
Final Response to Referees 

 

 

We greatly thank the reviewers for the careful and thorough reading of our manuscript. The 

additional clarifications and constructive suggestions have certainly helped to improve the 

quality of our manuscript. The comments have been carefully considered and responded. Please 

find below our response to each comment. 

 

 

Response to Referee #1 

 

Mayor points: 

 

 

1. The underlying assumption of the presented exercise is that orographically defined 

classes are informative for the model’s precipitation bias. In my opinion, this has not yet 

been convincingly shown. What would be required, for instance, is an analysis of the range 

of model biases WITHIN the individual orographic classes. Do classes separate from each 

other in such an analysis? Figure 7 provides an indication that this is not the case, as the 

spatial correlation does not systematically improve after application of the bias correction. 

 

RESPONSE: 

 

We thank the reviewer for bringing up this concern. We agree that the main purpose of the 

correction method might still be a bit unclear and we would like to clarify this in more details 

in the following. With the present study, we would like to obtain a flexible correction that can 

be applied to several different climate states at the same time. To obtain this, the correction 

method should not be constrained to the actual climate too much, this is, because circulation 

changes and atmospheric characteristics may be variable between different climates. We agree 

that cluster analysis of precipitation and its errors should be applied, so that errors can be 

grouped accordingly and to keep the error within classes as small as possible, to obtain an 

optimal correction result. This has for example been performed by Gomez et al. (2018) for 

Switzerland. The drawback of such a correction for our purpose is that such a cluster analysis 

is always based on the characteristics and circulation of the current climate and this is what we 

would like to avoid as much as possible. To be as much independent from current climates as 

possible and to still provide a correction that still touches upon important characteristics in the 

Alpine climate, we came up with “static” characteristics, i.e. topography height and orientation. 

Both, topography and orientation will remain similar during different climate states, even if we 

are aware of the fact that in any correction the effect of topography is implicitly included. 

Nevertheless, we would like to show here that biases have some orographic dependence. To 

clarify this, we have attached a figure that presents the monthly mean biases for each height-

class before and after the correction (Fig. R1). Figure R1 illustrates an overestimation at high 

elevations and an underestimation at the lower ones during the colder months. Moreover, 

different levels of underestimation are observed across the height-classes during the warmer 

months. Thus, the splitting into different height-classes is appropriate to be used in the bias 

correction. Moreover, we would like to mention that we explicitly present the model biases 

within two classes in Fig. 3 (of the manuscript), and implicitly for all the height classes in Fig. 

4 and 5. Therefore, we have included a more balanced discussion about our approach in the 

results part of the revised manuscript.  

 



Furthermore, we agree that the spatial correlation is only weakly improved. However, we 

would like to highlight here that we do not only consider the spatial correlation to assess the 

performance of the different corrections, but we also include the spatial standard deviation and 

the spatial root-mean-square-error. The Taylor-diagram in Fig. 7 (of the manuscript) shows all 

three parameters and thus, provides wider criteria than just considering spatial correlation. 

 

 
Figure R1. Mean bias over Switzerland for different height-classes. 

 

 

 

2. As stated by the authors, the rationale behind the newly developed method is that bias 

correction would be possible for paleo climatic states subject to a different land surface 

topography (Alpine ice shield, for instance). There is a considerable danger that applying a 

correction method that is trained in today’s climate does not hold for such a climatic state 

even if orography is considered as a co-variate in the bias correction. Large scale flow 

conditions, for instance, could be strongly different from today’s conditions leading to a 

completely different bias structure even for the same orography class. Also, in a much colder 

climate the relation of snowfall to liquid precipitation would increase which might, in turn, 

lead to completely different model biases even for the same orographic class. To show that 

the assumption is valid, one would have to go much further with the modelling exercise. One 

could, for instance, carry out a second simulation with the very same GCM forcing but a 

modified Alpine topography in the RCM, and then apply the bias correction calibrated in the 

standard simulation with true orography. Would the bias-correction produce a realistic 

precipitation pattern in such a disturbed simulation? 

 

RESPONSE: 

 

We appreciate this comment and recognize that the manuscript might lead to 

misunderstandings about the application of our bias-correction method to other climate states.  

The danger of correcting biases in a simulated climate with a method that has been trained with 

a climate that does not correspond to the simulated climate is well-known in statistical 

downscaling methods. These are likewise calibrated with today’s climate and applied to past 

and future climate states. Many statistical downscaling and correction methods suffer basically 

from the assumption of stationary biases, which implies that their algorithms trained with 

today’s climate are considered to be also valid for different climate states. Thus, our work aims 

at presenting a new bias-correction that attempts to decrease this danger by using orographic 



features, which are less likely characteristics of the current climate only. Moreover, 

precipitation biases are not only produced by initial and boundary conditions provided by the 

global climate models, but also by parametrisations, physical and numerical formulations that 

are described in both global and regional climate models. The main goal of the presented work 

is to correct wet or dry biases that stem either from global or regional models or both. These 

biases can be produced by parametrisations and numerical formulations, but those that are 

mainly associated with orographic effects, namely, vertical motion leading to precipitation. To 

clarify this, we extended the discussion on the general shortcomings of bias correction methods 

in the introduction and the conclusion section in the revised manuscript.  

