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Dear reviewer,

We really appreciated your comments and suggestions to help us enrich and improve our

paper. The followings are our responses in blue, together with the modified manuscript with

highlighting modifications.

Best regards,

Yongjun ZHENG on behalf of the authors

————————————————————————————————————–

After reading the paper, and clearly having in mind your research questions: Is an online EnKF

really faster than an offline EnKF? Can an offline EnKF be as fast as, if not faster than, an

online EnKF with a good framework and algorithms using advanced techniques of parallel IO?

I think the paper can be improved in the following directions:

Thank you for the positive comment.

1. In section 1 (Introduction), you discuss efficient EnKF formulations: EnKF methods that

exploit the rank-deficiency of ensemble covariances to come up with efficient EnKF for-

mulations (i.e., by using Sherman Morrison, SVD, etc.), and efficient EnKF formulations

which account for localization. You can enrich your paper by distinguishing between these

two classes of filter derivations; it is not a good idea two present both families as a single

one.

Thanks for the suggestion. This study focuses on the comparison of the computational

efficiencies between offline and online EnKFs. As long as both the offline and online

EnKFs using the same variant of EnKFs, the results can be generalized to all classes of

EnKFs. Furthermore, this paper adopted the LESTKF and the EnKF derivation in Sec-

tion 2 applies to the LESTKF. Although we mentioned the work of Godinez and Moulton

(2012) in Section 1, a section about the derivation of the matrix-free EnKF using Sher-

man–Morrison–Woodbury formulas seems to be beyond the scope of this paper. We be-

lieve it would be better to refer the interested readers to the paper of Godinez and Moulton

(2012).
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2. In section 2, I do not agree with the statement: the Cholesky decomposition is more

efficient than the SVD, but the SVD is more robust if the matrix is significantly ill-

conditioned. For unlocalized EnKF formulations, via the SVD decomposition, we can

obtain EnKF implementations whose computational effort reads O(n · N2), where n is

the number of model components and N is the ensemble size. On the other hand, by

employing a direct solution (i.e., by employing a Cholesky decomposition), we can get

EnKF formulation whose analysis steps can be computed with O(n3) long computations.

Thank you for pointing out this possible misunderstanding. The statement: The Cholesky

decomposition is more efficient than the SVD, but the SVD is more robust if the matrix is

significantly ill-conditioned. is under the context of finding the square root of I−STF−1S.

It does not mean that the all-over performance of an EnKF using Cholesky decomposition

is more efficient than the one using SVD. To avoid any possible misunderstanding, we

deleted this statement from the manuscript (L19P6 to L21P6):

The Cholesky decomposition is more efficient than the SVD, but the SVD is more robust

if the matrix is significantly ill-conditioned.

3. As you may know, localization methods are crucial to getting accurate analysis states.

These methods mitigate the impact of spurious correlations in EnKF based formulations.

In operational contexts, when domain decomposition is employed during assimilation

steps, the dimension of local boxes can still be much larger than that of ensemble sizes.

Therefore, local analysis increments can be poorly estimated at each sub-domain. How

does your proposed method deal with this? I would like you to increase the discussion in

this direction, you have already cited two papers that deal with this:

(a) Anderson, J. L. (2001). An ensemble adjustment Kalman filter for data assimilation.

Monthly weather review, 129(12), 2884-2903.

(b) Nino-Ruiz, E. D., Sandu, A., & Deng, X. (2019). A parallel implementation of

the ensemble Kalman filter based on modified Cholesky decomposition. Journal of

Computational Science, 36, 100654.

Localization methods can effectively extenuate the impact of spurious correlations of the

long-distance pairs. A local implementation based on domain localizations of EnKFs is

very efficient and accurate for local observations, but has difficulties for non-local observa-

tions, especially for satellite measurements with long spatial correlations. For observations

with long spatial correlation, the effective size of a local box would be significantly larger

than the size of the ensemble, therefore this implication of the ensemble being too small

for the local box could lead to a poor local analysis. Localization methods not only

are crucial to the analysis accuracy by suppressing spurious correlations but also have

a great impact on the computational efficiency. For example, a parallel implementation

of EnKF based on modified Cholesky decomposition (Nino-Ruiz and Sandu, 2015, 2017;

Nino-Ruiz et al., 2018, 2019) demonstrates an improvement of the analysis accuracy as

the increasing of the influence radius, but the improved accuracy comes at the cost of in-

creasing computations. On the other hand, the LETKF deteriorates the analysis accuracy

as the increasing influence radius.

The main purpose of this study is to compare the computational efficiencies between

offline and online EnKFs. Both offline and online EnKFs in this study use the same
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localization to guarantee that the difference between the computational times comes only

from the coupling ways: offline or online. Therefore, including a paragraph or section

to discuss localizations seems to deviate from the central topic of this paper since this

study does not investigate the accuracy or the efficiency of localizations. But we think

a brief mention of the difficulties of localizations for local EnKFs for observations with

long spatial correlations would be proper in the introduction section in the manuscript

(L32P2 to L7P3):

However, the large radius of influence for sparse observationscan impact the accuracy

of the LETKF owing to the spurious correlations
::::
The

::::::
local

:::::::::::::::::
implementation

:::::::
based

::::
on

::::::::
domain

:::::::::::::
localizations

:::
of

::::::::
EnKFs

::
is
::::::

very
:::::::::
efficient

::::
and

::::::::::
accurate

::::
for

:::::
local

::::::::::::::
observations,

:::::
but

:::
has

::::::::::::
difficulties

:::
for

::::::::::
non-local

::::::::::::::
observations,

:::::::::::
especially

:::
for

:::::::::
satellite

:::::::::::::::
measurements

::::::
with

:::::
long

:::::::
spatial

:::::::::::::
correlations.

:::::
For

::::::::::::::
observations

:::::
with

::::::
long

:::::::
spatial

:::::::::::::
correlation,

::::
the

:::::::::
effective

:::::
size

:::
of

:
a
::::::
local

:::::
box

:::::::
would

:::
be

::::::::::::::
significantly

:::::::
larger

:::::
than

:::::
the

:::::
size

:::
of

::::
the

:::::::::::
ensemble,

::::::::::
therefore

:::::
this

:::::::::::
implication

::::
of

::::
the

:::::::::::
ensemble

::::::
being

:::::
too

:::::::
small

::::
for

::::
the

::::::
local

:::::
box

:::::::
could

:::::
lead

::::
to

::
a

::::::
poor

:::::
local

::::::::::
analysis.

::::::::::::::
Localization

::::::::::
methods

::::
not

::::::
only

::::
are

::::::::
crucial

:::
to

::::
the

:::::::::
analysis

::::::::::
accuracy

::::
by

::::::::::::
suppressing

:::::::::
spurious

:::::::::::::
correlations

:::::
but

:::::
also

::::::
have

::
a
:::::::

great
::::::::
impact

::::
on

::::
the

::::::::::::::::
computational

::::::::::
efficiency.

::::
For

:::::::::
example, a parallel implement

::::::::::::::::
implementation

:
of EnKF based on modified

Cholesky decomposition has been proposed to address this problem (Nino-Ruiz and Sandu,

2015, 2017; Nino-Ruiz et al., 2018, 2019) .
::::::::::::::
demonstrates

:::
an

::::::::::::::
improvement

:::
of

::::
the

:::::::::
analysis

:::::::::
accuracy

:::
as

::::
the

:::::::::::
increasing

:::
of

::::
the

::::::::::
influence

::::::::
radius,

::::
but

:::::
the

::::::::::
improved

::::::::::
accuracy

:::::::
comes

:::
at

:::
the

:::::
cost

:::
of

:::::::::::
increasing

::::::::::::::::
computations.

:::::
On

::::
the

::::::
other

:::::::
hand,

::::
the

::::::::::
LETKF

:::::::::::::
deteriorates

::::
the

::::::::
analysis

::::::::::
accuracy

:::
as

::::
the

:::::::::::
increasing

:::::::::
influence

::::::::
radius.

:

4. While localization methods reduce the impact of spurious correlations, covariance in-

flation mitigates the impact of the under-estimation of sample variances. Most of the

square-root based formulations (i.e., ETKF, and LETKF) suffer from under-estimation

of sample variances, but, you do not mention this relevant topic in your entire paper.

We agree with the reviewer that covariance inflation can mitigate the underestimated co-

variance which is due to the finite size of the ensemble and model imperfections, therefore

improve the ensemble spread. But bearing in mind, covariance inflation, especially empir-

ical inflation, would lead to unbalanced ensemble members even with adaptive inflation.

Because the main purpose of this study is to investigate the efficiencies between offline

and online EnKFs, the multiplicative coefficient of covariance inflation is set to one to

keep its computation, that is, covariance inflation has no effect but the computational

time of covariance inflation is included. In other words, the results of the computational

efficiencies between offline and online EnKFs in this study are still valid when covariance

inflation takes effects. we added a sentence to describe the setting of covariance inflation

of our experiments in the manuscript (L1P21 to L3P21):

::::
The

:::::::::::::::
multiplicative

:::::::::::
coefficient

::
of

::::::::::::
covariance

:::::::::
inflation

::
is

::::
set

:::
to

::::
one

:::
to

:::::
keep

:::
its

::::::::::::::
computation

::::
but

::::
has

:::
no

::::::
effect

:::
on

::::
the

::::::::::::
covariance

:::::::
matrix

:::
so

:::::
that

::::
the

::::::
total

::::::::::::::::
computational

:::::
time

:::::::::
includes

:::
the

::::::::
similar

::::::::::::::::
computational

:::::
time

:::
of

:::::::::::
covariance

:::::::::
inflation

:::::::::
whether

:::
it

::::::
takes

:::::::
effects

:::
or

::::
not.

