
Final response to reviewer’s comments on “Dynamic upscaling of decomposition 

kinetics for carbon cycling models”  

We would like to thank the three reviewers for their comments. In this brief summary, we highlight the comments 

that in our view are most important to address should a revision of our manuscript be encouraged. In general, the 

reviewers commented favourably regarding the potential interest of the proposed work, but raised concerns about its 

applicability. We agree with this general concern and had already openly acknowledged the limitations of our 

approach in the original manuscript. However, we also think that a theoretical approach to link different scales in 

soil carbon cycling models is missing and this contribution provides a way to start bridging this gap that 

complements ongoing efforts by other groups.  

Reviewer 1: the main concerns regard the interpretation of results (oscillations, convergence to equilibrium, 

sensitivity to changes in parameter values), and the establishment of a closed-form solution that can be applicable in 

biogeochemical models. In our response, we provide additional analyses and explanations of the results that can be 

included in an extended Discussion in the revised manuscript. In particular, we extended our analysis to a fourth 

type of decomposition kinetics used in soil C cycling models (inverse Michaelis-Menten). 

Reviewer 2: the main concerns regard the validation of the proposed approach, its high level of abstraction, and the 

lack of representation of some physical processes known to determine heterogeneous distributions of soil substrates 

and microorganisms. In our response, we argue in favour of a theoretical framework, while acknowledging its 

limitation. A ‘standard’ model calibration/validation is not possible due to lack of fine-scale data, but the theoretical 

insights provided by our approach can still be useful. It is correct that some physical processes had not been 

represented, but our goal is to establish a link between macro- and micro-scale dynamics starting from an idealized 

system. In a revised manuscript, we would further highlight approach limitations; moreover, also in response to 

reviewer 3, we can include a simple representation of mass transfer as a proxy for physical transport processes that 

we had initially neglected. 

Reviewer 3: the main concerns regard the applicability of the approach, the assumption of negligible cell-to-cell 

connectivity, and our interpretation of averaging and mean-field approximations. As explained in the responses 

above, our approach is still admittedly far from being readily applicable and we acknowledge this limitation in the 

manuscript. We can, however, improve the model by including mass transfer, thus addressing the second concern 

(new results are presented in the detailed response). Finally, we clarify our interpretations of the terms ‘mean field 

approximation’ and ‘well-mixed’ conditions, which might have created some ambiguities. 

Detailed responses are attached below. 

 

Response to reviewer 3  

We would like to thank reviewer 3 for the review of our manuscript. Our responses are highlighted in blue font. 

 

1. While the conclusions they drew are solid within their model configuration, I too share with others the concern 

that how this learned lesson could be translated into something universally applicable for other modelers.  In 

particular, we in the soil biogeochemical modeling community have so far no unanimously accepted governing 

equation to solve like that exist for geophysical fluid dynamics, or hydrodynamics in general, where re-solving 

the microstructure effects can be achieved through the so called large-eddy simulation and sub-grid closure, 

and even field or laboratory experiments can be designed to derive parameterization schemes that are generally 



applicable for different situations.  Personally, I am therefore wondering can the authors’ approach become 

some tools that are easily accessible to others, e.g., like Markov chain Monte Carlo codes that are widely 

accessible through open source software? 

Our methodology could be considered as a conceptual tool to understand the link of governing equations at two 

different scales. As mentioned by the reviewer, the lack of universally accepted C dynamics equations at 

different scales is one of the key issues in soil science. Use of scale transition theory is advantageous because it 

does not assume any predefined form of macro-scale equation, and depending upon the structure of the micro-

scale model, the upscaling procedure results in macro-scale terms that define the variation across scales as a 

result of micro-scale properties (i.e. heterogeneities). The formulation of the micro-scale model is also 

uncertain, but we can test different variants of decomposition kinetics to test how the nonlinearities at the 

micro-scale translate into more or less nonlinear behavior at the large scales. In a revision, we would include an 

addition kinetic model to further expand the analysis, as described in our response to reviewer 1 and below. 

The terms in the macro-scale equations that depend on micro-scale features are mathematically expressed by the 

second order spatial moments. Based on which second order moments appear in the upscaled equation and the 

kind of heterogeneity present in the system, one could start thinking about the relative importance of each term. 

