneity 1’ in Table A3). For this analysis, we focus on

the multiplicative decomposition model.

Since the mean initial condition corresponds to the steady state of the micro-scale system, in a homogeneous soil no changes

occur in substrate C (solid line in Fig. 4a and 4b) and microbial C (solid line in Fig. 4b and 4d), and the mean respiration rate

is equal to the constant rate of input of external C (solid line in Fig. 4e and 4f). In contrast, for the system with biophysical5

heterogeneity, the mean C pools and respiration (R) fluctuate towards the steady state of the micro-scale system as a result

of the heterogeneous initial placement of C substrates. Similarly, for the fully heterogeneous system the mean microbial C

pool (Fig. 4d) and fluxes (Fig. 4f) fluctuate near their steady state values, but the mean substrate C pool (Fig. 4b) reaches a

new steady state. The value of the new steady state for the Cs depends upon the parameters of the log-uniform distribution of

kM and is given the Appendix A3. In all heterogeneity scenarios, R is initially higher than in the homogeneous system when10

substrate and microbial C are initially correlated, whereas it is lower when substrate and microbial C are negatively correlated.
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When substrate and microbial C are uncorrelated, the system exhibits a behavior similar to that of the positively correlated

fields (Fig. 4e), but with higher respiration peaks. This is caused by the high initial spatial variance of substrate C that resulted

in hot spots richer in substrate C than in the positively correlated case (Fig. 2). Furthermore, in the multiplicative kinetics,

the respiration flux is proportional to the amount of substrate C, so that larger variations in substrate cause larger fluctuations

in the mean respiration flux. In the fully heterogeneous system, fluxes show similar dynamics as those in the biophysically5

heterogeneous system, except for the different steady state. Varying the mean (Fig. A1) and variability (Fig. A2) of kM alters

the quantitative, but not qualitative, behavior of the macro-scale system (results shown in Appendix A4).

Figure 4g and 4h show the sum of all higher order terms (
∑
HOT ), including the third order term k

′
MC

′
sC

′
b in addition

to the SOT. For a biophysically heterogeneous system, the
∑
HOT only includes the spatial covariance term, but for a fully

heterogeneous system it includes the last three terms of the Eq. (21). The
∑
HOT is initially positive, zero and negative,10

respectively for positively correlated, uncorrelated, and negatively correlated substrate and microbial C, and exhibits strong

temporal variations (Appendix, Fig. A3). A positive
∑
HOT value enhances R, whereas a negative value decreases it in

all three heterogeneous cases compared to homogeneous R. This result is aligned with our expectation from the analytical

expression of the macro-scale multiplicative model (Eq.18). In systems including both biophysical and full heterogeneity, the

sums of the HOT are stable in the long term, once the steady state has been reached. This was confirmed by running the model15

for 100 years. Furthermore, any additional perturbation of the new steady state caused by an external factor will re-introduce

the fluctuations.

3.2 Scenario 2: high substrate simulation (HS)

3.2.1 Dynamics of substrate and microbial C at the macro-scale

Figure 5 illustrates the temporal evolution of the mean properties of the macroscopic decomposition dynamics for multiplica-20

tive kinetics, for systems with either biophysical (left panel) or full (right panel) heterogeneity, when the initial condition is

perturbed from the steady state by adding C substrates. In this scenario, both homogeneous and heterogeneous systems exhibit

transient dynamics because the initial conditions are set far from the steady state. The results in Fig. 5c indicate that, during

the microbial growth phase, the production of microbial C is faster when substrate and microbial C are positively correlated or

uncorrelated, compared to the case of negative correlation. Consequently, at the beginning of the simulation, the mean substrate25

Cs (Fig. 5a) is decomposed faster due to the higher respiration (Fig. 5e) for the positively correlated and the uncorrelated sub-

strate and microbial C, and slower for the negatively correlated substrate and microbial C, when compared to the homogeneous

system. By the end of the simulation period, in all heterogeneous scenarios, biomass production and substrate consumption are
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Figure 4. Scenario 1 (steady state simulation): effect of biophysical (left panel) and full heterogeneity (right panel) on the macroscopic
decomposition dynamics when the substrate is distributed randomly around the steady state, and only considering multiplicative kinetics at
the micro-scale: (a,b) mean substrate C ( Cs ), (c,d) mean microbial C ( Cb ), (e,f) mean respiration rate (R), and (g,h) sum of second and
third order terms (

∑
HOT ).
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lower than in the homogeneous system. As in scenario 1, the initial mean respiration for the uncorrelated case is higher than

that in the positively correlated case. Moreover, the fully heterogeneous system (Fig. 5 right panel) shows a similar behavior as

the biophysically heterogeneous system, but the peaks of R appear earlier for all degrees of correlation between substrate and

microbial C.

Similar to Fig. 4, Fig. 5g and 5h show the sum of all higher order terms. For both heterogeneous systems, R is higher than5

the MFA when the
∑
HOT is positive, whereas R is lower than the MFA when the contribution of these spatial moments is

negative. This result agrees with the analytical expression and holds for all types of biophysical heterogeneities. The
∑
HOT

for biophysical heterogeneity is initially positive when substrate and microbial C are positively correlated or uncorrelated,

but later becoming negative, whereas it is always negative for the negatively correlated substrate and microbial C. Spatial

covariances among kinetic parameter and state variables (i.e., k′
MC

′
s,k

′
MC

′
b, and k′

MC
′
sC

′
b) also contribute to the

∑
HOT in10

the fully heterogeneous system in addition to C ′
sC

′
b. Specifically, the spatial covariance between kM and Cb gives rise to early

peaks of R (see all HOT in Fig. A4).

