
Y. Zheng C. Albergel S. Munier B. Bonan J.-C. Calvet

An Offline Framework for High-dimensional Ensemble Kalman
Filters to Reduce the Time-to-solution
Yongjun Zheng, Clément Albergel, Simon Munier, Bertrand Bonan, and Jean-Christophe Calvet
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France

Correspondence: Y. Zheng (zhengyongjun@gmail.com)

Abstract. The high computational resources and the time-consuming IO (Input/Output) are major issues in offline ensemble-

based high-dimensional data assimilation systems. Bearing these in mind, this study proposes a sophisticated dynamically

running job scheme as well as an innovative parallel IO algorithm to reduce the time-to-solution of an offline framework

for high-dimensional ensemble Kalman filters. The dynamically running job scheme runs as many tasks as possible within5

a single job to reduce the queuing time and minimize the overhead of starting/ending a job. The parallel IO algorithm reads

or writes non-overlapping segments of multiple files with an identical structure to reduce the IO times by minimizing the IO

competitions and maximizing the overlapping of the MPI (Message Passing Interface) communications with the IO operations.

Results based on sensitive experiments shown that the proposed parallel IO algorithm can significantly reduce the IO times and

has a very good scalability, too. Based on these two advanced techniques, the offline and online modes of ensemble Kalman10

filters are built based on PDAF (Parallel Data Assimilation Framework) to comprehensively assess their efficiencies. It can

be seen from the comparisons between the offline and online modes that the IO time only accounts for a small fraction of

the total time with the proposed parallel IO algorithm. The queuing time might be less than the running time in a low-loaded

supercomputer such as in an operational context but the offline mode can be nearly as fast as, if not faster than, the online

mode in terms of time-to-solution. However, the queuing time is dominant and several times larger than the running time in15

a high-loaded supercomputer. Thus, the offline mode is substantially faster than the online mode in terms of time-to-solution,

especially for large-scale assimilation problems. From this point of view, it suggests that an offline ensemble Kalman filter

with an efficient implementation and a high-performance parallel file system should be preferred over its online counterpart

for intermittent data assimilation in many situations.

Copyright statement.20

1 Introduction

Both the numerical model of a dynamical system and its initial condition are imperfect owing to the inaccuracy and incom-

pleteness to represent the underlying dynamics and to measure its states. Thus, to improve the forecast of a numerical model,

1

data assimilation (DA) methods combine the observations and the prior states of a system to estimate the posterior states (usu-

ally more accurate) of the system taking into account their uncertainties. Two well-known DA methods are the variational

technique and the ensemble-based technique. The hybrid methods combining the advantages of the variational technique and

the ensemble-based technique have gained increasing interest in recent years. Bannister (2017) gives a comprehensive review

of variational, ensemble-based, and hybrid DA methods used in operational contexts.5

The ensemble-based methods not only estimate the posterior state using the flow-dependent covariance but also practically

compute the uncertainty of the estimation. The Kalman filter is an unbiased optimal estimator for a linear system (Kalman,

1960). The extended Kalman filter (EKF) is a generalization of the classic Kalman filter to a non-linear system. It uses the

tangent linear models of the non-linear dynamical model and the non-linear observation operators to explicitly propagate

the probability moments. For a high-dimensional system, the explicit propagation of the covariance is almost infeasible. The10

ensemble Kalman filter (EnKF) is an attractive alternative to the EKF. It implicitly propagates the covariance by the integration

of an ensemble of the non-linear dynamical model that makes its implementation simple owing to the elimination of the

tangent linear model. Since the introduction of the EnKF by Evensen (1994), many variants of the EnKF have been proposed

to improve the analysis quality or the computational efficiency. For example, the stochastic ensemble Kalman filter perturbs

the observation innovation to correct the premature reduction in the ensemble spread (Burgers et al., 1998; Houtekamer and15

Michell, 1998); the ensemble square room filter (EnSRF) introduced the square root formulation to avoid the perturbations of

the observation innovation (Whitaker and Hamill, 2002; Sakov and Oke, 2008); the ensemble transform Kalman filter (ETKF)

explicitly transforms the ensemble to obtain the correct spread of the analysis ensemble (Bishop et al., 2001) and the local

ensemble transform Kalman filter (LETKF) is widespreadly adopted owing to its efficient parallelisation (Hunt et al., 2007);

and the error subspace transform Kalman filter (ESTKF, Nerger et al. (2012a)) and its localized variant (LESTKF) combine the20

advantages of the ETKF and the singular evolutive interpolated Kalman filter (SEIK, Pham et al. (1998)). For comprehensive

reviews of the EnKF, we refer the readers to the ones by Vetra-Carvalho et al. (2018) and Houtekamer and Zhang (2016).

Many schemes have been proposed to reduce the computational cost of the EnKF, especially to reduce the computational

cost of the large matrix inverse or factorization. Two-level methods are commonly used to parallelize the EnKF: one level for

parallelizing the model member running and another level for parallelizing the analysis (Xu et al., 2013; Khairullah et al., 2013).25

In applications to weather, oceanology, and climatology, more advanced parallelisations are implemented owing to the large

scale nature of the problem. Keppenne (2000) used a domain decomposition to perform the analysis on distributed-memory

architectures to avoid the large memory required by the entire state vectors of all the ensemble members. The sequential

method assimilates one observation at a time (Cohn and Parrish, 1991; Anderson, 2001) or multiple observations in each

batch (Houtekamer and Mitchell, 2001). The LETKF decomposes the global analysis domain into local domains where the30

analysis is computed independently (Hunt et al., 2007). The LETKF is one of the best parallel EnKF implementations. A

local implementation based on domain localizations of EnKFs is very efficient and accurate for local observations, but has

difficulties for non-local observations, especially for satellite measurements with long spatial correlations. For observations

with long spatial correlations, the effective size of a local box would be significantly larger than the size of the ensemble,

therefore this implication of the ensemble being too small for the local box could lead to a poor local analysis. Localization35

2

methods not only are crucial to the analysis accuracy by suppressing spurious correlations but also have a great impact on

the computational efficiency. For example, a parallel implementation of EnKF based on modified Cholesky decomposition

(Nino-Ruiz and Sandu, 2015, 2017; Nino-Ruiz et al., 2018, 2019) demonstrates an improvement of the analysis accuracy

as the increasing of the influence radius, but the improved accuracy comes at the cost of increasing computations. On the

other hand, the LETKF deteriorates the analysis accuracy as the increasing influence radius. Godinez and Moulton (2012)5

derived a matrix-free algorithm for the EnKF and showed that it is more efficient than the singular value decomposition (SVD)

based algorithms. Houtekamer et al. (2014) gave a comprehensive description of the parallel implementation of the stochastic

EnKF in operation at the Canadian Meteorological Centre (CMC) and pointed out the potential computational challenges.

Anderson and Collins (2007) compared the low-latency and high-latency implementations of the EnKF and found that low-

latency implementation can produce bit-wise identical results. When the sequential technique associates with the localization,10

the analysis is suboptimal and dependent on the order of observations (Nerger, 2015; Bishop et al., 2015). Steward et al. (2017)

assimilated all the observations simultaneously and directly solved the large eigenvalue problem using the Scalable Library for

Eigenvalue Problem Computations (SLEPc, Hernandez et al. (2005)).

As mentioned by Houtekamer et al. (2014), an EnKF system has to efficiently use the computer resources, such as disk

space, processors, main computer memory, memory caches, job-queuing system, and archiving system, in both research and15

operational contexts to reduce the time-to-solution. To obtain a solution, the EnKF system has to perform a series of tasks

including the observations preprocessing, the jobs queuing, ensemble members running, the analysis, the post-processing, the

archiving, and so on. Thus, the time-to-solution is the total time to obtain a solution, that is, the time from the beginning to

the end of an experiment, such as one assimilation cycle in operational context or ten-year reanalyses in a research context.

Even with the efforts of the aforementioned literature, the time-to-solution of an EnKF system is still demanding. For instance,20

the global land data assimilation system (LDAS-Monde, Albergel et al. (2017)) uses an SEKF (Simplified Extended Kalman

Filter, Mahfouf et al. (2009)) or an EnKF scheme (Fairbairn et al., 2015) to assimilate satellite-derived terrestrial variables in the

Interactions between Soil, Biosphere, and Atmosphere (ISBA) land surface model within the Surface Externalisée (SURFEX)

modelling platform (Masson et al., 2013). By assimilating satellite-derived terrestrial variables, LDAS-Monde improves high

spatial-temporal resolution analyses and simulations of land surface conditions to extend our capabilities for climate change25

adaptions. But at a global scale or even at a regional scale with a high spatial resolution (1 km × 1 km or finer), it becomes

challenging in terms of time-to-solution. This is the motivation of the comprehensive evaluations of different implementations

of an EnKF system to determine which technique should be adopted for an efficient and scalable framework for LDAS-Monde.