:

5. When domain decomposition is employed, it is very common to send boundary infor-

mation to obtain physically consistent solutions, in this manner, solutions at different

processors do not look like independent domains but, they are “connected” since neigh-

boring sub-domains share boundary information. I may misunderstand but, are you
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sharing boundary information among neighboring sub-domains? Thus far, it seems like

not, right? If this is correct, how do you guaranty that global solutions (once all local

analysis are mapped back onto the global domain) are consistent with the physics and

the dynamics of numerical models?.

No, our implementation does not exchange the shared boundary information during

EnKF analyses but does exchange the observations among processors before EnKF

analyses so that each processor has its observations including those near the boundaries

but within the influence radius of the localization and can do its own local analyses in-

dependently and in parallel. And the weights of the localization are calculated by a 5th

order polynomial (Gaspari and Cohn, 1999) and decrease smoothly to zero as the influ-

ence radius increasing to the specified threshold to guarantee the continuity of the global

analysis at boundaries of subdomains after all local analyses are mapped back onto the

global domain. Thus, the global analysis is consistent with the physics and dynamics of

the model in terms of subdomain boundary continuities. If you mean the real consistency

of physics and dynamics of the model, in our point of view, EnKFs cannot guarantee

a perfect physical and dynamical consistency after assimilations, even 4DVAR with dy-

namical constraints in its cost function cannot promise that, not to mention deficiencies

of EnKFs due to the finite size of the ensemble which leads to the underestimated back-

ground covariance, certainly, this can be mitigated to a certain extent by a large size of

ensembles. We detailed the weights of localizations that maintain the continuities between

the subdomain boundaries in the manuscript (L30P20 to L33P20):

.
::::::
which

::::::::::
calculates

::::
the

::::::::::::
localization

::::::::
weights

::::::
using

::
a

::::
5th

:::::
order

::::::::::::
polynomial

::::::::::::::::::::::::::::
(Gaspari and Cohn, 1999)

:
.
:::::::::
Because

::::::::::::
localization

::::::::
weights

:::::::::
decrease

::::::::::
smoothly

:::
to

:::::
zero

:::
as

::::
the

:::::::::
influence

:::::::
radius

:::::::::::
increasing

::
to

::::
the

::::::::::
specified

:::::::::::
threshold,

:::::
this

:::::
fact

::::::::::::
guarantees

::::
the

:::::::::::
continuity

:::
of

:::::
the

:::::::
global

:::::::::
analysis

:::
at

:::::::::::
boundaries

:::
of

::::::::::::::
subdomains

::::::
after

::::
the

::::::
local

::::::::::
analyses

::::
are

:::::::::
mapped

::::::
back

::::::
onto

:::::
the

:::::::
global

::::::::
domain.

:

6. What observational network do you employ during experiments? are employing a full

observational network (all model components are observed)? What is the performance of

your method (in terms of accuracy) as the observational network becomes sparse?

As we explained in the answers to the first two reviewers (https://www.geosci-model-

dev-discuss.net/gmd-2019-132/gmd-2019-132-AC3-supplement.pdf), a simple and ideal-

ized model and synthetic observations are adopted in this study to compare the efficiencies

between offline and online EnKFs. That is only 10% of model components are randomly

chosen to have an observation. The objective is to compare the efficiency but not the ac-

curacy of a specific variant of EnKF methods. Many factors (such as the adopted specific

variant of EnKF methods, its localization, covariance inflation if applicable, the sparsity

of observations, the accuracy of observations, the nonlinearity of the model, just to name

a few) could affect the ultimate accuracy of assimilations. The variant of EnKF methods

we adopted is the LESTKF which is recommended in PDAF (Parallel Data Assimilation

Framework at http://pdaf.awi.de), also the localization follows the recommended prac-

tice. Its accuracy would be similar to other variants of EnKF methods in the situation of

sparse observations.

I hope these comments help to improve your paper.
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Abstract. The high computational resources and the time-consuming IO (Input/Output) are major issues in offline ensemble-

based high-dimentional
::::::::::::::
high-dimensional

:
data assimilation systems. Bearing these in mind, this study proposes a sophisticated

dynamically running job scheme as well as an innovative parallel IO algorithm to reduce the time-to-solution of an offline

framework for high-dimensional ensemble Kalman filters. The dynamically running job scheme runs as many tasks as possible5

within a single job to reduce the queuing time and minimize the overhead of starting/ending a job. The parallel IO algorithm

reads or writes non-overlapping segments of multiple files with an identical structure to reduce the IO times by minimizing

the IO competitions and maximizing the overlapping of the MPI (Message Passing Interface) communications with the IO

operations. Results based on sensitive experiments shown that the proposed parallel IO algorithm can significantly reduce

the IO times and has a very good scalability, too. Based on these two advanced techniques, the offline and online modes of10

ensemble Kalman filters are built based on PDAF (Parallel Data Assimilation Framework) to comprehensively assess their

efficiencies. It can be seen from the comparisons between the offline and online modes that the IO time only accounts for a

small fraction of the total time with the proposed parallel IO algorithm. The queuing time might be less than the running time

in a low-loaded supercomputer such as in an operational context but the offline mode can be nearly as fast as, if not faster than,

the online mode in terms of time-to-solution. However, the queuing time is dominant and several times larger than the running15

time in a high-loaded supercomputer. Thus, the offline mode is substantially faster than the online mode in terms of time-to-

solution, especially for large-scale assimilation problems. From this point of view, it suggests that an offline ensemble Kalman

filter with an efficient implementation and a high performance
::::::::::::::
high-performance parallel file system should be preferred over

its online counterpart for intermittent data assimilation in many situations.

Copyright statement.20

1 Introduction

Both the numerical model of a dynamical system and its initial condition are imperfect owing to the inaccuracy and incom-

pleteness to represent the underlying dynamics and to measure its states. Thus, to improve the forecast of a numerical model,
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data assimilation (DA) methods combine the observations and the prior states of a system to estimate the posterior states (usu-

ally more accurate) of the system taking into account their uncertainties. Two well-known DA methods are the variational

technique and the ensemble-based technique. The hybrid methods combining the advantages of the variational technique and

the ensemble-based technique have gained increasing interest in recent years. ? gives a comprehensive review of variational,

ensemble-based, and hybrid DA methods used in operational contexts.5

The ensemble-based methods not only estimate the posterior state using the flow-dependent covariance but also practically

compute the uncertainty of the estimation. The Kalman filter is an unbiased optimal estimator for a linear system (?). The

extended Kalman filter (EKF) is a generalization of the classic Kalman filter to a nonlinear system. It uses the tangent linear

models of the nonlinear dynamical model and the nonlinear observation operators to explicitly propagate the probability mo-

ments. For a high-dimensional system, the explicit propagation of the covariance is almost infeasible. The ensemble Kalman10

filter (EnKF) is an attractive alternative to the EKF. It implicitly propagates the covariance by the integration of an ensemble

of the nonlinear dynamical model that makes its implementation simple owing to the elimination of the tangent linear model.

Since the introduction of the EnKF by ?, many variants of the EnKF have been proposed to improve the analysis quality or the

computational efficiency. For example, the stochastic ensemble Kalman filter perturbs the observation innovation to correct the

premature reduction in the ensemble spread (??); the ensemble square room filter (EnSRF) introduced the square root formu-15

lation to avoid the perturbations of the observation innovation (??); the ensemble transform Kalman filter (ETKF) explicitly

transforms the ensemble to obtain the correct spread of the analysis ensemble (?) and the local ensemble transform Kalman

filter (LETKF) is widespreadly adopted owing to its efficient parallelization (?); and the error subspace transform Kalman filter

(ESTKF, ?) and its localized variant (LESTKF) combine the advantages of the ETKF and the singular evolutive interpolated

Kalman filter (SEIK, ?). For comprehensive reviews of the EnKF, we refer the readers to the ones by ? and ?.20

Many schemes have been proposed to reduce the computational cost of the EnKF, especially to reduce the computational

cost of the large matrix inverse or factorization. Two level
::::::::
Two-level

:
methods are commonly used to parallelize the EnKF:

one level for parallelizing the model member running and another level for parallelizing the analysis (??). In applications to

weather, oceanology, and climatology, more advanced parallelizations are implemented owing
::
to the large scale nature of the

problem. ? used a domain decomposition to perform the analysis on distributed-memory architectures to avoid the large mem-25

ory required by the entire state vectors of all the ensemble members. The sequential method assimilates one observation at a

time (??) or multiple observations in each batch (?). The LETKF decomposes the global analysis domain into local domains

where the analysis is computed independently (?). The LETKF is one of the best parallel EnKF implementations. However,

the large radius of influence for sparse observationscan impact the accuracy of the LETKF owing to the spurious correlations
::
A

::::
local

:::::::::::::
implementation

:::::
based

:::
on

:::::::
domain

::::::::::
localizations

:::
of

::::::
EnKFs

::
is

::::
very

:::::::
efficient

::::
and

:::::::
accurate

:::
for

:::::
local

:::::::::::
observations,

:::
but

::::
has30

:::::::::
difficulties

:::
for

::::::::
non-local

:::::::::::
observations,

:::::::::
especially

:::
for

:::::::
satellite

::::::::::::
measurements

::::
with

::::
long

::::::
spatial

:::::::::::
correlations.