Figures 6 and 7 show similar results as Fig. 5, but for Michaelis-Menten and inverse Michaelis-Menten kinetics, respectively.

The transient dynamics of the mean C pools and fluxes differ from those obtained using multiplicative kinetics. For both MM

and IMM kinetics, during the initial growth period, the mean respiration rate in the biophysically heterogeneous systems is15

similar to that occurring in a homogeneous system, but afterward R decreases (Figs. 6e and 7e). As a result, substrate loss

(Figs. 6a and 7a) and microbial growth (Figs. 6c and 7c) slow down compared to homogeneous conditions. Interestingly, with

MM kinetics, in the uncorrelated case R is not higher than in the other heterogeneity cases as occurred with multiplicative

kinetics (compare Figs. 6e and 5e). This is because with MM kinetics the respiration flux is limited by the maximum rate of

decomposition and not only by substrate availability. In contrast, with IMM kinetics R in the uncorrelated case is higher than20

in the other heterogeneity cases, as it was with multiplicative kinetics. This is because the initial microbial C is often much

lower than the half saturation constant for IMM kinetics, making the IMM decomposition rate equation numerically similar to

the multiplicative decomposition model.

The fully heterogeneous system (right panels in Fig. 5, 6, and 7) shows different behavior compared to the biophysically

heterogeneous system. The peaks of R appear much earlier than in the biophysically heterogeneous system. Additionally, the25

values of mean fluxes and C pools after the peak are smaller than in the homogeneous system as well as in the system with only

biophysical heterogeneity. The inverse MM kinetics (Fig. 7 right panel) show similar dynamics as in the case of biophysical

heterogeneity, but with reduced peak magnitude. The smaller mean fluxes are due to the left skewed probability distribution of

the kinetic parameters (kM and kMM ), which causes slower decay despite the mean values of the kinetic parameters being the
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same. Mathematically, this behavior is caused by the additional covariances in the fully heterogeneous system as explained in

the following paragraph.

3.2.2 Dynamics of the second order terms

The
∑
SOT (same as

∑
HOT but now limiting the HOTs to second order) for MM and IMM kinetics for the biophysically

heterogeneous system is given by the sum of the last two terms of D in Table 2 and for the fully heterogeneous system it is5

given by the last eight terms of Eq. (A9) and Eq. (A10), respectively. For the biophysically heterogeneous system, the values of∑
SOT (Fig. 6g and 7g) are initially positive (very small in magnitude) for the positively correlated substrate and microbial C

and later become negative, while for the negatively correlated heterogeneous case
∑
SOT is always negative. For uncorrelated

substrate and microbial C,
∑
SOT is initially negative in MM kinetics but positive in IMM kinetics and later becomes negative.

Furthermore, the balance between variance and covariance terms makes the MFA a good approximation of R only when the10

combined second order terms are negligible, which is not the case in this example (see, Fig. A5 and A6). The
∑
SOT of the

fully heterogeneous system for MM kinetics is positive for the first 100 days of simulation and then negative onward, even

though the heterogeneous R is smaller than the homogeneous R (Fig. 6h and 7h).

3.2.3 Emerging macroscopic kinetics

Figure 8 highlights the effects of spatial heterogeneities on the mean specific growth rate (SGR) for multiplicative (top), MM15

(middle), and IMM kinetics (bottom panels). The depicted SGR curves can be interpreted as the macroscopic kinetic laws

emerging from the spatial averaging. For all three kinetics, the functional relation between the mean SGR and Cs for the

heterogeneous system depends upon the initial degree of heterogeneity. In contrast, in the homogeneous system the mean SGR

is a linear, saturating, and exponentially increasing function of Cs for the multiplicative, MM, and IMM kinetics, respectively.

The effect of biophysical heterogeneity in all kinetic models are shown in Fig. 8a, 8c and 8e. The negative correlation between20

substrate and microbial C leads to lower SGR than in the homogeneous system, even if both heterogeneous and homogeneous

systems have exactly the same amount of total initial substrate and microbial C. In the case of positive correlation, the initial

mean SGR is higher than in the homogeneous system, but in the later phase of decomposition, mean SGR becomes lower.

Thus, when the substrate is co-located with the microorganisms, the mean SGR is initially higher but it decreases at a faster

rate as the substrate is decomposed when compared to the homogeneous system. If substrate and microbial C are uncorrelated,25

the SGR functional response remains between the negative and the positive correlation cases.
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In the fully heterogeneous system (Fig. 8b, 8d, and 8f), the nonlinear character of the relation between mean SGR and Cs

increases compared to the biophysically heterogeneous system. Interestingly, the mean SGR in the case of negative correlation

for multiplicative and MM kinetic models is higher (for high Cs) than for the homogeneous system, despite being the co-

location of substrates and microorganisms less likely. This behavior is caused by the occurrence of patches with high turnover

rate that control the mean SGR (Fig. 8a and 8c). In contrast, for IMM kinetics, the mean SGR in the case of negative and5

positive correlation is lower than the homogeneous system. This behavior might be a consequence of the chosen value of

KIMM ; i.e., in our parameterization of the IMM kinetics, initially the system is limited by microbial C, resulting in relatively

low decomposition rate and dynamics comparable to those obtained with a multiplicative model (see, Fig. 7e-f).

