
Revised manuscript “Dynamic upscaling of decomposition kinetics for 

carbon cycling models” 
 

We have previously uploaded the point-by-point response to the reviewer comments as author comments AC1-

4. This document lists the modifications made in the revised manuscript to reflect reviewers’ comments and our 

responses. Our arguments in support to the responses and additional analyses that are not included in the revised 

manuscript (but that are relevant to address the comments) are found in the author comments AC1-4. 

Part of mathematical text in the marked-up manuscript did not render well because of latexdiff, for clarity of 

these texts please refer to the revised manuscript. Page and line number references correspond to the revised 

manuscript.  

Reviewer 1 comments (Thomas Wutzler): 

We would like to thank Thomas Wutzler for an encouraging and detailed review of our manuscript. In the 

following, we list the changes (highlighted in blue normal font) made in the revised manuscript in response to 

Dr. Wutzler (denoted by italic font). 

General comments 

1. Methodology description: the way of providing spatial moments to analytic equations did not become clear 

to me (P17L11). I assume, you computed the quantities for sufficiently close time points from the distributed 

model, and provided a smoothing function depending on time as input to the solver for the analytic equation 

system. 

Please see our response in the interactive discussion. 

2. An overview of the approach would be helpful: 1) Express each equation of state variable change of each 

individual location based on the spatial mean of the pool sizes and the deviations from it at local scale. And 

2) Apply a spatial averaging over the obtained equations, resulting in an equation composed of terms of the 

mean pool sizes and the spatial covariance of the pools and heterogeneously distributed parameters. 

The schematic Figure 1 has been improved to provide a better graphical overview of the approach, and at 

the beginning of the theory section the rationale was outlined in clearer terms as suggested (see, P5 L18-

23): 

“To obtain the macro-scale dynamics we employ two approaches: (i) a numerical approach based on grid-

scale simulations followed by spatial averaging (upper panel Fig. 1) and (ii) an analytical approach based 

on scale transition theory (lower panel Fig. 1). The first, computationally demanding approach requires 

solving the micro-scale equations at each cell of the domain grid. Spatial averages and variances are thus 

calculated numerically over the domain at each time point in the simulation. With the analytical approach, 

the dynamic equations are first averaged and then solved directly for the mean state variables. The obtained 

analytical expressions are used to interpret the results of the numerical simulations.” 

3. I tried to check the math, but did not always come to the same results (see detailed 

comments, eq. A7) 

This was a typing mistake. To address this comment, the expression has been corrected in Table 2 (P14) 

and Eq. A7 (P36).  



The corrected expression is −
2 𝑘𝑠,𝑚𝑚𝐾𝑀 𝐶𝐵̅ 

(𝐾𝑀 + 𝐶̅𝑠 )3 
. 

In the discussion I would like to read about several points: 

4. Slowdown of decomposition: To my opinion the slowdown of decomposition despite plenty of available 

substrate (Fig 7d) is a very important feature/insight of the model. A very simple model (albeit still required 

input of time series of heterogeneity variances) can explain why we can find very old potentially quickly 

decomposable SOM. The reasons should be explained in more detail (right skewed distribution of 

decomposition rate, low probability of co-occurrence of high substrate concentration, …) 

To address this comment, a paragraph at the end of section 4.1: ‘Predicted effects of spatial 

heterogeneity on decomposition’ has been added at P29L16-22, 

“Our analysis suggests that the persistence of SOM in heterogeneous systems may be a consequence of 

the micro-scale heterogeneity in soil carbon cycling. In the transient simulations with biophysical 

heterogeneity, persistence is a result of spatial disconnection between substrate and microorganism, 

captured in our framework by a low probability of co-location at the beginning of the simulation. In the 

transient simulations for the fully heterogeneous systems, persistence is a result of the combined effects of 

low probability of co-location and high probability of low decomposition rate constant at the beginning of 

the simulation. The heterogeneity in substrate quality thus explains the higher persistence of SOM in the 

fully heterogeneous system compared to the biophysically heterogeneous system.”  

5. Oscillations at multi-annual time scale: Observations of such a phenomenon are very rare. I once argued 

that we do not see such modelled oscillations with microbial explicit models because of superposition of 

dynamics across many pores. Here, such spatial heterogeneity is the cause of fluctuations. 

Please see our response in the interactive discussion. We now highlight the occurrence of these fluctuations 

in Section A4 (see response below). 

6. Development of the heterogeneity / damping of oscillations (Fig 4): The systems develops to a steady state 

without any more oscillations. Is the initial heterogeneity developing in direction of homogeneity? Probably 

not because the simulated SOM stocks differ from the homogeneous system. What is the spatial distribution 

and covariance between substrate, biomass, and quality after 60 years? Is there a covariance pattern that is 

stable? I suggest putting another two panels to Fig. 2 showing microbial and substrate distribution at year 

60. 

To address this comment, the following text has been added at P19L14-16, 

‘In systems including both biophysical and full heterogeneity, the sums of the HOT are stable in the long 

term, once the steady state has been reached. This was confirmed by running the model for 100 years.’ 

7. Role of disturbances: What happens if you simulate a disturbance (homogenization) after the system is near 

steady state? Does this start the oscillating pattern again? 

This comment was previously misinterpreted. If disturbances are re-introduced after ‘new’ steady state has 

been reached in a previously heterogeneous system, then yes, oscillations would reappear because this new 



steady state would be spatially homogeneous (recall that C input is homogeneous on the domain). Any 

perturbation near this ‘new’ steady state would cause fluctuations to reappear. 

To address this comment, the following text has been  added at P19L17, 

‘Furthermore, any additional perturbation of the new steady state caused by an external factor will re-

introduce the fluctuations.’  

8. Magnitude of the heterogeneity effects: In Figure 4, the effects look large, because the axis ranges from 5 to 

7, but aside from the initial disturbance, the effect is only about 1/10 of the steady state. Are there 

reasonable parameter combinations where the effect is larger? Or do we not need to are this much about 

heterogeneity at steady state? 

To address this comment, new analyses have been performed. The respectiveresults have been added to the 

manuscript as a part of the appendix – Appendix A4: ‘Sensitivity of fluctuations to changes in 𝑘𝑀 in 

scenario 1’, at P40. 

‘We performed two sensitivity analyses in which we altered the kinetic constant parameter for the 

multiplicative decomposition model kM: 1) decreasing kM in the biophysical heterogeneity–positively 

correlated Cs and Cb (Fig. A1) and increasing the heterogeneity of kM (by increasing its standard 

deviation) in the full heterogeneity case (Fig. A2). From Fig. A1, it is clear that decreasing the rate constant 

increases the amplitude and wavelength of the oscillations. As shown in Fig. A2, increasing the 

heterogeneity of the rate constant increases the amount of undecomposed substrate C  compared  to  a  

lower  degree  of heterogeneity (Fig. 4). This pattern can be explained using the analytical expression of the 

steady state substrate C (see Eq.(A16) in Appendix A3). For the increased heterogeneity case shown in Fig. 

4, we used values of a and b as listed in TableA3 for biochemical heterogeneity 1 and multiplicative 

kinetics, where a and b have the same meaning as in Eq. (A16). The analytical expression for the steady 

state, evaluated with these values of a and b, results in exactly the same steady state of substrate C as 

simulated by the distributed model (i.e., 15mgC/gSoil).  

These fluctuations are similar to those noted in earlier papers using spatially lumped models (Manzoni and 

Porporato, 2007; Sierra and Muller, 2015). These papers showed that the occurrence and amplitude of the 

fluctuations depend on the kinetic parameter values, as is the case here.’ 

9. 2D system: Are the insights transferable to a 3D system. What would you expect to change? Since, there is 

currently no transport and interaction between the cells, I infer that aside from maybe slightly different 

development of the initial correlations, the dynamics should stay the same. The macro-scale equations are 

not affected, as I understood. 

Please see our response in the interactive discussion. 

10. More complex systems: The analytical scale transition approach worked nicely with the basic simple 

model. With more complex models that include many more heterogeneous parameters it will be difficult to 

impossible to close the model with all the combination covariances (the factorial grows very fast). Can you 



describe a strategy to determine which combinations are important and which combinations can be 

neglected? When have we sufficiently including more and more heterogeneities? 

To address this comment, the following text has been added at P33L9-12, 

‘Along similar lines, how many terms in the Taylor expansion should be retained at each level of this 

hierarchy remains an open question. It is also possible that the dynamics at the micro scale in combination 

with C redistribution lead to low values of higher order moments, thus allowing us to neglect higher order 

terms-- because substrate consumption, mortality of the microorganisms, and transport contribute to 

smoothing spatial gradients.’ 

Admittedly, we do not have a clear answer to this comment. 

11. Time scale: I am especially interested in modelling decadal to longer-term SOM dynamics. Are the multi-

annual oscillations important for the longer term dynamics? Do you expect heterogeneity to change with 

global change in the longer term? What is the advantage of describing the changed steady state with 

heterogeneity (Fig 7d) with heterogeneity inputs compared to effective model parameters? I see some 

advantages, but it would be nice to clarify them in the paper. 

Please see our response in the interactive discussion. Despite the interest in these discussion points, we 

opted for keeping the revised Discussion streamlined and did not cover as initially suggested these topics 

for the sake of space (the manuscript is already long and discussions along the lines suggested would be 

rather speculative with the type of model we are using). 

Specific comments: 

12. eq. 4 ..6: Your simple basic model refers to the Schimel and Weintraub 2003, who actually used and 

suggested an inverse MM kinetics D = ks Cs Cb / (kM + Cb). It would be nice to amend your work by this 

decomposition equation. 

To address this comment, new analyses based on inverse MM kinetics were performed. Results and 

modification to existing figures are listed as following:   

 Figures 1 and 3 now include inverse MM kinetics 

 Table 2 now lists the macroscopic rate of decomposition for inverse MM kinetics in all three 

heterogeneous cases 

 An additional figure, Fig. 7 has been added to represent the time evolution of state variables in 

scenario 2 

 Figure 8 has been modified by adding two new panels for inverse MM kinetics 

 The respective results are now discussed at several locations – in particular: P21, L13-29. 

 Derivation of mean rate of decomposition for inverse MM kinetics has now been presented in 

appendix on P38, L5 



 An additional figure, Fig. A6 has been added to represent the time evolution of SOTs for 

biophysical heterogeneity in scenario 2 

13. P11L11: The sentence does not make sense to me. The variance itself is not always negative. Probably you 

meant: “This term is always negative because the variance of the spatial substrate distribution is a positive 

quantity and ...” 

To address this comment, the text has been modified as suggested at P12L6, 

‘The spatial variance term is always negative because the variance of the spatial substrate distribution is a 

positive quantity and the partial derivatives multiplying the variances are negative in all decomposition 

functions that saturate at high substrate concentration.’ 

14. P12L15ff: May state that therefore the mean field approximation is exact and spatial variance of this 

parameter has no effect on the macro-scale dynamics. 

To address this comment, the text has been modified as suggested at P13L7-9, 

‘Similar derivations can be done for the microbial mortality rate (F = T). The Taylor expansion of microbial 

mortality is simpler because we assume T to follow first order kinetics implying that all the second order 

terms are equal to zero. Therefore, the mean field approximation is exact and spatial variance of this 

parameter has no effect on the macro-scale dynamics’ 

15. P12L19: This paragraph comes a bit surprising without context. Why do you look at SGR? 

To address this comment, the text has been modified at P13L11, 

‘To illustrate how macro-scale decomposition kinetics are affected by spatial heterogeneity, we define a 

macro-scale specific growth rate (SGR), which is calculated by diving the mean respiration rate by mean 

microbial C in the system’ 

16. P14L11ff: Potential for moving to appendix. Only the information starting from P15L5 is important 

To address this comment, a part of section 2.4: Initial 2D random fields of SOM and kinetic parameters has 

been  moved to appendix– Appendix A2 at P38, L6. Please see the revised manuscript for clarity.  

The starting paragraph of section 2.4 Initial 2D random fields of SOM and kinetic parameters will be 

changed as follows: 

‘Two-dimensional spatially heterogeneous distributions of substrates and microbial C were generated to run 

the distributed model. The obtained distributions were based on following constraints: i) the total amount of 

organic C is set, ii) the total amount of microbial C is 1% of total organic C, iii) the maximum amount of C 

in a cell is set (Eq. (A12)), and iv) some grid cells have no microbial biomass. For details to the field 

generation procedure, see Appendix A2.’ 

 



17. P14L19: What is (fg)? I could not find the explanation. It is used several times in the text eq. 26, 27 and 

appendix figure and table captions. 

Please see our response in the interactive discussion. 

18. P16L10ff: I suggest to give more meaningful names to the scenarios instead of numbers. E.g “Steady 

simulation” and “High Substrate Simulation” (also update Fig 3). 

The names of the scenarios have been changed as suggested. Now they read as, Steady state simulation (SS) 

and High substrate simulation (HS). Figure 3 and the text throughout the manuscript have been modified to 

reflect the change. 

Response to reviewer 2 (Ali Ebrahimi): 

We would like to thank Ali Ebrahimi for the review of our manuscript. Our responses are highlighted in blue 

(normal font). Some of the comments point to the approach limitations – indeed, this is a theoretical study the 

findings of which are hard to validate because there is no data at a fine-enough resolution. We would like to 

emphasize that the value of the proposed approach is to provide a framework for studying heterogeneity effects 

on measurable C fluxes and stimulate discussion in this area. 

Major concerns: 

1. It is unclear to what extend the parameterization proposed in the analytical kinetic model could be 

experimentally validated. My major problem is that some of the quantities do not have real biogeochemical 

or physical meanings in which could be experimentally measured. For instance there is an emphasis on the 

second order moments as state variables used to close the model; however it is hard to think how such 

variable could be experimentally measured. 

In addition to our response in the interactive discussion, this comment has been addressed by adding the 

following text at P30L19-26.  

‘Further, an experimental validation of the present work should stem from designing a microscale 

experiments using artificial porous media with different degrees of heterogeneity. Recent application of 

microfluidics in soil science (Stanley et al., 2016; Aleklett et al., 2018) could allow isolating the effect of 

spatial heterogeneity. If any difference is observed among heterogeneous systems, then our framework 

could be used to attribute these differences to spatial heterogeneity at the micro-scale. While the proposed 

mathematical framework is conceptually useful, it is thus challenging to test. Nevertheless, the prediction 

that co-location of microorganisms and substrates promotes decomposition is consistent with and explains 

theoretically the results of recent experiments (Don et al., 2013; Schnecker et al., 2019).’ 

2. The type of model and scenarios proposed in this study are relevant and could potentially address some of 

the inconsistency in our field measurements but it could only be possible if the model could establish a 

systematic link to relevant abiotic and biotic factors observed in the field. While in the discussion authors 

have tried to relate some of the scenarios in the study to soil aggregation or pore connectivity and an entire 

subsection is dedicated for that, I still find that the modeling framework is too abstract that makes the 

explanations quite speculative and hard to think to what extend the decomposition rate may vary under 

realistic settings. 



Please see our response in the interactive discussion. 

3. The model could potentially describe some of the underlying abiotic and physio-logical mechanisms that 

shape the decomposition dynamics but in the current form of the manuscript this has not been explored. For 

instance, I was wondering to what extend half saturation to substrate and decomposition rate constant (KM 

and Ks) are shaping the dynamics observed in the model. I would guess if lower KM or high Ks would have 

been chosen the heterogeneous scenarios would have converged faster to the homogenous one. 

In addition to our response in the interactive discussion, to address this comment (and in combination to our 

response to Reviewer 1), we have included a new sensitivity analyses on the kinetic rate constant in 

Appendix A4. The added text is reported in our response to Reviewer 1 above; new figures A1 and A2 have 

also been included to illustrate the findings. 

Minor concerns: 

4. I was wondering to what extend the fluctuating environmental condition (for instance fluctuating in carbon 

distributions) could play a role in shaping the carbon decomposition dynamics. Do you expect to see faster 

convergence to homogenous scenario in high intensity fluctuations? 

Please see our response in the interactive discussion. 

5. The system size that is modeled in grid based network is rather small. The number of grids, or pores equal 

to 10000, is basically enough to model an aggregate with the size of 0.5mm. I was wondering if this size is 

sufficiently large to capture heterogeneities in the soil? For instance inter aggregate pores or macro-

pores? 

Please see our response in the interactive discussion. 

6. Following up on the results for negative correlations, I was wondering how much physical inaccessibility 

of the carbon to microbes could be relevant for the soil systems? For instance most of the carbon 

protections in soil are often driven by soil aggregation and creation of anoxic microsites. In a broader 

term, the counter gradients created by carbon and other necessary substrates for carbon degradation could 

lead to inaccessibility of the carbon for microbes and not necessary physical inaccessibility. This is a 

phenomenon that has been previously shown in soil aggregates that due to creation of anoxic zones, the 

carbon configuration does not play a role in carbon consumption (Ebrahimi and Or, 2018 GCB) and in 

other studies showing carbon protection by aggregation (e.g., Keiluweitet al., 2017 Nat. comm.). 

Please see our response in the interactive discussion. Moreover, we added the following short paragraph in 

the Discussion to address this comment (see, P32 L18-21): 

“Including C redistribution as a simple mass transfer process does not allow studying how soil structure 

affects macro-scale dynamics by creating and maintaining heterogeneous distributions of resources and 

oxygen, such as in soil aggregates (Keiluweit et al., 2017; Ebrahimi and Or, 2018). These patterns result 

from the interaction of transport and reaction processes that the proposed idealized models cannot capture.” 



Response to reviewer 3  

We would like to thank reviewer 3 for the review of our manuscript. In the following, we list the changes 

(highlighted in blue normal font) made in the revised manuscript in response to Reviewer 3 (denoted by italic 

font). 

 

1. While the conclusions they drew are solid within their model configuration, I too share with others the 

concern that how this learned lesson could be translated into something universally applicable for other 

modelers.  In particular, we in the soil biogeochemical modeling community have so far no unanimously 

accepted governing equation to solve like that exist for geophysical fluid dynamics, or hydrodynamics in 

general, where re-solving the microstructure effects can be achieved through the so called large-eddy 

simulation and sub-grid closure, and even field or laboratory experiments can be designed to derive 

parameterization schemes that are generally applicable for different situations.  Personally, I am therefore 

wondering can the authors’ approach become some tools that are easily accessible to others, e.g., like 

Markov chain Monte Carlo codes that are widely accessible through open source software? 

Please see our response in the interactive discussion. 

2. Second I am a little bit disappointed that authors decided to ignore the interactions between different 

micro-grids.  In physics, the successful upscaling is achieved only through the consideration of interactions.   

For instance, the scaling of Newton’s law of momentum conservation, the derivation of center of gravity, or 

the scaling relation-ship between the Chapman-Enskog theory, lattice Boltzmann approach and the Naiver-

Stokes equation, are all hinged on the interactions between their parts.  Therefore, it is not surprising at all 

that the authors found that their mean-field-approximation deviated significantly from their so-called full 

model simulations.  Further, from existing scaling theories in the literature, another key of success seems to 

maintain the essential invariants of the system when one transits from one scale to another, yet the 

Michaelis-Menten kinetics they use is a crude approximation and misses some important invariant that is 

included in its origin law of mass action (Tang and Riley, 2017), and is deemed to show the difference they 

found.  In addition, there’s no guarantee that the mean-field equation will possess the same form as the 

micro-scale equation. For this, a very good example can be found in geophysical fluids, where at different 

scales, their governing equations are different, e.g., Gill (Atmosphere-Ocean dynamics, 1982)).  Another 

more relevant example on decomposition is in Wang and Allison (2019). 