 

Furthermore, we agree that the relation of snowfall – liquid precipitation would change in a 

much colder climate. However, this relation plays a negligible role in our correction method 

because the observational dataset and the model output, which are used in this work, consider 

both solid and liquid precipitation together. To clarify these points, we have included the 

definition of the precipitation and the days without precipitation in the manuscript as follows. 

 

- Additional text on page 4 line 17 

 

…Note that all data sets consider daily precipitation as total precipitation, i.e., both solid and 

liquid precipitation, and convective and non-convective precipitation. Moreover, days 

without precipitation are treated as censored values, i.e., not considered in analysis, when 

daily precipitation is equal to 0 mm day-1, although in the case of observations this is 

equivalent to 0.1 mm day-1 due to gauge precision …  

 

The suggested sensitivity simulation would provide several problems. First, the global 

simulation would have to be rerun with an adapted alpine topography, as a circulation change 

should be expected when the Alps are reduced and increased. If inconsistent boundary 

conditions are given to the regional model this might lead to further errors that cannot be 

corrected by the proposed correction method. Second, this correction cannot be validated as 

there are no observations for such a climate, so the same problem as for past and future climates 

remains. Thus, we have used a different Alpine region to calibrate the correction method, which 

is considered as a different climate state due to its different precipitation pattern compared to 

the one from Switzerland (Frei and Schär, 1998). In addition, the corrected results can be easily 

evaluated using the gridded Swiss observational dataset, which is not the case in the suggested 

sensitivity. 

 

Still, we agree that the method should be evaluated in a different climate state but this is beyond 

the scope of this publication. An idea to validate the proposed correction may be to simulate 

e.g. Last Glacial Maximum conditions and compare them to proxy data like alpine ice sheet 

extent. Such a validation would include some collaboration with glacier modellers that are able 

to use raw and corrected precipitation to predict glacier extents. We think that such a method 

could provide a good way to verify the presented method as proxies could mimic the missing 

observations during glaciated times.  

 

Frei, C., and C. Schär. 1998. ‘A Precipitation Climatology of the Alps from High-Resolution 

Rain-Gauge Observations’. International Journal of Climatology 18 (8): 873–900. 

https://doi.org/10.1002/(SICI)1097-0088(19980630)18:8<873::AID-JOC255>3.0.CO;2-9. 

  

 



3. The introduction definitely needs to be worked on and be streamlined. It currently 

includes quite some repetition, and the line of argumentation is not always straight. Some 

basic references (for instance on the evaluation of CORDEX experiments in Europe and 

over the Alps) are missing. 

 

RESPONSE: 

 

We greatly thank you for bringing to our attention that the introduction needs to be worked on. 

An improved introduction is presented in the revised manuscript avoiding repetitions.  

Regarding the basic references, we would like to clarify that we point out the CORDEX 

experiments twice in the manuscript. First, it was brought up on page 2 line 14 when linking 

the precipitation biases with regional climate simulations. Second, we cited the work of 

Casanueva et al. (2016) on page 11 line 5, which is about an approach of correcting 

precipitation biases from some EURO-CORDEX RCMs. They mainly focus on Spain and the 

Alpine region. 
Nevertheless, we agree that the CORDEX experiments are not fully mentioned in the 

manuscript and that they could be better introduced. Thus, we have included them more 

explicitly in the next version of the manuscript. 

 

 

4. At several points in the paper the authors mention that the traditional QM approach 

would calibrate one correction function for the entire domain. This is certainly not true. In 

a pure bias correction setting (raw grid = target grid) a separate correction function is 

calibrated for each individual grid cell. 

 

RESPONSE: 

 

We fully agree that this statement needs to be considered for a reformulation, although a pure 

bias correction setting as mentioned by the reviewer (separate correction function calibrated 

for each grid point) would be also a statistical downscaling. Still, we have rephrased 

“commonly used method” into “simple approach” at various places throughout the manuscript 

and deleted some citations as follows: 

 

- Page 6 lines 4 – 6: 

 

…To demonstrate the improvement of using the new method, we further compare it to a 

commonly used method that is carried out without orographic features and uses TFs deduced 

for the entire region of Switzerland (2 km) (similar to Berg et al., 2012; Maraun, 2013; Fang 

et al., 2015) … 

 

…To demonstrate the improvement of using the new method, we further compare it to a simple 

method that is carried out without orographic features and uses TFs deduced for the entire 

region of Switzerland (at 2 km resolution, 12 TFs in total) … 

 

- Page 8 lines 5 – 7: 

 

…We assess in the following, which of these characteristics are necessary to improve the 

simple approach of applying one EQM to the entire domain, often used in studies for present 

day and future climate change (e.g., Evans et al., 2017; Li et al., 2017; Ivanov et al., 2018) … 

 



… We assess in the following, which of these characteristics are necessary to improve a simple 

approach of applying one EQM to the entire domain, where orographic features are not 

considered …  

 

- Page 11 lines 11 – 12 

 

…Clearly, the new method outperforms the standard method of applying one EQM transfer 

function deduced for the entire region of interest, which is commonly used (Berg et al., 2012; 

Maraun, 2013; Fang et al., 2015) … 

 

…Clearly, the new method outperforms the simple method of applying one EQM transfer 

function that is deduced for the entire region of interest and does not consider any orographic 

features … 

 

 

5. The reason for the second bias correction step (first part of local intensity scaling) 

remains completely unclear to me. The third step (QM) would account for this already (by 

adjusting the percentiles). 