In Fig. 9 the role of C transfer among cell is investigated. Similar to Fig. 8, we show the specific growth rate as a function

of substrate for an uncorrelated initial distribution of substrate and microbial C, and for all three kinetics– multiplicative,10

Michaelis-Menten and inverse Michaelis-Menten. When α= 0, result in Fig. 9 are same as in Fig. 8 for the uncorrelated case.

When α > 0, microorganism that were initially deprived of substrate now receive additional substrate from neighboring grid

cells. As a consequence of this improved substrate availability, in the long-term microorganisms can consume all the substrate,

whereas without mass transfer some C remains undecomposed (Figs. 5b, 6b, and 7b).

4 Discussion15

4.1 Predicted effects of spatial heterogeneity on decomposition

The heterogeneous spatial distribution of organic matter in soils is a result of complex physical, chemical, and biological pro-

cesses. Both the experimental quantification of the effects of heterogeneity on SOM dynamics (Kravchenko and Guber, 2017),

and capturing such effects in mathematical models (Wieder et al., 2015) is challenging. Here, we used scale transition theory,

applied to a two pool model, as a simple approach to analytically account for spatial heterogeneities and upscale SOM dynam-20

ics in idealized scenarios that cover different types of spatial heterogeneity. Even with the simplest scenarios, the macroscopic

decomposition dynamics of a heterogeneous system differ from those predicted from the mean-field approximation (equivalent

to assuming well-mixed conditions). This difference in the dynamics at two spatial scales arises because spatial averaging

of the nonlinear kinetics at the micro-scale create additional terms in the macro-scale equations that depend on the spatial

distribution of organic matter and microorganisms (i.e., the second order spatial moments, SOT).25

These second order terms represent corrections to the mean-field approximation and depend on the spatial variability and co-

variation of the state variables (i.e. Cs and Cb). Our numerical results showed that the second order spatial moments have their
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Figure 5. Scenario 2 (HS with multiplicative kinetics): effect of biophysical heterogeneity (left panel) and full heterogeneity (right panel) on
the macroscopic decomposition dynamics when the substrate is distributed around a value higher than the steady state of the homogeneous
system: (a,b) mean substrate C ( Cs ), (c,d) mean microbial C ( Cb ), (e,f) mean respiration rate (R), and (g,h) sum of second and third order
terms (

∑
HOT ).
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Figure 6. Scenario 2 (HS with Michaelis-Menten kinetics): effect of biophysical heterogeneity (left panel) and full heterogeneity (right panel)
on the macroscopic decomposition dynamics when the substrate is distributed around a value higher than the steady state of the homogeneous
system: (a,b) mean substrate C ( Cs ), (c,d) mean microbial C ( Cb ), (e,f) mean respiration rate (R), and (g,h) sum of second order terms
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Figure 7. Scenario 2 (HS with inverse Michaelis-Menten kinetics): effect of biophysical heterogeneity (left panel) and full heterogeneity
(right panel) on the macroscopic decomposition dynamics when the substrate is distributed around a value higher than the steady state of the
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Figure 8. Effect of spatial heterogeneity on the mean specific growth rate (SGR) for HS scenario with the simplified micro-scale model (no
C redistribution): Effect of biophysical (left column) and full (right column) heterogeneity on the mean SGR as a function of mean substrate
C ( Cs ) for the heterogeneous system for (a,b) multiplicative, (c,d) Michaelis-Menten, and (e,f) inverse Michaelis-Menten kinetics. Time
progresses from right to left, as Cs is depleted.

own dynamics that drive the heterogeneous system away from the mean-field approximation. Notably, while it is recognized

that spatial distributions at the micro-scale affect macro-scale dynamics (Falconer et al., 2015), none of the current spatially-

lumped SOM models include second or higher order terms that depend on micro-scale heterogeneity (see Sect. 4.3).

The simplicity of the micro-scale model and the derived analytical expressions are such that specific insights on how het-

erogeneity shapes micro-scale decomposition patterns can be gleaned and hypotheses generated. The main predictions of this5

model are

1. Perturbing a system initially homogeneous and at steady state by redistributing substrates triggers fluctuations around

the steady state (Fig. 4).

27



Full heterogeneity

(b)

0

0.02

0.04
MM (c) (d)

0 50 100 150

0

0.02

0.04
Inverse MM (e)

0 50 100 150

(f)

0

0.02

0.04

Biophysical heterogeneity

Mult (a)

0 0.2 0.4 0.6 0.8

alpha
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biophysical (left column) and full (right column) heterogeneity on the mean SGR as a function of mean substrate C ( Cs ) for an uncorrelated
initial distribution of substrates and microorganisms. The three horizontal panels are for (a,b) multiplicative, (c,d) Michaelis-Menten, and
(e,f) inverse Michaelis-Menten kinetics. Different colors represent varying values of α. Time progresses from right to left, as Cs is depleted.
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2. When only biophysical heterogeneity occurs, in the early microbial growth phase, macroscopic C fluxes are enhanced

by co-location of substrates and microorganisms, and suppressed when they are isolated (Fig. 8a–c).

3. Combined biophysical and biochemical heterogeneity enhance C fluxes in the early stage of decomposition and suppress

it in the later stages, compared to a homogeneous system (Fig. 8b–d).