To address this comment, new analyses based on mass-transfer model have been performed. New results 

and modifications to existing figures are listed below:   

 The micro-scale model in Fig. 1 has been modified to account for C redistribution via a simplified 

mass-transfer approach 

 Equations 2-4 have been added to represent a generic mass-transfer model on P8, L2-4 

 An additional figure, Fig. 9, has been s added to represent the effect of C redistribution among grid 

cells 

 The new results are discussed on P23, L9-14 



 Discussion points based on the new mass-transfer model have been added at several locations, 

specifically on P29, L11 

‘Increasing local connectivity among grid cells moderately reduces the effect of spatial heterogeneity 

on the macro-scale variables and fluxes’ 

3. Third, I feel the authors have some misunderstanding about the mean-field theory and the meaning of well-

mixed soil condition. In fact, the scaling problem we are facing here is very similar like the situation 

hydrologists encountered in upscaling the soil moisture and soil matric potential relationship in the 1970s-

1980s. Using statistical theory, they were able to derive closed analytical relationships (e.g., Mualem, 

1976) to inform important soil water retention curve formulations to be derived from empirical data 

(e.g.,van Genuchten, 1980).  Therefore, whenever moisture-pressure relationships are included in soil 

biogeochemical models, some microstructure is included in the so-called mean-field-theory based model 

(although I should admit that the authors did not consider soil moisture in this study).  Or put this 

straightforwardly, mean field theory does not rule out the inclusion of microstructure, as was 

demonstrated in the recent up-scaling study of substrate affinity parameter (Tang and Riley, 2019), and 

the study of turbulence (e.g., Takahashi, 2017).  In the same vein, a well-mixed soil can also have 

microstructure, and be properly parameterized. In fact, the latter is what motivated the dual-porosity or the 

multiple-Rates Mass Transfer models, which have enjoyed many successful applications (e.g., Haggerty and 

Gorelick, 1995). 

In addition to our response in the interactive discussion this comment has been addressed by new results 

based on inverse MM kinetics, as also mentioned above. This compromise allows maintaining analytical 

tractability, while avoiding the inclusion of enzyme dynamics in the model, which would alter significantly 

the model structure. Moreover, we now refer in several points to the work by Tang and Riley (2013, 2017), 

which is indeed a good example of upscaling, though with a focus on reaction network rather than space per 

se. For example, the following paragraph has been added to the Discussion (see, P31 L9-12) :  

“Conceptually, this approach is similar to upscaling chemical reaction networks to obtain a compact kinetic 

law that only depends on the concentrations of reactants and products (Tang and Riley, 2013, 2017). 

However, here we focus on spatial heterogeneity rather than on the complexity of chemical reactions. In a 

more complete upscaling approach, both sources of micro-scale variability should be taken into account.” 
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Abstract. The distribution of organic substrates and microorganism in soils is spatially heterogeneous at the micro-scale. Most

soil carbon cycling models do not account for this micro-scale heterogeneity, which may affect predictions of carbon (C) fluxes

and stocks. In this study, we hypothesize that the mean respiration rate R at the soil-core scale (i) is affected by the micro-

scale spatial heterogeneity of substrate and microbes
:::::::::::::
microorganisms and (ii) depends upon the degree of this heterogeneity. To

assess theoretically the effect of spatial heterogeneities onR, we contrast highly heterogeneous conditions with isolated patches5

of substrate and microbes
:::::::::::::
microorganisms

:
versus spatially homogeneous conditions equivalent to those assumed in most soil

C models. Moreover, we distinguish between biophysical heterogeneity, defined as the non-uniform spatial distribution of

substrate and microbes
:::::::::::::
microorganisms, and full heterogeneity, defined as the non-uniform spatial distribution of substrate

quality (or accessibility) in addition to biophysical heterogeneity.

Three
::::
Four

:
commonly used formulations for decomposition kinetics (linear, multiplicativeand ,

:
Michaelis-Menten,

::::
and10

::::::
inverse

:::::::::::::::
Michaelis-Menten) are considered in a coupled substrate-microbial biomass model valid at the micro-scale. We start

with a 2D domain characterized by a heterogeneous substrate distribution and numerically simulate organic matter dynamics

at each cell in the domain. To interpret the mean behavior of this spatially-explicit system, we propose an analytical scale

transition approach in which micro-scale heterogeneities affect R through the second order spatial moments (spatial variances

and covariances).15

It was not possible to capture the mean behavior of the heterogeneous system when the model assumed spatial homogeneity,

because the second order moments cause the heterogeneous system to deviate from the behavior attained under homogeneous

conditions. Consequently, R in the heterogeneous system can be higher or lower than the respiration of the homogeneous

1



system, depending on the sign of the second order spatial moments. This effect of the spatial heterogeneities appears in the

upscaled nonlinear decomposition formulations, whereas the upscaled linear decomposition model deviates from homogeneous

conditions only when substrate quality is heterogeneous. Thus, this study highlights the inadequacy of applying at the macro-

scale the same decomposition formulations valid at the micro-scale, and proposes a scale transition approach as a way forward

to capture micro-scale dynamics in core-scale models.5

1 Introduction

Soil organic substrates and microorganisms are heterogeneously distributed in the soil medium (Nunan et al., 2002; Peth et al.,

2014; Raynaud and Nunan, 2014; Rawlins et al., 2016). The importance of this heterogeneous distribution in soil organic matter

(SOM) dynamics has been shown both experimentally and in modeling studies. Early experimental results show that the min-

eralization of SOM is affected by the non-uniform distribution of the substrates within macro and micro pores (Killham et al.,10

1993). The recognition that spatial location of substrates and microorganisms constrains decomposition and thus C persistence

is causing a paradigm shift from the previous emphasis on chemical composition of organic substrates to a focus on the biophys-

ical environment in which decomposition occurs (Schmidt et al., 2011)
::::::::::::::::::::::::::::::::::::::::::::::::::
(Schmidt et al., 2011; Don et al., 2013; Schnecker et al., 2019)

. Soil pore structure is emerging as a fundamental property that integrates these biophysical constraints on decomposition (Dun-

gait et al., 2012; Falconer et al., 2015; Fraser et al., 2016). The biophysical and biochemical properties of the pore structure15

such as pore connectivity, tortuosity of water and air diffusion pathways, and adsorption/desorption, limit the accessibility of

organic substrates to decomposers
:::::
access

:::::::::::
decomposers

::::
have

::
to
:::::::

organic
::::::::
substrate. As a result, these micro-scale constraints

create a spatially heterogeneous landscape with highly variable distributions of substrate and microbial C. In the following, we

refer to this type of variability as micro-scale heterogeneity.

Despite the importance of micro-scale heterogeneities, most SOM decomposition models are based on reaction kinetics that20

are valid for reactions in well-mixed media, including C cycling schemes implemented in ecosystem and Earth system models.

In well-mixed systems, the mean concentrations of substrate and microbial C, and the rates defined using these mean values

are assumed to be representative of the system. Most existing SOM models embrace this assumption regardless of whether

they are microbial implicit (i.e., based on first order kinetics) or microbial explicit (i.e., based on multiplicative and enzyme

kinetics) (Manzoni and Porporato, 2009). This approach is often referred to as mean-field approximation and is meant to25

describe spatially averaged SOM dynamics at soil core- to plot-scales. There is an underlying, but untested, assumption that

the kinetics that are valid under well mixed conditions at fine scales also hold at larger scales, where conditions are often far

from well-mixed. For this assumption to hold, a spatially averaged C flux should be equal to the average flux when organic C is

2



uniformly distributed throughout the system. This is not the case when C concentrations are heterogeneously distributed and the

kinetics are nonlinear (Chesson, 1998; Melbourne and Chesson, 2006; Morozov and Poggiale, 2012; Van Oijen et al., 2017).

For example, even in the simple case of only two soil patches, the overall C fluxes follow more complex behaviors than within

an individual homogeneous patch, requiring the use of kinetics that differ from those applied at the micro-scale (Manzoni et al.,

2008). The use of the same decomposition kinetics across a wide range of spatial scales is therefore questionable in systems5

that are spatially heterogeneous and regulated by nonlinear kinetics.

To understand at which scale a model developed for well-mixed conditions is expected to work, both the spatial scale at

which heterogeneities become important and the scale at which homogeneity can be assumed must be identified. The average

inter-cell distance in soil is in the order of 10 µm (Raynaud and Nunan, 2014) and the median length of spatial correlation of

SOM varies between approximately 40 and 175 µm (Rawlins et al., 2016). Furthermore,
:
it
::::
has

::::
been

::::::
argued

:::
that

:
the pore class10

::::
with

::::::::
diameters

:::::::
between

:
30 to

:::
and 150 µm has been argued to be

:
is
:
the most important for microbial activity (Kravchenko and

Guber, 2017). This heterogeneity occurring at scales from ∼10 to 200 µm, is generally neglected in C cycling models. Below

the∼50 µm scale, diffusion time scales can be assumed to be faster than advection and reaction time scales
::::::::::::::
(Watt et al., 2006).

Thus, it can be argued that below∼50 µm the assumption of homogeneity is likely to hold, while it is no longer valid above this

threshold (see Section 2.1.1 for details). If homogeneity cannot be assumed, how should decomposition kinetics be described15

in soil cores or at larger scales that include strong spatial heterogeneity?

Including micro-scale heterogeneities in the kinetics of SOM models is recognized as a much needed advancement in the

field (Manzoni and Porporato, 2009; Sierra and Muller, 2015; Wieder et al., 2015), though only a few attempts have been

made in this direction (Ebrahimi and Or, 2016; Van Oijen et al., 2017).
::
In

:::::::
contrast,

:::::
there

:::
are

::::::
several

::::::::
examples

::
of

:::::::::
upscaling

:::::::
schemes

:::
for

::::::::
chemical

::::::::
reactions

::::::::
networks

::::::::::::::::::::::::
(Tang and Riley, 2013, 2017)

:
.The challenge is therefore to develop spatially up-20

scaled models that describe SOM decomposition at the macro-scale while taking into account the micro-scale heterogeneities.

Mathematically, this upscaling problem is equivalent to spatial averaging of the mass balance equations based on the well-

mixed assumption
::::::
written at the micro-scale.

Three types of upscaling approaches are often used for dynamical systems such as those used to describe soil biogeo-

chemical processes: (i) spatial averaging of known numerically simulated C flux fields, (ii) definition of effective parameters25

to capture fine-scale heterogeneity, and (iii) scale transition theory or volume averaging of the equations at the micro-scale.

Spatial averaging of simulated dynamics at the micro-scale is common (Allison, 2012; Kaiser et al., 2014; Yan et al., 2016)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Allison, 2012; Kaiser et al., 2014; Yan et al., 2016; Wang and Allison, 2019), but this approach does not lend itself to analyt-

ical solutions that would offer insights into the effects of heterogeneity on macroscopic properties. The effective parameter
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approach, more common in sub-surface hydrology (e.g. Dagan (1987)), has been used to relate the macroscopic decomposi-

tion rate to the characteristic parameters of micro-scale heterogeneity, but only in a minimal ‘lumped’ model (Manzoni et al.,

2008). The estimated effective parameters tend to be specific to studied scenarios and difficult to generalize. Here, we focus

mainly on the third method based on scale transition theory, because this approach provides a dynamic link between micro- and

macro-scale using spatial moment approximations (SMA). Using scale transition theory, it is possible to obtain an analytical,5

but approximate representation of dynamics at the macro-scale by accounting for the nonlinear dynamics at micro-scale.

Scale transition theory is based on spatial averaging of the dynamical equations themselves (as opposed to averaging known

fluxes as in point (i)). This
:::
For

:::::::
example,

::::
this approach has been used to study predator-prey population dynamics at the patch

and regional scales (Bergström et al., 2006; Englund and Leonardsson, 2008; Barraquand and Murrell, 2013). The macroscopic

(regional) population dynamics is controlled by the mean population densities of predator and prey, which in turn relate to the10

spatial statistics of population densities at the micro-scale (patch). Similar approaches are also used in hydrology to calculate

average hydrologic fluxes when soil and micro-climatic conditions are spatially heterogeneous (Albertson and Montaldo, 2003;

Fatichi et al., 2015), and in groundwater hydrology to derive transport equations at the Darcy- or field-scale (in this field the

approach is called ‘volume averaging’ (Dentz et al., 2011)). We are aware of only one study using similar techniques to scale

up C and N fluxes in soils from plot to regional scale (Van Oijen et al., 2017). Specifically, an empirical nonlinear function15

was used to link methane and nitrous oxide fluxes to soil moisture and temperature at
:
in
:
each grid cell (corresponding to the

micro-scale model) and the scale transition theory was applied to calculate the mean fluxes at the regional scale. However,

an explicit expression linking fluxes to C pools at any time point is not always available. In most C cycle models, the fluxes

are calculated by solving first the mass balance equations for the C pools (i.e., a system of differential equations). Therefore,

to proceed, these differential equations at micro-scale must be scaled-up. This upscaling exercise is expected to yield a set20

of differential equations describing the mass balances of the spatially averaged C compartments, including kinetics for the

macro-scale C fluxes that depend on the degree of micro-scale heterogeneity.

Using scale transition theory, here we develop a general theoretical approach to link micro- and macro-scales in SOM

decomposition models. With this approach, we demonstrate the effect of heterogeneity and nonlinearity at the micro-scale

on macroscopic decomposition rates. Two types of micro-scale heterogeneity are identified and accounted for: biophysi-25

cal and biochemical. Biophysical heterogeneity is caused by the non-uniform spatial distribution of substrate and microbes

:::::::::::::
microorganisms

:
(i.e., heterogeneous distribution of the state variables), and biochemical heterogeneity is a result of spatial

variations in substrate quality and thus turnover rates (i.e., heterogeneous distribution of the values of kinetic constants). With

the proposed upscaling approach, we test the hypotheses that the rate of decomposition (i) is affected by the micro-scale spatial
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heterogeneity of substrate and microbial C and (ii) depends upon the degree of
:::::
spatial

:
heterogeneity. Scale transition theory

is applied to three
::::
four types of micro-scale decomposition kinetics commonly employed in C cycling models: conventional

linear, multiplicative , and
:::
(M),

:
Michaelis-Menten (MM)

:
,
:::
and

::::::
inverse

::::::::::::::::
Michaelis-Menten

::::::
(IMM). Considering these three ki-

netic laws allow us to assess the consequences of neglecting spatial heterogeneities in the most common C cycling models.

Our specific objectives are5

1. To develop an analytical upscaling solution for a two pool C model

2. To quantify the impact of different spatial structures of substrate Cs, microbial biomass Cb and kinetic parameters k on

the C dynamics

3. To compare the results of a spatially-explicit heterogeneous model with the homogeneous equivalent as a function of the

degree of heterogeneity10

While the proposed upscaling approach is general, we apply it in this contribution to scale up pore-scale processes to the

scale of a small soil core or laboratory soil sample. These theoretical developments can be applied to SOM models employed

to study respiration and microbial responses to perturbations at this relatively small spatial scale, or in models describing

dynamics at a larger scale over relatively uniform spatial domains.

2 Methods15

2.1 Theory

We distinguish between ‘micro-scale’ equations valid at the small scale where the well-mixed assumption holds, from ‘macro-

scale’ equations valid at a larger scale of interest, which result from spatial averaging of the microscopic equations. While our

derivations are general, in the presented model setup and results, we interpret ’macro-scale’ as the scale of a small soil core.

The goal of spatial upscaling is to derive the macro-scale soil C dynamics by spatial averaging of the micro-scale dynamics.20

We

::
To

::::::
obtain

:::
the

::::::::::
macro-scale

::::::::
dynamics

:::
we

:
employ two approaches: (i) a numerical approach based on grid-scale simulations

followed by spatial averaging (upper panel Fig. 1) and (ii) an analytical approach based on scale transition theory (lower

panel Fig. 1). The first, computationally demanding approach requires solving the micro-scale equations at each cell of the

domain grid. The mean behavior is then estimated by first order spatial moment approximation, which corresponds to the25

spatial averaging of the micro-scale state variables Cs and Cb (and associated C fluxes)
:::::
Spatial

::::::::
averages

:::
and

::::::::
variances

:::
are

::::
thus

5



5 mm

5
 m

m

N
u
m

er
ic

al
 s

p
at

ia
l 

av
er

ag
in

g

H
et

er
o

ge
n

eo
u

s 
M

ic
ro

b
ia

l C

H
et

er
o

ge
n

eo
u

s 
Su

b
st

ra
te

 C

Microscale model

ҧ𝐶𝑠(𝑡) , ҧ𝐶𝑏(𝑡), ഥ𝐷(𝑡),

𝜎𝐶𝑠
2 (𝑡), 𝜎𝐶𝑏

2 (𝑡), and 

Cov 𝐶𝑠, 𝐶𝑏 (𝑡)

𝐷 = 𝑘𝐿 𝐶𝑠
𝐷 = 𝑘𝑀 𝐶𝑠𝐶𝑏

𝐷 =
𝑘𝑀𝑀𝐶𝑠𝐶𝑏

𝐾𝑀𝑀+𝐶𝑠

𝐷 =
𝑘𝐼𝑀𝑀𝐶𝑠𝐶𝑏

𝐾𝐼𝑀𝑀+𝐶𝑏

Linear

Inv. MM

MM

Multiplicative

A
n
al

y
ti

ca
l 

u
p
sc

al
in

g
 

Microscale model

𝐷 = 𝑘𝐿 𝐶𝑠
𝐷 = 𝑘𝑀𝐶𝑠𝐶𝑏

𝐷 =
𝑘𝑀𝑀 𝐶𝑠𝐶𝑏

𝐾𝑀𝑀+𝐶𝑠

𝐷 =
𝑘𝐼𝑀𝑀𝐶𝑠𝐶𝑏

𝐾𝐼𝑀𝑀+𝐶𝑏

Macroscale model

ഥ𝐷 = ത𝑘𝐿 ҧ𝐶𝑠 + 𝑆𝑂𝑇
ഥ𝐷 = ത𝑘𝑀 ҧ𝐶𝑠 ҧ𝐶𝑏 + 𝑆𝑂𝑇
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Scale 
transition
theory

Numerical results are 

explained using results 

from analytical upscaling 

Figure 1. Schematic of the two upscaling approaches used to study the C dynamics at the macro-scale. Numerical spatial averaging (top
panel): the micro-scale model is applied at each grid cell of the heterogeneous domain; and the mean C pools (substrate and microbial
biomass), their mean fluxes, and second order spatial moments

(
σ2
Cs
,C′sC

′
b

)
::::::::::::::

(
σ2
Cs
,σ2

Cb
,C′sC

′
b

)
are estimated by Eq. (24)–(29) at each

time step. This approach is referred
:
to

:
as ‘distributed model’. Analytical upscaling (bottom panel): the micro-scale model

:::::::::::
decomposition

:::
flux

:
is dynamically scaled up using scale transition theory, which provides the mean C fluxes as a function of mean C concentrations

(mean-field approximation) and second order spatial moments representing the degree of heterogeneity. The deviations from the mean-field
approximation are denoted as ‘second order terms’ (SOT) in the expressions for the mean decomposition fluxes (D, where overbar represents
mean quantities). The numerical results obtained from the distributed model are explained using the mathematical expression derived from
analytical upscaling. This upscaling scheme is applied to three

:::
four types of decomposition kinetics (linear, multiplicative

:
,
::::::::::::::
Michaelis-Menten,

and
:::::
inverse

:
Michaelis-Menten), shown at the bottom of the lower panel.
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::::::::
calculated

::::::::::
numerically

::::
over

:::
the

:::::::
domain at each time step. This numerical approachis equivalent to running a distributed model

where the biophysical laws describing the system are known at the micro-scale and applied throughout the entire domain. We

define
:::::
point

::
in

:::
the

:::::::::
simulation.

::::
With

:::
the

:::::::::
analytical

::::::::
approach,

:::
the

::::::::
dynamic

::::::::
equations

:::
are

:::
first

::::::::
averaged

:::
and

::::
then

::::::
solved

:::::::
directly

::
for

:::
the

:::::
mean

::::
state

::::::::
variables.

::::
The

:::::::
obtained

:::::::::
analytical

:::::::::
expressions

:::
are

:::::
used

::
to

:::::::
interpret

:::
the

:::::
results

:::
of

:::
the

::::::::
numerical

::::::::::
simulations.

:

::
To

:::::::
proceed,

:
the spatial average operator for our 2D domain as

:
is
:::::::
defined

::
as,

:
5

χ(t) =

∫ ∫
χ(x,y, t)dxdy∫ ∫

dxdy
≈ 1

NxNy

Nx∑
i=1

Ny∑
j=1

χi,j(t), (1)

where the double integral extends to the whole 2D domain, χ is a generic variable (Cs or Cb) or C flux, and Nx and Ny are

the number of grid cells in the x and y direction. The second equality allows estimating χ using the simulated time series of

variable of interest in each grid cell (denoted by χi,j). In contrast to numerically solving the problem at each grid cell, the

second approach derives the dynamics of the macro-scale variables and fluxes using scale transition theory, discussed in the10

following sections.