 

RESPONSE: 

 

We agree that the reason for the local intensity scaling method was not fully explained. To 

clarify this point, it is necessary to mention the similarities and differences in the treatment of 

the very low intensity values between two quantile mapping techniques, namely, the parametric 

quantile mapping (QM) and the empirical quantile mapping (EQM). Both techniques treat days 

without precipitation as censored values and consider only days with precipitation. The QM 

obtains the quantiles and transfer functions (TFs) from a cumulative distribution function 

(CDF) that is previously fitted, and thus it could properly handle the very low values with an 

adequate distribution fitting. Whereas in our study, an empirical CDF is used to directly 

calculate the quantiles and TFs, which is the core of the EQM. The reason of using an EQM is 

because we do not assume any known distribution either in our data sets or in the possible 

application to other climate states. However, the results of the EQM can become unrealistic if 

the very low intensity values are not adjusted previously. The reason for this is that these values 

can produce inappropriate TFs due to an important shift in the distribution, i.e., the quantiles 

(Teutschbein and Seibert, 2012; Lafon et al. 2013).  

 

To adjust these very low values, an additional parameter is included in the definition of days 

without precipitation that has been mentioned before in the response to the second major point. 

The days without precipitation are not considered for calculating the TFs when they fall below 

a certain threshold. Many studies use a static threshold for the entire data set which is between 

0.01 and 1.00 mm day-1, whereas in our study, we calculate a static threshold for each group (or 

subgroup) and months of the year. This allows to be the consistent with the different biases-

treatment across the groups (or subgroups) and months of the year. The threshold is calculated 

using the local intensity scaling method and can vary in our study from 0.001 to 1.00 mm day- 

 

Changes in the manuscript are presented as follows: 

 

-  Page 5 lines 13 – 14 

 



…2010). To correct precipitation with very low-intensity the first part of the local intensity 

scaling method is used (Schmidli et al., 2006). It consists … 

 

…2010), which can distort the precipitation distribution substantially, i.e., shifting the 

quantiles, producing inappropriate corrections in the third step when EQM is applied 

(Teutschbein and Seibert, 2012; Lafon et al., 2013). To correct precipitation with very low 

intensity, an additional parameter is included in the definition of dry days related with the 

uncorrected precipitation that is described in the section of model and data before. Dry days 

are not considered for calculating the TFs when they fall below a certain threshold. Many 

studies use a static threshold for the entire data set which is between 0.01 and 1.00 mm day-1 

(Piani et al., 2010a; Lafon et al., 2013; Maraun, 2013). We calculate a static threshold for each 

group (or subgroup) and months of the year. This allows to be the consistent with the different 

biases-treatment across the groups (or subgroups) and months of the year. Then, we carry out 

the local intensity scaling method (Schmidli et al., 2006) that is also used by Teutschbein and 

Seibert (2012) before using the quantile mapping technique. This method consists … 

 

- Page 5 lines 16 – 17 

 

…The threshold can vary from group to group, but it is often close to or smaller than 1 mm 

day-1 Schmidli et al., 2006). 

 

…In our work, the threshold can vary from group to group and from month to month between 

0.001 and 1 mm day-1, similar to Schmidli et al. (2006) … 

 

 

6. The general setup of the bias correction remains unclear. Is the correction carried 

out grid cell by grid cell, or in a bulk manner for each orographic class? 

 

RESPONSE: 

 

We thank the reviewer for bringing to our attention that the general setup of the bias correction 

remains unclear. To clarify it we have changed lines 31 – 32 on page 5 as follows: 

 

…To combine all steps, the EQM is applied to each (sub-) group and each month of the year, 

separately. This results in a set of TFs for each (sub-) group and each month of the year. Thus… 

 

…To combine all steps, the local intensity scaling method and the EQM are applied to each 

(sub-) group defined in the first step and each month of the year, separately, by pooling all grid 

points that belong to it and handling them as a single distribution of daily precipitation. This 

results in a set of TFs for each (sub-) group and each month of the year. For instance, when the 

correction is carried out using height-classes of 400 m, a TF is defined for each height group, 

resulting in nine TFs for each month and in total 108 TFs throughout the year. Moreover, the 

correction is afterwards applied to the daily precipitation at every grid point using the TFs that 

are common to all elements within the same group (or sub-group) and month. Thus… 

 

 

7. Figure 3 is unclear. What do the boxplots represent and what is the true y-axis scale? 

Do the boxplots cover the spatial variability of monthly mean precipitation for the entire 

domain (a) or the elevation classes (b,c)? The text mentions that daily precipitation 

variability is shown, but how does this aggregate to monthly precipitation (y-axis label) then? 