4. Both biophysically and fully heterogeneous systems result in a transient persistence of SOM (Fig. 5a,d and 6a,d). In the5

biophysically heterogeneous system at steady state all C is eventually decomposed, whereas in the fully heterogeneous

system more C is retained as the substrate pool reaches a new equilibrium (Appendix A3).

5. For a successive reduction in the degree of heterogeneity (i.e. systematically moving from a heterogeneous to a homo-

geneous system), macro-scale dynamics converge to the mean-field approximation; i.e., the same kinetics can be used at

all scales (Sect. 2.1.2).10

6. Increasing local connectivity among grid cells moderately reduces the effect of spatial heterogeneity on the macro-scale

variables and fluxes.

7. The inverse Michaelis-Menten kinetics appear to be less sensitive to the scale transition than multiplicative and Michaelis-

Menten kinetics, but this result might depend on the specific choice of parameter values (for a discussion on scale

invariance of upscaled kinetics for reaction networks, see Tang and Riley, 2017).15

Our analysis suggests that the persistence of SOM in heterogeneous systems may be a consequence of the micro-scale

heterogeneity in soil carbon cycling. In the transient simulations with biophysical heterogeneity, persistence is a result of

spatial disconnection between substrate and microorganism, captured in our framework by a low probability of co-location at

the beginning of the simulation. In the transient simulations for the fully heterogeneous systems, persistence is a result of the

combined effects of low probability of co-location and high probability of low decomposition rate constant at the beginning of20

the simulation. The heterogeneity in substrate quality thus explains the higher persistence of SOM in the fully heterogeneous

system compared to the biophysically heterogeneous system.

4.2 Linking theory and observations

We studied three initial heterogeneous distributions of substrate and microbial C; positive, negative or no correlation between

these two variables. These heterogeneities may correspond to spatial aggregation, isolation or random occurrence of substrate25

and microorganisms, respectively. Spatial aggregation is expected in litter and in the surface soil where substrate is abundant
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and microbial colonies are formed around hot spots (Nunan et al., 2003). Spatial isolation is more likely to occur in the subsoil

because of lower substrate and microorganism density as well as poor pore connectivity (Ekschmitt et al., 2008; Salomé

et al., 2010), and C-rich patches occur around roots that are separated by large (in a relative sense) volumes of soil that

only receive diluted resources via percolation, diffusion, and bioturbation (Kuzyakov and Blagodatskaya, 2015). Uncorrelated

spatial fields of substrate and microorganisms may correspond to spatial distributions between these two extremes. There are5

other examples of contrasting homogeneous vs. heterogeneous conditions. Disturbed, sieved or dispersed samples may be

considered as homogeneous, whereas intact soil samples retain their natural heterogeneity.

Despite the correspondence of our idealized heterogeneity scenarios with conditions in natural soils or soil samples, linking

our model predictions to observations is challenging, mostly because the effects of heterogeneity can not be easily isolated in

experiments or field observations. For example, experiments studying the effects of soil structure on the dynamics of SOM10

mineralization (Killham et al., 1993; Stenger et al., 2002; Ruamps et al., 2011; Juarez et al., 2013; Negassa et al., 2015; Herbst

et al., 2016) may introduce other types of heterogeneities that are not dealt with here. For example, samples with different

pore networks (Ruamps et al., 2011) likely exhibit different water and air diffusive pathways, which in turn affect microbial

respiration (Manzoni and Katul, 2014; Herbst et al., 2016; Koestel and Schlüter, 2019). When targeting experiments to test

our up-scaled equations, using data from previous studies is challenging because (i) spatial distribution of substrate and/or15

microbial C are not changed in a controlled manner and (ii) the scale at which physical treatments are performed is probably

larger than the scale at which heterogeneity affects C dynamics.

Thus, experiments in which soil structure was manipulated do not allow direct testing of the predicted links between het-

erogeneity and decomposition kinetics at the macro-scale. Furthermore, an experimental validation of the present work could

stem from designing a microscale experiments using artificial porous media with different degrees of heterogeneity. Recent20

application of microfluidics in soil science (Stanley et al., 2016; Aleklett et al., 2018) could allow isolating the effect of spatial

heterogeneity. If any difference is observed among heterogeneous systems, then our framework could be used to attribute these

differences to spatial heterogeneity at the micro-scale. While the proposed mathematical framework is conceptually useful, it

is thus challenging to test. Nevertheless, the prediction that co-location of microorganisms and substrates promotes decom-

position is consistent with and explains theoretically the results of recent experiments (Don et al., 2013; Schnecker et al.,25

2019).
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4.3 Developing soil carbon cycling models that account for micro-scale heterogeneity

Historically, the linear microbial implicit models were developed to explain long-term loss of C from agricultural soils or

regional-scale variations in SOM (Jenny et al., 1949; Olson, 1963; Jenkinson and Rayner, 1977; Parton et al., 1987). However,

when applied at fine spatial or temporal scale, these models fail to describe the dynamics of SOM (Zelenev et al., 2000; Manzoni

and Porporato, 2007). To fill this gap and describe microbial processes at the macro-scale, nonlinear microbial explicit models5

have been proposed (Schimel and Weintraub, 2003; Manzoni and Porporato, 2009; Xie, 2013). In contrast to these approaches

that impose nonlinear kinetics at the macro-scale, here we started from the assumption that SOM kinetics are either linear or

nonlinear at the micro-scale, and let scale transition theory determine the type of kinetics at the macro-scale.