2.1.1 Micro-scale model of soil carbon dynamics

The dynamics of soil organic C in a homogeneous medium are characterized by specific reaction kinetics that define organic

C fluxes, and the number and arrangement of
:::
the soil C pools. For simplicity, we use a two pool model that subdivides organic

carbon into two pools: (i) soil organic carbon substrate (Cs) and (ii) microbial biomass carbon (Cb) (Manzoni and Porporato,15

2007; German et al., 2012). This simple structure was selected because it is at the core of most microbial explicit models

(Zelenev et al., 2000; Schimel and Weintraub, 2003). The typical time scale of diffusive fluxes is given by τdiff = x2/D

where x is the length scale of space discretization and D is the diffusion coefficient (Hunt and Manzoni, 2015) and the typical

time scale of reactive fluxes is given by the turnover time of the substrate; i.e., τreact. The ratio of the two time scales defines

the Damköhler number, Da= τdiff/τreact, which provides the relative importance of mass transport of substrate via diffusion20

vs. reaction (Dentz et al., 2011). For a relevant substrate such as glucose, D is the order of 10−11m2/s (Watt et al., 2006),

the turnover time is in the order ∼1 day and the length scale of the order of ∼ 50 µm. With these values, Da << 1, which

characterizes a reaction-limited system in well-mixed conditions. The result of this approximated calculation would not change

with reaction time scales in the order of a few hours. Thus, the well-mixed assumption is valid at the scale of a pore ∼ 50 µm

and we refer to this model as a ‘micro-scale model’ (Fig. 1). The general mathematical description of the microscale model is25

given by

7



::
To

::::::::
explicitly

:::::::
include

:::::
spatial

::::::
fluxes

:::::
across

::::
grid

:::::
cells,

:::
we

:::::::::::
implemented

:
a
:::::::
generic

::::
mass

:::::::
transfer

::::::::::
mechanism.

::::
This

::::::::::
mechanism

:
is
:::::::::::
implemented

:::
by

::::::::
assuming

:::
that

::
a

::::::
fraction

::
α

::
of

:::
the

::::::::::::
decomposition

::::
rate

::
D

::::
(i.e.,

::::
αD)

::
is

:::::::::
transferred

::
in

:::::
equal

:::::::
amounts

::
to

:::
the

::::
four

::::::::::
neighboring

:::
grid

:::::
cells.

::::::
Hence,

::
in

::::
each

:::
cell

:::::::::::::
microorganisms

::::
take

::
up

::
C

::::
from

::::::::::
neighboring

::::
cells

::
at

::
a

:::
rate

::

α
4 :::::::::::::::::::::::::::::::

(Di−1,j +Di+1,j +Di,j−1 +Di,j+1).

::::
This

::::::
choice

::
is

::::::::
motivated

:::
by

::::
the

::::::::::
observation

:::
that

::::
the

:::::::
products

:::
of

:::::::::::::::
de-polymerization

::::
are

:::::
more

::::::
soluble

::::
than

::::::
stable

:::::::
organic

:::::
matter

::::
and

:::
thus

:::
are

:::::
more

:::::
likely

::
to

::
be

::::::::::
transported

:::::
away

::::
from

:::
the

:::
site

:::
of

::::::::::::
decomposition.

:::::::::
Therefore,

::::::
instead

:::
of

::::::::
modeling

::::::
mobile5

:::::
carbon

:::::::::
explicitly,

:::
we

:::::::
assumed

::::
that

:
a
:::::::
fraction

::
of

:::
the

::::::::::::
decomposition

::::
rate

::
is

:::::::::
transported

:::
to

::::::::::
neighboring

::::
cells.

:::::
This

::::
mass

:::::::
transfer

:::::::::
mechanism

:::
can

:::
be

:::::::::
interpreted

::
as

::
a

::::::::::
consequence

:::
of

::::::
various

:::::
types

::
of

::::::
spatial

:::::::::::
redistribution,

::::::::
including

::::::::
diffusion

::
or

::::::::::::
bio-turbation.

:::
The

::::::::::
micro-scale

::::::::
equations

::
at

:::
one

::::
grid

::::
cell

::::::
(control

::::::::
volume)

:::
take

:::
the

::::::::
following

:::::
form,

:

dCs
dt

dCsi,j
dt

:::::

= I −DI −Di,j
::::::

+T ,i,j
:

(2)

dCb
dt

dCbi,j
dt

:::::

= Y

[
(1−α)
::::::

D−T ,i,j +
α

4
:::::

(
Di−1,j +Di+1,j +Di,j−1 +Di,j+1
::::::::::::::::::::::::::::

)]
−Ti,j
::::

(3)10

dCO2i,j

dt
= (1−Y )

::::::::::::::::

[
(1−α)Di,j +

α

4
:::::::::::::

(
Di−1,j +Di+1,j +Di,j−1 +Di,j+1
::::::::::::::::::::::::::::

)]
(4)

where I is the rate of external input of organic C, D is the rate of decomposition, T is the microbial mortality, and Y is the

microbial carbon use efficiency. The substrate Cs and microbial carbon Cb are the state variables of the micro-scale model,

and their mass balances, Eq. and (2)
:::
and

:
(3), describe their temporal evolutionin absence of a spatial dimension.

:
.
:
If
::::::
α= 0,

:::
no

::::
mass

:::::::
transfer

:::::
occurs

::::
and

:::
the

:::::
model

:::::::
reduces

::
to

:
a
::::::::
simplified

:::::::
reactive

::::::
system

::::
with

::::
two

:
C
::::::
pools,

:::::
where

::::
grid

::::
cells

:::
are

:::::::::::
disconnected15

:::
and

::::
thus

:::::::::::
independent.

::
If

:::::
α > 0,

:::::
mass

:::::::
transfer

::::::
among

:::
the

:::
grid

:::::
cells

::::::
occurs.

::
In

::::
this

::::
way,

::
by

::::::::
changing

:::
the

:::::
value

::
of

:::
α,

:::
the

:::::
effect

::
of

::::::
spatial

:::::::::::
redistribution

::
on

:::::
mean

::::::
carbon

:::::::::
dynamics

:::
can

:::
be

::::::::
assessed.

::::
With

::::::
α= 0,

:::
the

::::::
general

::::::::::::
mathematical

:::::::::
description

:::
of

:::
the

::::::::
simplified

:::::::::
microscale

::::::
model

:
is
:::::
given

:::
by

dCs
dt

= I −D+T,
:::::::::::::::

(5)

dCb
dt

= Y D−T,
:::::::::::::

(6)20

The rate of decomposition is described by three
:::
four

:
commonly used formulations: linear (Eq.7), multiplicative (Eq.8),

and MM (Eq.9)(Wutzler and Reichstein, 2008; Manzoni and Porporato, 2009), ,
:::
and

:::::
IMM

:::::::
(Eq.10)

:::::::::::
(comparisons

::::::
among

:::::
these

::::::::::
formulations

::::
can

::
be

:::::
found

::
in

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Schimel and Weintraub (2003); Wutzler and Reichstein (2008); Manzoni and Porporato (2009)

:
),
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Table 1. Summary of the microscopic decomposition functions and steady state solutions

Conventional
(subscript L)

Multiplicative
(subscript M)

Michaelis-Menten
(subscript MM)

::::::::::::::::::
Inverse Michaelis-Menten

::::::
(subscript

:::::
IMM)

D kLCs kMCsCb
kMMCsCb
Cs+KMM :::::::::::::

kIMM
CsCb

KIMM+Cb

T kBCb kBCb kBCb :::::
kBCb

Steady state
C∗

s

I
(1−Y )kL

kB
Y kM

KMMkB
Y kMM−kB :::::

kBCb

Steady state
C∗

b

Y I
(1−Y )kB

Y I
(1−Y )kB

Y I
(1−Y )kB :::::::

Y I
(1−Y )kB

D = ks,linL
:
Cs, (7)

D = ks,multM
:
CsCb, (8)

D = ks,mm
CsCb

(KM +Cs)
MM

CsCb
KMM +Cs

:::::::::::::

(9)

D = kIMM
CsCb

KIMM +Cb
::::::::::::::::::::

, (10)5

where ks,lin, ks,mult and ks,mm :::
kL,

::::
kM ,

:::::
kMM ,

::::
and

:::::
kIMM:

are the decomposition rate constants for linear, multiplicative, and

MM
::::
MM,

:::
and

:::::
IMM kinetics respectively; andKM is

:::::
KMM::::

and
::::::
KIMM:::

are the half saturation constant for the MM kinetics
:::
and

::::
IMM

:::::::
kinetics

::::::::::
respectively. Table 1 summarizes the functional form

:::::
forms

:
of D and corresponding steady state solutions for

each case. Microbial mortality is typically assumed to follow first order kinetics (T = kBCb). We assume constant temperature

and soil moisture conditions so that D is only a function of Cs and Cb. This assumption facilitates assessing the role of spatial10

heterogeneity of C substrates and microbial biomass in our idealized system.
:::
The

::::::::
analytical

::::::::
upscaling

::::::
theory

:::::::::
developed

::
in

:::
the

::::::::
following

::::::
section

::
is

:::::
based

::
on

:::
the

:::::::::
simplified

::::::::::
micro-scale

:::::
model

:::::
given

::
by

::::
Eq. (5)

:::
and (6).

:::
For

:::
the

::::::::::::
mass-transfer

::::::
model,

::::
only

:::
the

::::::::
numerical

::::::::
averaging

:::::::
method

::
is

::::
used.

:

2.1.2 Spatial upscaling of soil carbon dynamics: scale transition theory

The scale transition theory links the dynamics at two different scales (Melbourne and Chesson, 2006; Morozov and Poggiale, 2012)15

. Here we applied it
:
is

::::::
applied

:
to study the C dynamics at micro- and macro-scale, and derive the changes in the structure of

the equations describing the C pools and their fluxes at macro-scale. To upscale the micro-scale model, the spatial averaging

9



operator given by Eq. (1) is applied to Eq. (5) and (6), leading to the governing equations at the macro-scale,

dCs
dt

= I −D+T , (11)

dCb
dt

= Y D−T , (12)

where the overbars denote the spatially averaged micro-scale quantities, so that D and T are the macro-scale rates of decom-

position and microbial mortality. Since the order of averaging and differentiation can be exchanged, the right hand side of Eq.5

(11) and (12) can be written as dCs

dt and dCb

dt . Moreover, we assume that Y and I are spatially invariant, so that averaging does

not alter their values. The final mass balance equations for substrate and microbial C at macro-scale are thus given by

dCs
dt

= I
:
−D+T , (13)

dCb
dt

= Y D−T , (14)

R=
dCO2

dt
dCO2

dt
:::::

= (1−Y )D. (15)10

where R is the mean respiration at macro-scale. In Eq.(13)-(15), the macro-scale variables Cs and Cb can be obtained once

the average fluxes D and T are known. The next step is therefore to express D and T as a function of macro- and micro-scale

state variables:
::::::::::
macro-scale

:
(Cs, Cb, and

::
),

:::
and

::::::::::
micro-scale

::::
state

::::::::
variables

:
(Cs, Cbrespectively

:
).

We can generalize the problem and consider a generic microscopic C flux (i.e. D or T ) as a nonlinear (and smooth) function

F of state variablesCs,Cb and a parameter vector k ([k1,k2, ...,kn]), where n is the number of parameters. The spatial averages15

of Cs, Cb and k are denoted as Cs, Cb and k ([k1,k2, ...,kn]). Applying the averaging operator given by Eq. (1) to a multi-

variate Taylor’s series expansion of F (Cs,Cb,k) around the spatial average value of Cs, Cb and k and truncating the series to

second order gives the macroscopic C flux (detailed derivation is provided in Appendix
:::
A1),

F (Cs,Cb,k) = F (Cs,Cb,k)+
1

2

∂2F

∂C2
s

∣∣∣∣
Cs,Cb,k

σ2
Cs

+
1

2

∂2F

∂C2
b

∣∣∣∣
Cs,Cb,k

σ2
Cb

+

n∑
i=1

n∑
j=1

∂2F

∂ki∂kj

∣∣∣∣
Cs,Cb,k

k
′
ik
′
j+

∂2F

∂Cs∂Cb

∣∣∣∣
Cs,Cb,k

C ′sC
′
b+

n∑
i=1

∂2F

∂ki∂Cs

∣∣∣∣
Cs,Cb,k

k
′
iC
′
s+

n∑
i=1

∂2F

∂ki∂Cb

∣∣∣∣
Cs,Cb,k

k
′
iC
′
b, (16)20

where F (Cs,Cb,k) is the macroscopic C flux, σ2
Cs

and σ2
Cb

are the spatial variances of substrate and microbial C respectively;

k
′
ik
′
j is the spatial variance (if i= j) or spatial covariance (if i 6= j) between the micro-scale parameters; C ′sC

′
b, k

′
iC
′
s and k′iC

′
b

10



are the spatial covariances between micro-scale substrate and microbial C, substrate and parameters, and microbial biomass

and parameters, respectively.

In Eq. (16), the first term on the right hand side, F (Cs,Cb,k), represents the first order approximation of F (Cs,Cb,k),:also

known as ‘mean-field’ approximation (MFA). For multiplicative kinetics, MFA is given by ks,multCsCb and for MM kineticsit

is ks,mmCsCb/(KM +Cs):::
The

::::::
MFAs

::
for

:::
the

::::::
chosen

::::::
models

::::
are:

::::::::
kMCsCb ::

for
::::::::::::
multiplicative

:::::::
kinetics;

::::::::::::::::::::::
kMMCsCb/(KMM +Cs)5

::
for

:::::::::::::::
Michaelis-Menten

::::::::
kinetics;

:::::::::::::::::::::::
kIMMCsCb/(KIMM +Cb):::

for
::::::
inverse

:::::::::::::::
Michaelis-Menten

:::::::
kinetics. Most C cycling models ne-

glect all the other terms in Eq. (16). The remaining six spatial variance and covariance terms in Eq. (16) are collectively referred

to as ‘second order terms’ (SOT). When the system is well-mixed, all variances and covariance terms vanish, leaving only the

MFA. Therefore, only considering the MFA is equivalent to assuming well-mixed conditions at the macro-scale (i.e., Eq. (5)

and (6) are mathematically equivalent to Eq. (13) and (14)).10

Equation (16) provides a proof that the ‘mean-field’ approximation is a specific case of the more general expression for a

macroscopic C flux that also depends on spatial heterogeneity through the SOT. The MFA is valid only when either of the

following two conditions are met. First, the micro-scale decomposition rate is assumed to follow first order kinetics, because

when F is a linear function of substrate and microbial C, the second order partial derivatives in Eq. (16) are zero. Second,

Cs,Cb and kinetic parameters are spatially homogeneous, because in this case all the second order moments (spatial variances15

and covariances) are zero. However, if F is nonlinear, the second order partial derivatives are non-zero; similarly, if any type of

micro-scale biophysical or biochemical heterogeneity is present, the SOT in Eq. (16) play a role in determining the macroscopic

C dynamics.

Equation (16) illustrates the advantage of using scale transition theory as it provides an approximate analytical relation

between the micro- and macro-scale quantities, which allows an immediate assessment of the role of both nonlinearities in the20

C flux formulations and spatial heterogeneities. Importantly, in some cases, Eq. (16) yields an exact (rather than approximated)

equation for macro-scale quantities, as shown in the following section.

2.2 Effect of micro-scale heterogeneities on macro-scale dynamics

Depending upon the kinetics of the micro-scale decomposition model (Table 1), the macro-scale D is expected to take differ-

ent forms. Using different kinetic models, we now discuss some specific cases of micro-scale heterogeneities based on their25

biophysical or biochemical nature. Biophysical heterogeneity is characterized by the spatially heterogeneous distribution of

substrate and microbial C, whereas biochemical heterogeneity is characterized by the spatially heterogeneous distribution of

substrate quality and microbial properties, captured by the kinetic parameters. The inaccessibility of SOM can result in C

11



persistence. Therefore, inaccessibility can be modelled (at least at a conceptual level) through kinetic rate constants, similar to

biochemical properties. In the simple model used here, accessibility to substrates or chemical recalcitrance are not mechanisti-

cally distinguished, so variations in substrate ‘quality’ in the broadest sense can be interpreted as spatial heterogeneity in either

chemical characteristics or accessibility at the microscale.

First, we focus on systems with only biophysical heterogeneity of substrate and microbial C. For the first order kinetics5

model, the rate of decomposition is given byD = ks,linCs:::::::::
D = kLCs, and using Eq. (16) and substitutingF =D = ks,linCs:::::::::::::

F =D = kLCs,

we obtain

D = ks,linL
:
Cs. (17)

In Eq. (17), D has the same form as D, indicating that microbial-implicit first order kinetic models do not show any sensitivity

to spatial heterogeneities because of the linearity of the decomposition function. For the multiplicative model, the rate of10

decomposition at the micro-scale is given by

D= ks,multCsCb,

where ks,mult is spatially constant and the initial values of the state variables Cs and Cb are spatially variable. Inserting Eq.

(??)
:::
Eq. (8)

:
,
:::::::
inserting

::::
Eq. (8) into Eq. (16) gives

D = ks,multM
:
CsCb+ ks,multM

:
C ′sC

′
b. (18)15

In Eq. (18), the biophysical heterogeneities play a role through the covariance term C ′sC
′
b. Note that Eq. (18) is an exact

equation because all the spatial moments of order higher than two are zero. Thus, only the mean state variables and the spatial

covariance are needed to fully characterize the macro-scale dynamics for this case. Furthermore, a positive spatial covariance

(i.e. co-location of substrates and microorganisms) would increase the mean decomposition rate (D), whereas a negative spatial

covariance (i.e. spatial separation between substrates and microorganisms) would decrease it.20

Similar to the multiplicative decomposition model, also in models based on MM
:::
and

::::
IMM

:
kinetics the rate of decomposition

at the macro-scale depends on the covariance term C ′sC
′
b and an additional term

::::::::
additional

:::::
terms

:
representing the spatial

variance
::::::::
variances

:
of the substrate

:::
and

::::::::
microbial

::
C

:
(Table 2). The spatial variance of the substrate

:::
term

:
is always negative

because the variance is a positive quantity
:::::::
variances

:::
are

:::::::
positive

::::::::
quantities and the partial derivative multiplying the variance is

12



:::::::::
derivatives

:::::::::
multiplying

:::
the

:::::::::
variances

:::
are negative in all decomposition functions that saturate at high substrate concentration.

In contrast, the spatial covariance term is positive or negative based on the sign of C ′sC
′
b. Therefore, when using the MM

kinetics, D can be the approximated by the MFA only if variance and covariance balance each other or are both negligible.

Second, we consider only biochemical heterogeneity. In this case, model parameters Cb and k ([k1,k2, ...,kn]) vary spatially

but the initial value of state variablesCs andCb are constant everywhere in the domain. With linear decomposition, substituting5

D = ks,linCs:::::::::
D = kLCs:into Eq. (16) yields

D = ks,linL
:
Cs+ k

′
LC

′
s. (19)

Equation (19) shows that for a biochemical heterogeneous system, even the simplest linear model requires an additional covari-

ance term to describe the governing equations at the macro-scale. This covariance term might change the linear microscopic

model into a nonlinear macroscopic model. For the multiplicative model (Eq. (??
:
8)), Eq. (16) yields10

D = ks,multM
:
CsCb+Cb k

′
MC

′
s+Cs k

′
MC

′
b, (20)

where k′s,multC
′
s and k′s,multC

′
b :::::
k
′
MC

′
s::::

and
:::::
k
′
MC

′
b:

are respectively the spatial covariances between the state variables Cs, Cb

and the rate constant parameter ks,mult:::
kM . These two additional spatial covariance terms capture the effects of biochemical

heterogeneity caused by the spatial variation in the rate constants of decomposition.

Lastly, we consider a heterogeneous system with combined biophysical and biochemical heterogeneities, denoted as ‘fully15

heterogeneous’. Again, we use the multiplicative model to illustrate the relation between the dynamics at the micro- and macro-

scale. Now, all the state variables and parameters in D at the micro-scale are spatially variable. For the multiplicative kinetics,

ks,mult:::
kM , Cs and Cb are spatially variable, so that inserting Eq. (??