There are two modes to implement an EnKF: offline and online modes. The offline mode is the most extensively adopted

strategy, especially in the operational context of numerical weather prediction (NWP) where the operational DA process is30

intermittent and consists of an alternating sequence of short-range forecasts and analyses. In offline mode, the dynamical

model and the EnKF are totally independent, that is, these two components are two separate systems. An ensemble of the

dynamical model runs until the end of the cycle and outputs the restart files and stops; then the EnKF system reads the

ensemble restart files and observations to produce the analysis ensemble which updates the restart files, also output the analysis

mean (the optimal estimation of the states, see Figure 1). Traditionally, the dynamical model and the DA system are developed35

3

separately. The offline mode keeps the independence of these two systems which is highly desirable for each community. Thus,

the implementation and maintenance of an offline mode is simple and flexible. One big disadvantage of an offline mode is

its time-consuming IO (Input/Output) operations, especially for a high-dimensional system and a large number of ensemble

members. Recently, several online modes have been proposed to avoid the expensive IO operations of the offline mode (Nerger

and Hiller, 2013; Browne and Wilson, 2015). The online mode forms a coupled system of the dynamical model and the EnKF5

which exchanges the prior and posterior states by message passing interface (MPI) communications. When observations are

available, the MPI tasks of dynamical models send their forecast ensemble members (prior states) to those of the EnKF, then

the MPI tasks of the EnKF combine the observations and the received forecast ensemble members (prior states) to generate and

send back the analysis ensemble members (posterior states), then the MPI tasks of dynamical models resume their runnings.

The development of a coupled system demands substantial time and effort. Another disadvantage of the online mode is the large10

job-queuing time because running the ensemble simultaneously requires a large number of nodes when both the number of

ensemble members and the number of nodes per member are large. With the consideration of possible prohibitive IO operations

for an offline EnKF, the online frameworks proposed in the literature seem promising and were claimed to be efficient (Nerger

and Hiller, 2013; Browne and Wilson, 2015). But to our best knowledge, there have been no attempts to assess the time-to-

solution of an offline EnKF against that of an online EnKF. In this context, our study tries to answer the next questions: Is an15

online EnKF really faster than an offline EnKF? Can an offline EnKF be as fast as, if not faster than, an online EnKF with a

good framework and algorithms using advanced techniques of parallel IO?

An offline EnKF system simultaneously submits the jobs (usually one ensemble member per job) to the supercomputer. With

high priority as in an operational context, all the jobs might get run immediately, and this is the most efficient way. But in a

research context, each job usually needs to wait in the job queue for a period before it gets run. Sometimes, the job-queuing20

time is significantly larger than the actual running time in a high-loaded machine if the job requires a large number of computer

nodes or a long-running time. In addition, the resource management and scheduling system of a supercomputer needs time to

allocate the required nodes for a job, start and stop the job; these overheads are not negligible. It is then desirable to minimize

the impact of the job queuing and overheads. This is the first object of this study to reduce the time-to-solution of an offline

EnKF.25

Massive IO operations pose a great challenge in the implementation of an offline EnKF system for high-dimensional assimi-

lation problems. Yashiro et al. (2016) presented a framework with a novel parallel IO scheme for the NICAM (Nonhydrostatic

ICosahedral Atmospheric Model) LETKF system. This method uses the local disk of the computer node and only works for

architectures with a local disk of large capacity in each computer node. Xiao et al. (2019) changed the workflow of the EnKF

by exploiting the modern parallel file systems to overlap the reading and analysis to improve the parallel efficiency. Nowadays,30

most supercomputers have parallel file systems. With the progress of technologies in high-performance computing (HPC), the

state-of-art parallel file system has an increasingly high-scalability, high-performance, and high-availability. Several parallel

IO libraries based on PnetCDF (Parallel netCDF project, 2018) or netCDF (Unidata, 2018) with parallel HDF5 (The HDF

Group, 2018) have been developed for NWP models and climate models. XIOS (ISPL, 2018) can read and write in parallel

but cannot update variables in a netCDF file. CDI-PIO (DKRZ and MPI-M, 2018) and CFIO (Huang et al., 2014) can only35

4

write in parallel. PIO (NCAR, 2018) is very flexible but is not targeted for the offline EnKF system which synchronously reads

then updates multiple files with an identical structure. Thus, with advanced parallel IO techniques and innovative algorithms,

the second object of our work to reduce the time-to-solution is to answer the following question: Can the IO time of an offline

EnKF be a negligible fraction of the total time?

To address the aforementioned challenges of an offline EnKF, we propose a sophisticated dynamically running job scheme5

and an innovative parallel IO algorithm to reduce the time-to-solution, and comprehensively compare the time-to-solutions of

the offline and online EnKF implementations. This paper is organized as follows. The formulation of an EnKF, its parallel do-

main decomposition method, an offline EnKF, and an online EnKF are described in Section 2. The sophisticated dynamically

running job scheme aiming to minimize the job queuing and overheads and the innovative parallel IO algorithm are detailed in

Section 3. The experimental environments, designs, and the corresponding results are presented in Section 4. Finally, conclu-10

sions are drawn in Section 5.

2 Ensemble Kalman Filters

In an EnKF, each member is a particular realization of the possible model trajectories. Assuming there are Ne ensemble

members x1, · · · ,xNe , where the subscript denotes the member ID, x ∈RNx is the state vector, and Nx is the dimension of

state space. Let X = [x1, · · · ,xNe] ∈RNx×Ne be the ensemble matrix, thus, the ensemble mean is15

x =
1

Ne

Ne∑
k=1

xk, (1)

the ensemble perturbation matrix is

X′ = [x1−x, · · · ,xNe
−x], (2)

and the ensemble covariance matrix is

P =
X′X′T

Ne− 1
. (3)20

Further, let d = y−H(x) be the innovation vector, where y ∈RNy is the observation vector,H :RNx →RRy is the non-linear

observation operator which maps the state space to the observation space, Ny is the dimension of observation space.

The Kalman update equation for the state is

xa = xf +K
(
y−H(xf)

)
= xf +Kd, (4)

and the Kalman update equation for the covariance is25

Pa = (I−KH)Pf , (5)

where the Kalman gain is

K = PfHT (HPfHT +R)−1. (6)

5

Within the above equations, H is the linear observation operator of H, and R ∈RNy×Ny is the observation error covariance

matrix. The superscript f and a denote forecast and analysis, respectively, and the superscript T denotes a matrix transposition.

Using the covariance update equation (5) and the Kalman gain (6), the equation (3) can be written as

X′aX′aT = (Ne− 1)Pa

=
(
I−PfHT (HPfHT +R)−1H

)
X′fX ′fT

= X′f
(
I−STF−1S

)
X′fT

= X′f
(
WWT

)
X′fT =

(
X′fW

)(
X′fW

)T
, (7)

where S = HX′f , F = SST + (Ne− 1)R, and W is the square root of I−STF−1S.5

Thus, without explicit computation of the covariances Pf and Pa, the analysis ensemble can be computed as

Xa = [xa, · · · ,xa] +X′fW, (8)

where the analysis mean is

xa = xf +Kd

= xf +PfHT (HPfHT +R)−1d

= xf +X′fSTF−1d (9)

by combining the state update equation (4) with the Kalman gain (6).10

For most ensemble-based Kalman filters (Burgers et al., 1998; Pham et al., 1998; Houtekamer and Mitchell, 2001; Bishop

et al., 2001; Anderson, 2001; Whitaker and Hamill, 2002; Evensen, 2003; Hunt et al., 2007; Livings et al., 2008; Sakov and

Oke, 2008; Nerger et al., 2012a), the analysis update can be written as a linear transformation in (8). However, the different

variants of ensemble-based Kalman filters use different ways to calculate the transformation matrix W which is not necessary

to be the square root as in (7). From the above derivation, it can be seen that the most computationally expensive part is the15

computation of the square root which involves the inverse of the matrix F. In general, the square root W can be obtained by a

Cholesky decomposition or a singular value decomposition (SVD).

2.1 Domain Decomposition for Parallel EnKFs

For a high-dimensional system, the size of the state vector xk is large, therefore it is not practical to perform the EnKF analysis

without parallelisations. The straightforward way of parallelisations is to decompose the state vector xk into approximately20

equal parts by Nmpi MPI tasks. Because all member state vectors have an identical structure, each member state vector is

decomposed in an identical manner, and each member is one column of the ensemble matrix X. Thus, each MPI task computes

at most d Nx

Nmpi
e consecutive rows of the ensemble matrix X. Figure 6 illustrates this decomposition. Each level of a three-

dimensional variable is decomposed in the same way as if a horizontal domain decomposition was used. For multiple variables,

the same decomposition is applied to each variable. This domain decomposition has the advantage of a good load balance.25

6

Without loss of generality, the descriptions in this study assume the state vector xk is a one-dimensional variable as a multi-

dimensional variable can be viewed as linear in the memory. The domain decomposition is the foundation for the innovative

parallel IO algorithm proposed in Section 3.2.2.

2.2 An Offline EnKF System

An offline EnKF system is a sophisticated system consisting of many components. Figure 1 illustrates the typical workflow5

of an ensemble-based DA system with its essential components. In an operational context of NWP, a notable feature of an

intermittent DA system is the alternating sequence of short-range forecasts and analyses. Each short-range forecast and analysis

forms a cycle. At the beginning of each cycle, All the forecast members read in their corresponding analysis members from

the last cycle and integrate independently for the period of the cycle and this is called a forecast phase. Usually, each forecast

member uses the same dynamical model but with a differently perturbed initial condition, a differently perturbed forcing, or10

a different set of parameters. Meanwhile, a deterministic forecast is usually integrated for a period longer than the cycle and

outputs the history files more frequently. At the end of the cycle, all the forecast members output their restart files and stop.