Conceptually, this approach is similar to upscaling chemical reaction networks to obtain a compact kinetic law that only

depends on the concentrations of reactants and products (Tang and Riley, 2013, 2017). However, here we focus on spatial10

heterogeneity rather than on the complexity of chemical reactions. In a more complete upscaling approach, both sources of

micro-scale variability should be taken into account.

When assuming linear kinetics at the micro-scale, we showed analytically that the kinetics at the macro-scale remain linear

and independent of soil biophysical heterogeneity (Eq. (17) and (22)). This result has implications for experimental studies

linking soil architecture to SOM mineralization. In some of these studies, first order microbial implicit kinetics are used15

to describe the data (Bouckaert et al., 2013; Juarez et al., 2013). If a linear model captures well the SOM dynamics in a

heterogeneous system, then either the underlying micro-scale dynamics are indeed linear, or the averaging of underlying

nonlinear equations leads to linearity at macro-scale.

Conversely, we demonstrate that nonlinear kinetics at micro-scale do not remain the same when scaling up. The macro-

scale dynamics retain a clear signature of nonlinearities at the micro-scale in the MFA term, but the second order terms could20

be even more important than the MFA. Thus, nonlinear kinetics might improve SOM predictions because microbial activity

is accounted for (Wieder et al., 2013) (at the cost of increased uncertainty, Wieder et al. (2018)), but the question remains:

which kinetic formulation should be used at the macro-scale that captures both microbial activity and spatial heterogeneities?

We offer a framework to advance this area by using appropriately upscaled nonlinear kinetics including SOT at macro-scale.

This upscaling framework can be extended to account for the role of other micro-scale interactions such as among substrates,25

microorganisms, and minerals, or even temporally varying connectivity due to water movement. These improvements, however,

would come at the expense of increased number of nonlinear second order spatial moments.

To summarize, the proposed theoretical developments allow integration of spatial heterogeneity into decomposition kinetics.

Assuming that the second order spatial moments are known, this integration can be achieved by using the equations listed in
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Table 2 instead of standard linear or nonlinear kinetic equations used in the current models (Wieder et al., 2018; Abramoff

et al., 2018). However, the second order moments and their dynamics are not known in general, as discussed at the end of the

following section.

4.4 Limitations of the upscaling approach

To illustrate the effects of spatial heterogeneities alone, we simulated idealized laboratory conditions in which the environmen-5

tal conditions are constant so that the decomposition rate is not affected by soil moisture and temperature changes through time

and space. Moreover, the simulated domain is small compared to an actual soil sample, but we regard the number of simulated

grid cells (104) as representative of the range of variation occurring in larger, similarly idealized samples. In other studies,

more complex micro-scale models based on nonlinear reactive and diffusive fluxes have been implemented (Monga et al.,

2008; Nguyen-Ngoc et al., 2013; Monga et al., 2014); however, their spatial upscaling would require volume averaging of the10

coupled transport and reaction equations, making the problem mathematically intractable when aiming for analytical solutions

(Whitaker, 1999; Valdés-Parada et al., 2009; Porter et al., 2011; Lugo-Méndez et al., 2015). The two pool micro-scale model

with initial heterogeneous distributions of substrate and microorganisms as described in this study offers a simplified way of

simulating reaction-diffusion systems. The two end-member cases of homogeneous and fully heterogeneous systems where

grid cells are independent are representative of conditions in which diffusivities are high compared to reaction kinetics in the15

former and negligible in the latter. In more realistic settings, conditions are likely to be intermediate between these two cases,

as described by varying the value of the mass transfer coefficient α (Fig. 9).

Including C redistribution as a simple mass transfer process does not allow studying how soil structure affects macro-

scale dynamics by creating and maintaining heterogeneous distributions of resources and oxygen, such as in soil aggregates

(Keiluweit et al., 2017; Ebrahimi and Or, 2018). These patterns result from the interaction of transport and reaction processes20

that the proposed idealized models cannot capture.

The upscaling mechanism described in this work assumes that microbial mortality is first order in microbial C, so that

this term remains structurally similar in the macroscopic Eq. (13) and (14). A nonlinear mortality generalized by T = kBC
β
b

(Georgiou et al., 2017) would create an additional term in the macro-scale equations. The mean microbial mortality can be

calculated by inserting the nonlinear T into Eq. (16), resulting in T = kBCb
β
+βCb

β−1
σ2
Cs

, where σ2
Cs

is the spatial variance25

of microbial C (for the biophysically heterogeneous system; i.e., kB is spatially invariant). For β = 1, the first order mortality

is recovered, (Eq. (22)); for β 6= 1,T has an additional positive variance term that increases mortality at the macro-scale.
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Finally, the upscaled macro-scale equations still require a closure scheme for integration; i.e., a set of equations linking the

spatial moments to the mean state variables. With such a set of additional equations, the problem becomes mathematically

’closed’, as the only remaining unknowns are the mean state variables. Examples of closure from other fields are mentioned in

the introduction (e.g., Bergström et al. (2006)), but finding a robust closure scheme remains challenging and will be the subject

of future work.5

Moreover, our derivations are general, but how these closure equations are formulated and parameterized will likely depend

on the scale transition under consideration - soil pore to core (as in this work), soil core to field, or even field to landscape. It

is possible that a whole hierarchy of scale transitions is required to determine macro-scale equations suitable for regional or

global-scale applications. Along similar lines, how many terms in the Taylor expansion should be retained at each level of this

hierarchy remains an open question. It is also possible that the dynamics at the micro scale in combination with C redistribution10

lead to low values of higher order moments, thus allowing us to neglect higher order terms– because substrate consumption,

mortality of the microorganisms, and transport contribute to smoothing spatial gradients.