:
8) into Eq. (16) gives

D = ks,multM
:
CsCb+Cb k

′
MC

′
s+Cs k

′
MC

′
b+ ks,multM

:
C ′sC

′
b. (21)

This generalized case includes all the spatial covariances between parameters and the state variables, thereby capturing bio-20

physical and biochemical heterogeneities simultaneously. Moreover, Eq. (20) and (21) are second order approximations, but

an exact equation can be obtained by including a third order term k
′
s,multC

′
sC
′
b::::::::
k
′
MC

′
sC
′
b. A similar derivation is described for

MM
:::
and

:::::
IMM kinetics in the Appendix; however, an exact expression for

:::
the macro-scale MM

::::::::::::
decomposition

:::
rate

:::
for

:::::
these

13



:::
two

:
kinetics cannot be found and we only use the second order approximation. Table 2 provides a summary of the theoretical

results for the discussed heterogeneous cases and for all three
:::
four types of decomposition kinetics.

Similar derivations can be done for the microbial mortality rate (F = T
:
F
::
=

::
T). The Taylor expansion of microbial mortality

is simpler because we assume T to follow first order kinetics . This implies
:::::::
implying

:
that all the second order terms are equal

to zero, and (T ) is obtained as
:
.
:::::::::
Therefore,

:::
the

::::
mean

:::::
field

::::::::::::
approximation

::
is

:::::
exact

:::
and

:::
the

::::::
spatial

:::::::
variance

::
of

:::::::::
microbial

:
C
::::

has5

::
no

:::::
effect

:::
on

::
the

:::::::::::
macro-scale

::::::::
dynamics,

:

T = kBCb. (22)

The rate of decomposition at
:::
To

:::::::
illustrate

::::
how

::::::::::
macro-scale

::::::::::::
decomposition

:::::::
kinetics

:::
are

:::::::
affected

::
by

::::::
spatial

::::::::::::
heterogeneity,

:::
we

:::::
define

:
a
:
macro-scale can be used to calculate the specific growth rate (SGR) of the microorganisms - i.e., the respiration rate

divided by the
:::::
which

::
is

::::::::
calculated

:::
by

:::::::
dividing

:::
the

:::::
mean

:::::::::
respiration

:::
rate

:::
by mean microbial C ,

::
in

:::
the

::::::
system.

:
10

SGR=
R

Cb
= (1−Y )

D

Cb
. (23)

To summarizethe proposed upscaling approach, we started with the spatial averaging of the SOM dynamics equations at

micro-scale and applied scale transition theory to derive relations between the micro- and macro-scale C fluxes, which depend

on both mean state variables and their spatial statistics (Table 2). Thus, to solve the macro-scale Eq. (13) and (14), we still

need information regarding the second order moments i.e., σ2
Cs

and C ′sC
′
b. To close the problem mathematically, σ2

Cs
and C ′sC

′
b15

::::
these

::::::::
moments

:
can be regarded as extra state variables requiring additional differential equations describing their dynamics

(Keeling et al., 2002; Murrell et al., 2004; Barraquand and Murrell, 2013). Alternatively, the second order terms
::::::::
moments

can be parameterized as empirical functions of first order terms Cs , Cb and k (Bergström et al., 2006). Here, our goal is to

quantify how heterogeneities alter C fluxes in idealized systems, so we leave the closure problem for a future contribution and

use instead the numerically simulated dynamics at the micro-scale to calculate the spatial moments σ2
Cs

and C ′sC
′
b:::
and

::::
SOT.20

14



Table 2. Summary of macro-scale equations for the decomposition rate
:::
(D)

Biophysical heterogeneity Biochemical heterogeneity Full-heterogeneity

Linear ks,linCs:::::
kLCs ks,lin Cs + k

′
s,linC

′
s:::::::::::
kL Cs + k

′
LC
′
s ks,lin Cs + k

′
s,linC

′
s:::::::::::
kL Cs + k

′
LC
′
s

Multiplicative
:
∗

ks,multCsCb

+ ks,multC
′
sC
′
b

:::::::::

kMCsCb

+ kMC′sC
′
b

ks,multCsCb

+Cs k
′
s,multC

′
b

+Cb k
′
s,multC

′
s

+ k
′
s,multC

′
sC
′
b

::::::::::

kMCsCb

+Cs k
′
MC

′
b

+Cb k
′
MC′s

+ k
′
MC′sC

′
b

ks,multCsCb

+Cs k
′
s,multC

′
b

+Cb k
′
s,multC

′
s

+ ks,multC
′
sC
′
b

+ k
′
s,multC

′
sC
′
b

::::::::::

kMCsCb

+Cs k
′
MC

′
b

+Cb k
′
MC′s

+ kMC′sC
′
b

+ k
′
MC′sC

′
b

Michaelis-Menten

ks,mmCsCb

KM +Cs

+

1

2

[
−2ks,mmKMCb

KM +Cs
2

]
σ2
Cs

+[
ks,mmKM

(Cs +KM )2

]
C′sC

′
b

::::::::::::::::::::::

kMMCsCb

KMM +Cs

+

1

2

[
−2kMMKMMCb

(KMM +Cs)3

]
σ2
Cs

+[
kMMKMM

(Cs +KMM )2

]
C′sC

′
b

Eq.(A8) Eq.(A9)

:::::
Inverse

::::::::::::
Michaelis-Menten

:::::::::::::::::::::::

kIMMCsCb

KIMM +Cb

+

1

2

[
−2kIMMKIMMCb

(KIMM +Cb)3

]
σ2
Cb

+[
kIMMKIMM

(Cb +KIMM )2

]
C′sC

′
b

* The expression of D for multiplicative kinetics in each heterogeneity case is exact.
The expression of D for multiplicative kinetics in each heterogeneity case is exact.
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2.3 Model setup

To investigate the effect of micro-scale spatial heterogeneity of SOM on the decomposition dynamics, we use a synthetic

approach, which allows considering a wide range of heterogeneous SOM fields. As in other
::
As

::
in
::::::::
previous spatially explicit

models (Ginovart and Valls, 1996; Allison, 2005; Kaiser et al., 2014), we start with a 2D domain characterized by an initial

heterogeneous field of the substrate and numerically simulate the dynamics of SOM with the micro-scale two pool model in5

Eq. (5) and (6) at each cell in the domain. The 2D domain has 100× 100 square grid cells with an edge length of 50 µm, and

we populate it with randomly generated initial substrate fields. This numerical model is referred to as ‘distributed model’ (see,

Fig. 1). From the solution of the distributed model, the mean behavior of the system (Cs,Cb,D,σ2
Cs ::::::::::::::::
Cs,Cb,D,σ

2
Cs
,σ2
Cb

,
:
and

C ′sC
′
b) can be calculated at each time step by using sample statistics of Cs and Cb

Cs(t)≈
1

NxNy

Nx∑
i=1

Ny∑
j=1

Csi,j (t), (24)10

Cb(t)≈
1

NxNy

Nx∑
i=1

Ny∑
j=1

Cbi,j (t), (25)

D(t)≈ 1

NxNy

Nx∑
i=1

Ny∑
j=1

ks,multi,jMi,j
:::

Csi,j (t)Cbi,j (t), (26)

σ2
Cs

(t)≈ 1

NxNy

Nx∑
i=1

Ny∑
j=1

[
Csi,j (t)−Cs(t)

]2
, (27)

σ2
Cb
(t)≈ 1

NxNy

Nx∑
i=1

Ny∑
j=1

::::::::::::::::::::

[
Cbi,j (t)−
:::::::

Cb(t)
:::

]
2,
:

(28)

C ′sC
′
b(t)≈

1

NxNy

Nx∑
i=1

Ny∑
j=1

[
Csi,j (t)−Cs(t)

][
Cbi,j (t)−Cb(t)

]
, (29)15

where D is specified for multiplicative kinetics; a similar approach was applied for MM kinetics. Table B1 in the appendix

lists all the parameters related to different kinetic models used in simulations. We performed the simulation in mass units fg

(fg= 10−15g) and later converted the state variables to concentration units i.e. mgC/g of soil.

2.4 Initial 2D random fields of SOM and kinetic parameters

Two-dimensional spatially correlated random fields
:::::::::::
heterogeneous

:::::::::::
distributions of substrates and microbial C were generated20

to run the distributed model. For the heterogeneous field of microbial C, we used a random field generator that provides
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100× 100 spatially correlated random numbers between -1 and 1 (Lennon, 2000). These values were then re-scaled by an

appropriate mean and standard deviation of microbial C. To simulate the dead zones in the heterogeneous system some grid

cells were forced to have no microbial C (the obtained field is denoted yi,j). Moreover, to allow comparison among simulations,

the microbial C field was re-normalized to have a specified value of total initial microbial C,

Cbi,j =
yi,j∑
i,j yi,j

Cb,total (fg)5

It is assumed that the Cb,total is equal to 1% of the total amount of substrate in the domain (Witter, 1996), which is in turn

calculated as Cs,total = Cs,0×Nx×Ny where Cs,0 is the initial mean substrate C in a single grid cell (). The amount of

substrate C in any grid cell is limited by the maximum amount of C that the cell can accommodate, according to the density

of organic matter (ρSOM ). We assume that each cell can contain between zero and 50% of this maximum amount of organic

C because approximately only 50% of organic matter on a mass basis is composed of organic C. The maximum amount of10

substrate C that one cell can contain is thus given by

Cmax = 0.5ρSOM cellvolume (fg)

where cellvolume is the volume of a cell in grid. The value of Cs,0 was chosen so that the maximum C amount at a micro-site

does not exceed Cmax. To summarize, the obtained spatially heterogeneous random fields of microbial C and substrate C

satisfy the
:::
The

:::::::
obtained

:::::::::::
distributions

::::
were

:::::
based

:::
on

:
following constraints: i) the total amount of organic C is set, ii) the total15

amount of microbial C is 1% of total organic C, iii) the maximum amount of C in a cell is set (Eq. (A12)), and iv) some grid

cells have no microbial biomass.
::
For

::::::
details

::::::::
regarding

:::
the

:::::::::
procedure

::
to

:::::::
generate

:::
the

::::::::
microbial

::
C

::::
field,

::::
see

::::::::
Appendix

:::
A2.

:

To study the effects of degree of heterogeneity on C decomposition, we generated random fields of substrate C with different

degrees of correlation with microbial C
::::
were

::::::::
generated. We created three cases where substrate and microbial C were initially

positively correlated, negatively correlated or uncorrelated. The three cases were obtained by applying a linear operator on the20

microbial C fields with positive and negative slope to obtain positively and negatively correlated substrate C fields, respectively.

The uncorrelated substrate C field was generated independently from the microbial C field
:::
and

:::
can

::
be

::::::::::
interpreted

::
as

:::
the

:::::
result

::
of

:::::::
external

::::::::::
disturbances

:::::::::
disrupting

::::::::::
preexisting

:::::
spatial

:::::::::::
correlations. The case of positive initial correlation between substrate

and microbial C would result in a heterogeneous system with spatial co-occurrence of substrate and microbial C, whereas initial

negative correlation would result in isolated patches of substrate and microbial C. The uncorrelated initial field of substrate25

and microbial C can be interpreted as the result of external disturbances disrupting preexisting spatial correlations. In all
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(b)
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(c)
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Uncorrelated
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Microbial C
(e)
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Figure 2.
:::::
Steady

::::
state

:::::::::
simulation: Examples of the homogeneous (a) and the heterogeneous distributions of substrate C constrained to have

the same amount of total C substrate (b–d). The fields in b–d were obtained by imposing different degrees of correlation of substrate C with
the initial heterogeneous distributions of microbial C, as indicated above each panel

::::
shown

::
in
:
(e).

scenarios, the substrate distributions are normalized to have the same amount of Cs,total, thereby allowing for comparisons

among different degrees of heterogeneity . Example of the heterogeneous fields of C substrate are shown in Figure ??
::::::
(Figure

::
2).

To generate a heterogeneous random field for kinetic parameters, we considered a uniform distribution for KM :::::
KMM and a

log-uniform distribution for ks,mm and ks,mult :::
kM ,

::::::
kMM ,

:::
and

::::::
kIMM (Forney and Rothman, 2012; Manzoni et al., 2012). The5

log-uniform distributions were defined so that the mean kinetic constants were equal to those of the homogeneous system (Table

B1) and their variances were tuned to characterize different degrees of heterogeneity. To generate the random fields, Nx×Ny

random numbers were extracted from the chosen distributions and placed into a
::
the

:
2D matrix of size Nx×Ny ::::::

domain. Figure

A7 in the appendix shows the probability densities for two different standard deviations for ks,mm and ks,mult:::::
kMM :::

and
::::
kM

(the parameters of the distributions are listed in Tables B2 and B3).10

2.5 Estimation of kinetic parameters

To choose parameter values for the linear and multiplicative kinetics that allow comparisons with the MM model, we first

simulated the substrate C dynamics at micro-scale for a given initial condition and using MM kinetics. Second, we fit the linear

and multiplicative kinetics models to the time series obtained using MM kinetics (using the optimization toolbox in MATLAB).

In this procedure, we assumed that the microbial mortality constant (kB) was the same for all choices of the decomposition15

model.
:::
The

:::::::::
parameters

::
of

:::
the

::::::
inverse

::::
MM

:::
are

::::::
chosen

:::
(by

::::
trial

:::
and

:::::
error)

:::
so

:::
that

:::
the

:::::::::
respiration

:::
rate

::
in

:::
the

::::::::::::
homogeneous

::::::
system

:
is
::::::::::
comparable

::
to

::::
that

::
in

:::
the

::::::::::::
heterogeneous

::::::
system.

:
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2.6 Simulation scenarios

Two scenarios (Fig. 3), based on varying initial conditions (IC) were implemented to investigate the effects of micro-scale

heterogeneities on macroscopic decomposition.

Scenario 1 (steady state initial condition
::::::::
simulation

::
-
::
SS): In this scenario, the initial heterogeneous field of substrate and

microbial C was generated as described in section 2.4. The spatial mean of the initial substrate and microbial C match their5

steady state values given by the micro-scale equations (Eq. (5) and (6)) forced with a constant substrate input. Additionally,

in the dead zones a small amount (i.e.,
:
a
:::::::::
minimum

::::::
amount

::
of

:::::::::
microbial

::
C

:::
was

:::
set

::
in
:::::

each
:::
cell

:::::::
(values

::
at

::::
least

::::
one order of

magnitude ranging from one to two less than the
::::
lower

::::
than

:::::
those

::
at

:
steady state) of microbial C was imposed to ensure that

OM could be decomposed, even if much slower
::::
albeit

::
at

:
a
::::::
slower

::::
rate than elsewhere.

Scenario 2 (transient initial condition
:::
high

::::::::
substrate

:::::::::
simulation

::
-
:::
HS): In the scenario, the initial heterogeneous field of10

substrate C was perturbed around a value much larger than the steady state as described in section 2.4.

In the transient IC
::
HS

:
scenario, simulations were based on two

::::
three

:
nonlinear decomposition models (multiplicativeand

MMkinetic,
:::::

MM,
::::
and

::::
IMM

:::::::
kinetics). However, in the steady state IC

::
SS

:
scenario, we present results only for multiplicative

kinetics because MM kinetics can be approximated by multiplicative kinetics when the substrate is much smaller than the

half-saturation constant (KM :::::
KMM ), as is the case with the chosen initial heterogeneous substrate field and the parameter15

KM::::::
KMM . Results using the linear decomposition model are not shown because with this model the spatially-averaged fluxes

are equal to the macro-scale flux calculated at the mean C concentration .
:::
(Eq.

:::::
(17)).

:

In both scenarios, we explore the effects of biophysical and full heterogeneity on the temporal evolution of the mean state

variables (substrate and microbial C) and their fluxes
::::::::
associated

::::
rates. We used the distributed modeling approach

:::::
model

:
to

estimate the mean quantities and second order spatial moments
:::
(and

::::
thus

:::::
SOT)

:
for three degrees of biophysical heterogeneity.20

A homogeneous system in which the initial substrate and microbial C, as well as kinetic parameters, are spatially uniform was

always used as a control. The combined effect of biophysical and biochemical heterogeneity was simulated by imposing the

spatially heterogeneous kinetic parameters along with the heterogeneous initial substrate and microbial C.

3 Results

3.1 Scenario 1: Steady
:::::
steady

:
state initial condition

:::::::::
simulation

::::
(SS)25

Figure 4 illustrates the temporal evolution of the macroscopic decomposition dynamics for the three different heterogeneous

cases with varying degrees of initial correlation between substrate and microbial C in comparison to the homogeneous system.
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Figure 3. Two scenarios were implemented based on initial spatial distribution of substrate and microbial C. In scenario 1, substrate and
microbial C are perturbed around the steady state of the micro-scale differential equations and simulations are only carried out with the
multiplicative

::
(M)

:
kinetics. In scenario 2, substrate and microbial C are perturbed to values larger than the steady state, and simulations

are conducted for both multiplicative
::::
(M),

::::::::::::::
Michaelis-Menten,

:::::
(MM) and

:::::
inverse

:
Michaelis-Menten

:::::
(IMM) kinetics. For each scenario and

type of heterogeneity, three different initial distributions of substrate and microbial biomass are considered as representative of micro-scale
heterogeneities (positively correlated

::
(+), negatively correlated

:
(-), and uncorrelated

::
(0) fields of substrate and microbial C).

In figure 4, the left and right panels respectively show the effects of biophysical heterogeneity and full heterogeneity on the

mean C pools and fluxes (ks,mult :::
kM is based on the case ’biochemical heterogeneity 1’ in Table B3).

:::
For

:::
this

::::::::
analysis,

:::
we

::::
focus

:::
on

:::
the

:::::::::::
multiplicative

:::::::::::::
decomposition

::::::
model.

Since the mean initial condition corresponds to the steady state of the micro-scale system, in a homogeneous soil no changes

occur in substrate C (solid line in Fig. 4a and 4e
:
b) and microbial C (solid line in Fig. 4b and 4f

:
d), and the mean respiration5

rate is equal to the constant rate of input of external C (solid line in Fig. 4c and 4g
:
e
:::
and

:::
4f). In contrast, for the system with

biophysical heterogeneity, the mean C pools and respiration (R) fluctuate towards the steady state of the micro-scale system

as a result of the heterogeneous initial placement of C substrates. Similarly, for the fully heterogeneous system the mean

microbial C pool (Fig. 4f
:
d) and fluxes (Fig. 4g

:
f) fluctuate near their steady state values, but the mean substrate C pool (Fig.

4e
:
b) reaches a new steady state. The value of the new steady state for the Cs depends upon the parameters of the log-uniform10

distribution of ks,mult ::
kM:

and is given by
[
kB(10

−a− 10−b)/Y (b− a) ln(10)
]

(see details in the Appendix )
::
the

:::::::::
Appendix
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::
A3. In all heterogeneity scenarios, R is initially higher than in the homogeneous system when substrate and microbial C are

initially correlated, whereas it is lower when substrate and microbial C are negatively correlated. When substrate and microbial

C are uncorrelated, the system exhibits a behavior similar to that of the positively correlated fields (Fig. 4c
:
e), but with higher

respiration peaks. This is caused by the high initial spatial variance of substrate C that resulted in hot spots richer in substrate

C than in the positively correlated case (Fig. 2). Furthermore, in the multiplicative kinetics, the respiration flux is proportional5

to the amount of substrate C, so that larger variations in substrate cause larger fluctuations in the mean respiration flux. In the

fully heterogeneous system, fluxes show similar dynamics as those in the biophysically heterogeneous system. ,
::::::
except

:::
for

:::
the

:::::::
different

::::::
steady

::::
state.

:::::::
Varying

:::
the

:::::
mean

:::::
(Fig.

:::
A1)

::::
and

:::::::::
variability

::::
(Fig.

::::
A2)

::
of

::::
kM ::::

alters
::::

the
::::::::::
quantitative,

:::
but

:::
not

::::::::::
qualitative,

:::::::
behavior

::
of

:::
the

::::::::::
macro-scale

::::::
system

:::::::
(results

:::::
shown

::
in
:::::::::
Appendix

::::
A4).