If boxplots really show the distribution of daily precipitation values does it really make sense 

to use the IQR? Depending on the wet day frequency more than 25% of the days might be 

dry, for instance. 

 

RESPONSE: 

 

We appreciate that you bring to our attention that the y-axis, the caption and the text are 

confusing. To clarify this, we would like to mention that the boxplots illustrate the spatial 

distribution of monthly mean values of precipitation intensity across a specific area within 30 

years. Thus, we have modified them as follows:  

 

- The y-axis 

 

Monthly precipitation [mm day-1]  

 

Precipitation intensity [mm day-1] 

 

- The text in the caption 

 

Boxplots are illustrating the annual cycle and monthly distribution of daily precipitation: (a) 

entire Switzerland, (b) all grid points in the height class of 400 – 800 m, and (c) of 2.800 – 

3.200 m. Black box-plots represent the observations (RhiresD data), blue and red ones the raw 

and corrected simulation, respectively. Top and bottom ends of the dashed lines represent the 

maximum and minimum values, respectively. Dots represent the mean.  

 

Boxplots illustrate the spatial distribution of monthly mean values of precipitation intensity 

across a specific area within 30 years: (a) the area covers all grid points over entire Switzerland, 

(b) the grid points in the height class of 400 – 800 m, and (c) the grid points in the height class 

of 2.800 – 3.200 m. Black box-plots represent the observations (RhiresD data), blue and red 

ones the raw and corrected simulation, respectively. Top and bottom ends of the dashed lines 

represent the maximum and minimum values, respectively. Dots represent the spatial 

climatological mean value.  

 

- Text, page 6 line 19 – 20 modified and moved to the beginning of the paragraph.  

 

…, the annual cycle and the monthly distributions of daily precipitation are estimated for 

different height-classes … 

 

…The annual cycle and the distributions of monthly mean precipitation intensity are for 

different height-classes to… 

 

 

- Text, page 6 line 32 – 33 

 

… For these example months, we present the patterns of biases in precipitation, changes in the 

distribution of daily precipitation, illustrated by the interquartile range as well as biases in wet-

day frequency … 

 



… For these example months, we present the spatial patterns of the biases in the monthly mean 

precipitation intensity, in the variability illustrated by the interquartile range, and in the wet-

day frequency … 

 

 

8. Also the general validation setup remains unclear to some extent, the validation 

technique and the respective reference datasets used needs to be better described. It is 

sometimes unclear whether the Swiss 2 km serves as reference or the Alpine 5 km grid. 

 

RESPONSE: 

 

We agree that the validation technique and the data sets used are not fully described. To clarify 

it, we have modified it as follows: 

 

- Page 5 lines 33 – 35 and page 6 lines 1 – 6  

 

…To come up with a final method for the Alpine region we first test the influence of the 

different orographic characteristics (step 1). To be consistent with former studies (e.g., Sun et 

al., 2011; Themessl et al., 2012; Wilcke et al., 2013; Rajczak et al., 2016), the evaluation of 

the new method first uses the same region where the TFs are estimated. To be more rigorous, 

we additionally apply a cross-validation: Thereby, Switzerland is defined as the area to be 

corrected; then, we calculate two different TFs; namely, from the same Swiss region called 

Internal TFs (Int-TF), and from the corresponding Alpine region of Germany, France, and 

Austria altogether called External TFs (Ext-TF) (Fig. 1c). Note that Ext-TFs are carried out at 

5 km horizontal resolution. To demonstrate the improvement of using the new method, we 

further compare it to a commonly used method that is carried out without orographic features 

and uses TFs deduced for the entire region of Switzerland (2 km) (similar to Berg et al., 2012; 

Maraun, 2013; Fang et al., 2015) … 

 

… To come up with a final method for the Alpine region, we first evaluate the influence of the 

different orographic characteristics (step 1). To be consistent with former studies (e.g., Sun et 

al., 2011; Themessl et al., 2012; Wilcke et al., 2013; Rajczak et al., 2016), the evaluation uses 

the same region where the TFs are estimated. Explicitly, this means that the Swiss region in 

the WRF output (2 km) is defined as the area to be corrected and the RhiresD data set (at 2 km 

resolution) is used to obtain the TFs and to evaluate the different correction methods. These 

TFs are called Internal TFs (Int-TF) during the cross-validation process later on. Once the final 

method is determined, we additionally apply a cross-validation to test the method more 

rigorously: Thereby, Switzerland is defined as the area to be corrected (WRF output at 2 km 

resolution); in addition to the Int-TF (see above), which uses the same region to define TFs and 

to apply the correction, we also calculate a second set of TFs. The second one is obtained from 

the corresponding Alpine region of Germany, France, and Austria altogether called External 

TFs (Ext-TF) using the APGD data set (at 5 km resolution; Fig. 1c). Note that Ext-TFs are 

carried out at 5 km horizontal resolution and applied to Switzerland at 2 km resolution. To 

demonstrate the improvement of using the new method, we further compare it to a simple 

method that is carried out without orographic features and uses TFs deduced for the entire 

region of Switzerland (at 2 km resolution, 12 TFs in total) … 

 

 

9. Any kind of bias correction will only be as good and as appropriate as the 

observational reference. The validity of an analysis of elevation dependencies and slope 



dependencies at regional scales in the gridded observational precipitation datasets needs to 

be discussed. Does the reference grid really represent such dependencies? 