5 Conclusions and perspective

Most carbon cycling models implicitly assume a spatially homogeneous distribution of SOM in different C pools and are based

on the mean-field approximation of the rate of decomposition. However, assuming homogeneity is adequate only at the micro-15

scale in soils, due to the homogenizing effect of diffusion, which brings carbon sources and decomposers into direct contact

with each other at such scales. Therefore, the mean-field approximation is valid only at the micro-scale, creating a challenge

when developing SOM models at macro-scale that also account for environment heterogeneity. In this contribution, we used

scale transition theory to link an idealized (but realistic) heterogeneous system and a homogeneous system by establishing an

analytical expression for the macroscopic mean decomposition rate that accounts for the micro-scale heterogeneities. Unlike20

the mean-field approximation adopted in most C cycling models, the upscaled governing equations we derived include second

order spatial moments; i.e., spatial variances and/or covariances between micro-scale state variable and model parameters. The

dynamical behavior of the second order terms drives the heterogeneous system away from the mean-field approximation. For a

heterogeneous system, initially near steady state, micro-scale heterogeneities led to oscillations in the macro-scale respiration

flux and higher SOM persistence in a fully heterogeneous system. For a heterogeneous system perturbed from its equilibrium,25

the co-location of substrate and microorganisms increased macroscopic C fluxes compared to a case in which they were

isolated.
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In conclusion, this work provides a methodology to explicitly include micro-scale heterogeneity in soil C cycling models.

Our upscaled kinetic equations could be used in lieu of current formulations, but additional equations describing the dynamics

of spatial moments should be further developed to mathematically close the problem. The upscaled equations show that, (i)

heterogeneities alter the form of the carbon flux equations at the macro-scale and, as a result, (ii) co-location (respectively

isolation) of microorganisms and their substrates promote (suppress) carbon fluxes in soils.5

Code availability. The codes used to construct the heterogeneous soil maps and to solve the mass balance equations in heterogeneous

domains are publicly available via DOI https://doi.org/10.5281/zenodo.3253880.

Data availability. The article does not use any relevant data.

Appendix A

A1 Derivation of the macro-scale rate of decomposition10

Here we describe the derivation of the spatially averaged C flux for a generic microscopic C flux F (Cs,Cb,k) using scale

transition theory. As a first step, we calculate the multi-variate Taylor’s series expansion of F (Cs,Cb,k) around the spatial

average value of Cs, Cb and k,

F (Cs,Cb,k) = F (Cs,Cb,k)+
∂F

∂Cs

∣∣∣∣
Cs,Cb,k

(Cs−Cs)+
∂F

∂Cb

∣∣∣∣
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(Cb−Cb)+

n∑
i=1

∂F

∂ki

∣∣∣∣
Cs,Cb,k

(ki− ki)+
1

2

∂2F

∂C2
s

∣∣∣∣
Cs,Cb,k

(Cs−Cs)2 +
1

2

∂2F

∂C2
b

∣∣∣∣
Cs,Cb,k

(Cb−Cb)2+15

1

2

n∑
i=1

n∑
j=1

∂2F

∂ki∂kj

∣∣∣∣
Cs,Cb,k

(ki− ki)(kj − kj)+
∂2F

∂Cs∂Cb

∣∣∣∣
Cs,Cb,k

(Cs−Cs)(Cb−Cb)+

n∑
i=1

∂2F

∂ki∂Cs

∣∣∣∣
Cs,Cb,k

(Cs−Cs)(ki− ki)+
n∑
i=1

∂2F

∂ki∂Cb

∣∣∣∣
Cs,Cb,k

(Cb−Cb)(ki− ki)+O(C3
sC

3
b k

3
i ), (A1)

where O(C3
s ,C

3
b ,k

3
i ) represents the higher order terms and the overbars denote the spatially averaged micro-scale quantities.
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Second, the averaging operator given by Eq. (1) is applied in Eq. (A1). Truncating terms above the second order terms, Eq.

(A1) becomes

1∫ ∫
dxdy

∫ ∫
F (Cs,Cb,k) dxdy =

1∫ ∫
dxdy

[
F (Cs,Cb,k)+

∂F

∂Cs
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. (A2)

In Eq. (A2), the first order partial derivatives (second, third and fourth term between the square brackets) disappear, because

the partial derivatives evaluated at the mean state variables are constants that are multiplied by the expectation of the deviation

of a quantity, which is zero
(
∂F
∂χ

∣∣∣∣
χ

∫ ∫
(χ−χ) dxdy = 0, where χ is CS ,Cb or k

)
.10

Finally, after applying the averaging operator, deviations multiplying the second order partial derivatives become spatial

variances and covariances. As a result, the macro-scale C flux F (Cs,Cb,k) is obtained

F (Cs,Cb,k) = F (Cs,Cb,k)+
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Equation (A3) can be used to obtain the macro-scale C flux given the decomposition function D at micro-scale. Explicit15

solutions for the multiplicative kinetics are reported in the main text (Eq. (18), (20), and (21)).