Figure 4d
:
g
:
and 4h show the sum of all higher order terms (

∑
HOT ), including the third order term k

′
s,multC

′
sC
′
b::::::::
k
′
MC

′
sC
′
b10

in addition to the SOT. For a biophysically heterogeneous system, the
∑
HOT only includes the spatial covariance term,

but for a fully heterogeneous system it includes the last three terms of the Eq. (21). The
∑
HOT is initially positive, zero

and negative, respectively for positively correlated, uncorrelated, and negatively correlated substrate and microbial C. All

components of HOT show a dynamic behavior ,
::::

and
:::::::
exhibits

::::::
strong

::::::::
temporal

::::::::
variations

:
(Appendix, Fig. A3). A positive∑

HOT value enhances R, whereas a negative value decreases it in all three heterogeneous cases compared to homogeneous15

R. This result is aligned with our expectation from the analytical expression of the macro-scale multiplicative model (Eq.18).

Figure ?? compares the specific growth rate (SGR) of heterogeneous and homogeneous systems as a function the mean

substrate C. In the case of a homogeneous system, SGR is equal to the time-invariant ratio R
C∗b

(shown as a black dot), whereas

in the heterogeneous system SGR is given by
:
In

:::::::
systems

:::::::::
including

::::
both

::::::::::
biophysical

:::
and

::::
full

::::::::::::
heterogeneity,

:::
the

::::
sums

:::
of the

time-dependent ratio R
Cb

. As a result, the oscillations in (R) caused by the HOT give rise to a non-unique relation between20

SGR and mean substrate C
::::
HOT

:::
are

::::::
stable

::
in

:::
the

::::
long

:::::
term,

::::
once

:::
the

::::::
steady

::::
state

::::
has

::::
been

:::::::
reached.

:::::
This

:::
was

:::::::::
confirmed

:::
by

::::::
running

:::
the

::::::
model

::
for

::::
100

:::::
years.

:::::::::::
Furthermore,

::::
any

::::::::
additional

::::::::::
perturbation

::
of

:::
the

::::
new

::::::
steady

::::
state

::::::
caused

::
by

:::
an

:::::::
external

:::::
factor

:::
will

::::::::::
re-introduce

:::
the

::::::::::
fluctuations.

Scenario 1 (initial condition at steady state): effects of biophysical and full heterogeneity on the mean specific growth rate

(SGR) as a function of mean substrate C for the three heterogeneous cases and the black dot showing the value of R
C∗b

. The25

direction of the arrows represent the increasing time.
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Figure 4. Scenario 1 (initial condition at steady state
::::::::
simulation): effect of biophysical (left panel) and full heterogeneity (right panel) on the

macroscopic decomposition dynamics when the substrate is distributed randomly around the steady state,
:::
and

::::
only

::::::::
considering

:::::::::::
multiplicative

::::::
kinetics

:
at
:::
the

:::::::::
micro-scale: (a,e

:
b) mean substrate C ( Cs ), (bc,f

:
d) mean microbial C ( Cb ), (c

:
e,g

:
f) mean respiration rate (R), and (d

:
g,h) sum

of second and third order terms (
∑
HOT ).
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3.2 Scenario 2: Transient initial condition
::::
high

::::::::
substrate

:::::::::
simulation

:::::
(HS)

3.2.1
::::::::
Dynamics

:::
of

::::::::
substrate

::::
and

::::::::
microbial

::
C
:::
at

:::
the

::::::::::
macro-scale

Figure 5 illustrates the temporal evolution of the mean properties of the macroscopic decomposition dynamics for multiplica-

tive kinetics, for systems with either biophysical (left panel) or full (right panel) heterogeneity, when the initial condition is

perturbed from the steady state
::
by

::::::
adding

::
C

::::::::
substrates. In this scenario, both homogeneous and heterogeneous systems exhibit5

transient dynamics because the initial conditions are set far from the steady state. Figure 5c and 5f show the mean respiration

rate R for the biophysically and the fully heterogeneous system, respectively. The results in Fig. 5b
:
c
:
indicate that, during the

microbial growth phase, the production of microbial C is faster when substrate and microbial C are positively correlated or un-

correlated, compared to the case of negative correlation. Consequently, at the beginning of the simulation, the mean substrate

Cs (Fig. 5a) is decomposed faster due to the higher respiration (Fig. 5c
:
e) for the uncorrelated and the positively correlated10

::::::::
positively

::::::::
correlated

::::
and

:::
the

:::::::::::
uncorrelated

:
substrate and microbial C, and slower for the negatively correlated substrate and

microbial C, when compared to the homogeneous system. By the end of the simulation period, in all heterogeneous scenarios,

biomass production and substrate consumption are lower than in the homogeneous system. As in scenario 1, the initial mean

respiration for the uncorrelated case is higher than that in the positively correlated case.

The
::::::::
Moreover,

:::
the fully heterogeneous system (Fig. 5 right panel) shows a similar behavior compared to

::
as the biophysically15

heterogeneous system, but the peaks of R appear earlier for all degrees of correlation between substrate and microbial C.

Figure 6 shows
::::::
Similar

::
to

:::
Fig.

::
4,

::::
Fig.

::
5g

::::
and

::
5h

:::::
show

:::
the

::::
sum

::
of

::
all

::::::
higher

:::::
order

:::::
terms.

:::
For

::::
both

::::::::::::
heterogeneous

::::::::
systems,

::
R

:
is
::::::
higher

::::
than

:::
the

::::
MFA

:::::
when

:::
the

::::::::

∑
HOT

::
is

:::::::
positive,

:::::::
whereas

::
R

::
is

:::::
lower

::::
than

:::
the

::::
MFA

:::::
when

:::
the

::::::::::
contribution

::
of

:::::
these

::::::
spatial

:::::::
moments

::
is
::::::::
negative.

::::
This

:::::
result

::::::
agrees

::::
with

:::
the

:::::::::
analytical

:::::::::
expression

:::
and

:::::
holds

:::
for

:::
all

::::
types

:::
of

::::::::::
biophysical

:::::::::::::
heterogeneities.

:::
The

::::::::

∑
HOT

:::
for

::::::::::
biophysical

:::::::::::
heterogeneity

::
is
:::::::

initially
:::::::

positive
:::::

when
::::::::

substrate
::::
and

::::::::
microbial

::
C

:::
are

:::::::::
positively

::::::::
correlated

:::
or20

::::::::::
uncorrelated,

::::
but

::::
later

::::::::
becoming

::::::::
negative,

:::::::
whereas

::
it

::
is

::::::
always

:::::::
negative

:::
for

:::
the

:::::::::
negatively

::::::::
correlated

::::::::
substrate

:::
and

:::::::::
microbial

::
C.

::::::
Spatial

::::::::::
covariances

::::::
among

::::::
kinetic

:::::::::
parameter

:::
and

:::::
state

:::::::
variables

:::::
(i.e.,

::::::::::::::::::::::::
k
′
MC

′
s,k

′
MC

′
b, and k′MC

′
sC
′
b)::::

also
::::::::
contribute

:::
to

:::
the

:::::::

∑
HOT

::
in

:::
the

::::
fully

:::::::::::::
heterogeneous

::::::
system

::
in

:::::::
addition

::
to

:::::
C ′sC

′
b.:::::::::::

Specifically,
:::
the

:::::
spatial

:::::::::
covariance

::::::::
between

:::
kM :::

and
:::
Cb:::::

gives

:::
rise

::
to

::::
early

:::::
peaks

:::
of

::
R

:::
(see

:::
all

::::
HOT

:::
in

:::
Fig.

::::
A4).

:

::::::
Figures

::
6

:::
and

::
7
:::::
show similar results as Fig. 5, but for Michaelis-Menten kinetics

:::
and

::::::
inverse

:::::::::::::::
Michaelis-Menten

::::::::
kinetics,25

::::::::::
respectively. The transient dynamics of the mean C pools and fluxes differ from those for

:::::::
obtained

:::::
using

:
multiplicative ki-

netics. During
:::
For

::::
both

::::
MM

::::
and

:::::
IMM

:::::::
kinetics,

::::::
during

:
the initial growth period, the decomposition of mean substrate C in

heterogeneous systems (Fig. 6a and 6d) occurs at a rate comparable to that in the
::::
mean

:::::::::
respiration

::::
rate

::
in

:::
the

::::::::::::
biophysically
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::::::::::::
heterogeneous

::::::
systems

::
is
::::::
similar

::
to

::::
that

::::::::
occurring

::
in

:
a
:
homogeneous system, but afterward the R becomes higher for positive,

similar for uncorrelated, and lower for negatively correlated substrate and microbial C (Fig
::::::::
decreases

:::::
(Figs.

::
6e

::::
and

::::
7e).

:::
As

:
a
::::::
result,

:::::::
substrate

::::
loss

:::::
(Figs.

:::
6a

::::
and

:::
7a)

:::
and

:::::::::
microbial

::::::
growth

:::::
(Figs. 6c and 6f)

:::
7c)

::::
slow

:::::
down

:::::::::
compared

::
to

::::::::::::
homogeneous

::::::::
conditions. Interestingly, for MM kinetics

::::
with

::::
MM

:::::::
kinetics,

:::
in the uncorrelated case does not show higher R compared to

the positively correlated case (Fig. 6c), because now
::
is

:::
not

::::::
higher

::::
than

::
in
::::

the
:::::
other

:::::::::::
heterogeneity

:::::
cases

:::
as

:::::::
occurred

:::::
with5

:::::::::::
multiplicative

:::::::
kinetics

::::::::
(compare

::::
Figs.

:::
6e

:::
and

::::
5e).

::::
This

:
is
:::::::
because

::::
with

::::
MM

:::::::
kinetics

:
the respiration flux is limited by the max-

imum rate of decomposition and not only by substrate availability.
::
In

:::::::
contrast,

::::
with

:::::
IMM

:::::::
kinetics

::
R

::
in

:::
the

:::::::::::
uncorrelated

::::
case

:
is
::::::
higher

::::
than

::
in

:::
the

:::::
other

:::::::::::
heterogeneity

:::::
cases,

:::
as

:
it
::::
was

::::
with

::::::::::::
multiplicative

:::::::
kinetics.

::::
This

::
is

:::::::
because

:::
the

:::::
initial

::::::::
microbial

::
C

::
is

::::
often

:::::
much

:::::
lower

::::
than

:::
the

:::
half

::::::::
saturation

:::::::
constant

:::
for

:::::
IMM

:::::::
kinetics,

::::::
making

:::
the

:::::
IMM

::::::::::::
decomposition

:::
rate

::::::::
equation

::::::::::
numerically

::::::
similar

::
to

:::
the

:::::::::::
multiplicative

::::::::::::
decomposition

::::::
model.

:
10

The fully heterogeneous system (
::::
right

::::::
panels

::
in

:
Fig. 5and 6right panel

:
,
::
6,

::::
and

:
7) shows different behavior compared to

the biophysically heterogeneous system. The peaks of R appear much earlier than in the biophysically heterogeneous system.

Additionally, the values of mean fluxes and C pools after the peak are smaller than in the homogeneous system as well as in the

system with only biophysical heterogeneity. The
::::::
inverse

::::
MM

::::::
kinetics

:::::
(Fig.

:
7
::::
right

::::::
panel)

:::::
show

::::::
similar

::::::::
dynamics

::
as

::
in

:::
the

::::
case

::
of

:::::::::
biophysical

::::::::::::
heterogeneity,

:::
but

::::
with

:::::::
reduced

::::
peak

::::::::::
magnitude.

:::
The

:
smaller mean fluxes are due to the left skewed probability15

distribution of the kinetic parameters (ks,mult and ks,mm:::
kM :::

and
:::::
kMM ), which causes slower decay despite the mean values

of the kinetic parameters being the same. Mathematically, this behavior is caused by the additional covariances in the fully

heterogeneous system as explained in the following paragraph.

Figure A4 presents all the higher order spatial moments in the analytical expression of the macroscopic mean respiration rate,

for the multiplicative decomposition model. The left (respectively right) vertical column shows the results for biophysically20

(fully) heterogeneous system with horizontal rows corresponding to the cases of positive (i.e. Fig. A4a and d), negative (i.e.

Fig. A4b and e) and uncorrelated (i.e. Fig. A4c and f) substrate and biomass C. For both heterogeneous systems, R is higher

than the MFA when the
∑
HOT is positive, whereas R is lower than the MFA when the contribution of these moments

is negative. This result agrees with the analytical expression and are valid for all types of biophysical heterogeneities. All

the higher order spatial moments show a dynamic behavior. The
∑
HOT for biophysical heterogeneity is initially positive25

for the positively and the uncorrelated substrate and microbial C, but later becoming negative while it is always negative

for the negatively correlated substrate and microbial C. Spatial covariances among kinetic parameter and state variables (i.e.,

k
′
s,multC

′
s,k

′
s,multC

′
b,k
′
s,multC

′
sC
′
b) also contribute to the

∑
HOT in the fully heterogeneous system in addition to C ′sC

′
b.

Specifically, it is the spatial covariance between ks,mult and Cb that gives rise to early peaks of R.
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3.2.2
::::::::
Dynamics

:::
of

:::
the

::::::
second

:::::
order

::::::
terms

The
∑
SOT (same as

∑
HOT but now limiting the HOTs to second order) for MM

:::
and

:::::
IMM

:
kinetics for the biophysical

heterogeneity
::::::::::
biophysically

::::::::::::
heterogeneous

:::::::
system is given by the sum of the last two terms of Eq.

:
D

::
in
:::::

Table
::

2
:
and for the

fully heterogeneous system it is given by the last eight terms of Eq. (A9) .
::
and

::::
Eq. (A10)

:
,
::::::::::
respectively.

:
For the biophysically

heterogeneous system, the values of
∑
SOT (Appendix, Fig. A5

:::
Fig.

::
6g

::::
and

::
7g) are initially positive (very small in magnitude)5

for the positively correlated substrate and microbial C and later become negative, while for other heterogeneous cases
:::
the

::::::::
negatively

:::::::::
correlated

::::::::::::
heterogeneous

::::
case

∑
SOT is always negative.

:::
For

:::::::::::
uncorrelated

:::::::
substrate

::::
and

::::::::
microbial

:::
C,

:::::::

∑
SOT

::
is

::::::
initially

:::::::
negative

:::
in

::::
MM

::::::
kinetics

::::
but

::::::
positive

::
in
:::::
IMM

:::::::
kinetics

:::
and

:::::
later

:::::::
becomes

::::::::
negative. Furthermore, the balance between

variance and covariance terms makes the MFA a good approximation of R only when the combined second order terms are

negligible, which is not the case in this example .
:::
(see,

::::
Fig.

:::
A5

::::
and

::::
A6).

::::
The

∑
SOT of the fully heterogeneous system for10

MM kinetics is shown in appendix Fig.??, and values were positive for the first 100 days of simulation and then negative

onward, even though the heterogeneous R is smaller than the homogeneous R (Fig. 6). This result suggests that for a fully

heterogeneous systems the SOT approximation of the macro-scale differential equation is not sufficient and additional higher

order term can not be ignored. Individual components of
∑
SOT are not presented in Fig. ?? because of the large number of

SOTs involved.
:
h
:::
and

::::
7h).15

3.2.3
::::::::
Emerging

::::::::::::
macroscopic

:::::::
kinetics

Figure 8 highlights the effect of these additional SOTs (HOTs for multiplicative)
:::::
effects

:::
of

::::::
spatial

:::::::::::::
heterogeneities

:
on the

mean specific growth rate (SGR) of the heterogeneous system for multiplicative (top)and MM (bottom)
:
,
::::
MM

::::::::
(middle),

::::
and

::::
IMM

:::::::
kinetics

:::::::
(bottom

:::::::
panels).

::::
The

:::::::
depicted

:::::
SGR

:::::
curves

::::
can

::
be

::::::::::
interpreted

::
as

:::
the

:::::::::::
macroscopic

::::::
kinetic

::::
laws

::::::::
emerging

:::::
from

::
the

::::::
spatial

:::::::::
averaging.

::::
For

::
all

:::::
three kinetics. For both kinetics, the functional relation between the mean SGR and Cs for the20

heterogeneous system depends upon the initial degree of heterogeneity. In contrast, in the homogeneous system the mean SGR

is a linearand saturatingfunction of Cs :
,
:::::::::
saturating,

:::
and

:::::::::::
exponentially

:::::::::
increasing

:::::::
function

::
of

:::
Cs:for the multiplicativeand MM

:
,

::::
MM,

::::
and

::::
IMM

:
kinetics, respectively. The effect of biophysical heterogeneity in both kinetic models is

::
all

::::::
kinetic

:::::::
models

:::
are

shown in Fig. 8aand 8c
:
,
::
8c

::::
and

::
8e. The negative correlation between substrate and microbial C leads to lower SGR than

in the homogeneous system, even if both heterogeneous and homogeneous systems have exactly the same amount of total25

initial substrate and microbial C. In the case of positive correlation, the initial mean SGR is higher than in the homogeneous

system, but in the later phase of decomposition, mean SGR becomes lower. Thus, when the substrate is physically accessible

to
:::::::::
co-located

::::
with

:
the microorganisms, the mean SGR is initially higher but it decreases at a faster rate as the substrate is
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decomposed when compared to the homogeneous system. If substrate and microbial C are uncorrelated, the SGR functional

response remains between the negative and the positive correlation cases.

In the fully heterogeneous system (Fig. 8band 8d
:
,
:::
8d,

:::
and

:::
8f), the nonlinear character of the relation between mean SGR

and Cs increases compared to the biophysically heterogeneous system. Interestingly, the mean SGR in the case of negative

correlation for both
:::::::::::
multiplicative

::::
and

::::
MM kinetic models is higher (for high Cs) than for the homogeneous system, despite5

being the co-location of substrates and microorganisms is less likely. This behavior is caused by the occurrence of patches with

high turnover rate that control the mean SGR (Fig. 8a and 8c).
::
In

:::::::
contrast,

:::
for

:::::
IMM

:::::::
kinetics,

::::
the

::::
mean

:::::
SGR

::
in

:::
the

::::
case

:::
of

:::::::
negative

:::
and

:::::::
positive

:::::::::
correlation

::
is

:::::
lower

::::
than

:::
the

::::::::::::
homogeneous

::::::
system.

::::
This

::::::::
behavior

:::::
might

::
be

::
a
::::::::::
consequence

:::
of

:::
the

::::::
chosen

::::
value

:::
of

:::::::
KIMM ;

:::
i.e.,

::
in

:::
our

::::::::::::::
parameterization

:::
of

:::
the

::::
IMM

::::::::
kinetics,

:::::::
initially

:::
the

::::::
system

::
is

::::::
limited

::
by

:::::::::
microbial

::
C,

::::::::
resulting

::
in

:::::::
relatively

::::
low

::::::::::::
decomposition

::::
rate

:::
and

::::::::
dynamics

::::::::::
comparable

::
to

:::::
those

:::::::
obtained

::::
with

::
a
:::::::::::
multiplicative

::::::
model

::::
(see,

::::
Fig.

::::
7e-f).

:
10

::
In

:::
Fig.

::
9
:::
the

::::
role

::
of

::
C

::::::
transfer

::::::
among

::::
cell

::
is

::::::::::
investigated.

:::::::
Similar

::
to

::::
Fig.

::
8,

:::
we

::::
show

:::
the

:::::::
specific

::::::
growth

::::
rate

::
as

:
a
::::::::

function

::
of

::::::::
substrate

:::
for

::
an

:::::::::::
uncorrelated

:::::
initial

::::::::::
distribution

:::
of

::::::::
substrate

:::
and

:::::::::
microbial

::
C,

::::
and

:::
for

:::
all

::::
three

::::::::
kinetics–

:::::::::::::
multiplicative,

:::::::::::::::
Michaelis-Menten

:::
and

::::::
inverse

::::::::::::::::
Michaelis-Menten.

:::::
When

::::::
α= 0,

:::::
result

::
in

::::
Fig.

:
9
:::
are

:::::
same

::
as

::
in

::::
Fig.

:
8
:::
for

:::
the

::::::::::
uncorrelated

:::::
case.

:::::
When

::::::
α > 0,

::::::::::::
microorganism

::::
that

::::
were

:::::::
initially

::::::::
deprived

::
of

::::::::
substrate

::::
now

::::::
receive

::::::::
additional

::::::::
substrate

:::::
from

::::::::::
neighboring

::::
grid

::::
cells.