:::
For

:::::::::::
observations

::::
with

::::
long

::::::
spatial

::::::::::
correlation,

:::
the

::::::::
effective

:::
size

:::
of

:
a
:::::

local
::::
box

:::::
would

:::
be

:::::::::::
significantly

:::::
larger

::::
than

:::
the

::::
size

:::
of

:::
the

:::::::::
ensemble,

:::::::
therefore

::::
this

:::::::::
implication

:::
of

:::
the

::::::::
ensemble

:::::
being

:::
too

:::::
small

:::
for

:::
the

:::::
local

:::
box

:::::
could

::::
lead

::
to

::
a
::::
poor

:::::
local

:::::::
analysis.

:::::::::::
Localization

:::::::
methods

:::
not

::::
only

:::
are

:::::::
crucial

::
to

:::
the

:::::::
analysis

::::::::
accuracy

::
by

:::::::::::
suppressing

:::::::
spurious

::::::::::
correlations

:::
but

::::
also

:::::
have

:
a
:::::
great

::::::
impact

:::
on

::
the

:::::::::::::
computational

::::::::
efficiency.

::::
For

:::::::
example, a parallel implement

:::::::::::::
implementation of EnKF based on modified Cholesky de-35
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composition has been proposed to address this problem (????) .
::::::::::
demonstrates

:::
an

:::::::::::
improvement

::
of

:::
the

::::::::
analysis

:::::::
accuracy

:::
as

::
the

:::::::::
increasing

:::
of

:::
the

:::::::
influence

::::::
radius,

::::
but

:::
the

::::::::
improved

:::::::
accuracy

::::::
comes

::
at

:::
the

::::
cost

::
of

:::::::::
increasing

::::::::::::
computations.

:::
On

:::
the

:::::
other

::::
hand,

:::
the

:::::::
LETKF

::::::::::
deteriorates

:::
the

:::::::
analysis

::::::::
accuracy

::
as

:::
the

:::::::::
increasing

::::::::
influence

::::::
radius.

:
? derived a matrix-free algorithm for

the EnKF and showed that it is more efficient than the singular value decomposition (SVD) based algorithms. ? gave a compre-

hensive description of the parallel implementation of the stochastic EnKF in operation at the Canadian Meteorological Centre5

(CMC) and pointed out the potential computational challenges. ? compared the low-latency and high-latency implementations

of the EnKF and found that low-latency implementation can produce bit-wise identical results. When the sequential technique

associates with the localization, the analysis is suboptimal and dependent on the order of observations (??). ? assimilated all

the observations simultaneously and directly solved the large eigenvalue problem using the Scalable Library for Eigenvalue

Problem Computations (SLEPc, ?).10

As mentioned by ?, an EnKF system has to efficiently use the computer resources, such as disk space, processors, main

computer memory, memory caches, job-queuing system, and archiving system, in both research and operational contexts to

reduce the time-to-solution. To obtain a solution, the EnKF system has to perform a series of tasks including the observations

preprocessing, the jobs queuing, ensemble members running, the analysis, the post-processing, the archiving, and so on. Thus,

the time-to-solution is the total time to obtain a solution, that is, the time from the beginning to the end of an experiment,15

such as one assimilation cycle in operational context or ten-year reanalyses in a research context. Even with the efforts of the

aforementioned literature, the time-to-solution of an EnKF system is still demanding. For instance, the global land data assim-

ilation system (LDAS-Monde, ?) uses an SEKF (Simplified Extended Kalman Filter, ?) or an EnKF scheme (?) to assimilate

satellite-derived terrestrial variables in the Interactions between Soil, Biosphere, and Atmopshere
::::::::::
Atmosphere

:
(ISBA) land

surface model within the Surface Externalisée (SURFEX) modelling
:::::::
modeling

:
platform (?). By assimilating satellite-derived20

terrestrial variables, LDAS-Monde improves high spatial-temporal resolution analyses and simulations of land surface condi-

tions to extend our capabilities for climate change adaptions. But at a global scale or even at a regional scale with a high spatial

resolution (1km x 1km or finer), it becomes challenging in terms of time-to-solution. This is the motivation of the compre-

hensive evaluations of different implementations of an EnKF system to determine which technique should be adopted for an

efficient and scalable framework for LDAS-Monde.25

There are two modes to implement an EnKF: offline and online modes. The offline mode is the most extensively adopted

strategy, especially in the operational context of numerical weather prediction (NWP) where the operational DA process is

intermittent and consists of an alternating sequence of short-range forecasts and analyses. In offline mode, the dynamical

model and the EnKF are totally independent, that is, these two components are two separate systems. An ensemble of the

dynamical model runs until the end of the cycle and outputs the restart files and stops; then the EnKF system reads the30

ensemble restart files and observations to produce the analysis ensemble which update
::::::
updates the restart files, also output

the analysis mean (the optimal estimation of the states, see Figure 1). Traditionally, the dynamical model and the DA system

are developed separately. The offline mode keeps the independence of these two systems which is highly desirable for each

community. Thus, the implementation and maintenance of an offline mode is simple and flexible. One big disadvantage of an

offline mode is its time-consuming IO (Input/Output) operations, especially for a high-dimensional system and a large number35
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of ensemble members. Recently, several online modes have been proposed to avoid the expensive IO operations of the offline

mode (??). The online mode forms a coupled system of the dynamical model and the EnKF which exchange
:::::::::
exchanges the

prior and posterior states by message passing interface (MPI) communications. When observations are available, the MPI tasks

of dynamical models send their forecast ensemble members (prior states) to those of the EnKF, then the MPI tasks of the EnKF

combine the observations and the received forecast ensemble members (prior states) to generate and send back the analysis5

ensemble members (posterior states), then the MPI tasks of dynamical models resume their running. The development of a

coupled system demands substantial time and effort. Another disadvantage of the online mode is the large job-queuing time

because running the ensemble simultaneously requires a large number of nodes when both the number of ensemble members

and the number of nodes per member are large. With the consideration of possible prohibitive IO operations for an offline

EnKF, the online frameworks proposed in the literature seem promising and were claimed to be efficient (??). But to our best10

knowledge, there have been no attempts to assess the time-to-solution of an offline EnKF against that of an online EnKF. In

this context, our study tries to answer the next questions: Is an online EnKF really faster than an offline EnKF? Can an offline

EnKF be as fast as, if not faster than, an online EnKF with a good framework and algorithms using advanced techniques of

parallel IO?

An offline EnKF system simultaneously submits the jobs (usually one ensemble member per job) to the supercomputer. With15

high priority as in an operational context, all of the jobs might get run immediately, and this is the most efficient way. But in

a research context, each job usually needs to wait in the job queue for a period before it gets run. Sometimes, the job-queuing

time is significantly larger than the actual running time in a high-loaded machine if the job requires a large number of computer

nodes or a long running
::::::::::
long-running

:
time. In addition, the resource management and scheduling system of a supercomputer

needs time to allocate the required nodes for a job, start and stop the job; these overheads are not negligible. It is then desirable20

to minimize the impact of the job queuing and overheads. This is the first object of this study to reduce the time-to-solution of

an offline EnKF.

Massive IO operations pose a great challenge on
:
in

:
the implementation of an offline EnKF system for high-dimensional

assimilation problems. ? presented a framework with a novel parallel IO scheme for the NICAM (Nonhydrostatic ICosahedral

Atmospheric Model) LETKF system. This method uses the local disk of the computer node and only works for architectures25

with a local disk of large capacity in each computer node. ? changed the workflow of the EnKF by exploiting the modern

parallel file systems to overlap the reading and analysis to improve the parallel efficiency. Nowadays, most supercomputers

have parallel file systems. With the progress of technologies in high performance
::::::::::::::
high-performance

:
computing (HPC), the

state-of-art parallel file system has an increasingly high-scalability, high-performance, and high-availability. Several parallel

IO libraries based on PnetCDF (?) or netCDF (?) with parallel HDF5 (?) have been developed for NWP models and climate30

models. XIOS (?) can read and write in parallel but cannot update variables in a netCDF file. CDI-PIO (?) and CFIO (?) can

only write in parallel. PIO (?) is very flexible but is not targeted for the offline EnKF system which synchronously reads then

updates multiple files with an identical structure. Thus, with advanced parallel IO techniques and innovative algorithms, the

second object of our work to reduce the time-to-solution is to answer the following question: Can the IO time of an offline

EnKF be a negligible fraction of the total time?35
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To address the aforementioned challenges of an offline EnKF, we propose a sophisticated dynamically running job scheme

and an innovative parallel IO algorithm to reduce the time-to-solution, and comprehensively compare the time-to-solutions of

the offline and online EnKF implementations. This paper is organized as follows. The formulation of an EnKF, its parallel

domain decomposition method, an offline EnKF, and an online EnKF are described in section 2. The sophisticated dynam-

ically running job scheme aiming to minimize the job queuing and overheads and the innovative parallel IO algorithm are5

detailed in section 3. The experimental environments, designs, and the corresponding results are presented in section 4. Finally,

conclusions are drawn in section 5.