 

RESPONSE: 

 

We appreciate this comment. We agree that we missed to show the validity of the elevation 

and slope dependencies in the gridded observational data sets. Note that the observational data 

sets have a height dependence on its quality. As mentioned by (Isotta, 2014), the gridded 

observational data sets do not only present errors due to the interpolation methods, but they 

also show errors that may differ in quantity from one to the other station (Sevruk, 1985; Richter, 

1995) and are related to the “gauge undercatch”, whose magnitudes range from 5% over the 

flatland regions to 30% above 1500 m a.s.l..To clarify this, a discussion is presented in results 

section of the revised manuscript.  

 

Note that the observational data sets are considered generally reliable and represent orographic 

features well, although at high altitudes less data sets are available (Fig. R2; Isotta et al. 2014). 

Note that in this study we do not explicitly consider any uncertainty, and instead assume that 

these observations represent the true precipitation without errors. Still, we have discussed the 

uncertainty issue in particular for the results in high altitudes. 

 

 
Figure R2. Swiss stations are integrated in RhiresD.  

 

 

10. The application of the Ext-TFs mixes spatial scales (classes based on 5 km orography 

vs. classes based on 2 km orography). This is potentially dangerous and the effects of this 

mismatch should be shown. Why is the validation, in this case, not carried out on the 5 km 

scale as well? 

 

RESPONSE: 

 

We thank you for highlighting this point. To clarify it, we would like to mention that the method 

uses different observational data sets. We used the 5 km classes applied to 2 km target as we 

directly compare the results with the ones obtained from the application of Int-TFs and to avoid 

any additional uncertainty produced by interpolating between the two grids. Another reason is 

that the application at 5 km show minimal differences on the results, as is shown in the next 

Swiss station network for precipitation



Figure R3. Therefore, we have mentioned this experiment in the results part of the revised 

manuscript but its figures are not shown because of the minimal differences. 

 

 
R3. Biases in the climatological mean value of precipitation intensity over Switzerland. (a) represents the 

original biases in January, (b) the biases after being corrected at 5 km using Ext-TFs in January, (c) the biases 

after being corrected at 2 km using Ext-TFs in January, (d), (e), and (f) as (a), (b), and (c) but in July, 

respectively. 

 

 

Minor points: 

 

 

a) page 1 line 19: “is” instead of “has been” 

 

We thank the reviewer for the suggestion. We have changed it in the manuscript. 

 

 

b) page 2 line 20: What is meant by “weaker intensity” here? Unclear 

 

It means that the simulated precipitation intensity is weaker than the observational one. As an 

example, instead of 20 mm day
-1

 the simulated precipitation intensity is 5 mm day
-1

. To make 

this point clear, we have modified it as follows. 

 

… with a weaker intensity … 

 

… with a lower intensity …   

 

 

c) page 2 lines 16-19: Line of argumentation unclear. RCMs were already referred to 

just above (line 12ff) 

 

We agree and to make the argumentation clearer, we have re-structured the paragraphs as also 

suggested in Major point #3 and the change is presented in the revised manuscript.   
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d) page 4 lines 1-2: No true in general. Ban et al. for instance show that mean 

precipitation can also be much worse in convection resolving experiments. Certain aspects 

(such as the diurnal cycle) are improved, but not all. 

 

We agree that the statement in these lines is not in general true. To correct it, we have modified 

it as follows: 

 

…Convection permitting model resolutions are preferred as recent studies show a better 

performance in simulating precipitation (e.g., Ban et al., 2014; Prein et al., 2015) … 

 

…Convection permitting model resolutions are in general preferred as many recent studies 

show a better performance in simulating precipitation (e.g., Ban et al., 2014; Prein et al., 2015; 

Kendon et al., 2017; Berthou et al., 2018; Finney et al., 2019). However, we shall keep in mind 

that some biases in temperature and cloud formation may be produced by this set up, which 

may lead to additional biases in precipitation as shown in Ban et al. (2014) … 

 

 

e) page 4 lines 4-7: I don’t really understand the reason behind this splitting in ten 

single 3-year simulations. 2 months spin up is certainly not enough for soil parameters and 

snow. Some more information on the setup and on the rationale behind it needs to be 

provided. 

    

Splitting up the simulations can be explained by the time-consuming setup to run a simulation 

over the Alps at 2 km resolution over 30 years. Namely, 3 model years are equivalent to 1 

month in real time, which means that a 30-years simulation in a single piece would have taken 

at least 10 months in real time without any interruption.  