Then, the EnKF combines the observations and the forecast ensemble (xfk , or its equivalence Af
k in Figure 1) to produce the

analysis ensemble (xak, or its equivalence Aa
k in Figure 1) and the analysis mean (xa, or its equivalence Aa in Figure 1), which

updates the restart files of the ensemble forecasts and the deterministic forecast, respectively. This is called the analysis phase.15

This process is repeated for the next cycle.

There are several advantages to have an extra deterministic forecast. First of all, the deterministic forecast with the optimal

initial condition is integrated over a much longer period than that of the cycle and outputs the history files more frequently which

are the user-end deterministic prediction products; this is essential in an operational NWP context. Secondly, the ensemble

forecasts only output restart files at the end of the cycle which significantly reduces the IO time and the required disk space.20

Thirdly, it is even possible to use the deterministic forecast as a member (Schraff et al., 2016).

A distinctive feature of an offline EnKF system is that each ensemble member run is completely independent of each other

and the DA component runs only after all the members are run. Each member run has its own queuing time and overheads

owing to the involvement of a job system. Because all the member runs have finished when the DA component begins to

run, the practically possible way to exchange information between the model component and the DA component is via the25

intermediate restart files. Reading and writing many restart files whose size is large is time-consuming and may counteract the

simplicity and flexibility of the favourite offline EnKF system. It is very common that the DA system submits one member per

job or even a fixed number of multiple members per job. The DA component reads or writes the ensemble restart files with one

IO task or as many IO tasks as the ensemble members. This is not efficient, and both these two aspects will be addressed in

Section 3 accordingly.30

2.3 An Online EnKF System

As already mentioned, there are several methods to build an online EnKF system. The method used in this paper is similar to

one possible implementation suggested in the parallel data assimilation framework (PDAF, 2018). With the operational NWP

7

deterministic

Af
d

Bf
d

ensemble1

Af
1

Bf
1

ensemble2

Af
2

Bf
2

ensemble3

Af
3

Bf
3

ensemble4

Af
4

Bf
4

ensemble5

Af
5

Bf
5

forecast

deterministic
Aa

Bf
d

ensemble1

Aa
1

Bf
1

ensemble2

Aa
2

Bf
2

ensemble3

Aa
3

Bf
3

ensemble4

Aa
4

Bf
4

ensemble5

Aa
5

Bf
5

forecast

Aa = 1
Ne

∑Ne

k=1 A
a
k

analysis

DA

OBS

Figure 1. Schematic diagram illustrating the workflow of an offline EnKF system. Assuming the forecast model is a coupled model consisting

of two components A and B, each component outputs its own results Af
k and Bf

k , respectively. But the EnKF system only analyses and

updates the state of component A, and only output the analysis ensemble Aa
1 . . .A

a
Ne

and the analysis mean Aa. In this example, there are

Ne = 5 ensemble members which runs he hours for each cycle and only outputs the restart files at the end of the cycle. In addition, there

is a deterministic forecast that started with the optimal initial condition Aa from the EnKF system, and this deterministic forecast may run

longer than the period (he hours) of one cycle and may output more frequently.

in mind, the online EnKF system presented in this paper is also an intermittent DA system. In this system, the model component

reads in the ensemble analyses from the last cycle and integrates simultaneously Ne ensemble members for the period of a

cycle, then scatters the ensemble state Xf to the DA component which performs the analysis and outputs the ensemble analysis

Xa and ensemble analysis mean xa. Finally, the system stops and only restarts in a proper further time for the next cycle. Thus,

the main difference between this online EnKF and the offline EnKF described in Section 2.2 is that there are no intermediate5

outputs, which eliminate the ensemble-writing operations in the model component and the ensemble-reading operations in the

DA component, between the forecast and the analysis phases. This effectively reduces the IO operations to half compared to

the offline EnKF. However, being an intermittent DA system, for each cycle it still needs to read the analysis ensemble from

the last cycle and write the analysis ensemble of the current cycle.

8

Figure 2 illustrates our implementation of the online EnKF system used in this study. In this example, the online EnKF

system uses 18 MPI tasks to integrate simultaneously six ensemble members with three MPI tasks per member. The grid cells

with the same background colour belong to one ensemble member. The numbers to the left of the model column (the tallest

column) are the ranks of the MPI tasks in the global MPI communicator. The numbers with a yellow circle inside the model

column are the ranks of the MPI tasks in its model MPI communicator of the corresponding member. As shown in the data5

assimilation column, the first three global MPI tasks also form a filter MPI communicator. This filter MPI communicator is

used to perform the EnKF analysis. All the MPI tasks with the same rank (number with a yellow circle) in the model MPI

communicators form a coupled MPI communicator to exchange data between ensemble members and the EnKF component.

Thus, every model member has an identical domain decomposition, and so does the DA component. This facilitates the data

exchange between ensemble members and the EnKF component. As in Figure 2, each member uses its own three MPI tasks10

to read in the corresponding initial condition and integrate the model to the end of the cycle; then the first MPI task of each

member sends its corresponding segment of its states to the corresponding row and column of the ensemble matrix X in the

first MPI task of the DA component which, in fact, is the first MPI task of the first member, so do the second and third MPI

tasks. Finally, the DA component has all the data in the ensemble matrix X to perform the assimilation analysis and writes out

the analysis ensemble as well as the analysis mean. This online EnKF has the disadvantage of wasting computational resources15

because the MPI tasks starting from the second member are idle when the DA component is running. But it complicates the

data exchange between the model members and the DA component if all the MPI tasks are used for the DA component, also

it might not always help to have more MPI tasks for accelerating the assimilation analysis because the scale of the problem

determines the number of MPI tasks, and sometimes more MPI tasks might undermine the efficiency of a problem owing to

the expensive MPI communications.20

3 Methods

This section lengthily presents the following two methods in this study to reduce the time-to-solution of an offline EnKF.

3.1 Dynamically Running Job Scheme for Minimizing the Job Queuing and Overheads

Using the embarrassingly parallel strategy, the jobs of all the members are submitted simultaneously. On a high-loaded ma-

chine, each job needs to wait for a long time before running, especially when the job requires a large number of nodes. To25

reduce the job queuing and overheads, we propose a sophisticated running job scheme to dynamically run the ensemble mem-

bers over multiple jobs, as illustrated by Figure 3. First of all, the scheme generates a to-do list file with all the IDs (Identities)

of the ensemble members followed by the ID (=Ne + 1) of the DA component; then simultaneously submits Nj jobs where

Nj ∈ [1,Ne] can be fewer than the number of members. Because the ID of the DA component is at the end of the to-do list, the

proposed scheme automatically guarantees that the successful completion of all the members is checked and confirmed before30

executing the DA component. When a job (for example, job1 in Figure 3) is dispatched to start its running, the job locks the

to-do list file to obtain a member ID (for example, member 1© in Figure 3), removes the member ID from the to-do list file and

9

model data assimilation

x1 x2 x3 x4 x5 x6

1 1

x12 2

3 3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

4 1

x25 2

6 3

7 1

x38 2

9 3

10 1

x411 2

12 3

13 1

x514 2

15 3

16 1

x617 2

18 3

Figure 2. Schematic diagram illustrating the implementation of an online EnKF system. In this example, 18 MPI tasks are used to integrate

six ensemble members with three MPI tasks per member, then the first three MPI tasks are used to perform the assimilation analysis. The

numbers on the left of the model panel (the left panel) are the ranks of the MPI tasks in the global MPI communicator. The grid cells with

the same background colour in the model panel belong to one ensemble member xk. The numbers with a yellow circle, which demonstrate

the parallel domain decomposition of the corresponding member, are the ranks of the MPI tasks in the model MPI communicator of the

corresponding member. The data assimilation panel (the right panel) demonstrates how the member state xk is assembled into the ensemble

matrix X while keeping the same domain decomposition as do the model members.

10

unlocks the to-do list file, then starts the execution of that member. While the job is running (for example, job1 in Figure 3),

another job (for example, job2 in Figure 3) gets the required nodes to start its running, obtains a member ID (for example,

member 2© in Figure 3) and then starts the execution of that member in the same manner. When a job (for example, job1

in Figure 3) finishes the execution of a member (for example, member 1© in Figure 3), instead of being terminated, the job

continues to obtain another member ID (for example, member 4© in Figure 3) from the to-do list file then starts the execution5

of that member. The process is repeated until the to-do list file is empty. The mechanism to lock and unlock the to-do list file

is essential to prevent the same member from being executed by multiple jobs.

In most settings of resource management and scheduling systems, the shorter the run time requested by a job is, the shorter

the queuing time is. The proposed scheme can specify a time limit of jobs to balance the queuing and the overheads. With

a short time limit but not shorter than the execution of a member or the DA component, a job reaches its time limit and the10

executing member is interrupted. In this case, the ID of the interrupted member is inserted into the front of the to-do list so

that the remaining running jobs can restart the execution of the interrupted member. By carefully tuning the time limit of jobs,

interruptions can be minimized. With this sophisticated scheme which dynamically runs the members, sometimes the first

several jobs have finished the executions of all the members and the DA component, the remaining jobs are still waiting in the

queue and need to be cancelled (for example, the job5 in Figure 3 will be automatically cancelled after the finish of the DA15

component in job3). Thus, this scheme substantially reduces the job queuing and overheads.