2 Ensemble Kalman Filters

In an EnKF, each member is a particular realization of the possible model trajectories. Assuming there are Ne ensemble

members x1, · · · ,xNe
, where the subscript denotes the member ID, x ∈RNx is the state vector, and Nx is the dimension of10

state space. let X = [x1, · · · ,xNe
] ∈RNx×Ne be the ensemble matrix, thus, the ensemble mean is

x =
1

Ne

Ne∑
k=1

xk, (1)

the ensemble perturbation matrix is

X′ = [x1−x, · · · ,xNe
−x], (2)

and the ensemble covariance matrix is15

P =
X′X′T

Ne− 1
. (3)

Further, let d = y−H(x) be the innovation vector, where y ∈RNy is the observation vector,H :RNx →RRy is the nonlinear

observation operator which maps the state space to the observation space, Ny is the dimension of observation space.

The Kalman update equation for the state is

xa = xf +K
(
y−H(xf )

)
= xf +Kd, (4)20

and the Kalman update equation for the covariance is

Pa = (I−KH)Pf , (5)

where the Kalman gain is

K = PfHT (HPfHT +R)−1. (6)

Within the above equations, H is the linear observation operator of H, and R ∈RNy×Ny is the observation error covariance25

matrix. The superscript f and a denote forecast and analysis, respectively, and the superscript T denotes a matrix transposition.
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Using the covariance update equation (5) and the Kalman gain (6), the equation (3) can be written as

X′aX′aT = (Ne− 1)Pa

=
(
I−PfHT (HPfHT +R)−1H

)
X′fX ′fT

= X′f
(
I−STF−1S

)
X′fT

= X′f
(
WWT

)
X′fT =

(
X′fW

)(
X′fW

)T
, (7)

where S = HX′f , F = SST + (Ne− 1)R, and W is the square root of I−STF−1S.

Thus, without explicit computation of the covariances Pf and Pa, the analysis ensemble can be computed as

Xa = [xa, · · · ,xa] +X′fW, (8)5

where the analysis mean is

xa = xf +Kd

= xf +PfHT (HPfHT +R)−1d

= xf +X′fSTF−1d (9)

by combining the state update equation (4) with the Kalman gain (6).

For most ensemble-based Kalman filters (???????????), the analysis update can be written as a linear transformation

in (8). However, the different variants of ensemble-based Kalman filters use different ways to calculate the tranformation10

::::::::::::
transformation matrix W which is not necessary to be the square root as in (7). From the above derivation, it can be seen

that the most computationally expensive part is the computation of the square root which involves the inverse of the matrix F.

In general, the square root W can be obtained by a Cholesky decomposition or a singular value decomposition (SVD). The

Cholesky decomposition is more efficient than the SVD, but the SVD is more robust if the matrix is significantly ill-conditioned.

15

2.1 Domain Decomposition for Parallel EnKFs

For a high-dimensional system, the size of the state vector xk is large, therefore it is not practical to perform the EnKF analysis

without parallelization. The straightforward way of parallelization is to decompose the state vector xk into approximately equal

parts byNmpi MPI tasks. Because all member state vectors have an identical structure, each member state vector is decomposed

in an identical manner, and each member is one column of the ensemble matrix X. Thus, each MPI task computes at most20

d Nx

Nmpi
e consecutive rows of the ensemble matrix X. Figure 6 illustrates this decomposition. Each level of a three-dimensional

variable is decomposed in the same way as if a horizontal domain decomposition was used. For multiple variables, the same

decomposition is applied to each variable. This domain decomposition has the advantage of a good load balance. Without loss

of generality, the descriptions in this study assume the state vector xk is a one-dimensional variable as a multi-dimensional

variable can be viewed as linear in the memory. The domain decomposition is the foundation for the innovative parallel IO25

algorithm proposed in Section 3.2.2.
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2.2 An Offline EnKF System

An offline EnKF system is a sophisticated system consisting of many components. Figure 1 illustrates the typical workflow

of an ensemble-based DA system with its essential components. In an operational context of NWP, a notable feature of an

intermittent DA system is the alternating sequence of short-range forecasts and analyses. Each short-range forecast and analysis

forms a cycle. At the beginning of each cycle, All the forecast members read in their corresponding analysis members from5

::
the

:
last cycle and integrate independently for the period of the cycle and this is called a forecast phase. Usually, each forecast

member uses the same dynamical model but with a differently perturbed initial condition, a differently perturbed forcing, or

a different set of parameters. Meanwhile, a deterministic forecast is usually integrated for a period longer than the cycle and

outputs the history files more frequently. At the end of the cycle, all the forecast members output their restart files and stop.

Then, the EnKF combines the observations and the forecast ensemble (xfk , or its equivalence Af
k in Figure 1) to produce the10

analysis ensemble (xak, or its equivalence Aa
k in Figure 1) and the analysis mean (xa, or its equivalence Aa in Figure 1) , which

updates the restart files of the ensemble forecasts and the deterministic forecast, respectively. This is called the analysis phase.

This process is repeated for
:::
the next cycle.

There are several advantages to have an extra deterministic forecast. First of all, the deterministic forecast with the optimal

initial condition is integrated over a much longer period than that of the cycle and outputs the history files more frequently which15

are the user-end deterministic prediction products; this is essential in an operational NWP context. Secondly, the ensemble

forecasts only output restart files at the end of the cycle which significantly reduce
::::::
reduces

:
the IO time and the required disk

space. Thirdly, it is even possible to use the deterministic forecast as a member (?).

A distinctive feature of an offline EnKF system is that each ensemble member run is completely independent of each other

and the DA component runs only after all the members are run. Each member run has its own queuing time and overheads20

owing to the involvement of a job system. Because all the member runs have finished when the DA component begins to

run, the practically possible way to exchange information between the model component and the DA component is via the

intermediate restart files. Reading and writing many restart files whose size is large is time-consuming and may counteract the

simplicity and flexibility of the favorite offline EnKF system. It is very common that the DA system submits one member per

job or even a fixed number of multiple members per job. The DA component reads or writes the ensemble restart files with one25

IO task or as many IO tasks as the ensemble members. This is not efficient, and both these two aspects will be addressed in

section 3 accordingly.

2.3 An Online EnKF System

As already mentioned, there are several methods to build an online EnKF system. The methods used in this paper is similar

to one possible implementation suggested in the parallel data assimilation framework (?). With the operational NWP in mind,30

the online EnKF system presented in this paper is also an intermittent DA system. In this system, the model component reads

in the ensemble analyses from
:::
the last cycle and integrates simultaneously Ne ensemble members for the period of a cycle,

then scatters the ensemble state Xf to the DA component which performs the analysis and outputs the ensemble analysis Xa
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Figure 1. Schematic diagram illustrating the workflow of an offline EnKF system. Assuming the forecast model is a coupled model consisting

of two components A and B, each component outputs its own results Af
k and Bf

k , respectively. But the EnKF system only analyses and

updates the state of the component A, and only output the analysis ensemble Aa
1 . . .A

a
Ne

and the analysis mean Aa. In this example, there

are Ne = 5 ensemble members which runs he hours for each cycle and only outputs the restart files at the end of the cycle. In addition, there

is a deterministic forecast
:::
that started with the optimal initial condition Aa from the EnKF system, and this deterministic forecast may run

longer than the period (he hours) of one cycle and may output more frequently.

and ensemble analysis mean xa. Finally,
:
the system stops and only restarts in a proper further time for the next cycle. Thus,

the main difference between this online EnKF and the offline EnKF described in Section 2.2 is that there is no intermediate

outputs, which eliminate the ensemble-writing operations in the model component and the ensemble-reading operations in the

DA component, between the forecast and the analysis phases. This effectively reduces the IO operations to half compared to

the offline EnKF. However, being an intermittent DA system, for each cycle it still needs to read the analysis ensemble from5

the last cycle and write the analysis ensemble of the current cycle.

Figure 2 illustrates our implementation of the online EnKF system used in this study. In this example, the online EnKF

system uses 18 MPI tasks to integrate simultaneously six ensemble members with three MPI tasks per member. The grid cells

with the same background color belong to one ensemble member. The numbers to the left of the model column (the tallest

8



column) are the ranks of the MPI tasks in the global MPI communicator. The numbers with a yellow circle inside the model

column are the ranks of the MPI tasks in its model MPI communicator of the corresponding member. As shown in the data

assimilation column, the first three global MPI tasks also form a filter MPI communicator. This filter MPI communicator is

used to perform the EnKF analysis. All the MPI tasks with the same rank (number with a yellow circle) in the model MPI

communicators form a coupled MPI communicator to exchange data between ensemble members and the EnKF component.5

Thus, every model member has an identical domain decomposition, and so does the DA component. This facilitates the data

exchange between ensemble members and the EnKF component. As in Figure 2, each member uses its own three MPI tasks

to read in the corresponding initial condition and integrate the model to the end of the cycle; then the first MPI task of each

member sends its corresponding segment of its states to the corresponding row and column of the ensemble matrix X in the

first MPI task of the DA component which, in fact, is the first MPI task of the first member, so do the second and third MPI10

tasks. Finally,
:
the DA component has all the data in the ensemble matrix X to perform the assimilation analysis and writes out

the analysis ensemble as well as the analysis mean. This online EnKF has the disadvantage of wasting computational resources

because the MPI tasks starting from the second member are idle when the DA component is running. But it complicates the

data exchange between the model members and the DA component if all the MPI tasks are used for the DA component, also

it might not always help to have more MPI tasks for accelerating the assimilation analysis because the scale of the problem15

determines the number of MPI tasks, and sometimes more MPI tasks might undermine the efficiency of a problem owing to

the expensive MPI communications.