 

Regarding the spin-up, we would like to mention that WRF has only an atmospheric component 

that is fed by initial and boundary conditions obtained from the GCM. Moreover, we consider 

the ice cover and soil in a quasi-stable state, as they are initially provided by the GCM and 

because of its long simulation these variables are in equilibrium there and because the 

interactions with the atmosphere are fully parametrised in WRF. Thus, the spin-up time was 

considered only for the atmosphere, which requires a much shorter spin-up period that certainly 

does not exceed two months. 

 

 

f) page 4 lines 19-20: I guess this is hardly true. In areas where no observations are 

available gridded products can be subject to very high uncertainties as inter- and 

extrapolation are required here. 

 

We agree that gridded products can be subject to important uncertainties in areas where there 

is no observation. To avoid misunderstandings, we have modified on page 4 the lines 18 – 20 

as follows: 

 

…The observational gridded data sets provide valuable insights, in particular in areas where 

observations are not possible due to extreme weather conditions or insufficient accessibility, 

such as mountain peaks. However, they also contain some discrepancies and uncertainties, e.g., 

high precipitation intensities are systematically underestimated and low intensities 

overestimated.  … 

 



…The observational gridded data sets provide valuable insights. However, they also contain 

some discrepancies and uncertainties due to inter- and extrapolation methods, e.g., high 

precipitation intensities are systematically underestimated and low intensities overestimated, 

especially in areas where observations are not available … 

 

 

g) page 5 lines 4-9: It remains unclear how these classes are computed. Based on the 

relation of a grid cell to its 8 direct neighbour grid cells? Please clarify. 

 

We thank you for bringing to our attention that this parameter remains unclear. To make it 

clear, we would like to mention that the slope-orientation is obtained by a simple trigonometric 

function using the two variables that are directly calculated by WRF. Namely, we sum two 

vectors: the slope north-south vector and the slope west-east vector, which both come directly 

from WRF. Thus, we have added additional information in the manuscripts follows: 

 

- Page 5 line 8 

 

…< 315). Note that this characteristic is obtained by summing the two slope vectors that 

are directly provided by WRF. Combining … 

 

 

h) page 5 lines 15-17: Which threshold is then used in the present work? 

 

The threshold varies from group to group (or sub-group to sub-group) and from month to 

month. See major point 5. 

 

 

i) page 7 lines 30-32: This explanation seems to be not very likely given the turnaround 

time of atmospheric water vapor (a couple of days only). Water vapor should also frequently 

be resupplied by the boundary forcing of the RCM. Can you back this up by some reference? 

 

We appreciate that you bring this point to the discussion and we agree that the explanation 

needs to be improved. To achieve that, we would first like to mention that the drizzle effect is 

mainly caused by the horizontal resolution and the physics in the model (e.g. Gutowski et al. 

2003; Chen and Dai 2019), and it can be independent of resupplying by the boundary 

conditions. Moreover, we have modified the explanation as follows: 

 

… wet-day frequency may also explain the underestimation of the extreme precipitation (Fig. 

3) as moisture necessary for extreme precipitation events is removed via the drizzle effect … 

 

…wet-day frequency may slightly contribute to the underestimation of the extreme 

precipitation (Fig. 3) as precipitable water necessary for extreme precipitation events is 

removed via the drizzle effect. Namely, the precipitable water available for a daily extreme 

precipitation event may be distributed over several days due to problems in the 

parameterisations of the cloud microphysical and precipitation processes as found in Knist et 

al. (2018). … 

 

 



Chen, Di, and Aiguo Dai. 2019. ‘Precipitation characteristics in the Community Atmosphere 

Model and Their Dependence on Model Physics and Resolution’. Journal of Advances in 

Modeling Earth Systems 11 (7): 2352–74. https://doi.org/10.1029/2018MS001536. 

 

Knist, Sebastian, Klaus Goergen, and Clemens Simmer. 2018. ‘Evaluation and Projected 

Changes of Precipitation Statistics in Convection-Permitting WRF Climate Simulations over 

Central Europe’. Climate Dynamics, February. https://doi.org/10.1007/s00382-018-4147-x. 

 

Gutowski, William J., Steven G. Decker, Rodney A. Donavon, Zaitao Pan, Raymond W. 

Arritt, and Eugene S. Takle. 2003. ‘Temporal–spatial scales of observed and simulated 

precipitation in Central U.S. climate’. Journal of Climate 16 (22): 3841–47. 

https://doi.org/10.1175/1520-0442(2003)016<3841:TSOOAS>2.0.CO;2. 

 

 

j) Figure 1: Why are Italy and Slovenia excluded from the Ext-TF analysis? They are 

part of the APGD dataset. 

 

Italy and Slovenia are excluded from the Ext-TF because of their poor station density covering 

the period 1979 – 2008 compared to the ones we used, especially over a complex topography 

and at high altitudes. This poor density could lead to more uncertainties in the dataset when 

representing the precipitation over complex topography, which could diminish the ability of 

the correction method. Therefore, we have included an explanation about this in the models 

and data section of the revised manuscript.  

 

To clarify this, we show here two figures published in the website of Meteoswiss and in Isotta 

et al. (2014), respectively (Fig R4 and R5). Figure R4 and R5 show the station density used for 

creating the APGD data set. Moreover, Figure R4 presents the altitude of each station and Fig. 