3.2 Parallel IO Algorithm for Improving the IO Performance

3.2.1 Lustre Parallel File System

The parallel file system is a crucial component in a current supercomputer. There are several parallel file systems. Lustre

parallel file system (http://lustre.org, last access: 18 December 2018) is best known for powering many of the largest HPC20

clusters worldwide owing to its scalability and performance. The Lustre parallel file system consists of five key components (see

Figure 4). The metadata servers (MDS) make metadata (such as filenames, directories, permission, and file layout) available to

Lustre clients. The metadata targets (MDT) store metadata and usually use solid-state disks (SSD) to accelerate the metadata

requests. The object storage servers (OSS) provide file IO services and network requests. The object storage targets (OST)

are the actual storage media where user file data are stored. The file data is divided into multiple objects which are stored25

on a separate OST. Lustre clients are computational, visualization, or desktop nodes that are running Lustre client software

and mount the Lustre file system. The interactive users or MPI tasks make requests to open, close, read, or write files and the

requests are forwarded via an HPC interconnect to the MDS or OSS which performs the actual operations.

The high performance of Lustre file system is mainly attributed to its ability to stripe data across multiple OSTs in a round-

robin fashion. Figure 5 illustrates how a file is striped across multiple OSTs. A file is divided into multiple segments of the30

same size, usually, the last segment is incomplete. The size of each segment can be specified by the stripe size (denoted as

“size” in Figure 5) parameter when the file is created. Similarly, the stripe count (denoted as “count” in Figure 5) parameter is

the number of OSTs where the file is stored and can be specified when the file is created. The parameters have default values

11

job1

job2

job3

job4

job5

time

1

2

3

4

5

6

7

8

DA

Figure 3. Schematic diagram illustrates one possible scenario of the runnings of Ne ensemble members and DA with Nj jobs (Ne = 8 and

Nj = 5 in this example). The number (DA, also) with a yellow circle is the ID of a member (data assimilation), its surrounding colourful

grid cell denotes the duration of the running of this member (data assimilation). The blanks before the first colourful grid cell, between

the colourful grid cells, and after the last colourful grid cell in each job are the queuing time, the overhead time between two consecutive

runnings in a job, and the idle time, respectively.

12

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

High Performance Computing Interconnect

MDS

SSD

MDT

OSS

OST

OSS

OST

OSS

OST

OSS

OST

Figure 4. Schematic diagram of a Lustre parallel file system, see Section 3.2.1 for the definitions of the abbreviations of “MDS”, “OSS”,

“MDT”, “OST”, and “SSD”.

unless specified explicitly and cannot be changed after the creation of a file. In Figure 5, the file is divided into 13 segments

and the stripe count parameter is equal to 5. The first segment goes to the first OST, · · · , the fifth segment goes to the fifth OST

which is the last OST of this file; then, the sixth segment goes to the first OST, · · · , repeat this pattern until the last segment.

The optimal stripe parameters usually depend on the file size, the access pattern, and the underlying architecture of the Lustre

file system. The stripe size parameter must be a multiple of the page size and using a large stripe size can improve performance5

when accessing a very large file. Because of the maximum size that can be stored on the MDT, a file can only be striped over

a finite number of OSTs. With a large stripe count, a file can be read from or written to multiple OSTs in parallel to achieve a

high bandwidth and significantly improve the parallel IO performance.

3.2.2 Parallel IO Algorithm for Multiple Files

A restart file of the numerical model of a dynamical system contains the instantaneous states of the system and other auxiliary10

variables. In general, a DA system assimilates the available observations which only update some state variables but not all the

variables in a restart file. Hence, it is desirable to update old restart files rather than to create new restart files from scratch. This

way avoids copying the untouched variables from old restart files to new restart files and will further reduce the IO operations.

As mentioned in Section 1, several high-level libraries for parallelly reading or writing a netCDF file are available currently, but

only the flexible PIO (NCAR, 2018) supports update operations. One distinctive feature of the offline EnKF is that it needs to15

read Ne restart files before computations and update these restart files after computations. These restart files have an identical

structure. With this feature in mind, we propose an innovative algorithm to read and update multiple files with an identical

13

size

0

size

1

size

2

size

3

size

4

size

5

size

6

size

7

size

8

size

9

size

10

size

11

size

12

count count count

0 1 2 3 4

5 6 7 8 9

10 11 12

OST OST OST OST OST

Figure 5. Schematic diagram of the striping of a file across multiple OSTs in a Lustre parallel file system. The “size” and “count” are the

abbreviations of “stripe size” and “stripe count”, respectively. In this example, the stripe count is five and the file is divided into 12 segments

of a size equal to the stripe size. The number is the ID of a segment.

structure. Figure 6 illustrates the parallel reading the state variables xk from multiple restart files with an identical structure,

the writing or updating is in the same manner except that scatter operations are changed to gather operations.

The algorithm for reading Ne forecast ensemble files to the matrix X, is such that, each member file is read into its cor-

responding column of the matrix X. The rows of the matrix X are partitioned by Nmpi MPI tasks. The information of this

partition is passed from the DA module to the IO module as arguments so that the IO module and DA module have the same5

domain decomposition of the state vectors. The Nmpi MPI tasks are partitioned by Nio IO tasks in the IO module. For writing

the matrix X to Ne analysis ensemble files, the scatter operations are changed to gather operations.

There are two modes, the independent and collective mode, for all IO tasks to access a single shared file. With the inde-

pendent mode, each IO task accesses the data directly from the file system without communicating or coordinating with the

other IO tasks. This usually works best if the application is reading or writing large contiguous non-overlapping blocks of data10

in the file with one IO request because the parallel file systems do very well with an access pattern like that. In our proposed

algorithm, an IO task reads or writes only one non-overlapping block of data in a file each time, so the independent IO mode

is adopted.

Another advantage of this algorithm is that the MPI communication can be overlapped with the IO operation. For example

in Figure 6, the IO task 1© in a nonblocking way scatters the data read from the file 1 to the MPI tasks 1, 2, and 3; then shifts to15

read the file 2 without waiting for the previous scatter operation to finish. When the IO task 1© finished its reading of the file 2,

it checks, in most cases does not need to wait, the finish of the previous scatter operation since the MPI communication time is

usually significantly shorter than the IO time; then in a nonblocking way scatters the data read from file 2 to the MPI tasks 1,

2, and 3; then shifts to read the next file in the same manner until all the files are read. Other IO tasks are in the same manner.

14

And a similar way is applied for the writing or updating operation. This almost eliminates the MPI communication time which

significantly improves the performance of these parallel IO operations.

4 Experimental Environments, Designs, and Results

All the experiments are performed on the research supercomputer Beaufix in Météo France which is a Linux cluster built by

BULL company. The SLURM system is used for the cluster management and the job scheduling. And this machine is equipped5

with a highly scalable Lustre file system of 156 OSTs. The parallel IO algorithm developed by ourselves can use both PnetCDF

or netCDF with parallel HDF5 as the back end. PnetCDF 1.10.0 is adopted for all the experiments in this study.

PDAF is an open-source parallel data assimilation framework that provides fully implemented data assimilation algorithms,

in particular, ensemble-based Kalman filters like LETKF and LESTKF. PDAF is optimized for large-scale applications run

on big supercomputers in both research and operational contexts. We chose PDAF as the basis to implement the proposed10

offline and online EnKFs using the efficient methods described in Section 3 because it has interfaces for both offline and online

modes. With this unified basis, the study comprehensively assesses the efficiency of the offline and online EnKFs in terms of

the time-to-solution, job queuing time, and IO time. We refer the readers to PDAF website (PDAF, 2018) for more detailed

information.

4.1 Assessing the Proposed Parallel IO Algorithm15

4.1.1 Experiments for Assessing the Proposed Parallel IO Algorithm

The key advantage of the Lustre file system is that it has many parameters that can be tuned by the user to maximize the IO

performance according to the characteristics of the files and the configuration of the file system. The most relevant parameters

are the stripe size and the stripe count. The Lustre manual provides some guidelines on how to tune these parameters. It is

interesting to see how the different combinations of the stripe size and the stripe count affect the performance of the proposed20

parallel IO algorithm with different numbers of IO tasks. Moreover, it is practical to determine the reasonable combination of

these parameters by trial and error. Thus, a simple program using the proposed IO algorithm, which parallelly reads 40 files

(each file is about 5 gigabytes in size) into a matrix X as illustrated in Figure 6 and then parallelly writes the matrix X back to

the 40 files, is developed to record the IO times and the MPI communication times for each run. Each experiment is run with

1024 MPI tasks and takes a different combination of the stripe size, the stripe count, and the number of IO tasks. The stripe25

size can be 1, 2, 4, 8, 16, 32, and 64 megabytes. The stripe count can be 1, 2, 4, 8, 16, 32, 64, and 128. And the number of IO

tasks can be 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024. Thus, there are 616 experiments in total.