:::
As

:
a
:::::::::::
consequence

::
of

:::
this

::::::::
improved

::::::::
substrate

::::::::::
availability,

::
in

:::
the

::::::::
long-term

:::::::::::::
microorganisms

::::
can

:::::::
consume

:::
all

:::
the

::::::::
substrate,15

:::::::
whereas

::::::
without

:::::
mass

::::::
transfer

:::::
some

::
C

:::::::
remains

::::::::::::
undecomposed

:::::
(Figs.

:::
5b,

:::
6b,

::::
and

:::
7b).

:

4 Discussion

4.1 Predicted effects of spatial heterogeneity on decomposition

The heterogeneous spatial distribution of organic matter in soils is a result of complex physical, chemical, and biological

processes. Both the experimental quantification of the effects of heterogeneity on SOM dynamics (Kravchenko and Guber,20

2017), and capturing such effects in mathematical models (Wieder et al., 2015) are
::
is challenging. Here, we used scale transition

theory, applied to a two pool model, as a simple approach to analytically account for spatial heterogeneities . This approach was

then used to
:::
and

:
upscale SOM dynamics in a range of idealized scenarios that cover different types of spatial heterogeneity.

Even with the simplest scenarios, the macroscopic decomposition dynamics of a heterogeneous system differ from those

predicted from the mean-field approximation (equivalent to assuming well-mixed conditions). This difference in the dynamics25

at two spatial scales arises because spatial averaging of the nonlinear kinetics at the micro-scale create additional terms in
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Figure 5. Scenario 2 (transient dynamics
::
HS with multiplicative kinetics): effect of biophysical heterogeneity (left panel) and full hetero-

geneity (right panel) on the macroscopic decomposition dynamics when the substrate is distributed around a value higher than the steady
state of the homogeneous system: (a,e

:
b) mean substrate C ( Cs ), (bc,fd) mean microbial C ( Cb ), and (c

:
e,g

:
f) mean respiration rate (R)

:
,
:::
and

:::
(g,h)

::::
sum

::
of

:::::
second

:::
and

::::
third

::::
order

:::::
terms

::::::::
(
∑
HOT ).
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Figure 6. Scenario 2 (transient dynamics
:::
HS with Michaelis-Menten kinetics): effect of biophysical heterogeneity (left panel) and full

heterogeneity (right panel) on the macroscopic decomposition dynamics when the substrate is distributed around a value higher than the
steady state of the homogeneous system: (a,e

:
b) mean substrate C ( Cs ), (b

:
c,f

:
d) mean microbial C ( Cb ), and (ce,gf) mean respiration rate

(R),
:::
and

::::
(g,h)

:::
sum

::
of
::::::
second

::::
order

:::::
terms

::::::::
(
∑
HOT ).
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Figure 7. Temporal evolution of mean respiration rate in the heterogeneous system
:::::::
Scenario

:
2
:
(Rhet::

HS
::::

with
::::::
inverse

::::::::::::::
Michaelis-Menten

::::::
kinetics), which includes the mean-field approximation :

:::::
effect

::
of

:::::::::
biophysical

::::::::::
heterogeneity

:
(MFA

::
left

:::::
panel) and second order terms, and

:::
full

::::::::::
heterogeneity

::::
(right

::::::
panel)

::
on the respiration rate in

:::::::::
macroscopic

:::::::::::
decomposition

::::::::
dynamics

::::
when

:
the

:::::::
substrate

::
is

::::::::
distributed

:::::
around

::
a

::::
value

:::::
higher

::::
than

::
the

:::::
steady

::::
state

::
of

:::
the homogeneous system:

:
(Rhom)

:
a,for

::
b)

::::
mean

:::::::
substrate

::
C ( a–c

::
Cs )biophysically and

:
, (d–f

::
c,d) fully

heterogeneous system with positive
::::
mean

:::::::
microbial

::
C ( a–b

::
Cb:

), negative (c–d
::
e,f) and un-correlated

::::
mean

::::::::
respiration

:::
rate

:
(e–f

::
R)substrate

:
,

and microbial C for multiplicative kinetics
:::
(g,h)

:::
sum

::
of
::::::
second

::::
order

:::::
terms

::::::::
(
∑
HOT ).
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Figure 8. Effect of
::::
spatial

:::::::::::
heterogeneity

::
on

:::
the

:::::
mean

::::::
specific

:::::
growth

::::
rate

:::::
(SGR)

:::
for

:::
HS

::::::
scenario

::::
with

:::
the

::::::::
simplified

:::::::::
micro-scale

:::::
model

::
(no

::
C
:::::::::::
redistribution):

:::::
Effect

::
of
:
biophysical (left column) and full (right column) heterogeneity on the mean specific growth rate (SGR ) as

a function of mean substrate C ( Cs ) for the heterogeneous system for (a,b) multiplicativeand ,
:
(c,d) Michaelis-Menten,

:::
and

::::
(e,f)

::::::
inverse

:::::::::::::
Michaelis-Menten

:
kinetics. Time progresses from right to left, as Cs is depleted.

the macro-scale equations that depend on the spatial distribution of organic matter and microorganisms (i.e., the second order

spatial moments, SOT).

These second order moments capture fluxes that occur at the macro-scale as a result of nonlinear interactions in heterogeneous

environments, but that do not occur in a homogeneous environment.
:::::
terms

::::::::
represent

:::::::::
corrections

::
to

:::
the

:::::::::
mean-field

::::::::::::
approximation

:::
and

::::::
depend

:::
on

:::
the

:::::
spatial

:::::::::
variability

:::
and

::::::::::
co-variation

:::
of

::
the

:::::
state

:::::::
variables

::::
(i.e.

:::
Cs :::

and
::::
Cb). Our numerical results showed that5

the second order spatial moments have their own dynamics that drive the heterogeneous system away from the mean-field

approximation. Notably, while it is recognized that spatial distributions at the micro-scale affect macro-scale dynamics (Fal-
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Figure 9.
::::
Effect

::
of

::::::
spatial

::::::::::
heterogeneity

::
on

:::
the

:::::
mean

::::::
specific

::::::
growth

:::
rate

:::::
(SGR)

:::
for

:::
HS

:::::::
scenario

:::::::
including

::
C
::::::::::
redistribution

::
:
:::::
Effect

::
of

::::::::
biophysical

::::
(left

::::::
column)

:::
and

:::
full

::::
(right

:::::::
column)

::::::::::
heterogeneity

::
on

:::
the

::::
mean

::::
SGR

::
as

:
a
::::::
function

::
of
:::::
mean

::::::
substrate

::
C
:
(
:::
Cs :

)
::
for

::
an

::::::::::
uncorrelated

::::
initial

:::::::::
distribution

::
of

::::::::
substrates

:::
and

:::::::::::::
microorganisms.

:::
The

::::
three

::::::::
horizontal

:::::
panels

:::
are

:::
for

:::
(a,b)

:::::::::::
multiplicative,

::::
(c,d)

:::::::::::::::
Michaelis-Menten,

:::
and

:::
(e,f)

::::::
inverse

:::::::::::::
Michaelis-Menten

:::::::
kinetics.

:::::::
Different

::::
colors

:::::::
represent

::::::
varying

:::::
values

::
of

::
α.

::::
Time

::::::::
progresses

::::
from

::::
right

::
to

:::
left,

::
as

:::
Cs :

is
:::::::
depleted.

:
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coner et al., 2015), none of the current spatially-lumped SOM models include second or higher order terms that depend on

micro-scale heterogeneity (see Sect. 4.3).

The simplicity of the
:::::::::
micro-scale

:
model and the derived analytical expressions are such that specific insights on how het-

erogeneity shapes micro-scale decomposition patterns can be gleaned and hypotheses generated. The four main predictions of

this model are5

1.
::::::::
Perturbing

::
a
::::::
system

:::::::
initially

::::::::::::
homogeneous

:::
and

::
at
::::::
steady

::::
state

:::
by

:::::::::::
redistributing

:::::::::
substrates

:::::::
triggers

::::::::::
fluctuations

::::::
around

::
the

::::::
steady

::::
state

:::::
(Fig.

::
4).

:

2. When only biophysical heterogeneity occurs, in the early microbial growth phase, macroscopic C fluxes are enhanced

by co-location of substrates and microorganisms, and suppressed when they are isolated (Fig. 8a–c).

3. Combined biophysical and biochemical heterogeneity enhance C fluxes in the early stage of decomposition and suppress10

it in the later stages, compared to a homogeneous system (Fig. 8b–d).

4. Both biophysically and fully heterogeneous systems result in a transient persistence of SOM (Fig. 5a,d and 6a,d). This

persistence vanishes for
::
In the biophysically heterogeneous in steady state (i.e. all the carbon is decomposed provided

enough time; Fig. 4); however,
:::::
system

::
at
::::::
steady

::::
state

::
all

::
C
::
is

:::::::::
eventually

:::::::::::
decomposed,

:::::::
whereas

::
in the fully heterogeneous

system retains this persistence even at steady state (i.e. not all C is decomposed
::::
more

::
C

::
is

:::::::
retained as the substrate pool15

reaches a new equilibrium
:::::::::
(Appendix

:::
A3).

5. For a successive reduction in the degree of heterogeneity (i.e. systematically moving from a heterogeneous to a homo-

geneous system), macro-scale dynamics converge to the mean-field approximation; i.e., the same kinetics can be used at

all scales (Sect. 2.1.2).

6.
::::::::
Increasing

:::::
local

::::::::::
connectivity

::::::
among

::::
grid

::::
cells

:::::::::
moderately

:::::::
reduces

:::
the

:::::
effect

::
of

::::::
spatial

:::::::::::
heterogeneity

:::
on

:::
the

::::::::::
macro-scale20

:::::::
variables

::::
and

:::::
fluxes.

:

7.
:::
The

::::::
inverse

:::::::::::::::
Michaelis-Menten

:::::::
kinetics

::::::
appear

:
to
:::
be

:::
less

:::::::
sensitive

::
to

:::
the

:::::
scale

:::::::
transition

::::
than

::::::::::::
multiplicative

:::
and

:::::::::::::::
Michaelis-Menten

:::::::
kinetics,

:::
but

:::
this

:::::
result

:::::
might

:::::::
depend

::
on

:::
the

:::::::
specific

::::::
choice

::
of

::::::::
parameter

::::::
values

:::
(for

::
a
:::::::::
discussion

::
on

:::::
scale

:::::::::
invariance

::
of

:::::::
upscaled

:::::::
kinetics

:::
for

::::::
reaction

:::::::::
networks,

:::
see

::::
Tang

::::
and

:::::
Riley,

::::::
2017).

:::
Our

:::::::
analysis

::::::::
suggests

::::
that

:::
the

:::::::::
persistence

:::
of

:::::
SOM

::
in

:::::::::::::
heterogeneous

:::::::
systems

::::
may

::
be

::
a
:::::::::::
consequence

::
of

::::
the

::::::::::
micro-scale25

:::::::::::
heterogeneity

::
in

::::
soil

::::::
carbon

:::::::
cycling.

:::
In

:::
the

:::::::
transient

::::::::::
simulations

:::::
with

::::::::::
biophysical

::::::::::::
heterogeneity,

:::::::::
persistence

::
is
::

a
:::::
result

:::
of
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:::::
spatial

::::::::::::
disconnection

:::::::
between

::::::::
substrate

:::
and

:::::::::::::
microorganism,

::::::::
captured

::
in

:::
our

:::::::::
framework

:::
by

:
a
::::
low

:::::::::
probability

::
of

::::::::::
co-location

::
at

::
the

:::::::::
beginning

::
of

:::
the

::::::::::
simulation.

::
In

:::
the

:::::::
transient

::::::::::
simulations

:::
for

:::
the

::::
fully

::::::::::::
heterogeneous

::::::::
systems,

:::::::::
persistence

::
is

::
a

:::::
result

::
of

:::
the

::::::::
combined

::::::
effects

::
of

:::
low

:::::::::
probability

:::
of

:::::::::
co-location

:::
and

:::::
high

:::::::::
probability

::
of

:::
low

:::::::::::::
decomposition

:::
rate

:::::::
constant

::
at

:::
the

:::::::::
beginning

::
of

::
the

::::::::::
simulation.

::::
The

:::::::::::
heterogeneity

::
in

::::::::
substrate

::::::
quality

::::
thus

:::::::
explains

:::
the

::::::
higher

:::::::::
persistence

::
of

:::::
SOM

::
in

:::
the

:::::
fully

::::::::::::
heterogeneous

::::::
system

::::::::
compared

::
to

:::
the

:::::::::::
biophysically

::::::::::::
heterogeneous

:::::::
system.5

4.2 Linking theory and observations

We studied three initial heterogeneous distributions of substrate and microbial C; positive, negative or no correlation between

these two variables. These heterogeneities may correspond to spatial aggregation, isolation or random occurrence of substrate

and microorganisms, respectively. Spatial aggregation is expected in litter and in the surface soil where substrate is abundant

and microbial colonies are formed around hot spots (Nunan et al., 2003). Spatial isolation is more likely to occur in the subsoil10

because of lower substrate and microorganism density as well as poor pore connectivity (Ekschmitt et al., 2008; Salomé et al.,

2010), and C-rich patches occur around roots that are separated by large (in a relative sense) volumes of soil that only receive

diluted resources via percolation, diffusion, and bioturbation (Kuzyakov and Blagodatskaya, 2015). Uncorrelated spatial fields

of substrate and microorganisms may correspond to spatial distributions between these two extremes. There are other examples

of contrasting homogeneous vs. heterogeneous conditions. Disturbed, sieved or dispersed samples can
::::
may be considered as15

homogeneous
:
, whereas intact soil samples retain their natural heterogeneity.

Despite the correspondence of our idealized heterogeneity scenarios with actual conditions in natural soils or soil samples,

linking our model predictions to observations is challenging, mostly because the effects of heterogeneity can not be easily

isolated in experiments or field observations.

Many studies have focused on understanding
:::
For

:::::::
example,

:::::::::::
experiments

:::::::
studying the effects of soil structure on the dynamics20

of SOM mineralization , either by changing the pore network by controlling the water potential (Killham et al., 1993; Ruamps et al., 2011)

, or by artificially altering the soil structure through mechanical treatments (Stenger et al., 2002; Juarez et al., 2013; Negassa et al., 2015; Herbst et al., 2016)

. Changes in soil structure affect spatial heterogeneity of substrate and microbial C (Ruamps et al., 2011; Sleutel et al., 2012; Vos et al., 2013)

, but also
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Killham et al., 1993; Stenger et al., 2002; Ruamps et al., 2011; Juarez et al., 2013; Negassa et al., 2015; Herbst et al., 2016)

:::
may

:
introduce other types of heterogeneities that are not dealt with here. For example, samples with different pore net-25

works (Ruamps et al., 2011) likely exhibit different water and air diffusive pathways, which in turn affect microbial respira-

tion (Moyano et al., 2013; Manzoni and Katul, 2014; Herbst et al., 2016; Koestel and Schlüter, 2019). Furthermore, the same

spatial distribution of decomposers and substrates in different pore sizes may result in different C fluxes because the size of the
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pores where decomposers reside affects the rate at which substrate can become available. Therefore, these studies may be ideal

for studying the effect of soil structure, but not for isolating the spatial heterogeneity effects.
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Manzoni and Katul, 2014; Herbst et al., 2016; Koestel and Schlüter, 2019)

:
. When targeting experiments to test our up-scaled equations, using data from previous studies is challenging because (i) spa-

tial distribution of substrate and/or microbial C are not changed in a controlled manner and (ii) the scale at which physical

treatments are performed is probably larger than the scale at which heterogeneity affects C dynamics.5

We also found that SOT are highly dynamic, suggesting that the role of heterogeneities varies through time. However, in

most long-term incubation experiments measurement frequency is low. Fraser et al. (2016) observed significant differences in

the respiration dynamics using a very high frequency (6 minutes interval) measurements that is generally lost in daily or sub

daily observations. In a recent review Baveye et al. (2018) suggested to improve the temporal resolution of observations of

the soil physical environment. Extending this idea to biochemical processes is important because a complete description of10

macro-scale C fluxes requires spatial and dynamic measurements of the second order moments (see Sect. 4.4).

Thus, experiments in which soil structure was manipulated do not allow direct testing of the predicted links between het-

erogeneity and decomposition kinetics at the macro-scale. Therefore, while the
::::::::::
Furthermore,

:::
an

:::::::::::
experimental

::::::::
validation

:::
of

::
the

:::::::
present

:::::
work

:::::
could

::::
stem

:::::
from

::::::::
designing

::
a
:::::::::
microscale

:::::::::::
experiments

:::::
using

:::::::
artificial

:::::::
porous

:::::
media

::::
with

::::::::
different

:::::::
degrees

::
of

::::::::::::
heterogeneity.

::::::
Recent

::::::::::
application

::
of

::::::::::::
microfluidics

::
in

::::
soil

::::::
science

:::::::::::::::::::::::::::::::::::
(Stanley et al., 2016; Aleklett et al., 2018)

:::::
could

:::::
allow15

:::::::
isolating

:::
the

:::::
effect

::
of

::::::
spatial

::::::::::::
heterogeneity.

::
If

:::
any

:::::::::
difference

::
is

::::::::
observed

::::::
among

::::::::::::
heterogeneous

:::::::
systems,

::::
then

:::
our

::::::::::
framework

::::
could

:::
be

::::
used

::
to

:::::::
attribute

::::
these

::::::::::
differences

::
to

:::::
spatial

::::::::::::
heterogeneity

::
at

::
the

:::::::::::
micro-scale.

:::::
While

:::
the proposed mathematical frame-

work is conceptually useful, it is
:::
thus

:
challenging to test.

:::::::::::
Nevertheless,

:::
the

:::::::::
prediction

:::
that

::::::::::
co-location

::
of

:::::::::::::
microorganisms

::::
and

::::::::
substrates

::::::::
promotes

::::::::::::
decomposition

::
is

::::::::
consistent

::::
with

:::
and

:::::::
explains

:::::::::::
theoretically

::
the

::::::
results

::
of

:::::
recent

::::::::::
experiments

::::::::::::::::::::::::::::::::::
(Don et al., 2013; Schnecker et al., 2019)

:
.20

4.3 Developing soil carbon cycling models that account for micro-scale heterogeneity

Historically, the linear microbial implicit models were developed to explain long-term loss of C from agricultural soils or

regional-scale variations in SOM (Jenny et al., 1949; Olson, 1963; Jenkinson and Rayner, 1977; Parton et al., 1987). However,

when applied at fine spatial or temporal scale, these models fail to describe the dynamics of SOM (Zelenev et al., 2000; Manzoni

and Porporato, 2007). To fill this gap and describe microbial processes at the macro-scale, nonlinear microbial explicit models25

have been proposed (Schimel and Weintraub, 2003; Manzoni and Porporato, 2009; Xie, 2013). In contrast to these approaches

that impose nonlinear kinetics at the macro-scale, here we started from the assumption that SOM kinetics are either linear or

nonlinear at the micro-scale, and let scale transition theory determine the type of kinetics at the macro-scale.
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:::::::::::
Conceptually,

::::
this

::::::::
approach

::
is

::::::
similar

::
to

::::::::
upscaling

::::::::
chemical

:::::::
reaction

::::::::
networks

:::
to

:::::
obtain

::
a
:::::::
compact

::::::
kinetic

::::
law

::::
that

::::
only

:::::::
depends

::
on

::::
the

::::::::::::
concentrations

::
of

::::::::
reactants

::::
and

::::::::
products

::::::::::::::::::::::::
(Tang and Riley, 2013, 2017).

:::::::::
However,

::::
here

:::
we

:::::
focus

:::
on

::::::
spatial

:::::::::::
heterogeneity

:::::
rather

::::
than

:::
on

:::
the

::::::::::
complexity

::
of

::::::::
chemical

::::::::
reactions.

:::
In

:
a
:::::
more

::::::::
complete

::::::::
upscaling

:::::::::
approach,

::::
both

::::::
sources

:::
of

:::::::::
micro-scale

:::::::::
variability

::::::
should

::
be

:::::
taken

::::
into

:::::::
account.