R5 the time-covering fraction of the period 1971–2008 (Isotta et al. 2014). 

 

 
Figure R4. Each point corresponds to a rain-gauge station for which data was available in the the 

spatial analysis. The color is the height (m) of the station. Source: 

https://www.meteoswiss.admin.ch/home/search.subpage.html/en/data/products/2015/alpine-

precipitation.html) 

 
 



 
Figure R5. Distribution of stations from which records of daily precipitation are integrated in APGD 

dataset. Shading represents the fraction of the full period (1971–2008) covered by the respective 

record. (Isotta et al. 2014) 

  

 

k) Figures 4 and 5: Sorry, but it is unclear to me which bias is shown in these two 

figures. Bias of the IQR of daily precipitation amount sin Figure 5? Which intensity in 

Figure 4? Mean wet day intensity? Needs to be better explained. 

 

To clarify that, we have modified the captions of the three Figures as follow: 

 

- Figure 4 

 

Biases of precipitation in terms of intensity over Switzerland. (a) represents the original 

biases in January, (b) the biases after being corrected using Int-TFs in January, (c) the biases 

after being corrected using Ext-TFs in January, (d), (e), and (f) as (a), (b), and (c) but in July, 

respectively. 

 

Biases in the climatological mean value of precipitation intensity over Switzerland. (a) 

represents the original biases in January, (b) the biases after being corrected using Int-TFs in 

January, (c) the biases after being corrected using Ext-TFs in January, (d), (e), and (f) as (a), 

(b), and (c) but in July, respectively. 

 

- Figure 5 

 

Biases of precipitation in terms of interquartile range over Switzerland. (a) represents the 

original biases in January, (b) the biases after being corrected using Int-TFs in January, (c) 

the biases after being corrected using Ext-TFs in January, (d), (e), and (f) as (a), (b), and (c) 

but in July, respectively. 

 

Biases in the interquartile range of monthly mean precipitation intensity over Switzerland. (a) 

represents the original biases in January, (b) the biases after being corrected using Int-TFs in 

January, (c) the biases after being corrected using Ext-TFs in January, (d), (e), and (f) as (a), 

(b), and (c) but in July, respectively. 

 

- Figure 6 

 

Biases of precipitation in terms of wet-day frequency over Switzerland. (a) represents the 

original biases in January, (b) the biases after being corrected using Int-TFs in January, (c) 



the biases after being corrected using Ext-TFs in January, (d), (e), and (f) as (a), (b), and (c) 

but in July, respectively. 

 

Biases in the wet-day frequency within the 30-year period over Switzerland. (a) represents 

the original biases in January, (b) the biases after being corrected using Int-TFs in January, 

(c) the biases after being corrected using Ext-TFs in January, (d), (e), and (f) as (a), (b), and 

(c) but in July, respectively. 

 

 

 

  



Response to Referee #2  

 

 

 

Specific comments:  

 

 

1. The setup for the EMQ is completely unclear. Standard EQM is local, i.e. it would 

apply a different correction for each location for which observations are available, in this 

case for each gridcell of the observational datasets. There is no explanation of how the 

corrections for the subclasses (elevation and slope) are obtained. Are the local corrections 

averaged, or is the precipitation averaged prior to fitting the EQM?  

This is obviously a key aspect of the method and it is surprising that it is not explained.  

The statement that standard bias correction methods do not include the effect of topography 

is wrong, as the observations, which are the basis for the fitting, do include these effects. 

What is presumably meant is that standard bias correction does not include these effects 

explicitly, which means it cannot be applied when the topography changes 

 

RESPONSE:  

 

We agree that the setup of the bias correction remains unclear. Still, we would like to point out 

that one strength of our method is that it is not local (the standard EQM described by the 

reviewer is a bias correction plus statistical downscaling). The simple reason is that a localized 

correction would fail in different states like the Last Glacial Maximum as valleys are filled 

with ice. To make the suggested method clearer, we have modified the manuscript as follows: 

 

- Page 5 lines 31 – 32 

 

…To combine all steps, the EQM is applied to each (sub-) group and each month of the year, 

separately. This results in a set of TFs for each (sub-) group and each month of the year. Thus… 

 

…To combine all steps, the local intensity scaling method and the EQM are applied to each 

(sub-) group defined in the first step and to each month of the year, separately, by pooling all 

grid points that belong to each group and handling them as a single distribution of daily 

precipitation. This results in a set of TFs for each (sub-) group and each month of the year. For 

instance, when the correction is carried out using height-classes of 400 m, a TF is defined for 

each group, resulting in nine TFs for each month and in total 108 TFs throughout the year. 

Moreover, the correction is afterwards applied to the daily precipitation at every grid point 

using the TFs that are common to all elements within the same group (or sub-group) and month. 