4.1.2 Performance of the Proposed Parallel IO Algorithm

Figure 7 shows how the combination of the stripe count and size has an influence on the IO performance. An obvious feature

in Figure 7 is that the IO times are always large when the stripe count is small regardless of the stripe size (e.g., when the30

15

file1

x1

file2

x2

file3

x3

file4

x4

file5

x5

file6

x6

1

2

3

1

44

5

6

77

8

99

10

1111

12

1313

14

15

16

15

1717

18

Figure 6. Schematic diagram illustrates the algorithm for reading Ne (Ne = 6 for this example) forecast member files to a matrix X=

[x1, · · · ,x6], that is, each member file is read into its corresponding column of the matrix X. The numbers to the left of the first column are

the ranks of the MPI tasks whose is in charge of the corresponding row of the matrix X, and those with a yellow circle are the IO tasks.

The cells with the same colour are read simultaneously by the corresponding IO task, and then the IO tasks scatter the read-in data to the

MPI tasks that they are charged of. In the first stage, the IO tasks of 1©, 4©, 7©, 9©, 11©, 13©, 15©, and 17© read the cells with the purple colour,

and then, for example, the IO task of 1© scatters the read-in data to itself and the MPI tasks of 2 and 3. In subsequent stages, each IO task

performs a right circular shift by one column, then reads and scatters. Repeat this pattern until all the files are read.

16

stripe count is 1 or 2). This is reasonable because the small stripe count means a small number of OSTs are used for storing

the file, that is, it prevents high concurrent IO operations. But if the number of IO tasks for the file is significantly larger than

the number of OSTs, the heavy competitions of IO tasks for the same OST actually increase the IO times substantially. On the

other hand, the IO time with a small stripe size but a large stripe count gradually decreases as the increase of IO tasks (see the

cases with the stripe size of 1 or 2 megabytes but the stripe count of 64 or 128 in Figure 7). A small stripe size but a large stripe5

count means there are many small blocks of the large file (about 5 gigabytes in this case) distributed over many OSTs, that is,

each IO task needs to perform IO operations over a large number of OSTs when the number of IO tasks is small; increasing

the number of IO tasks reduces the number of OSTs on which each IO task operates, thus reduces the IO times. For the same

reason, a large stripe count allows high concurrent IO operations and fewer competitions, a large stripe size further reduces

the number of OSTs on which one IO task operates when the file is large; therefore the combination of a large stripe count10

and a large stripe size with a large number of IO tasks generally reduces the IO time for a large file, as is evident in the four

subfigures of Figure 7 since all the IO times converge to the least with a stripe count of 128 and a stripe size of 64 megabytes.

These imply the combination of the large stripe count with the large stripe size usually produces a small IO time for a large

file. These suggest that it is important to have a consistent combination of the stripe count and the stripe size in line with the

size of the file and the number of IO tasks for a better IO performance.15

In Figure 7, the best IO performance is obtained with a stripe count of 128 and a stripe size of 64 megabytes for the cases of

32, 64, 128, and 256 IO tasks. For other cases of different numbers of IO tasks, a similar pattern is obtained (figures not shown).

Owing to the smaller size of files, the stripe count of 128 and the stripe size of 1 megabyte are chosen as the combination of

these two parameters with 40 (160) IO tasks for the medium (large) experiments described in Section 4.2.1 to compare the

offline and online EnKFs.20

The IO throughput is the amount of data read or written per second. The upper panel of Figure 8 shown the IO time and

the IO throughput vary as a function of the number of IO tasks. The IO time and the IO throughput are the averages of all

the 616 experiments described in Section 4.1.1 and group by the number of IO tasks. The IO times (blue line in the upper

panel of Figure 8) decrease quickly from about 1500 seconds to about 60 seconds as the increase in the number of IO tasks,

then maintain nearly constant with a large number of IO tasks. The best IO performance is achieved with 1024 IO tasks; it25

takes about 60 seconds to read and write 40 restart files (each file has a size of about 5 gigabytes). For the same reason of the

smaller size of files, the number of IO tasks is set to 40 (160) for the medium (large) scale experiments described in Section

4.2.1 to compare the offline and online EnKFs. And the variance of the IO times is large with a large number of IO tasks. The

IO throughput increases gradually as the increase of the number of IO tasks. The maximum IO throughput is more than 1500

megabytes per second. Because the IO throughput is the average of different combinations of the stripe count and the stripe30

size, it can be beyond 2000 megabytes per second with the optimal combinations of these two stripe parameters (not shown).

The variance of the IO throughput is proportional to the IO throughput. It is interesting to find that the proposed IO algorithm

scales well since we do not see an apparently saturated IO time up to 1024 IO tasks.

In the lower panel of Figure 8, the IO time in the upper panel is decomposed into the time of opening and closing, the time

of reading and writing, and the MPI communication time. The reading and writing time is dominant and its pattern is similar35

17

IO
tim

e
(s) 100

200

300

400

(a) (b)

stripe count

1 2 4 8
16 32 64

12
8

IO
tim

e
(s) 100

200

300

400

(c)

stri
pe

size
(M

B)

1248
163264

(d)

Figure 7. IO times of different combinations of the stripe count and stripe size with 32 (a), 64 (b), 128 (c), and 256 (d) IO tasks of 1024 MPI

tasks for reading and writing 40 restart files using the proposed IO algorithm illustrated in Figure 6. The size of each restart file is about 5

gigabytes.

to that of the IO time in the upper panel. It is at least two orders of magnitude larger than the other two terms. The opening

and closing time is slightly oscillating around 3 seconds. This opening and closing time is somewhat larger than that in a local

filesystem because the Lustre clients need to communicate with the metadata servers. The MPI communication time decreases

as the increase of the number of IO tasks, and it is larger (smaller) than the opening and closing time with a small (large)

number of IO tasks. Even though the MPI communication is overlapped with the IO operations, there is a waiting for the finish5

of the last reading or the first writing in our proposed algorithm. Thus, we believe that the major MPI communication time is

dominated by this waiting time. Otherwise, the MPI communication time should be negligible if it is completely hidden behind

the IO operations.

The impact of the stripe parameters on the IO performance depends on many factors such as the configuration and hardware

of a Lustre system, the number and size of files to be read or written, and so on. So the exact value of the IO performance might10

vary with the situation of applications, but the statistics should have given some meaningful insights into how these parameters

affect the IO performance and what is the optimal combination for this situation.

18

102

103

IO
ti
m
e
(s
)

100 101 102 103

number of IO tasks

10−1

100

101

102

103

ti
m
e
(s
)

open+close
read+write
MPI

102

103

IO
th
ro
u
g
h
p
u
t
(M

B
/s
)

IO time
IO throughput

Figure 8. In the upper panel, the IO time (blue line) and throughput (black line) vary as a function of the number of IO tasks for reading and

writing 40 restart files with 1024 MPI tasks using the proposed IO algorithm illustrated in Figure 6. The shadings indicate the ranges between

plus and minus one standard deviation. The size of each restart file is about 5 gigabytes. In the lower panel, the IO time in the upper panel is

decomposed into the time of opening and closing (black line), the time of reading and writing (blue line), and the MPI communication time

(red line).

4.2 Comparing the Offline and Online EnKFs

4.2.1 Experiments for Comparing the Offline and Online EnKFs

The ultimate goal of this study is to develop an offline framework for high-dimensional ensemble Kalman filters which is at

least as efficient as, if not faster than, its online counterpart in terms of the time-to-solution. Table 1 summarizes the experiments

for comparing the offline and online EnKFs. The number of ensemble members is 40 for all experiments in Table 1. All the5

experiments use the same number of MPI tasks for each ensemble member regardless of the mode (offline or online) of the

EnKF so that the model time and the analysis time are comparable. For example in Table 1, the medium and large scale

problems use one node per member and four nodes per member, respectively. Since each node of our supercomputer has 40

cores, the online EnKF requires 1600 (6400) MPI tasks for the medium (large) scale problem. But the number of MPI tasks for

the offline EnKF dynamically ranges from 40 (160) to 800 (3200) for the medium (large) problem depending on the available10

nodes during its runnings. The large scale problem requires a large number of computer nodes which may imply a long queuing

time for the simultaneous availableness of such a large number of nodes, but has a lower IO cost for the online mode. In contrast,

our proposed offline framework does not require all the computer nodes for all the members to be available simultaneously,

19

but the IO cost may be high because of the intermediate outputs between the forecast phase and the analysis phase. Thus, a

medium scale problem and a large scale problem are designed to address the dependence of time-to-solution on the scale of

the problem. The medium and large scale problems are land grid points of a global field with a resolution of 0.1◦ and 0.05◦,

respectively. The size of the state vector for the medium and large scale problems are 2127104 and 8498681, respectively. Each

of all the experiments in Table 1 is repeated 15 times, which are equivalent to 15 assimilation cycles, to obtain a robust statistics5

of measured times. As in real scenarios, other auxiliary variables besides the state variables, such as the location position and

patch fraction, are needed to be read for the full functionalities of the model and DA. The corresponding restart files including

the auxiliary variables are about 0.3 GB and 1.0 GB for the medium and large scale problems, respectively. Thus, both the

offline and online EnKFs read and update all the variables in the restart files to assess their performances to a limit.