3 Methods

This section lengthily presents the following two methods in this study to reduce the time-to-solution of an offline EnKF.

3.1 Dynamically Running Job Scheme for Minimizing the Job Queuing and Overheads20

Using
:::
the embarrassingly parallel strategy, the jobs of all the members are submitted simultaneously. On a high-loaded ma-

chine, each job needs to wait for a long time before running, especially when the job requires a large number of nodes. To

reduce the job queuing and overheads, we propose a sophisticated running job scheme to dynamically run the ensemble mem-

bers over multiple jobs, as illustrated by Figure 3. First of all, the scheme generates a to-do list file with all the IDs (Identities)

of the ensemble members followed by the ID (=Ne + 1) of the DA component; then simultaneously submits Nj jobs where25

Nj ∈ [1,Ne] can be fewer than the number of members. Because the ID of the DA component is at the end of the to-do list,

the proposed scheme automatically guarantees that the sucessful
::::::::
successful

:
completion of all the members is checked and

confirmed before executing the DA component. When a job (for example, job1 in Figure 3) is dispatched to start its running,

the job locks the to-do list file to obtain a member ID (for example, member 1© in Figure 3), removes the member ID from the

to-do list file and unlocks the to-do list file, then starts the execution of that member. While the job is running (for example,30

job1 in Figure 3), another job (for example, job2 in Figure 3) gets the required nodes to start its running, obtains a member

ID (for example, member 2© in Figure 3) and then starts the execution of that member in the same manner. When a job (for
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Figure 2. Schematic diagram illustrating the implementation of an online EnKF system. In this example, 18 MPI tasks are used to integrate

six ensemble members with three MPI tasks per member, then the first three MPI tasks are used to perform the assimilation analysis. The

numbers on the left of the model panel (the left panel) are the ranks of the MPI tasks in the global MPI communicator. The grid cells with

the same background color in the model panel belong to one ensemble member xk. The numbers with a yellow circle, which demonstrate

the parallel domain decomposition of the corresponding member, are the ranks of the MPI tasks in the model MPI communicator of the

corresponding member. The data assimilation panel (the right panel) demonstrates how the member state xk are
:
is
:
assembled into the

ensemble matrix X while keeping the same domain decomposition as do the model members.
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example, job1 in Figure 3) finishes the execution of a member (for example, member 1© in Figure 3), instead of being termi-

nated, the job continues to obtain another member ID (for example, member 4© in Figure 3) from the to-do list file then starts

the execution of that member. The process is repeated until the to-do list file is empty. The mechanism to lock and unlock the

to-do list file is essential to prevent the same member from being executed by multiple jobs.

In most setting
:::::::
settings of resource management and scheduling systems, the shorter the run time requested by a job is, the5

shorter the queuing time is. The proposed scheme can specify a time limit of jobs to balance the queuing and the overheads.

With a short time limit but not shorter than the execution of a member or the DA component, a job reaches its time limit and

the executing member is interrupted. In this case, the ID of the interrupted member is inserted into the front of the to-do list

so that the remaining running jobs can restart the execution of the interrupted member. By carefully tuning the time limit of

jobs, interruptions can be minimized. With this sophisticated scheme which dynamically runs the members, sometimes the first10

several jobs have finished the executions of all the members and the DA component, the remainning
::::::::
remaining

:
jobs are still

waiting in the queue and need to be canceled (for example, the job5 in Figure 3 will be automatically canceled after the finish

of the DA component in job3). Thus, this scheme substantially reduces the job queuing and overheads.

3.2 Parallel IO Algorithm for Improving the IO Performance

3.2.1 Lustre Parallel File System15

The parallel file system is a crucial component in a current supercomputer. There are several parallel file systems. Lustre

parallel file system (http://lustre.org, last access: 18 December 2018) is best known for powering many of the largest HPC

clusters worldwide owing to its scalability and performance. The Lustre parallel file system consists of five key components (see

Figure 4). The metadata servers (MDS) make metadata (such as filenames, directories, permission
:
, and file layout) available to

Lustre clients. The metadata targets (MDT) store metadata and usually use solid-state disks (SSD) to accelerate the metadata20

requests. The object storage servers (OSS) provide file IO services and network requests. The object storage targets (OST)

are the actual storage media where user file data are stored. The file data is divided into multiple objects which are stored

on a separate OST. Lustre clients are computational, visualization, or desktop nodes that are running Lustre client software

and mount the Lustre file system. The interactive users or MPI tasks make requests to open, close, read, or write files and the

requests are forwarded via an HPC interconnect to the MDS or OSS which performs the actual operations.25

The high performance of Lustre file system is mainly attributed to its ability to stripe data across multiple OSTs in a round-

robin fashion. Figure 5 illustrates how a file is striped across multiple OSTs. A file is divided into multiple segments of the

same size, usually, the last segment is incomplete. The size of each segment can be specified by the stripe size (denoted as

“size” in Figure 5) parameter when the file is created. Similarly, the stripe count (denoted as “count” in Figure 5) parameter is

the number of OSTs where the file is stored and can be specified when the file is created. The parameters have default values30

unless specified explicitly and cannot be changed after the creation of a file. In Figure 5, the file is divided into 13 segments

and the stripe count parameter is equal to 5. The first segment goes to the first OST, · · · , the fifth segment goes to the fifth OST

which is the last OST of this file; then, the sixth segment goes to the first OST, · · · , repeat this pattern until the last segment.
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Figure 3. Schematic diagram illustrates one possible scenario of the runnings of Ne ensemble members and DA with Nj jobs (Ne = 8 and

Nj = 5 in this example). The number (DA, also) with a yellow circle is the ID of a member (data assimilation), its surrounding colorful grid

cell denotes the duration of the running of this member (data assimilation). The blanks before the first colorful grid cell, between the colorful
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Figure 4. Schematic diagram of a Lustre parallel file system, see Section 3.2.1 for the definitions of the abbreviations of “MDS”, “OSS”,

“MDT”, “OST”, and “SSD”.

The optimal stripe parameters usually depend on the file size, the access pattern, and the underlying architecture of the Lustre

file system. The stripe size parameter must be a multiple of the page size and using a large stripe size can improve performance

when accessing a very large file. Because of the maximum size that can be stored on the MDT, a file can only be striped over

a finite number of OSTs. With a large stripe count, a file can be read from or written to multiple OSTs in parallel to achieve a

high bandwidth and significantly improve the parallel IO performance.5

3.2.2 Parallel IO Algorithm for Multiple Files

A restart file of the numerical model of a dynamical system contains the instantaneous states of the system and other auxiliary

variables. In general, a DA system assimilates the available observations which only update some state variables but not all the

variables in a restart file. Hence, it is desirable to update old restart files rather than to create new restart files from scratch. This

way avoids copying the untouched variables from old restart files to new restart files and will further reduce the IO operations.10

As mentioned in Section 1, several high-level libraries for parallelly reading or writing a netCDF file are available currently,

but only the flexible PIO (?) supports update operations. One distinctive feature of the offline EnKF is that it needs to read Ne

restart files before computations and update these restart files after computations. These restart files have an identical structure.

With this feature in mind, we propose an innovative algorithm to read and update multiple files with an identical structure.

Figure 6 illustrates the parallel reading the state variables xk from multiple restart files with an identical structure, the writing15

or updating is in the same manner except that scatter operations are changed to gather operations.
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Figure 5. Schematic diagram of the striping of a file across multiple OSTs in a Lustre parallel file system. The “size” and “count” are the

abbreviations of “stripe size” and “stripe count”, respectively. In this example, the stripe count is five and the file is divided into 12 segments

of a size equal to the stripe size. The number is the ID of a segment.

The algorithm for reading Ne forecast ensemble files to the matrix X, is such that, each member file is read into its cor-

responding column of the matrix X. The rows of the matrix X are partitioned by Nmpi MPI tasks. The information of this

partition is passed from the DA module to the IO module as arguments so that the IO module and DA module have the same

domain decomposition of the state vectors. The Nmpi MPI tasks are partitioned by Nio IO tasks in the IO module . For writing

the matrix X to Ne analyse
:::::::
analysis ensemble files, the scatter operations are changed to gather operations.5

There are two modes, the independent and collective mode, for all IO tasks to access a single shared file. With the inde-

pendent mode, each IO task accesses the data directly from the file system without communicating or coordinating with the

other IO tasks. This usually works best if the application is reading or writing large contiguous non-overlapping blocks of data

in the file with one IO request because the parallel file systems do very well with an access pattern like that. In our proposed

algorithm, an IO task reads or writes only one non-overlapping block of data in a file each time , so the independent IO mode10

is adopted.

Another advantage of this algorithm is that the MPI communication can be overlapped with the IO operation. For example

in Figure 6, the IO task 1© in a nonblocking way scatters the data read from the file 1 to the MPI tasks 1, 2, and 3; then shifts to

read the file 2 without waiting for the previous scatter operation to finish. When the IO task 1© finished its reading of the file 2,

it checks, in most cases does not need to wait, the finish of the previous scatter operation since the MPI communication time is15

usually significantly shorter than the IO time; then in a nonblocking way scatters the data read from file 2 to the MPI tasks 1,

2, and 3; then shifts to read the next file in the same manner until all the files are read. Other IO tasks are in
::
the

:
same manner.