When assuming linear kinetics at the micro-scale, we showed analytically that the kinetics at the macro-scale remain linear5

and independent of soil biophysical heterogeneity (Eq. (17) and (22)). This result has implications for experimental studies

linking soil architecture to SOM mineralization. In some of these studies, first order microbial implicit kinetics are used to

describe the data (Bouckaert et al., 2013; Juarez et al., 2013). This means that if
::
If a linear model captures well the SOM

dynamics in a heterogeneous system, then either the underlying micro-scale dynamics are indeed linear, or the averaging of

underlying nonlinear equations leads to linearity at macro-scale.10

Conversely, we demonstrate that nonlinear kinetics at micro-scale do not remain the same when scaling up. The macro-scale

dynamics retain a clear signature of nonlinearities at the micro-scale in the MFA term, but the second order terms could be

even more important than the MFA. Thus, nonlinear kinetics might improve SOM predictions because microbial activity is

accounted for (Wieder et al., 2013) (at the cost of increased uncertainty, Wieder et al. (2018)), but the question remains: which

kinetics
:::::
kinetic

:
formulation should be used at the macro-scale that captures both microbial activity and spatial heterogeneities?15

We offer a framework to advance this area by using appropriately upscaled nonlinear kinetics including SOT at macro-scale.

This upscaling framework can be extended to account for the role of other micro-scale interactions such as among substrates,

microorganisms, and minerals, or even temporally varying connectivity due to water movement. These improvements, however,

would come at the expense of increased number of nonlinear second order spatial moments.

To summarize, the proposed theoretical developments allow integration of spatial heterogeneity into decomposition kinetics.20

Assuming that the second order spatial moments are known, this integration can be achieved by using the equations listed

in Table 2 instead of standard linear or nonlinear kinetics
::::::
kinetic equations used in the current models (Wieder et al., 2018;

Abramoff et al., 2018). However, the second order moments and their dynamics are not known in general, as discussed at the

end of the following section.

4.4 Limitations of the upscaling approach25

To illustrate the effects of spatial heterogeneities alone, we simulated idealized laboratory conditions in which the environ-

mental conditions are constant so that the decomposition rate is not affected by soil moisture and temperature changes through

time and space. Moreover, we did not account for the spatial redistribution of organic matter and microbial biomass caused by
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diffusion/dispersion/advection or bioturbation in the distributed model. Finally, the
::
the simulated domain is small compared to

an actual soil sample, but we regard the number of simulated grid cells (104) as representative of the range of variation occur-

ring in larger, similarly idealized samples. In other studies, more complex micro-scale models based on nonlinear reactive and

diffusive fluxes have been implemented (Monga et al., 2008; Nguyen-Ngoc et al., 2013; Monga et al., 2014); however, their

spatial upscaling would require volume averaging of the coupled transport and reaction equations, making the problem math-5

ematically intractable when aiming for analytical solutions (Whitaker, 1999; Valdés-Parada et al., 2009; Porter et al., 2011;

Lugo-Méndez et al., 2015). The two pool micro-scale model with initial heterogeneous distributions of substrate and microor-

ganisms as described in this study offers a simplified way of simulating reaction-diffusion systems. The two end-member cases

of homogeneous and fully heterogeneous systems where grid cells are independent are representative of conditions in which

diffusivities are high compared to reaction kinetics in the former and negligible in the latter. In more realistic settings, condi-10

tions are likely to be intermediate between these two cases. ,
:::
as

::::::::
described

::
by

:::::::
varying

:::
the

:::::
value

::
of

:::
the

::::
mass

:::::::
transfer

:::::::::
coefficient

:
α
:::::
(Fig.

::
9).

:

::::::::
Including

::
C

:::::::::::
redistribution

::
as

:
a
::::::

simple
:::::
mass

:::::::
transfer

::::::
process

::::
does

:::
not

:::::
allow

::::::::
studying

::::
how

:::
soil

::::::::
structure

::::::
affects

::::::::::
macro-scale

::::::::
dynamics

::
by

:::::::
creating

:::
and

::::::::::
maintaining

::::::::::::
heterogeneous

::::::::::
distributions

::
of

::::::::
resources

::::
and

::::::
oxygen,

::::
such

::
as

::
in
::::
soil

:::::::::
aggregates

::::::::::::::::::::::::::::::::::::::
(Keiluweit et al., 2017; Ebrahimi and Or, 2018).

:::::
These

:::::::
patterns

::::
result

:::::
from

:::
the

:::::::::
interaction

::
of

:::::::
transport

:::
and

:::::::
reaction

::::::::
processes

::::
that

:::
the

:::::::
proposed

::::::::
idealized

::::::
models

::::::
cannot

:::::::
capture.15

The upscaling mechanism described in this work assumes that microbial mortality is first order in microbial C, so that

this term remains structurally similar in the macroscopic Eq. (13) and (14). A nonlinear mortality generalized by T = kBC
β
b

(Georgiou et al., 2017) would create an additional term in the macro-scale equations. The mean microbial mortality can be

calculated by inserting the nonlinear T into Eq. (16), resulting in T = kBCb
β
+βCb

β−1
σ2
Cs

, where σ2
Cs

is the spatial variance20

of microbial C (for the biophysically heterogeneous system; i.e., kB is spatially invariant). For β = 1, the first order mortality

is recovered, (Eq. (22)); for β 6= 1,T has an additional positive variance term that increases mortality at the macro-scale.

Finally, the upscaled macro-scale equations still require a closure scheme for integration; i.e., a set of equations linking the

spatial moments to the mean state variables. With such a set of additional equations, the problem becomes mathematically

’closed’, as the only remaining unknowns are the mean state variables. Examples of closure from other fields are mentioned in25

the introduction (e.g., Bergström et al. (2006)),
:
but finding a robust closure scheme remains challenging and will be the subject

of future work.

Moreover, our derivations are general, but how these closure equations are formulated and parameterized will likely depend

on the scale transition under consideration - soil pore to core (as in this work), soil core to field, or even field to landscape. It
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is possible that a whole hierarchy of scale transitions is required to determine macro-scale equations suitable for regional or

global-scale applications.
:::::
Along

::::::
similar

:::::
lines,

::::
how

::::
many

:::::
terms

::
in
:::
the

::::::
Taylor

:::::::::
expansion

:::::
should

:::
be

:::::::
retained

::
at

::::
each

::::
level

::
of

::::
this

::::::::
hierarchy

::::::
remains

:::
an

::::
open

::::::::
question.

:
It
::
is

::::
also

:::::::
possible

:::
that

:::
the

::::::::
dynamics

::
at

:::
the

:::::
micro

::::
scale

::
in
:::::::::::
combination

::::
with

::
C

:::::::::::
redistribution

:::
lead

::
to
::::

low
::::::
values

::
of

::::::
higher

::::
order

:::::::::
moments,

::::
thus

:::::::
allowing

:::
us

::
to

::::::
neglect

::::::
higher

:::::
order

::::::
terms–

:::::::
because

:::::::
substrate

::::::::::::
consumption,

:::::::
mortality

::
of
:::

the
::::::::::::::
microorganisms,

::::
and

:::::::
transport

:::::::::
contribute

::
to

:::::::::
smoothing

::::::
spatial

::::::::
gradients.5

5 Conclusions and perspective

Most carbon cycling models implicitly assume a spatially homogeneous distribution of SOM in different C pools and are based

on the mean-field approximation of the rate of decomposition. However, assuming homogeneity is adequate only at the micro-

scale in soils, due to the homogenizing effect of diffusion, which brings carbon sources and decomposers into direct contact

with each other at such scales. Therefore, the mean-field approximation is valid only at the micro-scale, creating a challenge10

when developing SOM models at macro-scale that also account for environment heterogeneity. In this contribution, we used

scale transition theory to link an idealized (but realistic) heterogeneous system and a homogeneous system by establishing an

analytical expression for the macroscopic mean decomposition rate that accounts for the micro-scale heterogeneities. Unlike

the mean-field approximation adopted in most C cycling models, the upscaled governing equations we derived include second

order spatial moments; i.e., spatial variances and/or covariances between micro-scale state variable and model parameters. The15

dynamical behavior of the second order terms drives the heterogeneous system away from the mean-field approximation. For a

heterogeneous system, initially near steady state, micro-scale heterogeneities led to oscillations in the macro-scale respiration

flux and higher SOM persistence in a fully heterogeneous system. For a heterogeneous system perturbed from its equilibrium,

the co-location of substrate and microorganisms increased macroscopic C fluxes compared to a case in which they were

isolated.20

In conclusion, this work provides a methodology to explicitly include micro-scale heterogeneity in soil C cycling models.

Our upscaled kinetic equations could be used in lieu of current formulations, but additional equations describing the dynamics

of spatial moments should be further developed to mathematically close the problem. These
::::
The upscaled equations show that,

(i) heterogeneities alter the form of the carbon flux equations at the macro-scale and,
:
as a result,

:
(ii) co-location (respectively

isolation) of microorganisms and their substrates promote (suppress) carbon fluxes in soils.25
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Code availability. The codes used to construct the heterogeneous soil maps and to solve the mass balance equations in heterogeneous

domains are publicly available via DOI https://doi.org/10.5281/zenodo.3253880.
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Appendix A

A1 Derivation of the macro-scale rate of decomposition5

Here we describe the derivation of the spatially averaged C flux for a generic microscopic C flux F (Cs,Cb,k) using scale

transition theory. As a first step, we calculate the multi-variate Taylor’s series expansion of F (Cs,Cb,k) around the spatial

average value of Cs, Cb and k,

F (Cs,Cb,k) = F (Cs,Cb,k)+
∂F

∂Cs

∣∣∣∣
Cs,Cb,k

(Cs−Cs)+
∂F

∂Cb

∣∣∣∣
Cs,Cb,k

(Cb−Cb)+
∂F

∂Cb
Cs,Cb,k

(Cb−b)+

n∑
i=1

∂F

∂ki

∣∣∣∣
Cs,Cb,k

(ki− ki)+
1

2

∂2F

∂C2
s

∣∣∣∣
Cs,Cb,k

(Cs−Cs)2 +
1

2

∂2F

∂C2
b

∣∣∣∣
Cs,Cb,k

(Cb−Cb)2+10

1

2

n∑
i=1

n∑
j=1

∂2F

∂ki∂kj

∣∣∣∣
Cs,Cb,k

(ki− ki)(kj − kj)+
∂2F

∂Cs∂Cb

∣∣∣∣
Cs,Cb,k

(Cs−Cs)(Cb−Cb)+

n∑
i=1

∂2F

∂ki∂Cs

∣∣∣∣
Cs,Cb,k

(Cs−Cs)(ki− ki)+
n∑
i=1

∂2F

∂ki∂Cb

∣∣∣∣
Cs,Cb,k

(Cb−Cb)(ki− ki)+O(C3
sC

3
b k

3
i ), (A1)

where O(C3
s ,C

3
b ,k

3
i ) represents the higher order terms and the overbars denote the spatially averaged micro-scale quantities.
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Second, the averaging operator given by Eq. (1) is applied in Eq. (A1). Truncating terms above the second order terms, Eq.

(A1) becomes

1∫ ∫
dxdy

∫ ∫
F (Cs,Cb,k) dxdy =

1∫ ∫
dxdy

[
F (Cs,Cb,k)+

∂F

∂Cs

∣∣∣∣
Cs,Cb,k

(Cs−Cs)+
∂F

∂Cb

∣∣∣∣
Cs,Cb,k

(Cb−Cb)+
∂F

∂Cb
Cs,Cb,k

(Cb−b)+

n∑
i=1

∂F

∂ki

∣∣∣∣
Cs,Cb,k

(ki− ki)+
1

2

∂2F

∂C2
s

∣∣∣∣
Cs,Cb,k

(Cs−Cs)2 +
1

2

∂2F

∂C2
b

∣∣∣∣
Cs,Cb,k

(Cb−Cb)2+5

1

2

n∑
i=1

n∑
j=1

∂2F

∂ki∂kj

∣∣∣∣
Cs,Cb,k

(ki− ki)(kj − kj)+
∂2F

∂Cs∂Cb

∣∣∣∣
Cs,Cb,k

(Cs−Cs)(Cb−Cb)+

n∑
i=1

∂2F

∂ki∂Cs

∣∣∣∣
Cs,Cb,k

(Cs−Cs)(ki− ki)+
n∑
i=1

∂2F

∂ki∂Cb

∣∣∣∣
Cs,Cb,k

(Cb−Cb)(ki− ki)

]
. (A2)

In Eq. (A2), the first order partial derivatives (second, third and fourth term between the square brackets) disappear, because

the partial derivatives evaluated at the mean state variables are constants that are multiplied by the expectation of the deviation

of a quantity, which is zero
(
∂F
∂χ

∣∣∣∣
χ

∫ ∫
(χ−χ) dxdy = 0, where χ is CS ,Cb or k

)
.10

Finally, after applying the averaging operator, deviations multiplying the second order partial derivatives become spatial

variances and covariances. As a result, the macro-scale C flux F (Cs,Cb,k) is obtained

F (Cs,Cb,k) = F (Cs,Cb,k)+
1

2

∂2F

∂C2
s

∣∣∣∣
Cs,Cb,k

σ2
Cs

+
1

2

∂2F

∂C2
b

∣∣∣∣
Cs,Cb,k

σ2
Cb

+

n∑
i=1

n∑
j=1

∂2F

∂ki∂kj

∣∣∣∣
Cs,Cb,k

k
′
ik
′
j

∂2F

∂Cs∂Cb

∣∣∣∣
Cs,Cb,k

C ′sC
′
b+

n∑
i=1

∂2F

∂ki∂Cs

∣∣∣∣
Cs,Cb,k

k
′
iC
′
s+

n∑
i=1

∂2F

∂ki∂Cb

∣∣∣∣
Cs,Cb,k

k
′
iC
′
s, (A3)

Equation (A3) can be used to obtain the macro-scale C flux given the decomposition function D at micro-scale. Explicit15

solutions for the multiplicative kinetics are reported in the main text (Eq. (18), (20), and (21)).

For illustration, here we report the derivation of the spatially averaged rate of decomposition for Michaelis-Menten (MM)

kinetics. The micro-scale rate of decomposition for MM kinetics is given by

F =
ks,mmCsCb
KM +Cs

kMMCsCb
KMM +Cs
::::::::::

(A4)
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where both the parameters ks,mm and Km :::::
kMM :::

and
::::::
KMM and the state variables Cs and Cb are considered spatially variable

quantities. Inserting Eq. (A4) into Eq. (16) gives the macro-scale rate of decomposition

F (Cs,Cb,

[
ks,mmMM

:::
,KMMM

:::

]
) =

F (Cs,Cb,ks,mmMM
:::

,KMInv
::

)+
1

2

∂2F

∂C2
s

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

σ2
Cs

+
1

2

∂2F

∂ks,mm
2

∂2F

∂kMM
2

:::::::

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

σ2
ks,mmkMM

:::
+

1

2

∂2F

∂kM
2

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

σ2
kM +

∂2F

∂ks,mm∂kM

∂2F

∂kMM∂KMM
::::::::::::

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

k
′
MMK

′
IMM+5

∂2F

∂Cs∂Cb

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

C ′sC
′
b+

∂2F

∂ks,mm∂Cs

∂2F

∂kMM∂Cs
:::::::::

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

C ′sk
′
MM+

∂2F

∂ks,mm∂Cb

∂2F

∂kMM∂Cb
:::::::::

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

C
′
bk
′
MM +

∂2F

∂KM∂Cs

∂2F

∂KMM∂Cs
::::::::::

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

C ′sK
′
MM+

∂2F

∂KM∂Cb

∂2F

∂KMM∂Cb
::::::::::

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

C
′
bK
′
MM . (A5)

The partial derivative of F with respect to ks,mm :::::
kMM :

is zero because F is a linear function of ks,mm ::::
kMM . Now, for

biophysical heterogeneous and biochemical homogeneous system, covariances and variances related to parameters are zeros10

so that we are left with

F (Cs,Cb,

[
ks,mmMM

:::
,KMMM

:::

]
) = F (Cs,Cb,ks,mmMM

:::
,KM )+

1

2

∂2F

∂C2
s

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

σ2
Cs

+
∂2F

∂Cs∂Cb

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

C ′sC
′
b.

(A6)

Calculating the derivatives gives

F (Cs,Cb,

[
ks,mmMM

:::
,KMMM

:::

]
) =

ks,mmCsCb

KM +Cs

kMMCsCb

KMM +Cs
::::::::::

+
1

2

[
−2ks,mmKMCb

KM +Cs
2

−2kMMKMMCb

(KMM +Cs)3
:::::::::::::::

]
σ2
Cs

+

 ks,mmKM

(Cs+KM )2
kMMKMM

(Cs+KMM )2
::::::::::::

C ′sC ′b.
(A7)
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For biophysical homogeneous and biochemical heterogeneous system, covariances and variances of state variables (Cs and

Cb) are zeros so that we are left with

F (Cs,Cb,

[
ks,mmMM

:::
,KMMM

:::

]
) =

F (Cs,Cb,ks,mmMM
:::

,KM )+
1

2

∂2F

∂kM
2

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

σ2
kM+

∂2F

∂ks,mm∂kM

∂2F

∂kMM∂KMM
::::::::::::

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

k
′
MMK

′
MM +

∂2F

∂ks,mm∂Cs

∂2F

∂kMM∂Cs
:::::::::

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

C ′sk
′
MM+5

∂2F

∂ks,mm∂Cb

∂2F

∂kMM∂Cb
:::::::::

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

C
′
bk
′
MM +

∂2F

∂KM∂Cs

∂2F

∂KMM∂Cs
::::::::::

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

C ′sK
′
MM+

∂2F

∂KM∂Cb

∂2F

∂KMM∂Cb
::::::::::

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

C
′
bK
′
MM . (A8)

For a completely heterogeneous system with biophysical and biochemical heterogeneity, the mean rate of decomposition at

macro-scale is given by Eq. (A9).

F (Cs,Cb,

[
ks,mmMM

:::
,KMMM

:::

]
) =10

F (Cs,Cb,ks,mmMM
:::

,KM )+
1

2

∂2F

∂C2
s

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

σ2
Cs

+

1

2

∂2F

∂kM
2

∂2F

∂KM
2

::::::

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

σ2
kMKM

::
+

∂2F

∂ks,mm∂kM

∂2F

∂kMM∂KMM
::::::::::::

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

k
′
MMK

′
MM+

∂2F

∂Cs∂Cb

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

C ′sC
′
b+

∂2F

∂ks,mm∂Cs

∂2F

∂kMM∂Cs
:::::::::

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

C ′sk
′
MM+

∂2F

∂ks,mm∂Cb

∂2F

∂kMM∂Cb
:::::::::

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

C
′
bk
′
MM +

∂2F

∂KM∂Cs

∂2F

∂KMM∂Cs
::::::::::

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

C ′sK
′
MM+

∂2F

∂KM∂Cb

∂2F

∂KMM∂Cb
::::::::::

∣∣∣∣Cs,Cb,ks,mm,KMCs,Cb,kMM ,KM
::::::::::::

C
′
bK
′
MM . (A9)15

::::::
Similar

::
to

::::
MM

:::::::
kinetics,

:::
the

:::::
mean

:::
rate

:::
of

::::::::::::
decomposition

:::
for

::::
IMM

:::::::
kinetics

:::
can

::::
also

:::
be

::::::::
calculated

:::
as,
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F (Cs,Cb, [kIMM ,KIMM ])
::::::::::::::::::::::

=

F (Cs,Cb,kIMM ,KInv)+
1

2

∂2F

∂C2
s

∣∣∣∣
Cs,Cb,kIMM ,KInv

σ2
Cb
+

:::::::::::::::::::::::::::::::::::::::::::::::

1

2

∂2F

∂KIMM
2

∣∣∣∣
Cs,Cb,kIMM ,KInv

σ2
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+
∂2F

∂kIMM∂KIMM

∣∣∣∣
Cs,Cb,kIMM ,KInv

k
′
IMMK

′
IMM+

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

∂2F

∂Cs∂Cb

∣∣∣∣
Cs,Cb,kIMM ,KInv

C ′sC
′
b+

∂2F
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∣∣∣∣
Cs,Cb,kIMM ,KInv

C ′sk
′
IMM+

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

∂2F

∂kIMM∂Cb

∣∣∣∣
Cs,Cb,kIMM ,KInv

C
′
bk
′
IMM +

∂2F

∂KIMM∂Cs

∣∣∣∣
Cs,Cb,kIMM ,KInv

C ′sK
′
IMM+

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

5

∂2F

∂KIMM∂Cb

∣∣∣∣
Cs,Cb,kIMM ,KInv

C
′
bK
′
IMM .