Both the background members and the observations are synthetic data in these experiments for both the offline and online10

EnKFs. These synthetic data are formed by the land grid points of the idealized global fields described in the following. The

horizontal resolution of the global field is ∆x = 2π
nx

and ∆y = π
ny

where the nx and ny are the number of grid points in

longitude and latitude, respectively. The value of nx (ny) is 3600 (1800) and 7200 (3600) for the medium and large scale

problems, respectively. The ensemble members and observations are generated from the following hypothetical true state (see

Figure 9a):15

stateti,j = sin

(
−3 +

4 · i ·∆x

2π−∆x

)2

cos

(
−2 +

4 · j ·∆y

π−∆y

)3

(10)

The members (figures not shown) are generated by randomly shifting the true state in longitude:

stateki,j = sin

(
−3 +

4 · i ·∆x

2π−∆x
+ ∆s

)2

cos

(
−2 +

4 · j ·∆y

π−∆y

)3

(11)

where the superscript k ∈ [1,Ne] denotes the ID of a member, i ∈ [0,nx− 1] and j ∈ [0,ny − 1] are the longitude and latitude

index of the grid point, respectively, and ∆s is a shift drawn from a uniform distribution on [−0.5,0.5]. The observations (see20

Figure 9d) are the true state values plus the observation errors at the grid points randomly picked from the total grid points.

The number of observations is equal to 10% of the number of the total grid points, and the observation errors are drawn from

a normal distribution with a mean of zero and a variance of 0.252. Thus, the observation operator simply becomes H(x)≡ x.

All these fields are written to the corresponding NetCDF files in advance so that the offline or online EnKFs can read them at

the beginning of each cycle.25

All the assimilation experiments use the LESTKF scheme with a localization radius of 50◦, and the localization scheme

of Nerger et al. (2012b) which calculates the localization weights using a 5th order polynomial (Gaspari and Cohn, 1999).

Because localization weights decrease smoothly to zero as the influence radius increasing to the specified threshold, this fact

guarantees the continuity of the global analysis at boundaries of subdomains after the local analyses are mapped back onto the

global domain. We refer readers to the paper of Nerger et al. (2012a) for a full description of the ESTKF, and the paper of30

Nerger et al. (2006) for the domain and observation localizations using in LESTKF. The multiplicative coefficient of covariance

inflation is set to one to keep its computation but has no effect on the covariance matrix so that the total computational time

includes the similar computational time of covariance inflation whether it takes effects or not. For the sake of experiments, the

20

Table 1. Experiments for Comparing the Offline and Online EnKFs.

Medium problem Large problem

state vector size=2127104 state vector size=8498681

job time limit=20 minutes job time limit=80 minutes

one restart file size=0.3 GB one restart file size=1.0 GB

Offline 20 jobs and 1 node/job 20 jobs and 4 nodes/job

Online 1 job and 40 nodes/job 1 job and 160 nodes/job

model simply reads its initial condition, sleeps one second, and writes its restart file for the offline mode or sends its states

to the DA component for the online mode. In the offline mode, each model member reads its corresponding initial condition

and writes the corresponding restart file. Then the DA component reads the restart files, performs the analysis, and writes the

analysis ensemble files. In the online mode, each model member only reads its corresponding initial condition, and the DA

component writes the analysis ensemble files. All these IO operations are done by the proposed parallel IO algorithm which5

certainly can read or write one file or multiple files in parallel. This makes it possible to fairly compare their IO times. The jobs

of the first assimilation cycle of the offline and online EnKFs for the medium scale problem are submitted at the same time, the

jobs of next cycle are submitted without any delays after the completion of the previous cycle, this repeats until the last cycle;

so does the large scale problem. This manner guarantees the fair comparison of the queuing times since the offline and online

EnKFs are in the same loaded condition of the supercomputer.10

4.2.2 Results of Comparing the Offline and Online EnKFs

Figure 9b is the analysis mean xa obtained by the offline or online EnKF. Compared to the initial state (Figure 9c) which is

the ensemble mean xf before the assimilation, it can be seen that the analysis mean xa (Figure 9b) is significantly close to the

true state (Figure 9a), especially over the northern Canada, Greenland, and north-western Africa. The only difference between

the offline and online EnKFs is the coupling mode which only affects the time-to-solution, so they produce identical analysis15

results. Therefore, the following evaluations focus on the differences of the times between the offline and online EnKFs. In a

research context, the queuing time is largely dependent on the loaded condition of the supercomputer, so the time-to-solutions

of all the experiments in Table 1 are assessed both in the time such as at the weekend when the supercomputer is low-loaded

and in the time such as during the weekday when the supercomputer is high-loaded.

In the offline mode for the assimilation cycle j, each model member whose ID is k records its running time tmjk, the actual20

executing time, which includes its IO time tmjk,IO; and the DA component records its running time taj which includes its IO

time tak,IO. Thus, the running time and the IO time of the assimilation cycle j are

tj,running =

∑k=Ne

k=1 tmjk
Ne

+ taj (12)

21

and

tj,IO =

∑k=Ne

k=1 tmjk,IO
Ne

+ taj,IO, (13)

respectively. In the online mode, tj,running and tj,IO are explicitly recorded by the online EnKF owing to the online coupling

of the model and the DA component.

Thus, the average running time and the average IO time of an assimilation cycle are calculated as5

trunning =

∑j=15
j=1 tj,running

15
(14)

and

tIO =

∑j=15
j=1 tj,IO

15
, (15)

respectively. Similarly, the average queuing time of an assimilation cycle is

tqueuing =

∑j=15
j=1 tj,queuing

15
(16)10

where tj,queuing is the queuing time of the first running job in the assimilation cycle j. Since this study is interested in the

time-to-solution, the EnKF system records the elapsed time from the beginning to the end of 15 assimilation cycles as the

time-to-solution tsolution. Thus, the average of the total time of an assimilation cycle is ttotal = tsolution

15 . Except for the total

time, the standard deviation can be calculated as

σx =

√∑j=15
j=1 (tj,x− tx)2

14
(17)15

where x can be “queuing”, “running”, or “IO”. Thus, ttotal, tqueuing , trunning, and tIO correspond to the columns of “total”,

“queuing”, “running”, and “IO” in Table 2, respectively. Table 2 summarizes these average times of the offline and online

EnKFs for both medium and large scale problems in both low and high-loaded situations. Figure 10 shows the statistics of the

total time, the queuing time, and the running time of 15 assimilation cycles for both medium and large scale problems in both

low-loaded and high-loaded conditions. It can be seen from Figure 10 that the running time of the offline EnKF is the same as20

that of the online EnKF for both medium and large scale problems regardless of the loaded conditions of the supercomputer.

In the low-loaded condition (Figure 10a and b), it is surprising that the IO time of the offline EnKF is about 29% (37%)

longer than that of the online EnKF for the medium (large) problem. In principle, the former should be twice as large as the

later. The possible explanation is that this IO time might be affected by the jitter of the supercomputer including the underlying

networks and the Lustre file system. From Table 2, it can be shown that the IO time of the offline (online) EnKF only accounts25

for a fraction of about 6.6% (2.8%) and 2.4% (1.3%) of the total time for the medium and large scale problems, respectively. It

is obvious that with the proposed IO algorithm, the IO time becomes a less severe problem as the scale of the problem increases

since the analysis time becomes dominant. The queuing time is slightly less than the running time for the offline EnKF, but

22

Figure 9. The synthetic fields of the true state (a), the posterior state (b) after the assimilation, the prior state (c) before the assimilation,

and the observations (d) for the medium scale problem. Please refer to the second paragraph of Section 4.2.1 for the generations of these

synthetic fields.

the queuing time is two to four times larger than the running time for the online EnKF. Even in such a low-loaded condition,

it is evident that the offline mode has a shorter queuing time than the online mode because the online mode simultaneously

requires significantly more nodes than the offline mode. Thus, the offline EnKF is faster than the online EnKF in terms of the

time-to-solution. In the limit of zero queuing time, the former is at least as fast as the later. Therefore, the dynamically running

job scheme described in Section 3.1 does reduce the queuing time. In other words, it can be shown from Table 2 that the offline5

mode is nearly 45% (26%) faster than the online mode in terms of time-to-solution for the medium (large) scale problem.

In the high-loaded condition (Figure 10c and d), the IO times increase a bit owing to the loaded condition of the underlying

Lustre file system. Even the IO time for the medium scale problem is larger than that for the large scale problem, it implies

that loaded conditions also affect IO performances. But it can be shown from Table 2, the IO time of the offline (online) EnKF

is still as small as a fraction of about 8.8% (2.8%) and 1.4% (0.4%) of the total time for the medium and large scale problems,10

respectively. Except for the offline mode for the medium scale problem, the queuing times (especially for the online mode) are

substantially larger than the running time. For the medium problem (Figure 10c), the queuing time of the offline mode is even

less than the running time because it is common that there are some dispersed nodes available in a high-loaded supercomputer.

The offline mode which requires few nodes can quickly obtain the available nodes to start its running. For the large problem

(Figure 10d), the queuing time of the offline mode is a factor of around 1.7 (estimated from Table 2) larger than the running15

time. On the contrary, the queuing time of the online mode is a factor of around 6.0 and 10.1 (estimated from Table 2) larger

23

Table 2. The average times in seconds of the offline and online EnKFs in low and high-loaded situations for medium and large problems.

The number in the parentheses is the percent to the corresponding total time.