And the
:
a similar way is applied for the write or update operation. This almost eliminates the MPI communication time which

significantly improves the performance of these parallel IO operations.
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Figure 6. Schematic diagram illustrates the algorithm for reading Ne (Ne = 6 for this example) forecast member files to a matrix X=

[x1, · · · ,x6], that is, each member file is read into its corresponding column of the matrix X. The numbers to the left of the first column are

the ranks of the MPI tasks whose is in charge of the corresponding row of the matrix X, and those with a yellow circle are the IO tasks. The

cells with the same color are read simultaneously by the corresponding IO task, and then the IO tasks scatter the read-in data to the MPI tasks

that they are charged of. In the first stage, the IO tasks of 1©, 4©, 7©, 9©, 11©, 13©, 15©, and 17© read the cells with the purple color, and then, for

example, the IO task of 1© scatters the read-in data to itself and the MPI tasks of 2 and 3. In subsequent stages, each IO task performs a right

circular shift by one column, then reads and scatters. Repeat this pattern until all the files are read.
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4 Experimental Environments, Designs, and Results

All the experiments are performed on the research supercomputer Beaufix in Météo France which is a Linux cluster built by

BULL company. The SLURM system is used for the cluster management and the job scheduling. And this machine is equipped

with a highly scalable Lustre file system of 156 OSTs. The parallel IO algorithm developed by ourselves can use both PnetCDF

or netCDF with parallel HDF5 as the backend. PnetCDF 1.10.0 is adopted for all the experiments in this study.5

PDAF is an open-source parallel data assimilation framework which provides full
:::
that

::::::::
provides

::::
fully

:
implemented data

assimilation algorithms, in particular,
:

ensemble-based Kalman filters like LETKF and LESTKF. PDAF is optimized for the

large-scale applications run on big supercomputers in both research and operational contexts. We chose PDAF as the basis

to implement the proposed offline and online EnKFs using the efficient methods described in section 3 because it has the

interfaces for both offline and online modes. With this unified basis, the study comprehensively assesses the efficiency of the10

offline and online EnKFs in terms of the time-to-solution, job queuing time, and IO time. We refer the readers to PDAF website

(?) for more detailed information.

4.1 Assessing the Proposed Parallel IO Algorithm

4.1.1 Experiments for Assessing the Proposed Parallel IO Algorithm

The key advantage of the Lustre file system is that it has many parameters which
:::
that can be tuned by the user to maximize the15

IO performance according to the characteristics of the files and the configuration of the file system. The most relevant parame-

ters are the stripe size and the stripe count. The Lustre manual provides some guidelines on how to tune these parameters. It is

interesting to see how the different combinations of the stripe size and the stripe count affect the performance of the proposed

parallel IO algorithm with different numbers of IO tasks. Moreover, it is practical to determine the reasonable combination of

these parameters by trial and error. Thus, a simple program using the proposed IO algorithm, which parallelly reads 40 files20

(each file is about 5 gigabytes in size) into a matrix X as illustrated in Figure 6 and then parallelly writes the matrix X back to

the 40 files, is developed to record the IO times and the MPI communication times for each run. Each experiment is run with

1024 MPI tasks and takes a different combination of the stripe size, the stripe count, and the number of IO tasks. The stripe

size can be 1, 2, 4, 8, 16, 32, and 64 megabytes. The stripe count can be 1, 2, 4, 8, 16, 32, 64, and 128. And the number of IO

tasks can be 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024. Thus, there are 616 experiments in total.25

4.1.2 Performance of the Proposed Parallel IO Algorithm

Figure 7 shows how the combination of the stripe count and size has an influence on the IO performance. An obvious feature

in Figure 7 is that the IO times are always large when the stripe count is small regardless of the stripe size (e.g. when the

stripe count is 1 or 2). This is reasonable because the small stripe count means
:
a
:
small number of OSTs are used for storing

the file, that is, it prevents high concurrent IO operations. But if the number of IO tasks for the file is significantly larger than30

the number of OSTs, the heavy competitions of IO tasks for the same OST actually increase the IO times substantially. On the
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other hand, the IO time with a small stripe size but a large stripe count gradually decreases as the increase of IO tasks (see the

cases with the stripe size of 1 or 2 megabytes but the stripe count of 64 or 128 in Figure 7). A small stripe size but a large stripe

count means there are many small blocks of the large file (about 5 gigabytes in this case) distributed over many OSTs, that is,

each IO task needs to perform IO operations over a large number of OSTs when the number of IO tasks is small; increasing

the number of IO tasks reduces the number of OSTs on which each IO task operates, thus reduces the IO times. For the same5

reason, a large stripe count allows high concurrent IO operations and fewer competitions, a large stripe size further reduces

the number of OSTs on which one IO task operates when the file is large; therefore the combination of a large stripe count

and a large stripe size with a large number of IO tasks generally reduces the IO time for a large file, as is evident in the four

subfigures of Figure 7 since all the IO times converge to the least with a stripe count of 128 and a stripe size of 64 megabytes.

These imply the combination of the large stripe count with the large stripe size usually produces a small IO time for a large10

file. These suggest that it is important to have a consistent combination of the stripe count and the stripe size in line with the

size of the file and
:::
the number of IO tasks for a better IO performance.

In Figure 7, the best IO performance is obtained with a stripe count of 128 and a stripe size of 64 megabytes for the cases

of 32, 64, 128, and 256 IO tasks. For other cases of different numbers of IO tasks, a similar pattern is obtained (figures not

shown). Owing to the smaller size of files, the stripe count of 128 and the stripe size of 1 megabytes
:::::::
megabyte

:
are chosen as15

the combination of these two parameters with 40 (160) IO tasks for the medium (large) experiments described in Section 4.2.1

to compare the offline and online EnKFs.

The IO throughput is the amount of data read or written per second. The upper panel of Figure 8 shown the IO time and the

IO throughput vary as a function of the number of IO tasks. The IO time and the IO throughput are the average
::::::
averages

:
of

all the 616 experiments described in Section 4.1.1 and group by the number of IO tasks. The IO times (blue line in the upper20

panel of Figure 8) decrease quickly from about 1500 seconds to about 60 seconds as the increase of
:
in
:
the number of IO tasks,

then maintain nearly constant with a large number of IO tasks. The best IO performance is achieved with 1024 IO tasks; it

takes about 60 seconds to read and write 40 restart files (each file has a size of about 5 gigabytes). For the same reason of the

smaller size of files, the number of IO tasks is set to 40 (160) for the medium (large) scale experiments described in Section

4.2.1 to compare the offline and online EnKFs. And the variance of the IO times is large with a large number of IO tasks. The25

IO throughput increases gradually as the increase of the number of IO tasks. The maximum IO throughput is more than 1500

megabytes per second. Because the IO throughput is the average of different combinations of the stripe count and the stripe

size, it can be beyond 2000 megabytes per second with the optimal combinations of these two stripe parameters (not shown).

The variance of the IO throughput is proportional to the IO throughput. It is interesting to find that the proposed IO algorithm

scales well since we do not see an apparently saturated IO time up to 1024 IO tasks.30

In the lower panel of Figure 8, the IO time in the upper panel is decomposed into the time of opening and closing, the time

of reading and writing, and the MPI communication time. The reading and writing time is dominant and its pattern is similar

to that of the IO time in the upper panel. It is at least two orders of magnitude larger than the other two terms. The opening

and closing time is slightly oscillating around 3 seconds. This opening and closing time is somewhat larger than that in
:
a
:
local

filesystem because the Lustre clients need to communicate with the metadata servers. The MPI communication time decreases35
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Figure 7. IO times of different combinations of the stripe count and stripe size with 32 (a), 64 (b), 128 (c), and 256 (d) IO tasks of 1024 MPI

tasks for reading and writing 40 restart files using the proposed IO algorithm illustrated in Figure 6. The size of each restart file is about 5

gigabytes.

as the increase of the number of IO tasks, and it is larger (smaller) than the opening and closing time with a small (large)

number of IO tasks. Even though the MPI communication is overlapped with the IO operations, there is a waiting for the finish

of the last reading or the first writing in our proposed algorithm. Thus, we believe that the major MPI communication time is

dominated by this waiting time. Otherwise, the MPI communication time should be negligible if it is completely hidden behind

the IO operations.5

The impact of the stripe parameters on the IO performance depends on many factors such as the configuration and hardware

of a Lustre system, the number and size of files to be read or written, and so on. So the exact value of the IO performance might

vary with the situation of applications, but the statistics should have given some meaningful insights into how these parameters

affect the IO performance and what is the optimal combination for this situation.