For illustration, here we report the derivation of the spatially averaged rate of decomposition for Michaelis-Menten (MM)

kinetics. The micro-scale rate of decomposition for MM kinetics is given by

F =
kMMCsCb
KMM +Cs

(A4)
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where both the parameters kMM and KMM and the state variables Cs and Cb are considered spatially variable quantities.

Inserting Eq. (A4) into Eq. (16) gives the macro-scale rate of decomposition
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The partial derivative of F with respect to kMM is zero because F is a linear function of kMM . Now, for biophysical hetero-

geneous and biochemical homogeneous system, covariances and variances related to parameters are zeros so that we are left10

with
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Calculating the derivatives gives

F (Cs,Cb, [kMM ,KMM ]) =
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36



For biophysical homogeneous and biochemical heterogeneous system, covariances and variances of state variables (Cs and

Cb) are zeros so that we are left with
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For a completely heterogeneous system with biophysical and biochemical heterogeneity, the mean rate of decomposition at

macro-scale is given by Eq. (A9).

F (Cs,Cb, [kMM ,KMM ]) =10
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Similar to MM kinetics, the mean rate of decomposition for IMM kinetics can also be calculated as,

F (Cs,Cb, [kIMM ,KIMM ]) =
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A2 Initial 2D random fields of substrate C and microbial C

The heterogeneous field of microbial C was created using a random field generator that provides 100×100 spatially correlated

random numbers between -1 and 1 (Lennon, 2000). These values were then re-scaled by an appropriate mean and standard10

deviation of microbial C. To simulate the dead zones in the heterogeneous system, some grid cells were forced to have no

microbial C (the obtained field is denoted yi,j). Moreover, to allow comparison among simulations, the microbial C field was

re-normalized to have a specified value of total initial microbial C,

Cbi,j =
yi,j∑
i,j yi,j

Cb,total (fg) (A11)

It is assumed that the Cb,total is equal to 1% of the total amount of substrate in the domain (Witter, 1996), which is in turn15

calculated as Cs,total = Cs,0×Nx×Ny where Cs,0 is the initial mean substrate C in a single grid cell (fg). The amount of

substrate C in any grid cell is limited by the maximum amount of C that the cell can accommodate, according to the density

of organic matter (ρSOM ), and assuming that 50% of organic matter on a mass basis is composed of organic C. The maximum

amount of substrate C that one cell can contain is thus given by

Cmax = 0.5ρSOM cellvolume (fg) (A12)20

where cellvolume is the volume of a grid cell. The value of Cs,0 was chosen so that the maximum C amount at a micro-site does

not exceed Cmax. To summarize, the obtained spatially heterogeneous random fields of microbial C and substrate C satisfy the
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following constraints: i) the total amount of organic C is set, ii) the total amount of microbial C is 1% of total organic C, iii)

the maximum amount of C in a cell is set (Eq. (A12)), and iv) some grid cells have no microbial biomass.

A3 Steady state substrate C for the multiplicative kinetics in the fully heterogeneous systems

The substrate C at steady state for multiplicative kinetics in a homogeneous or biophysically heterogeneous system is given in

Table 1 and restated here for convenience,5

C∗M =
kB
Y kM

(A13)

C∗MM =
KMMkB

Y kMM − kB
(A14)

where * represents the steady state. Eq. (A13) and (A14) show that the steady state substrate C depends only on the kinetic

parameters and microbial C-use efficiency. Thus, if the kinetic parameters are spatially variable (i.e., fully heterogeneous

system) thenC∗M andC∗MM are also spatially variable and different from the steady state values of biophysically heterogeneous10

and homogeneous systems. Knowing the probability distributions of the kinetic parameters, the mean steady state substrate C

in the fully heterogeneous system can be calculated as the mean value of C∗M or C∗MM .

The mean value of a generic function, g(x) is given by g(x) =

∞∫
−∞

g(x)fX(x)dx, where fX(x) is the probability density

function of x. For the multiplicative kinetics and assumed a logUniform(a,b) distribution for kM , the mean value of C∗M is

given by,15

C
∗
M =

b∫
a

kB
Y kM

f(kM )dkM (A15)

where f(kM ) is the probability density function of kM and given by f(kM ) =
1

(b− a)kM loge 10
. Inserting the expression of

f(kM ) in Eq. (A15) gives,

C
∗
M =

kB
[
10−a− 10−b

]
Y (b− a) ln(10)

(A16)
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A4 Sensitivity of fluctuations to changes in kM in scenario 1

We performed two sensitivity analyses in which we altered the kinetic constant parameter for the multiplicative decomposition

model kM : 1) decreasing kM in the biophysical heterogeneity–positively correlated Cs and Cb (Fig. A1) and increasing the

heterogeneity of kM (by increasing its standard deviation) in the full heterogeneity case (Fig. A2). From Fig. A1, it is clear

that decreasing the rate constant increases the amplitude and wavelength of the oscillations. As shown in Fig. A2, increasing5

the heterogeneity of the rate constant increases the amount of undecomposed substrate C compared to a lower degree of

heterogeneity (Fig. 4). This pattern can be explained using the analytical expression of the steady state substrate C (see Eq.