Medium problem Large problem

total queuing running IO total queuing running IO

low-loaded
offline 1286 377 (29%) 455 (35%) 85 (6.6%) 5381 2132 (40%) 2314 (43%) 130 (2.4%)

online 2352 1786 (76%) 438 (19%) 66 (2.8%) 7301 4500 (62%) 2271 (31%) 95 (1.3%)

high-loaded
offline 1920 442 (23%) 540 (28%) 169 (8.8%) 9303 6150 (66%) 2306 (25%) 128 (1.4%)

online 4266 3447 (81%) 495 (12%) 120 (2.8%) 28110 25337 (90%) 2282 (8%) 104 (0.4%)

than the running time for the medium and large problems, respectively. In such an occasion, the queuing time dominates the

time-to-solution, thus the offline mode is significantly faster than the online mode. Thus estimated from Table 2, the offline

mode is about 55% and 67% faster than the online mode in the high-loaded condition.

Comparing the queuing times for the large scale problem in Table 2, it can be seen that in a high-loaded condition they are

several times larger than those in a low-loaded condition. The queuing time becomes dominant for a large scale problem in a5

high-loaded supercomputer. The offline EnKF is significantly faster than the online EnKF in terms of time-to-solution. As the

numerical model is getting a higher and higher resolution, the offline EnKF might be a better option than the online EnKF for

a high-dimensional system in terms of time-to-solution, at least in a research context.

From Figure 10, it can be seen that the variances of both the running time and the IO time are negligible, but the variance

of the queuing time is even larger than its average value except for the large scale problem in the high-loaded condition. This10

means the instantaneously loaded condition of the supercomputer varies greatly even in the low-loaded condition. A careful

examination of the recorded times highlights that the large variance comes from the extremely large queuing time of one or

two cycles. Because of this high varied loaded condition, the dynamically running job scheme has its place to play its strength.

To summarize, the offline mode is faster than the online mode in terms of time-to-solution for an intermittent data assimi-

lation system because the queuing time is dominant and the IO time only accounts for a small fraction of the total time with15

the proposed IO algorithm. Even in the situation where the queuing time is negligible, the offline mode can be at least as fast

as the online mode with the proposed IO algorithm and the dynamically running job scheme. The queuing times as well the

total times vary as the loaded conditions of a supercomputer, but these statistics shed some insights on how the queuing time

influences the time-to-solution of an EnKF system.

5 Conclusion and Discussion20

With the sophisticated dynamically running job scheme and the innovative parallel IO algorithm proposed in the study, a

comprehensive assessment of the total time, the queuing time, the running time, and the IO time between the offline and

online EnKFs for medium and large scale assimilation problems is presented for the first time. This study not only provides

24

100

101

102

103

104

tim
e

(s
)

(a) offline
online

(b)

total queuing running IO
100

101

102

103

104

tim
e

(s
)

(c)

total queuing running IO

(d)

Figure 10. The average total time, queuing time, running time, and IO time of the offline (red bars) and online (blue bars) EnKFs for the

low-loaded (a and b) and high-loaded (c and d) conditions. The panels (a and c) and (b and d) are for the medium and large scale problems,

respectively. The green line indicates the corresponding standard deviation.

the detailed technical aspects for an efficient implementation of an offline EnKF but also presents the thorough comparisons

between the offline and online EnKFs in terms of time-to-solution which opens new possibilities to re-examine the applicable

conditions of the offline and online EnKFs.

In summary, the proposed parallel IO algorithm can drastically reduce the IO time for reading or writing multiple files

with an identical structure. The tuning parameters of a stripe count and a stripe size should be consistent, and high values5

of these two parameters usually allow high concurrent IO operations and low competitions which significantly reduce the

IO time. Using the proposed parallel IO algorithm, the running times of both offline and online EnKFs for high-dimensional

problems are almost the same since the IO time only accounts for a small fraction which further decreases as the increase of

the scale of the problem. This implies that the proposed parallel IO algorithm is very scalable. On the contrary, in a low-loaded

supercomputer, the queuing time might be equal to or less than the running time, thus the offline EnKF is at least as fast10

25

as, if not faster than, the online EnKF in terms of the time-to-solution because the offline mode requires less simultaneously

available nodes and more easily and quickly obtains the requested nodes to reduce the queuing time than the online mode.

But in a high-loaded supercomputer, the queuing time is usually several times larger than the running time, thus the offline

EnKF is substantially faster than the online EnKF in terms of time-to-solution because the queuing time is dominant in such a

circumstance. Therefore, The loaded condition of a supercomputer varies greatly which justifies the dynamically running job5

scheme of an offline EnKF.

It is evident that the offline EnKF can be as fast as, if not faster than, the online EnKF. On average, the offline mode is

significantly faster than the online mode in the research context. Even in the operational context where the queuing time can be

negligible, the offline mode still has an advantage over the online mode. This is because the online mode never have a chance

to run when the total nodes required are larger than the total nodes of a supercomputer if the number of members is so large.10

In general, the observations are only available at a regular time interval, that is, not every time step of the numerical model has

observations for the assimilation. Thus, most DA systems are an intermittent system. Therefore, with a good implementation

and a high-performance parallel file system, an offline mode is still preferred with the perspective of the techniques proposed

in this study because of their easy implementations and promising efficiencies. In the climate modelling context, even the

assimilation is intermittent, an online mode might be appropriate because the model can run a very long time once it has15

started. The running time substantially outweighs the queuing time.

In terms of job managements, other job scheduling systems are similar to the one (SLURM) used in this paper, so the

dynamically running job scheme also works for these systems and can be adapted with minor changes. Other parallel file

systems may be different from the Lustre parallel file system in many aspects. But in principle, they all have a feature to

distribute a file over multiple storage devices for supporting concurrent IO operations. And the proposed parallel IO algorithm20

does not rely on any specific characteristics of the Lustre parallel file system, that is, similar conclusions could be obtained

for other parallel IO file system. Thus, we believe that the techniques proposed in this paper can be generalized to other

supercomputers, even to the future supercomputer architectures.

For a high-dimensional system with a large number of ensemble members, the total size of the output files is extremely huge.

This poses a great burden to archive these files. Even though the archiving is not a critical component of an EnKF system, the25

time-to-solution can be further reduced if the archiving is implemented properly. We also implemented a very practical method

to asynchronously archive the output files to a massive backup server with compressing and transferring on the fly. This method

further reduces the time-to-solution of an EnKF system. The details of this method are beyond the scope of this paper. The

techniques proposed in this paper are being incorporated into the offline framework of LDAS-Monde at Météo France.

Code availability. PDAF is publicly available at http://pdaf.awi.de. The offline and online EnKFs built on the top of PDAF for all experiments30

presented in this paper are available at https://doi.org/10.5281/zenodo.2703420.

26

Competing interests. The authors declared no competing interests.

Author contributions. Y. Zheng designed and implemented the dynamically running job scheme and the parallel IO algorithm with discus-

sions from C. Albergel, S. Munier, and B. Bonan. Y. Zheng implemented the offline and online EnKF systems. Y. Zheng designed and carried

out the experiments. Y. Zheng prepared the paper with contributions from all co-authors.

Acknowledgements. The authors are grateful to three anonymous reviewers and the topical editor Adrian Sandu for comments that greatly5

improve our article.

27

References

Albergel, C., Munier, S., Leroux, D. J., Dewaele, H., Fairbairn, D., Barbu, A. L., Gelati, E., Dorigo, W., Faroux, S., Meurey, C., Moigne,

P. L., Decharme, B., Mahfouf, J.-F., and Calvet, J.-C.: Sequential assimilation of satellite-derived vegetation and soil moisture products

using SURFEX_v8.0: LDAS-monde assessment over the Euro-Mediteranean area, Geosci. Model Dev., 10, 3889–3912, 2017.

Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation, Mon. Wea. Rev., 129, 2884–2903, 2001.5

Anderson, J. L. and Collins, N.: Scalable Implementations of Ensemble Filter Algorithms for Data Assimilation, Journal of Atmospheric and

Oceanic Technology, 24, 1452–1463, https://doi.org/10.1175/JTECH2049.1, 2007.

Bannister, R. N.: A review of operational methods of variational and ensemble-variational data assimilation, Q. J. R. Meteorol. Soc., 143,

607–633, 2017.

Bishop, C. H., Etherton, B. J., and Majumdar, S. J.: Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects,10

Mon. Wea. Rev., 129, 420–436, 2001.

Bishop, C. H., Huang, B., and Wang, X.: A nonvariational consistent hybrid ensemble filter, Mon. Wea. Rev., 143, 5073–5090, 2015.

Browne, P. A. and Wilson, S.: A simple method for integrating a complex model into an ensemble data assimilation system using MPI,

Environ. Model. Softw., 68, 122–128, 2015.

Burgers, G., Leeuwen, P. J. V., and Evensen, G.: Analysis Scheme in the Ensemble Kalman Filter, Mon Wea Rev, 126, 1719–1724, 1998.15

Cohn, S. E. and Parrish, D. F.: The behavior of forecast error covariances for a Kalman filter in two dimensions, Mon. Wea. Rev., 119,

1757–1785, 1991.

DKRZ and MPI-M: CDI-PIO, https://code.mpimet.mpg.de/projects/cdi/wiki/Cdi-pio, 2018.

Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics,

J. Geophys. Res., 99, 10 143–10 162, 1994.20

Evensen, G.: The ensemble Kalman filter: theoretical formulation and practical implementation, Ocean Dyn., 53, 343–367, 2003.