4.2 Comparing the Offline and Online EnKFs10

4.2.1 Experiments for Comparing the Offline and Online EnKFs

The ultimate goal of this study is to develop an offline framework for high-dimensional ensemble Kalman filters which is at

least as efficient as, if not faster than, its online counterpart in terms of the time-to-solution. Table 1 summarizes the experiments
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Figure 8. In the upper panel, the IO time (blue line) and throughput (black line) vary as a function of the number of IO tasks for reading and

writing 40 restart files with 1024 MPI tasks using the proposed IO algorithm illustrated in Figure 6. The shadings indicate the ranges between

plus and minus one standard deviation. The size of each restart file is about 5 gigabytes. In the lower panel, the IO time in the upper panel is

decomposed into the time of opening and closing (black line), the time of reading and writing (blue line), and the MPI communication time

(red line).

for comparing the offline and online EnKFs. The number of ensemble members is 40 for all experiments in Table 1. All the

experiments use the same number of MPI tasks for each ensemble member regardless of the mode (offline or online) of the

EnKF so that the model time and the analysis time are comparable. For example in Table 1, the medium and large scale

problems use one node per member and four nodes per member, respectively. Since each node of our supercomputer has

40 cores, the online EnKF requires 1600 (6400) MPI tasks for the medium (large) scale problem. But the number of MPI5

tasks for the offline EnKF dynamically ranges from 40 (160) to 800 (3200) for the medium (large) problem depending on the

available nodes during its runnings. The large scale problem requires a large number of computer nodes which may imply a

long queuing time for the simultaneous availableness of such a large number of nodes, but has a lower IO cost for the online

mode. In contrast, our proposed offline framework does not require all the computer nodes for all the members to be available

simultaneously, but the IO cost may be high because of the intermediate outputs between the forecast phase and the analysis10

phase. Thus, a medium scale problem and a large scale problem are designed to address the dependence of time-to-solution

on the scale of the problem. The medium and large scale problems are land grid points of a global field with a 0.1◦ and

0.05◦ resolution, respectively. The size of the state vector for the medium and large scale problems are 2127104 and 8498681,

respectively. Each of all the experiments in Table 1 is repeated 15 times, which are equivalent to 15 assimilation cycles, to
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obtain a robust statistics of measured times. As in real scenarios, other auxiliary variables besides the state variables, such as

the location position and patch fraction, are needed to be read for the full functionalites
::::::::::::
functionalities of the model and DA.

The corresponding restart files including the auxiliary variables are about 0.3 GB and 1.0 GB for the medium and large scale

problems, respectively. Thus, both the offline and online EnKFs read and update all the variables in the restart files to assess

their performances to a limit.5

Both the background memebers
::::::::
members and the observations are synthetic data in these experiments for both the offline

and online EnKFs. These synthetic data are formed by the land grid points of the idealized global fields described in the

following. The horizontal resolution of the global field is ∆x = 2π
nx

and ∆y = π
ny

where the nx and ny are the number of grid

points in longitude and latitude, respectively. The value of nx (ny) is 3600 (1800) and 7200 (3600) for the medium and large

scale problems, respectively. The ensemble members and observations are generated from the following hypothetical true state10

(see Figure 9a):

stateti,j = sin

(
−3 +

4 · i ·∆x

2π−∆x

)2

cos

(
−2 +

4 · j ·∆y

π−∆y

)3

(10)

The members (figures not shown) are generated by randomly shifting the true state in longitude:

stateki,j = sin

(
−3 +

4 · i ·∆x

2π−∆x
+ ∆s

)2

cos

(
−2 +

4 · j ·∆y

π−∆y

)3

(11)

where the superscript k ∈ [1,Ne] denotes the ID of a member, i ∈ [0,nx− 1] and j ∈ [0,ny − 1] are the longitude and latitude15

index of the grid point, respectively, and ∆s is a shift drawn from a uniform distribution on [−0.5,0.5]. The observations (see

Figure 9d) are the true state values plus the observation errors at the grid points randomly picked from the total grid points.

The number of observations is equal to 10% of the number of the total grid points, and the observation errors are drawn from

a normal distribution with a mean of zero and a variance of 0.252. Thus, the observation operator simply becomes H(x)≡ x.

All these fields are written to the corresponding NetCDF files in advance so that the offline or online EnKFs can read them at20

the beginning of each cycle.

All the assimilation experiments use the LESTKF scheme with a localization radius of 50◦, and the localization scheme of

? .
:::::
which

:::::::::
calculates

:::
the

:::::::::
localization

:::::::
weights

:::::
using

:
a
:::
5th

:::::
order

::::::::::
polynomial

::
(?)

:
.
:::::::
Because

::::::::::
localization

::::::
weights

::::::::
decrease

::::::::
smoothly

::
to

::::
zero

::
as

:::
the

::::::::
influence

:::::
radius

:::::::::
increasing

::
to
:::
the

::::::::
specified

:::::::::
threshold,

:::
this

::::
fact

:::::::::
guarantees

:::
the

:::::::::
continuity

::
of

:::
the

::::::
global

:::::::
analysis

:
at
::::::::::

boundaries
::
of

::::::::::
subdomains

::::
after

::::
the

::::
local

:::::::
analyses

:::
are

:::::::
mapped

:::::
back

::::
onto

:::
the

:::::
global

::::::::
domain. We refer readers to the paper25

of ? for a full description of the ESTKF, and the paper of ? for the domain and observation localizations using in LESTKF.

:::
The

::::::::::::
multiplicative

:::::::::
coefficient

::
of

:::::::::
covariance

:::::::
inflation

::
is
:::
set

::
to

::::
one

::
to

::::
keep

::
its

:::::::::::
computation

:::
but

:::
has

:::
no

:::::
effect

:::
on

:::
the

:::::::::
covariance

:::::
matrix

:::
so

:::
that

:::
the

:::::
total

::::::::::::
computational

::::
time

:::::::
includes

::::
the

::::::
similar

::::::::::::
computational

::::
time

::
of

::::::::::
covariance

:::::::
inflation

:::::::
whether

::
it
:::::
takes

:::::
effects

::
or

::::
not. For the sake of experiments, the model simply reads its initial condition, sleeps one second, and writes its restart

file for the offline mode or sends its states to the DA component for the online mode. In the offline mode, each model member30

reads its corresponding initial condition and writes the corresponding restart file. Then the DA component reads the restart

files, performs the analysis, and writes the analysis ensemble files. In the online mode, each model member only reads its

corresponding initial conditon
::::::::
condition, and the DA component writes the analysis ensemble files. All these IO operations are

20



Table 1. Experiments for Comparing the Offline and Online EnKFs

Medium problem Large problem

state vector size=2127104 state vector size=8498681

job time limit=20 minutes job time limit=80 minutes

one restart file size=0.3 GB one restart file size=1.0 GB

Offline 20 jobs and 1 node/job 20 jobs and 4 nodes/job

Online 1 job and 40 nodes/job 1 job and 160 nodes/job

done by the proposed parallel IO algorithm which certainly can read or write one file or multiple files in parallel. This make

:::::
makes

:
it possible to fairly compare their IO times. The jobs of the first assimilation cycle of the offline and online EnKFs for

the medium scale problem are submitted at the same time, the jobs of next cycle are submitted without any delays after the

completion of the previous cycle, this repeats until the last cycle; so does the large scale problem. This manner guarantees

the fair comparison of the queuing times since the offline and online EnKFs are in the same loaded conditon
::::::::
condition of the5

supercomputer.

4.2.2 Results of Comparing the Offline and Online EnKFs

Figure 9b is the analysis mean xa obtained by the offline or online EnKF. Compared to the initial state (Figure 9c) which is

the ensemble mean xf before the assimilation, it can be seen that the analysis mean xa (Figure 9b) is significantly close to the

true state (Figure 9a), especially over the northern Canada, Greenland, and northwestern Africa. The only difference between10

the offline and online EnKFs is the coupling mode which only affects the time-to-solution, so they produce identical analysis

results. Therefore, the following evaluations focus on the differences of the times between the offline and online EnKFs. In a

research context, the queuing time is largely dependent on the loaded condition of the supercomputer, so the time-to-solutions

of all the experiments in Table 1 are assessed both in the time such as during the weekend when the supercomputer is low-loaded

and in the time such as during the weekday when the supercomputer is high-loaded.15

In the offline mode for the assimilation cycle j, each model member whose ID is k records its running time tmjk, the actual

executing time, which includes its IO time tmjk,IO; and the DA component records its running time taj which includes its IO

time tak,IO. Thus, the running time and the IO time of the assimilation cycle j are

tj,running =

∑k=Ne

k=1 tmjk
Ne

+ taj (12)

and20

tj,IO =

∑k=Ne

k=1 tmjk,IO
Ne

+ taj,IO, (13)

respectively. In the online mode, tj,running and tj,IO are explicitly recorded by the online EnKF owing to the online coupling

of the model and the DA component.
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Thus, the average running time and the average IO time of an assimilation cycle are calculated as

trunning =

∑j=15
j=1 tj,running

15
(14)

and

tIO =

∑j=15
j=1 tj,IO

15
, (15)

respectively. Similarly, the average queuing time of an assimilation cycle is5

tqueuing =

∑j=15
j=1 tj,queuing

15
(16)

where tj,queuing is the queuing time of the first running job in the assimilation cycle j. Since this study is interested in the

time-to-solution, the EnKF system records the elapsed time from the beginning to the end of 15 assimilation cycles as the

time-to-solution tsolution. Thus, the average of the total time of an assimilation cycle is ttotal = tsolution

15 . Except for the total

time, the standard deviation can be calculated as10

σx =

√∑j=15
j=1 (tj,x− tx)2

14
(17)

where x can be “queuing”, “running”, or “IO”. Thus, ttotal, tqueuing , trunning, and tIO correspond to the columns of “total”,

“queuing”, “running”, and “IO” in Table 2, respectively. Table 2 summarizes these average times of the offline and online

EnKFs for both medium and large scale problems in both low and high-loaded situations. Figure 10 shows the statistics of the

total time, the queuing time, and the running time of 15 assimilation cycles for both medium and large scale problems in both15

low-loaded and high-loaded conditions. It can be seen from Figure 10 that the running time of the offline EnKF is the same as

that of the online EnKF for both medium and large scale problems regardless of the loaded conditions of the supercomputer.