This issue is partially covered in our answer to the comment 10 of reviewer 1 where we describe a possible 

strategy to obtain a second order approximation of upscaled decomposition rate. Such a second order 

approximation could be useful in operational models. In this contribution, however, we aim at providing a 

framework for upscaling that is complementary to other recent approaches, among which those referenced 

below (e.g., Tang and Riley, 2017). 

2. Second I am a little bit disappointed that authors decided to ignore the interactions between different micro-

grids.  In physics, the successful upscaling is achieved only through the consideration of interactions.   For 

instance, the scaling of Newton’s law of momentum conservation, the derivation of center of gravity, or the 

scaling relation-ship between the Chapman-Enskog theory, lattice Boltzmann approach and the Naiver-Stokes 

equation, are all hinged on the interactions between their parts.  Therefore, it is not surprising at all that the 

authors found that their mean-field-approximation deviated significantly from their so-called full model 

simulations.  Further, from existing scaling theories in the literature, another key of success seems to maintain 

the essential invariants of the system when one transits from one scale to another, yet the Michaelis-Menten 

kinetics they use is a crude approximation and misses some important invariant that is included in its origin law 

of mass action (Tang and Riley, 2017), and is deemed to show the difference they found.  In addition, there’s no 

guarantee that the mean-field equation will possess the same form as the micro-scale equation. For this, a very 

good example can be found in geophysical fluids, where at different scales, their governing equations are 

different, e.g., Gill (Atmosphere-Ocean dynamics, 1982)).  Another more relevant example on decomposition is 

in Wang and Allison (2019). 

This comment includes two separate questions: the first is related to spatial redistribution and the second is 

regarding the choice of micro-scale kinetics. To address the first comment regarding the importance of spatial 



interactions (or redistribution), we implemented two new versions of our model that include a redistribution 

mechanism – the first is based on diffusion and second is based on a generic mass transfer. The idea is to 

understand to what extent these spatial fluxes are important in the decomposition of soil organic carbon and 

their effect on the upscaling procedure we propose. 

Diffusion-based three pool model 

To demonstrate the effect of diffusive fluxes, we need to have an additional pool of C that is mobile, i.e. DOC. 

So the micro-scale model structure changes as follows, 
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where SOC is soil organic carbon and B is microbial C (shorter notation, but conceptually the same as Cs and Cb 

in the manuscript). DOC is dissolved organic carbon, an additional carbon pool that is prone to transport via 

advection (not considered here) and diffusion. Also biomass is assumed to be transported according to a 

gradient-driven process with a given diffusivity.  𝑉𝑚 and 𝐾𝑚 are the maximum decomposition rate constant and 

the half saturation constant for SOC and similarly 𝑉𝑢 and 𝐾𝐷𝑂𝐶  are the maximum uptake rate and the half 

saturation constant for DOC uptake. 𝐷𝐷𝑂𝐶 = 2.6 𝐸 − 12
𝑚2

𝑠
 and 𝐷𝐵 = 0.1𝐷𝐷𝑂𝐶  are the DOC and biomass 

diffusivities. The coefficient a partitions microbial cell turnover between SOC and DOC. 

Diffusion at pore scale is affected by the pore geometry and at the Darcy scale it is approximated as a function 

of soil moisture in unsaturated conditions. Here, we used the bulk diffusivity to simulate diffusion of DOC, and 

assumed that the diffusivity for biomass is 10 times smaller than that of DOC. Experiments studying the DOC 

pool suggest that DOC is a small fraction of soil organic matter and is quickly taken up by microbes (Schnecker 

et al., 2019). Therefore, it is reasonable to expect that the DOC pool will be at quasi-steady and the DOC three-

pool model would be well-approximated by the two-pool model (same as in the manuscript). We obtained the 

parameters of the three pool model by changing the kinetics of DOC production and uptake so that the 

dynamics of SOC and B are comparable in both models.  Figure R7 shows the time evolution of SOC, DOC and 

the microbial C pool in a heterogeneous system, along with the dynamics of the same variables obtained in a 

homogeneous system based on three-pool and two-pool models.  



 

Figure R7: Temporal evolution of the mean SOC, DOC and microbial C pools when C substrates and 

biomass are initially negatively (left panel), positively (center) and not correlated (right). Note that the 

right y-axes and the black and red curves refer to DOC in all panels. 

 

 

Figure R8: Mean respiration rate when C substrates and biomass are initially negatively, positively and 

not correlated in two- and three-pool models.  