Fairbairn, D., Baru, A. L., Mahfouf, J.-F., Calvet, J.-C., and Gelati, E.: Comparing the ensemble and extended Kalman filters for in situ soil

moisture assimilation with contrasting conditions, Hydrol. Earth Syst. Sci., 19, 4811–4830, https://doi.org/https://doi.org/10.5194/hess-

19-4811-2015, 2015.

Gaspari, G. and Cohn, S. E.: Construction of correlation functions in two and three dimensions, Quarterly Journal of the Royal Meteorological25

Society, 125, 723–757, https://doi.org/10.1002/qj.49712555417, 1999.

Godinez, H. C. and Moulton, J. D.: An efficient matrix-free algorithm for the ensemble Kalman filter, Comput. Geosci., 16, 565–575, 2012.

Hernandez, V., Roman, J. E., and Vidal, V.: SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans.

Math. Software, 31, 351–362, 2005.

Houtekamer, P. L. and Michell, H. L.: Data Assimilation Using an Ensemble Kalman Filter Technique, Mon. Wea. Rev., 126, 796–811, 1998.30

Houtekamer, P. L. and Mitchell, H. L.: A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation, Mon. Wea. Rev., 129,

123–137, 2001.

Houtekamer, P. L. and Zhang, F.: Review of the ensemble Kalman filter for atmospheric data assimilation, Mon. Wea. Rev., 144, 4489–4532,

2016.

Houtekamer, P. L., He, B., and Mitchell, H. L.: Parallel implementation of an ensemble Kalman filter, Mon. Wea. Rev., 142, 1163–1182,35

https://doi.org/10.1175/MWR-D-13-00011.1, 2014.

28

https://doi.org/10.1175/JTECH2049.1
https://doi.org/https://doi.org/10.5194/hess-19-4811-2015
https://doi.org/https://doi.org/10.5194/hess-19-4811-2015
https://doi.org/https://doi.org/10.5194/hess-19-4811-2015
https://doi.org/10.1002/qj.49712555417
https://doi.org/10.1175/MWR-D-13-00011.1

Huang, X. M., Wang, W. C., Fu, H. H., Yang, G. W., Wang, B., and Zhang, C.: A fast input/output library for high-resolution climate models,

Geosci. Model Dev., 7, 93–103, 2014.

Hunt, B. R., Kostelich, E. J., and Szunyogh, I.: Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter,

Physica D, 230, 112–126, 2007.

ISPL: XIOS, http://forge.ipsl.jussieu.fr/ioserver, 2018.5

Kalman, R. E.: A New Approach to Linear Filtering and Prediction Problems, J. Basic Eng, 82, 35–45, 1960.

Keppenne, C. L.: Data assimilation into a primitive-equation model with a pallel ensemble Kalman filter, M, 128, 1971–1981, 2000.

Khairullah, M., Lin, H.-X., Hanea, R. G., and Heemink, A. W.: Parallelization of Ensemble Kalman Filter (EnKF) for Oil

Reservoirs with Time-lapse Seismic Data, International Journal of Mathematical and Computational Sciences, 7, 1076 – 1084,

https://doi.org/10.5281/zenodo.1086985, 2013.10

Livings, D. M., Dance, S. L., and Nichols, N. K.: Unbiased ensemble square root filters, Physica D, 237, 1021–1028, 2008.

Mahfouf, J.-F., Bergaoui, K., Draper, C., Bouyssel, C., Taillefer, F., and Taseva, L.: A comparison of two offline soil analysis schemes for

assimilation of screen-level observations, J. Geophys. Res., 114, D08 105, 2009.

Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P.,

Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M.,15

Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari,

M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The

SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geosci. Model Dev.,

6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, 2013.

NCAR: PIO, http://ncar.github.io/ParallelIO/, 2018.20

Nerger, L.: On serial observation processing in localized ensemble Kalman filters, Mon. Wea. Rev., 143, 1554–1567, 2015.

Nerger, L. and Hiller, W.: Software for ensemble-based data assimilation systems–Implementation strategies and scalability, Comput. Geosci.,

55, 110–118, 2013.

Nerger, L., Danilov, S., Hiller, W., and Schroter, J.: Using sea-level data to constrain a finite-element primitive-equation ocean model with a

local SEIK filter, Ocean Dynamics, 56, 634–649, https://doi.org/https://doi.org/10.1007/s10236-006-0083-0, 2006.25

Nerger, L., Janjic, T., Schroter, J., and Hiller, W.: A unification of ensemble square root Kalman filters, Mon. Wea. Rev., 140, 2335–2345,

2012a.

Nerger, L., Janjić, T., Schröter, J., and Hiller, W.: A regulated localization scheme for ensemble-based Kalman filters, Q. J. R. Meteorol. Soc.,

138, 802–812, 2012b.

Nino-Ruiz, E. D. and Sandu, A.: Ensemble Kalman filter implementations based on shrinkage covariance matrix estimation, Ocean Dynam-30

ics, 65, 1423–1439, https://doi.org/10.1007/s10236-015-0888-9, 2015.

Nino-Ruiz, E. D. and Sandu, A.: Efficient parallel implementation of DDDAS inference using an ensemble Kalman filter with shrinkage

covariance matrix estimation, Cluster Comput., 22, 2211–2221, https://doi.org/10.1007/s10586-017-1407-1, 2017.

Nino-Ruiz, E. D., Sandu, A., and Deng, X.: An Ensemble Kalman Filter Implementation Based on Modified Cholesky Decomposition for

Inverse Covariance Matrix Estimation, SIAM Journal on Scientific Computing, 40, A867–A886, https://doi.org/10.1137/16M1097031,35

2018.

Nino-Ruiz, E. D., Sandu, A., and Deng, X.: A parallel implementation of the ensemble Kalman filter based on modified Cholesky decompo-

sition, Journal of Computational Science, 36, 100 654, https://doi.org/10.1016/j.jocs.2017.04.005, 2019.

29

https://doi.org/10.5281/zenodo.1086985
https://doi.org/10.5194/gmd-6-929-2013
https://doi.org/https://doi.org/10.1007/s10236-006-0083-0
https://doi.org/10.1007/s10236-015-0888-9
https://doi.org/10.1007/s10586-017-1407-1
https://doi.org/10.1137/16M1097031
https://doi.org/10.1016/j.jocs.2017.04.005

Parallel netCDF project: Parallel netCDF, version 1.10.0, www.mcs.anl.gov/parallel-netcdf, 2018.

PDAF: Parallel Data Assimilation Framework, version 1.13.2, http://pdaf.awi.de/trac/wiki, 2018.

Pham, D. T., Verron, J., and Gourdeau, L.: Singular evolutive Kalman filters for data assimilation in oceanography, C. R. Acad. Sci. Ser. II,

326, 255–260, 1998.

Sakov, P. and Oke, P. R.: A deterministic formulation of the ensemble Kalman filter: an alternative to ensemble square root filters, Tellus,5

60A, 361–371, 2008.

Schraff, C., Reich, H., Rhodin, A., Schomburg, A., Stephan, K., Perianez, A., and Potthast, R.: Kilometre-scale ensemble data assimilation

for the COSMO model (KENDA), Q. J. R. Meteorol. Soc., 142, 1453–1472, 2016.

Steward, J. L., Aksoy, A., and Haddad, Z. S.: Parallel direct solution of the ensemble square root Kalman filter equations with observation

principle components, J. Atmospheric Ocean. Technol, 34, 1867–1884, 2017.10

The HDF Group: Hierarchical Data Format, version 5.10.2, http://www.hdfgroup.org/HDF5/, 2018.

Unidata: Network Common Data Form (netCDF), version 4.6.1, http://doi.org/10.5065/D6H70CW6, 2018.

Vetra-Carvalho, S., Leeuwen, P. J. V., Nerger, L., Barth, A., Altaf, M. U., Brasseur, P., Kirchgessner, P., and Bechers, J.-M.: State-of-the-art

stochastic data assimilation methods for high-dimensional non-Gaussian problems, Tellus A: Dynamic Meteorology and Oceanography,

70, 1–43, 2018.15

Whitaker, J. S. and Hamill, T. M.: Ensemble data assimilation without perturbed observations, Mon. Wea. Rev., 130, 1914–1924, 2002.

Xiao, J., Wang, S., Wan, W., Hong, X., and Tan, G.: S-EnKF: Co-Designing for Scalable Ensemble Kalman Filter, in: Proceedings of the

24th Symposium on Principles and Practice of Parallel Programming, p. 15–26, https://doi.org/10.1145/3293883.3295722, 2019.

Xu, T., Jaime GóMez-HernáNdez, J., Li, L., and Zhou, H.: Parallelized Ensemble Kalman Filter for Hydraulic Conductivity Characterization,

Comput. Geosci., 52, 42–49, https://doi.org/10.1016/j.cageo.2012.10.007, 2013.20

Yashiro, H., Terasaki, K., Miyoshi, T., and Tomita, H.: Performance evaluation of a throughput-aware framework for ensemble data assimi-

lation: the case of NICAM-LETKF, Geosci. Model Dev., 9, 2293–2300, 2016.

30

https://doi.org/10.1145/3293883.3295722
https://doi.org/10.1016/j.cageo.2012.10.007

