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Reviewer’s Comments for gmd-2019-132

After reading the paper, and clearly having in mind your research ques-
tions: Is an online EnKF really faster than an offline EnKF? Can an offline
EnKF be as fast as, if not faster than, an online EnKF with a good frame-
work and algorithms using advanced techniques of parallel IO? I think the
paper can be improved in the following directions:

1. In section 1 (Introduction), you discuss efficient EnKF formulations:
EnKF methods that exploit the rank-deficiency of ensemble covariances
to come up with efficient EnKF formulations (i.e., by using Sherman
Morrison, SVD, etc.), and efficient EnKF formulations which account
for localization. You can enrich your paper by distinguishing between
these two classes of filter derivations; it is not a good idea two present
both families as a single one.

2. In section 2, I do not agree with the statement: the Cholesky decom-
position is more efficient than the SVD, but the SVD is more robust
if the matrix is significantly ill-conditioned. For unlocalized EnKF for-
mulations, via the SVD decomposition, we can obtain EnKF imple-
mentations whose computational effort reads O(n ·N2), where n is the
number of model components and N is the ensemble size. On the other
hand, by employing a direct solution (i.e., by employing a Cholesky de-
composition), we can get EnKF formulation whose analysis steps can
be computed with O(n3) long computations.

3. As you may know, localization methods are crucial to getting ac-
curate analysis states. These methods mitigate the impact of spuri-
ous correlations in EnKF based formulations. In operational contexts,
when domain decomposition is employed during assimilation steps, the
dimension of local boxes can still be much larger than that of ensemble
sizes. Therefore, local analysis increments can be poorly estimated at
each sub-domain. How does your proposed method deal with this? I
would like you to increase the discussion in this direction, you have
already cited two papers that deal with this:

(a) Anderson, J. L. (2001). An ensemble adjustment Kalman filter for
data assimilation. Monthly weather review, 129(12), 2884-2903.
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(b) Nino-Ruiz, E. D., Sandu, A., & Deng, X. (2019). A parallel im-
plementation of the ensemble Kalman filter based on modified
Cholesky decomposition. Journal of Computational Science, 36,
100654.

4. While localization methods reduce the impact of spurious correlations,
covariance inflation mitigates the impact of the under-estimation
of sample variances. Most of the square-root based formulations (i.e.,
ETKF, and LETKF) suffer from under-estimation of sample variances,
but, you do not mention this relevant topic in your entire paper.

5. When domain decomposition is employed, it is very common to send
boundary information to obtain physically consistent solutions, in this
manner, solutions at different processors do not look like indepen-
dent domains but, they are “connected” since neighboring sub-domains
share boundary information. I may misunderstand but, are you shar-
ing boundary information among neighboring sub-domains? Thus far,
it seems like not, right? If this is correct, how do you guaranty that
global solutions (once all local analysis are mapped back onto the global
domain) are consistent with the physics and the dynamics of numerical
models?.

6. What observational network do you employ during experiments? are
employing a full observational network (all model components are ob-
served)? What is the performance of your method (in terms of accu-
racy) as the observational network becomes sparse?

I hope these comments help to improve your paper.