First, this analysis shows that the two- and three-pool models behave similarly when the system is 

homogeneous, which is expected because we constrained DOC to be turning over quickly (as suggested by 

empirical evidence).  

Second, the three-pool model responds to the initial heterogeneous distribution of substrate and biomass 

showing a delayed respiration peak when the substrates are initially separated from the microbial cells (negative 

correlation). This result is consistent with that shown in Figure 6 of the manuscript. However, when no 

correlation occurs between substrates and microbes, an even longer delay emerges, in contrast to our original 

results in Figure 6. This suggests that diffusion does not alter the qualitative responses to micro-scale 

heterogeneity if microbes are in close vicinity or separated from the substrate, but could play a role in the 

intermediate case of no correlation. This difference between the model including diffusion and the original 

version without diffusion is caused by the specific initial placement of substrates and microbes. In the original 



model, the initial placement did not matter, but only its statistical properties determined the dynamics (i.e., the 

sample size was sufficiently large). In contrast, when diffusion is included, a larger sample size becomes 

necessary to ensure that a specific initial configuration does not influence the dynamics. The need for a larger 

sample size is due to the occurrence of spatial interactions that create clusters spanning a large fraction of the 

domain and whose dynamics control the dynamics of the mean values of state variables and fluxes. 

 

Mass transfer-based spatially explicit model  

To explicitly include spatial fluxes across grid cells without changing the structure of the two-pool model used 

in the original manuscript, we implemented an alternative mass transfer mechanism. In this model, SOC is 

decomposed at rate 𝐷 from which 𝛼𝐷 is transferred in equal amounts to the four neighboring grid cells. Hence, 

in each cell microbes take up C from neighboring cells at a rate 
𝛼

4
 (𝐷𝑖−1,𝑗 + 𝐷𝑖+1,𝑗 + 𝐷𝑖,𝑗−1 + 𝐷𝑖,𝑗+1). This 

choice is motivated by the observation that the products of de-polymerization are more soluble than stable 

organic matter and thus are more likely to be transported away from the site of decomposition. So instead of 

modelling DOC explicitly, we assumed that a fraction of the C flux that represents the source of soluble C is 

transported in other cells. This mass transfer mechanism can be interpreted as a consequence of any type of 

redistribution process in soils, including diffusion, dispersion or bioturbation.  

 

 

If α is zero, no mass transfer occurs and the model becomes equivalent to our original two pool model. If 𝛼 is 

greater than zero, then there is mass transfer among the grid cells. In this way, by changing the value of 𝛼, we 

can study the effect of spatial mass transfer flux on mean carbon dynamics. Micro-scale equations at one grid 

cell (control volume) take the following form,  
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We used this form of micro-scale model to simulate the effect of 𝛼 on the averaged dynamics of decomposition 

for positive, negative and uncorrelated system in the same way as it was done in the original manuscript.  In 

Fig. R9, we show the specific growth rate as a function of substrate for an uncorrelated initial distribution of 

substrates and microbes, and for all three kinetics– multiplicative (mult), Michaelis-Menten (MM) and inverse 

Michaelis-Menten (inv. MM). When 𝛼 = 0, result in Fig. R9 are same as in Fig. R6 for the uncorrelated case. 

When 𝛼 > 0, microbes that were initially deprived of substrate can receive it from neighboring grid cells. As a 

consequence of improved accessibility, given enough time microbes would consume all the substrate, whereas 

without mass transfer some C remains undecomposed. In other words, the persistence of substrate C we have 

highlighted in the manuscript in the fully heterogeneous system is lost when mass transfer provides food for 

microbial growth in all cells of the domain (provided enough time for transport to occur).  

An interesting result emerges from Fig. R9: the inverse MM kinetics captures the effect of heterogeneity better 

than MM or mult, i.e. the shape of the kinetics is relatively similar to homogeneous conditions. This result 

might reflect some degree of scale-invariance of inverse MM kinetics.  

We plan to implement this modified model in a revised manuscript, including the new figures presented here 

and the corresponding discussion. 

 

 



Figure R9: Effect of biophysical (left column) and full (right column) heterogeneity on the mean specific 

growth rate (SGR) as a function of mean substrate C (𝑪̅𝑺) for an uncorrelated initial distribution of 

substrates and microbes.  The tree horizontal panels are for (a,b) multiplicative, (c,d) Michaelis-Menten 

and (e,f) Inverse Michaelis-Menten kinetics. Different colors represent varying values of 𝜶. Time 

progresses from right to left, as substrate C is depleted. 