In the low-loaded condition (Figure 10a and b), it is surprising that the IO time of the offline EnKF is about 29% (37%)

longer than that of the online EnKF for the medium (large) problem. In principle, the former should be twice as large as the

later. The possible explanation is that this IO time might be affected by the jitter of the supercomputer including the underlying20

networks and the Lustre file system. From Table 2, it can be shown that the IO time of the offline (online) EnKF only accounts

for a fraction of about 6.6% (2.8%) and 2.4% (1.3%) of the total time for the medium and large scale problems, respectively. It

is obvious that with the proposed IO algorithm, the IO time becomes a less severe problem as the scale of the problem increases

since the analysis time becomes dominant. The queuing time is slightly less than the running time for the offline EnKF, but

the queuing time is two to four times larger than the running time for the online EnKF. Even in such a low-loaded condition,25

it is evident that the offline mode has a shorter queuing time than the online mode because the online mode simultaneously

requires significantly more nodes than the offline mode. Thus, the offline EnKF is faster than the online EnKF in terms of the

time-to-solution. In the limit of zero queuing time, the former is at least as fast as the later. Therefore, the dynamically running

job scheme described in Section 3.1 does reduce the queuing time. In other words, it can be shown from Table 2 that the offline

mode is nearly 45% (26%) faster than the online mode in terms of time-to-solution for the medium (large) scale problem.30
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Figure 9. The synthetic fields of the true state (a), the posterior state (b) after the assimilation, the prior state (c) before the assimilation,

and the observations (d) for the medium scale problem. Please refer to the second paragraph of Section 4.2.1 for the generations of these

synthetic fields.

In the high-loaded condition (Figure 10c and d), the IO times increase a bit owing to the loaded condition of the underlying

Lustre file system. Even the IO time for the medium scale problem is larger than that for the large scale problem, it implies

that loaded conditions also affect IO performances. But it can be shown from Table 2, the IO time of the offline (online) EnKF

is still as small as a fraction of about 8.8% (2.8%) and 1.4% (0.4%) of the total time for the medium and large scale problems,

respectively. Except for the offline mode for the medium scale problem, the queuing times (especially for the online mode) are5

substantially larger than the running time. For the medium problem (Figure 10c), the queuing time of the offline mode is even

less than the running time because it is common that there are some dispersed nodes available in a high-loaded supercomputer.

The offline mode which requires few nodes can quickly obtain the available nodes to start its running. For the large problem

(Figure 10d), the queuing time of the offline mode is a factor of around 1.7 (estimated from Table 2) larger than the running

time. On the contrary, the queuing time of the online mode is a factor of around 6.0 and 10.1 (estimated from Table 2) larger10

than the running time for the medium and large problems, respectively. In such an occasion, the queuing time dominates the

time-to-solution, thus the offline mode is significantly faster than the online mode. Thus estimated from Table 2, the offline

mode is about 55% and 67% faster than the online mode in the high-loaded condition.

Comparing the queuing times for the large scale problem in Table 2, it can be seen that in a high-loaded condition they are

several times larger than those in a low-loaded condition. The queuing time becomes dominant for a large scale problem in a15

high-loaded supercomputer. The offline EnKF is significantly faster than the online EnKF in terms of time-to-solution. As the
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Table 2. The average times in seconds of the offline and online EnKFs in low and high-loaded situations for medium and large problems.

The number in the parentheses is the percent to the corresponding total time.

Medium problem Large problem

total queuing running IO total queuing running IO

low-loaded
offline 1286 377 (29%) 455 (35%) 85 (6.6%) 5381 2132 (40%) 2314 (43%) 130 (2.4%)

online 2352 1786 (76%) 438 (19%) 66 (2.8%) 7301 4500 (62%) 2271 (31%) 95 (1.3%)

high-loaded
offline 1920 442 (23%) 540 (28%) 169 (8.8%) 9303 6150 (66%) 2306 (25%) 128 (1.4%)

online 4266 3447 (81%) 495 (12%) 120 (2.8%) 28110 25337 (90%) 2282 ( 8%) 104 (0.4%)

numerical model is getting a higher and higher resolution, the offline EnKF might be a better option than the online EnKF for

a high-dimensional system in terms of time-to-solution, at least in a research context.

From Figure 10, it can be seen that the variances of both the running time and the IO time are negligible, but the variance

of the queuing time is even larger than its average value except for the large scale problem in the high-loaded condition. This

means the instantaneous loaded conditon
:::::::::::::
instantaneously

::::::
loaded

::::::::
condition

:
of the supercomputer varies greatly even in the5

low-loaded condition. A careful examination of the recorded times highlights that the large variance is come
:::::
comes

:
from the

extremely large queuing time of one or two cycles. Because of this high varied loaded condition, the dynamically running job

scheme has its place to play its strength.

To summarize, the offline mode is faster than the online mode in terms of time-to-solution for an intermittent data assimi-

lation system because the queuing time is dominant and the IO time only accounts for a small fraction of the total time with10

the proposed IO algorithm. Even in the situation where the queuing time is negligible, the offline mode can be at least as fast

as the online mode with the proposed IO algorithm and the dynamically running job scheme. The queuing times as well the

total times vary as the loaded conditions of a supercomputer, but these statistics shed some insights on how the queuing time

influences the time-to-solution of an EnKF system.

5 Conclusion and Discussion15

With the sophisticated dynamically running job scheme and the innovative parallel IO algorithm proposed in the study, a

comprehensive assessment of the total time, the queuing time, the running time, and the IO time between the offline and

online EnKFs for medium and large scale assimilation problems is presented for the first time. This study not only provides

the detailed technical aspects for an efficient implementation of an offline EnKF but also presents the thorough comparisons

between the offline and online EnKFs in terms of time-to-solution which opens new possibilities to re-examine the applicable20

conditions of the offline and online EnKFs.

In summary, the proposed parallel IO algorithm can drastically reduce the IO time for reading or writing multiple files

with an identical structure. The tuning parameters of a stripe count and a stripe size should be consistent, and high values
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Figure 10. The average total time, queuing time, running time, and IO time of the offline (red bars) and online (blue bars) EnKFs for the

low-loaded (a and b) and high-loaded (c and d) conditions. The panels (a and c) and (b and d) are for the medium and large scale problems,

respectively. The green line indicates the corresponding standard deviation.

of these two parameters usually allow high concurrent IO operations and low competitions which significantly reduce the

IO time. Using the proposed parallel IO algorithm, the running times of both offline and online EnKFs for high-dimensional

problems are almost the same since the IO time only accounts for a small fraction which further decreases as the increase of

the scale of the problem. This implies that the proposed parallel IO algorithm is very scalable. On the contrary, in a low-loaded

supercomputer, the queuing time might be equal to or less than the running time, thus the offline EnKF is at least as fast5

as, if not faster than, the online EnKF in terms of the time-to-solution because the offline mode requires less simultaneously

available nodes and more easily and quickly obtains the requested nodes to reduce the queuing time than the online mode.

But in a high-loaded supercomputer, the queuing time is usually several times larger than the running time, thus the offline

EnKF is substantially faster than the online EnKF in terms of time-to-solution because the queuing time is dominant in such a
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circumstance. Therefore, The loaded condition of a supercomputer varies greatly which justifies the dynamically running job

scheme of an offline EnKF.

It is evident that the offline EnKF can be as fast as, if not faster than, the online EnKF. On average, the offline mode is

significantly faster than the online mode in the research context. Even in the operational context where the queuing time can be

negligible, the offline mode still has an advantage over the online mode. This is because the online mode never have a chance5

to run when the total nodes required are larger than the total nodes of a supercomputer if the number of members is so large.

In general, the observations are only available at a regular time interval, that is, not every time step of the numerical model has

observations for the assimilation. Thus, most DA systems are an intermittent system. Therefore, with a good implementation

and a high performance
::::::::::::::
high-performance

:
parallel file system, an offline mode is still preferred with the perspective of the

techniques proposed in this study because of their easy implementations and promising efficiencies. In climate modelling
:::
the10

::::::
climate

::::::::
modeling

:
context, even the assimilation is intermittent, an online mode might be appropriate because the model can

run a very long time once it has started. The running time substantially outweighs the queuing time.

In terms of job managements, other job schedualling
::::::::::
schedualing

:
systems are similar to the one (SLURM) used in this

paper, so the dynamically running job scheme also works for these systems and can be adapted with minor changes. Other

parallel file systems may be different from the Lustre parallel file system in many aspects. But in principle,
:
they all have a15

feature to distribute a file over multiple storage devices for supporting concurrent IO operations. And the proposed parallel IO

algorithm does not rely on any specific characteristics of the Lustre parallel file system, that is, similar conclusions could be

obtained for other parallel IO file system. Thus, we believe that the techniques proposed in this paper can be generalized to

other supercompers
::::::::::::
supercomputers, even to the future supercomputer architectures.

For a high-dimensional system with a large number of ensemble members, the total size of the output files is extremely big.20

This poses a great burden to archive these files. Even though the archiving is not a critical component of an EnKF system, the

time-to-solution can be further reduced if the archiving is implemented properly. We also implemented a very practical method

to asynchronously archive the output files to a massive backup server with compressing and transferring on the fly. This method

further reduce
::::::
reduces the time-to-solution of an EnKF system. The details of this method are beyond the scope of this paper.

The techniques proposed in this paper are being incorporated into the offline framework of LDAS-Monde at Météo France.25

Code availability. PDAF is publicly available at http://pdaf.awi.de. The offline and online EnKFs built on the top of PDAF for all experiments

presented in this paper are available at https://doi.org/10.5281/zenodo.2703420.
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