(A16) in Appendix A3). For the increased heterogeneity case shown in Fig. 4, we used values of a and b as listed in Table

A3 for biochemical heterogeneity 1 and multiplicative kinetics, where a and b have the same meaning as in Eq. (A16). The

analytical expression for the steady state, evaluated with these values of a and b, results in exactly the same steady state of10

substrate C as simulated by the distributed model (i.e., 15 mgC/gSoil).

These fluctuations are similar to those noted in earlier papers using spatially lumped models (Manzoni and Porporato, 2007;

Sierra and Muller, 2015). These papers showed that the occurrence and amplitude of the fluctuations depend on the kinetic

parameter values, as is the case here.
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Figure A1. (a) mean substrate C (Cs), (b) mean microbial C ( Cb ), (c) mean respiration rate (R), and (d) sum of second and third order
terms (

∑
HOT ) are shown as a function of time, for positively correlated initial spatial heterogeneity of Cs and Cb. This figure is similar

to Fig. 4, left column (initial substrate is distributed randomly around the steady state). Varying levels of the rate constant kM are shown
(as indicated by different line styles and colors; the base case is the same as in Fig. 4). Panels on the right are enlarged views of the time
trajectories of Cs.
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Figure A2. (a) mean substrate C (Cs), (b) mean microbial C ( Cb ), (c) mean respiration rate (R), and (d) sum of second and third order
terms (

∑
HOT ) are shown as a function of time, for different scenarios of initial spatial heterogeneity. This figure is similar to Fig. 4 for the

full heterogeneity case, but with increased heterogeneity of the rate constant (kM ).
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Figure A3. Scenario 1 (steady state simulation): temporal evolution of mean respiration rate in the heterogeneous system (Rhet, including
the mean-field approximation (MFA) and second order terms), and the respiration rate in the homogeneous system (Rhom), for multiplicative
kinetics and for (a–c) the biophysical and (d–f) the fully heterogeneous system with (a–d) positively and (b–e) negatively correlated, or (c–f)
uncorrelated initial substrate and microbial C.
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Figure A4. Temporal evolution of mean respiration rate in the heterogeneous system (Rhet), which includes the mean-field approximation
(MFA) and second order terms, and the respiration rate in the homogeneous system (Rhom), for (a–c) the biophysically and (d–f) the fully
heterogeneous system with positive (a–b), negative (c–d) and un-correlated (e–f) substrate and microbial C, for multiplicative kinetics.
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Figure A5. Scenario 2 (HS with Michaelis-Menten kinetics): temporal evolution of mean respiration rate in the biophysically heterogeneous
system (Rhet,including the mean-field approximation (MFA), and second order terms), and the respiration rate in the homogeneous system
(Rhom), for (a) positively and (b) negatively correlated, or (c) uncorrelated substrate and microbial C.
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Figure A6. Scenario 2 (HS with inverse Michaelis-Menten kinetics): temporal evolution of mean respiration rate in the biophysically hetero-
geneous system (Rhet,including the mean-field approximation (MFA), and second order terms), and the respiration rate in the homogeneous
system (Rhom), for (a) positively and (b) negatively correlated, or (c) uncorrelated substrate and microbial C.
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Figure A7. Distribution of the decomposition rate constant for different degrees of biochemical heterogeneity, and for (a) multiplicative and
(b) Michaelis-Menten kinetics. Black and grey shadings represent higher and lower degree of biochemical heterogeneity respectively, and
the dashed line represents the mean rate constant for the homogeneous system. The half saturation constant KMM is uniformly distributed,
not shown in figure.

47



Table A1. List of parameters. Values in the brackets correspond to the units reported in the brackets.

Parameter Value Unit Description

I 6.06× 10−4 mgCg−1soil h−1 rate of input of external carbon

KMM
5156250

(25)
fgC/grid cell
(mgCg−1soil)

half saturation constant (MM)

kMM 0.018 h−1 decomposition rate constant
for the MM kinetics

KIMM
2× 106

(9.69)
fgC/grid cell
(mgCg−1soil)

half saturation constant (IMM)

kIMM 0.0045 h−1 decomposition rate constant
for the IMM kinetics

kM
7.45× 10−10

(1.53× 10−4)
h−1 (fgC/grid cell)−1

(h−1 (mgCg−1soil)
−1

)

decomposition rate constant
for the Multiplicative kinetics

kB 0.00028 h−1 decomposition rate constant
for the MM kinetics

Y 0.31 h−1 g/cm3

ρBD 1.65 g/cm3 Soil bulk density
ρOM 1.1 g/cm3 Organic matter density

Table A2. Initial mean substrate and microbial C in scenarios one and two (in fgC/grid cell); values in brackets are expressed in
mgCg−1soil.

# Scenario Initial Cs Initial Cb

fgC/grid cell(mgCg−1soil)

1 Steady state IC 1.212× 105(5.9) 2.005× 105(0.9725)

2 Transient IC 2.5× 107(121.21) 2.5× 105(1.21)

Table A3. Probability distributions of the parameters for the multiplicative and MM kinetics models. Values in brackets indicate the minimum
and maximum parameter values.

Biochemical heterogeneity 1 Biochemical heterogeneity 2

Multiplicative kM
(h−1) (fgC/grid cell)−1

log10Uniform(−10.1,−8.56) log10Uniform(−9.4,−8.9)

MM
kMM (h−1) log10Uniform(−1.098,−3)
KMM (fgC/grid cell) Uniform(0.25,49.75)

IMM
kIMM (h−1) kMM/4
KIMM (fgC/grid cell) Uniform(1,18.4)
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