 

3. Third, I feel the authors have some misunderstanding about the mean-field theory and the meaning of well-

mixed soil condition. In fact, the scaling problem we are facing here is very similar like the situation 

hydrologists encountered in upscaling the soil moisture and soil matric potential relationship in the 1970s-

1980s. Using statistical theory, they were able to derive closed analytical relationships (e.g., Mualem, 1976) to 

inform important soil water retention curve formulations to be derived from empirical data (e.g.,van 

Genuchten, 1980).  Therefore, whenever moisture-pressure relationships are included in soil biogeochemical 

models, some microstructure is included in the so-called mean-field-theory based model (although I should 

admit that the authors did not consider soil moisture in this study).  Or put this straightforwardly, mean field 

theory does not rule out the inclusion of microstructure, as was demonstrated in the recent up-scaling study 

of substrate affinity parameter (Tang and Riley, 2019), and the study of turbulence (e.g., Takahashi, 2017).  

In the same vein, a well-mixed soil can also have microstructure, and be properly parameterized. In fact, the 

latter is what motivated the dual-porosity or the multiple-Rates Mass Transfer models, which have enjoyed 

many successful applications (e.g., Haggerty and Gorelick, 1995). 

 

We do not argue against macro-scale models that account for micro-scale heterogeneities in a lumped way – in 

fact, we hope that scale transition theory can help moving in that direction (complementing other approaches as 

in the cited paper by Tang and Riley). However, admittedly we are not quite to the point of proposing a closure 

approach that would provide closed-form equations such as the cited water retention curves. 

By “mean field approximation”, we indicate the C fluxes calculated with the mean values of the state variables 

(e.g., as in Melbourne and Chesson, 2006), and not a mean-field theory that accounts for micro-scale processes. 

By “well-mixed” conditions, we refer to conditions where diffusion is faster than reaction, providing spatially 

uniform concentrations. This is different from assuming that e.g., random pores are ‘well-mixed’ in a soil – an 

assumption used to derive the cited water retention curves. We can clarify the use of these terms in a revised 

version to avoid any confusion.  

In Tang and Riley papers, heterogeneity is introduced by the reaction network adopted for the decomposition of 

substrate; in other words one or more substrates can be decomposed via one or more enzymes. The question of 

interest in that case was: what would be the form of the decomposition function in order to account for the 

reaction network complexities? In this sense, we agree that a well-mixed system can have different types of 

substrates and enzymes, and one could apply the method developed by tang and Riley to calculate the overall 

decomposition function. The same philosophy was adopted by Michaelis and Menten to derive their 

approximated enzymatic reaction equation. 



However, this question is different from what we ask here. Our contribution investigates what would happen to 

the decomposition function if substrate and microbes (or enzymes) are physically co-located or isolated. Spatial 

heterogeneity is the subject of investigation rather than the heterogeneity of the reaction network in a multi-

substrate and multi enzyme system. For our purposes, the assumption of Michaelis-Menten kinetics serves the 

purpose. In case of chemical heterogeneity where we actually define different substrate qualities by having 

spatially varying kinetics parameters, the substrate decomposition in a grid cell (control volume) is performed 

according to the kinetic parameters associated with that cell. In other words, there is no transport of microbes 

(or enzymes) across grid cells that would create a multi-species system. If there was transport of chemically-

different compounds, kinetic laws accounting for complex reaction networks should be used (e.g., SUPECA 

kinetics in Tang and Riley, 2017). Even for the spatially explicit model based on mass transfer presented earlier, 

simple forward or inverse MM kinetics would be enough because only a fraction of decomposition flux is 

transferred across the grid cells and we can assume that the compounds being transported are similar, not 

requiring more sophisticated kinetic laws.  

While we did not implement SUPECA or other complex kinetics (note that we do not model enzymes 

explicitly), in a revision we can include inverse Michaelis-Menten kinetics in addition to the other kinetics. This 

would allow exploring the behavior of another type of micro-scale decomposition model. We are also motivated 

to analyze MM and inv. MM kinetics because they are commonly used and in our view modelers tend to 

underestimate possible scaling issues with these nonlinear functions.  

Preliminary results obtained with the inv. MM kinetics are shown above. 
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