::::::::::::::::::::::::::::::::::

(A10)

A2 An analytical expression
:::::
Initial

:::
2D

:::::::
random

:::::
fields

:
of the substrate C at steady state for the multiplicative kinetics

in the fully heterogeneous systemThe substrate
::::
and

::::::::
microbial

:
Cat

:::
The

::::::::::::
heterogeneous

::::
field

::
of

::::::::
microbial

::
C
::::
was

::::::
created

:::::
using

:
a
:::::::
random

::::
field

::::::::
generator

:::
that

:::::::
provides

:::::::::
100× 100

:::::::
spatially

:::::::::
correlated10

::::::
random

::::::::
numbers

:::::::
between

::
-1

::::
and

::
1

:::::::::::::
(Lennon, 2000).

::::::
These

:::::
values

:::::
were

::::
then

::::::::
re-scaled

::
by

:::
an

::::::::::
appropriate

:::::
mean

:::
and

::::::::
standard

:::::::
deviation

:::
of

::::::::
microbial

:::
C.

::
To

::::::::
simulate

:::
the

::::
dead

::::::
zones

::
in

:::
the

::::::::::::
heterogeneous

:::::::
system,

:::::
some

::::
grid

::::
cells

:::::
were

:::::
forced

:::
to

::::
have

:::
no

::::::::
microbial

::
C

:::
(the

::::::::
obtained

::::
field

:
is
:::::::
denoted

:::::
yi,j).

:::::::::
Moreover,

::
to

:::::
allow

::::::::::
comparison

::::::
among

::::::::::
simulations,

:::
the

::::::::
microbial

::
C

::::
field

::::
was

:::::::::::
re-normalized

::
to

::::
have

::
a
:::::::
specified

:::::
value

::
of

::::
total

::::::
initial

::::::::
microbial

::
C,

:

Cbi,j =
yi,j∑
i,j yi,j

Cb,total (fg)

::::::::::::::::::::::::

(A11)15

:
It
::
is
::::::::
assumed

:::
that

:::
the

:::::::
Cb,total::

is
:::::
equal

::
to

::::
1%

::
of

:::
the

::::
total

:::::::
amount

::
of

::::::::
substrate

::
in

:::
the

:::::::
domain

::::::::::::
(Witter, 1996),

::::::
which

::
is

::
in

::::
turn

::::::::
calculated

::
as

:::::::::::::::::::::::
Cs,total = Cs,0×Nx×Ny:::::

where
:::::
Cs,0 ::

is
:::
the

:::::
initial

:::::
mean

::::::::
substrate

::
C

::
in

:
a
::::::
single

::::
grid

:::
cell

:
(fg

:
).
::::
The

::::::
amount

:::
of

:::::::
substrate

::
C

::
in

::::
any

:::
grid

::::
cell

::
is

::::::
limited

:::
by

:::
the

::::::::
maximum

:::::::
amount

::
of

::
C

::::
that

:::
the

:::
cell

::::
can

::::::::::::
accommodate,

::::::::
according

::
to

:::
the

:::::::
density

::
of

::::::
organic

::::::
matter

:::::::
(ρSOM ),

::::
and

::::::::
assuming

:::
that

::::
50%

::
of

:::::::
organic

:::::
matter

:::
on

:
a
:::::
mass

::::
basis

::
is

:::::::::
composed

::
of

::::::
organic

:::
C.

:::
The

:::::::::
maximum
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::::::
amount

:::
of

::::::::
substrate

::
C

:::
that

:::
one

::::
cell

:::
can

:::::::
contain

:
is
::::
thus

:::::
given

:::
by

Cmax = 0.5ρSOM cellvolume (fg)
:::::::::::::::::::::::::::

(A12)

:::::
where

:::::::::
cellvolume :

is
:::
the

:::::::
volume

::
of

:
a
::::
grid

::::
cell.

:::
The

:::::
value

::
of

::::
Cs,0::::

was
::::::
chosen

::
so

:::
that

:::
the

:::::::::
maximum

:
C
:::::::
amount

::
at

:
a
:::::::::
micro-site

::::
does

:::
not

::::::
exceed

:::::
Cmax.

:::
To

:::::::::
summarize,

:::
the

::::::::
obtained

:::::::
spatially

::::::::::::
heterogeneous

:::::::
random

::::
fields

::
of
:::::::::
microbial

:
C
::::
and

:::::::
substrate

::
C

::::::
satisfy

:::
the

::::::::
following

::::::::::
constraints:

:
i)
:::
the

::::
total

:::::::
amount

::
of

:::::::
organic

::
C

::
is

:::
set,

::
ii)

:::
the

::::
total

:::::::
amount

::
of

::::::::
microbial

::
C
::
is
::::
1%

::
of

::::
total

::::::
organic

:::
C,

:::
iii)5

::
the

:::::::::
maximum

:::::::
amount

::
of

::
C

::
in

:
a
:::
cell

::
is
:::
set

::::
(Eq.

::::::
(A12)),

::::
and

::
iv)

:::::
some

::::
grid

::::
cells

::::
have

:::
no

::::::::
microbial

:::::::
biomass.

:

A3
::::::
Steady

:::::
state

::::::::
substrate

::
C

:::
for

:::
the

::::::::::::
multiplicative

::::::::
kinetics

::
in

:::
the

::::
fully

:::::::::::::
heterogeneous

:::::::
systems

:::
The

::::::::
substrate

:
C
::
at

:
steady state for multiplicative and MM kinetics in a homogeneous system are

::
or

:::::::::::
biophysically

::::::::::::
heterogeneous

::::::
system

:
is
:
given in Table 1 and restated here for convenience. These expressions are also valid for biophysically heterogeneous

systems.
:
,10

Cs,multM
:

∗ =
kB

Y ks,mult

kB
Y kM
::::

(A13)

Cs,mmMM
:::

∗ =
KMkB

Y ks,mm− kB
KMMkB

Y kMM − kB
:::::::::::

(A14)

where * represents the steady state. Eq. (A13) and (A14) show that the steady state substrate C depends only on the kinetics

parameters
::::::
kinetic

:::::::::
parameters

::::
and

::::::::
microbial

:::::
C-use

::::::::
efficiency. Thus, if the kinetic parameters are spatially variable (i.e., fully

heterogeneous system) then C∗s,mult and C∗s,mm ::::
C∗M :::

and
:::::
C∗MM:

are also spatially variable and different from the steady state15

values in
::
of

:
biophysically heterogeneous and homogeneous systems. Knowing the probability distributions of the kinetic

parameters, the mean steady state substrate C in the fully heterogeneous system can be calculated as the mean value of C∗s,mult

or C∗s,mm :::
C∗M::

or
::::::
C∗MM .

The mean value of a generic function, g(x) is given by g(x) =

∞∫
−∞

g(x)fX(x)dx, where fX(x) is the probability density

function of x. For the multiplicative kinetics and assumed a logUniform(a,b) distribution for ks,mult ::
kM , the mean value of20

C∗s,mult :::
C∗M is given by,

Cs,multM
:

∗ =

b∫
a

kB
Y ks,mult

kB
Y kM
::::

f(ks,multM
:
)dks,multM

:
(A15)
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where f(ks,mult)::::::
f(kM ) is the probability density function of ks,mult:::

kM:
and given by f(ks,mult) =

1

(b− a)ks,mult loge 10 :::::::::::::::::::::::
f(kM ) =

1

(b− a)kM loge 10
.

Inserting the expression of f(ks,mult) :::::
f(kM )

:
in Eq. (A15) gives,

Cs,multM
:

∗ =
kB
[
10−a− 10−b

]
Y (b− a) ln(10)

(A16)

A4
:::::::::
Sensitivity

::
of
:::::::::::
fluctuations

::
to

:::::::
changes

:::
in

:::
kM::

in
::::::::
scenario

::
1

:::
We

::::::::
performed

::::
two

:::::::::
sensitivity

:::::::
analyses

::
in

:::::
which

:::
we

::::::
altered

:::
the

::::::
kinetic

:::::::
constant

::::::::
parameter

:::
for

:::
the

:::::::::::
multiplicative

:::::::::::::
decomposition5

:::::
model

::::
kM :

::
1)

:::::::::
decreasing

::::
kM ::

in
:::
the

::::::::::
biophysical

::::::::::::::::::::
heterogeneity–positively

:::::::::
correlated

:::
Cs :::

and
:::
Cb:::::

(Fig.
:::
A1)

::::
and

:::::::::
increasing

:::
the

:::::::::::
heterogeneity

::
of

::::
kM :::

(by
:::::::::
increasing

::
its

::::::::
standard

::::::::
deviation)

:::
in

:::
the

:::
full

:::::::::::
heterogeneity

:::::
case

::::
(Fig.

::::
A2).

:::::
From

::::
Fig.

::::
A1,

:
it
::
is
:::::
clear

:::
that

:::::::::
decreasing

:::
the

::::
rate

:::::::
constant

::::::::
increases

:::
the

::::::::
amplitude

::::
and

::::::::::
wavelength

::
of

:::
the

::::::::::
oscillations.

:::
As

::::::
shown

::
in

:::
Fig.

::::
A2,

:::::::::
increasing

::
the

::::::::::::
heterogeneity

:::
of

:::
the

::::
rate

:::::::
constant

::::::::
increases

:::
the

:::::::
amount

:::
of

::::::::::::
undecomposed

::::::::
substrate

::
C
:::::::::

compared
::
to

::
a
:::::
lower

::::::
degree

:::
of

:::::::::::
heterogeneity

::::
(Fig.

:::
4).

::::
This

:::::::
pattern

:::
can

::
be

:::::::::
explained

:::::
using

:::
the

::::::::
analytical

:::::::::
expression

:::
of

:::
the

::::::
steady

::::
state

::::::::
substrate

::
C

:::
(see

::::
Eq.10

(A16)
::
in

:::::::::
Appendix

::::
A3).

:::
For

:::
the

::::::::
increased

::::::::::::
heterogeneity

::::
case

::::::
shown

::
in

::::
Fig.

::
4,

:::
we

::::
used

::::::
values

::
of

::
a
::::
and

:
b
::
as
:::::

listed
:::

in
:::::
Table

::
B3

:::
for

:::::::::::
biochemical

:::::::::::
heterogeneity

::
1
:::
and

::::::::::::
multiplicative

:::::::
kinetics,

::::::
where

:
a
::::

and
::
b

::::
have

:::
the

:::::
same

:::::::
meaning

:::
as

::
in

:::
Eq.

:
(A16)

:
.
::::
The

::::::::
analytical

:::::::::
expression

:::
for

:::
the

::::::
steady

:::::
state,

::::::::
evaluated

::::
with

:::::
these

:::::
values

:::
of

:
a
::::
and

::
b,

::::::
results

::
in

::::::
exactly

::::
the

::::
same

::::::
steady

::::
state

:::
of

:::::::
substrate

::
C

::
as

::::::::
simulated

:::
by

:::
the

:::::::::
distributed

:::::
model

::::
(i.e.,

:::
15 mgC/gSoil

:
).

:::::
These

:::::::::
fluctuations

:::
are

::::::
similar

::
to

:::::
those

:::::
noted

::
in

:::::
earlier

::::::
papers

::::
using

::::::::
spatially

::::::
lumped

::::::
models

::::::::::::::::::::::::::::::::::::::::::::::
(Manzoni and Porporato, 2007; Sierra and Muller, 2015)15

:
.
:::::
These

::::::
papers

::::::
showed

::::
that

:::
the

:::::::::
occurrence

:::
and

:::::::::
amplitude

::
of

:::
the

::::::::::
fluctuations

::::::
depend

:::
on

:::
the

::::::
kinetic

:::::::::
parameter

::::::
values,

::
as

::
is

:::
the

:::
case

:::::
here.

Comparison of soil organic matter decomposition dynamics of linear, multiplicative and Michaelis-Menten kinetics. The

rate constant of decomposition for multiplicative and linear kinetics was estimated by fitting the of the dynamic equations for

the two models to the CO2 production rate simulated by MM kinetics.20

44



Figure A1. Steady state initial condition: Examples of the homogeneous (a) and the heterogeneous distributions of
::::
mean substrate C

constrained to have the same amount
::::
(Cs),

:::
(b)

:::::
mean

:::::::
microbial

::
C
:
(
:::
Cb::

),
:::
(c)

::::
mean

:::::::::
respiration

:::
rate

::::
(R),

:::
and

:::
(d)

::::
sum of total substrate

:::::
second

:::
and

::::
third

::::
order

:::::
terms (b–d

:::::::

∑
HOT )

::
are

:::::
shown

::
as
::
a
::::::
function

::
of

::::
time,

:::
for

:::::::
positively

::::::::
correlated

:::::
initial

:::::
spatial

::::::::::
heterogeneity

::
of

:::
Cs :::

and

::
Cb. The fields in b–d were obtained

:::
This

:::::
figure

:
is
::::::
similar

::
to

:::
Fig.

::
4,

:::
left

::::::
column

:::::
(initial

:::::::
substrate

::
is

::::::::
distributed

:::::::
randomly

::::::
around

:::
the

:::::
steady

::::
state).

:::::::
Varying

::::
levels

::
of

:::
the

:::
rate

:::::::
constant

:::
kM ::

are
::::::

shown
::
(as

:::::::
indicated

:
by imposing different degrees

:::
line

::::
styles

::::
and

:::::
colors;

:::
the

:::
base

::::
case

::
is

::
the

::::
same

::
as
::

in
::::

Fig.
::
4).

:::::
Panels

:::
on

::
the

::::
right

:::
are

:::::::
enlarged

:::::
views of correlation with the initial heterogeneous distributions

:::
time

:::::::::
trajectories of

microbial C (e)
::
Cs.
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Figure A2.
::
(a)

::::
mean

:::::::
substrate

::
C

::::
(Cs),

:::
(b)

:::::
mean

:::::::
microbial

::
C

:
(
:::
Cb :

),
:::
(c)

::::
mean

::::::::
respiration

::::
rate

:::
(R),

:::
and

:::
(d)

::::
sum

::
of

:::::
second

:::
and

::::
third

:::::
order

::::
terms

::::::::
(
∑
HOT )

:::
are

:::::
shown

::
as

:
a
::::::
function

::
of
::::
time,

:::
for

:::::::
different

:::::::
scenarios

::
of

::::
initial

:::::
spatial

:::::::::::
heterogeneity.

::::
This

::::
figure

::
is

:::::
similar

::
to

:::
Fig.

::
4

::
for

:::
the

:::
full

::::::::::
heterogeneity

::::
case,

::
but

::::
with

:::::::
increased

:::::::::::
heterogeneity

::
of

::
the

:::
rate

:::::::
constant

::::
(kM ).
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Figure A3. Scenario 1 (initial condition at steady state
:::::::
simulation): temporal evolution of mean respiration rate in the heterogeneous system

(Rhet, including the mean-field approximation (MFA) and second order terms), and the respiration rate in the homogeneous system (Rhom),
for multiplicative kinetics and for (a–c)

::
the

:
biophysical and (d–f)

::
the fully heterogeneous system with (a–d) positively and (b–e) negatively

correlated, or (c–f) uncorrelated initial substrate and microbial C.
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Figure A4. Scenario 2 (transient dynamics with Michaelis-Menten kinetics): temporal
:::::::
Temporal evolution of mean respiration rate in the

biophysically heterogeneous system (Rhet), including
::::
which

:::::::
includes the mean-field approximation (MFA) , and second order terms), and

the respiration rate in the homogeneous system (Rhom), for (a
:::
a–c) positively

::
the

::::::::::
biophysically

:
and (b

::
d–f) negatively correlated

:::
the

::::
fully

::::::::::
heterogeneous

::::::
system

:::
with

::::::
positive

::::
(a–b), or

::::::
negative (c

::
c–d) uncorrelated

::
and

::::::::::
un-correlated

::::
(e–f) substrate and microbial C,

::
for

:::::::::::
multiplicative

::::::
kinetics.
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Figure A5.
::::::
Scenario

:
2
::::
(HS

:::
with

::::::::::::::
Michaelis-Menten

:::::::
kinetics):

:::::::
temporal

:::::::
evolution

::
of

::::
mean

::::::::
respiration

:::
rate

::
in

:::
the

::::::::::
biophysically

:::::::::::
heterogeneous

:::::
system

::::::::::::
(Rhet,including

:::
the

::::::::
mean-field

:::::::::::
approximation

::::::
(MFA),

:::
and

:::::
second

:::::
order

:::::
terms),

:::
and

:::
the

::::::::
respiration

:::
rate

::
in

:::
the

::::::::::
homogeneous

::::::
system

::::::
(Rhom),

:::
for

::
(a)

::::::::
positively

:::
and

::
(b)

::::::::
negatively

::::::::
correlated,

::
or

::
(c)

::::::::::
uncorrelated

:::::::
substrate

:::
and

:::::::
microbial

::
C.
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Figure A6. Scenario 2 (transient dynamics
::
HS with

:::::
inverse

:
Michaelis-Menten kinetics): temporal evolution of

::::
mean

::::::::
respiration

:::
rate

::
in

:
the

sum of
::::::::::
biophysically

:::::::::::
heterogeneous

:::::
system

::::::::::::
(Rhet,including

:::
the

::::::::
mean-field

:::::::::::
approximation

::::::
(MFA),

:::
and second order termsfor

:
),
:::
and

:
the fully

heterogeneous
::::::::
respiration

:::
rate

::
in

::
the

:::::::::::
homogeneous system

::::::
(Rhom), for different degrees of correlation between the initial

::
(a)

::::::::
positively

:::
and

::
(b)

::::::::
negatively

::::::::
correlated,

::
or

:::
(c)

:::::::::
uncorrelated

:
substrate and microbial C.Only the sum of second order terms (

∑
SOT ) is shown because of

large number of spatial moments involved.
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Figure A7. Distribution of the decomposition rate constant for different degrees of biochemical heterogeneity, and for (a) multiplicative and
(b) Michaelis-Menten kinetics. Black and grey shadings represent higher and lower degree of biochemical heterogeneity respectively, and the
dashed line represents the mean rate constant for the homogeneous system. The half saturation constant KM :::::

KMM is uniformly distributed,
not shown in figure.
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Table B1. List of parameters. Values in the brackets correspond to the units reported in the brackets.

Parameter Value Unit Description

I 6.06× 10−4 mgCg−1soil h−1 rate of input of external carbon

KMM
5156250

(25)
fgC/grid cell
(mgCg−1soil)

half saturation constant (MM)

kMM 0.018 h−1 decomposition rate constant
for the MM kinetics

:::::
KIMM

:::::
2× 106

:

::::
(9.69)

:::::::::
fgC/grid cell

::::::::::
(mgCg−1soil)

:
::
half

:::::::
saturation

::::::
constant

:::::
(IMM)

:::::
kIMM ::::

0.0045
: :::

h−1 ::::::::::
decomposition

::
rate

::::::
constant

::
for

:::
the

:::
IMM

::::::
kinetics

KkM
7.45× 10−10

(1.53× 10−4)
h−1 (fgC/grid cell)−1

(h−1 (mgCg−1soil)
−1

)

decomposition rate constant
for the Multiplicative kinetics

kB 0.00028 h−1 decomposition rate constant
for the MM kinetics

Y 0.31 h−1 g/cm3

ρBD 1.65 g/cm3 Soil bulk density
ρOM 1.1 g/cm3 Organic matter density

Table B2. Initial mean substrate and microbial C in scenarios one and two (in fgC/grid cell); values in brackets are expressed in
mgCg−1soil.

# Scenario Initial Cs Initial Cb

fgC/grid cell(mgCg−1soil)

1 Steady state IC 1.212× 105(5.9) 2.005× 105(0.9725)

2 Transient IC 2.5× 107(121.21) 2.5× 105(1.21)

Table B3. Probability distributions of the parameters for the multiplicative and MM kinetics models. Values in brackets indicate the minimum
and maximum parameter values.

Biochemical heterogeneity 1 Biochemical heterogeneity 2

Multiplicative kM
(h−1) (fgC/grid cell)−1

log10Uniform(−10.1,−8.56) log10Uniform(−9.4,−8.9)

MM
kMM (h−1) log10Uniform(−1.098,−3)
KMM (fgC/grid cell) Uniform(0.25,49.75)

IMM
kIMM (h−1) kMM/4
KIMM (fgC/grid cell) Uniform(1,18.4)
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