Thus… 

 

We also agree that the observational data sets implicitly include effects of topography. Changes 

regarding this point are presented in the following lines of the manuscript: 

 

- Page 2 line 33 

 

…correction methods do not consider orographic features that… 

 

…correction methods only implicitly consider orographic features that… 

 



- Page 3 line 6 

 

…time includes orographic characteristics… 

 

… explicitly combined orographic characteristics… 

 

 

2. As already pointed out by the first reviewer, determining joint bias corrections for the 

subclasses defined by topography and slope only makes sense if the local bias corrections 

within a class are more similar than those between the classes. This needs to be shown 

 

RESPONSE: 

 

We appreciate this comment and we agree that we missed to show clearly enough the 

argumentation for using different classes. As reviewer 1 asked a similar question we present 

there the same answer: We thank the reviewer for bringing up this concern. We agree that the 

main purpose of the correction method might still be a bit unclear and we would like to clarify 

this in more details in the following. With the present study, we would like to obtain a flexible 

correction that can be applied to several different climate states at the same time. To obtain 

this, the correction method should not be constrained to the actual climate too much, this is, 

because circulation changes and atmospheric characteristics may be variable between different 

climates. We agree that a cluster analysis of precipitation and its errors should be applied, so 

that errors can be grouped accordingly and to keep the error within classes as small as possible, 

to obtain an optimal correction result. This has for example been performed by Gomez et al. 

(2018) for Switzerland. The drawback of such a correction for our purpose is that such a cluster 

analysis is always based on the characteristics and circulation of the current climate and this is 

what we would like to avoid as much as possible. To be as much independent from current 

climates as possible and to still provide a correction that still touches upon important 

characteristics in the Alpine climate, we came up with “static” characteristics, i.e. topography 

height and orientation. Both, topography and orientation will remain similar during different 

climate states, even if we are aware of the fact that in any correction the effect of topography 

is implicitly included. Nevertheless, we would like to show here that biases have some 

orographic dependence. To clarify this, we have attached a figure that presents the monthly 

mean biases for each height-class before and after the correction (Fig. R1). Figure R1 illustrates 

an overestimation at high elevations and an underestimation at the lower ones during the colder 

months. Moreover, different levels of underestimation are observed across the height-classes 

during the warmer months. Thus, the splitting into different height-classes is appropriate to be 

used in the bias correction. Moreover, we would like to mention that we explicitly present the 

model biases within two classes in the Fig. 3 (of the manuscript), and implicitly for all the 

height classes in Fig. 4 and 5. Note that the biases within the classes are much smaller than 

between the classes. Therefore, we have included a more balanced discussion about our 

approach in results section of the revised manuscript 

 



 
Figure R6. Mean bias over Switzerland for different height-classes. 

 

 

3. The justification for the intended application is superficial and ignores key problems. 

In turn this means that the justification for the new approach itself is weak. As pointed out 

already by the first reviewer, many things in addition to the topography are different in a 

glacial climate, for instance the large-scale circulation or the moisture content. It is thus 

highly questionable whether applying a bias correction that is based on present climate, even 

if it explicitly accounts for topography, would yield meaningful results.  

This problem is closely related to the distinction of different types of errors and to the issue 

of propagation of GCM errors through dynamical downscaling. There are a few statements 

in the paper that mention that discrepancies of RCM simulations and observations might be 

caused by the driving GCM. However, there is no systematic discussion of what kind of 

errors bias correction could correct in a meaningful way. A discussion of these issues can 

be found for instance in  

Maraun, et al., 2017: Towards process-informed bias correction of climate change 

simulations. Nature Climate Change, 7(11), 764-773  

Maraun and Widmann, 2018: Statistical downscaling and bias correction in climate 

research. Cambridge University Press, ISBN 1107066050  

Eden, J.M., Widmann, M., Grawe, D, and Rast. S., 2012: Reassessing the skill of GCM-

simulated precipitation. J. Climate, 25(11), 3970-3984. 

 

RESPONSE: 

 

We appreciate that the reviewer brings up the point that it might be misleading to what extent 

the presented bias-correction can be applied to other climate states. As already responded to 

reviewer 1, we would like to mention that the danger of correcting biases in a simulated climate 

with a method that has been trained with a climate that does not correspond to the simulated 

one is well-known in the statistical downscaling and correction methods. Statistical 

downscaling and correction methods suffer basically from the assumption of stationary biases, 

which implies that their algorithms trained with today’s climate are considered to be also valid 

for different climate states. Thus, our work aims at presenting a new bias-correction that 

attempts to decrease this danger by using orographic features, which are less likely 

characteristics of the current climate only. Moreover, precipitation biases are not only produced 

by initial and boundary conditions provided by the global climate models, but also by 

parametrisations, physical and numerical formulations that are described in both global and 



regional climate models. The main goal of the presented work is to correct wet or dry biases 

that stem either from global or regional models or both. These biases can be produced by 

parametrisations and numerical formulations, but those that are mainly associated with 

orographic effects, namely, vertical motion leading to precipitation. To clarify this, we 

extended the discussion on the general shortcomings of bias correction methods in the 

conclusion section of the revised manuscript. Note that the presented correction is only 

applicable in regions where the topography is rather complex and where topography has 

certainly an influence on the local atmospheric circulation.   

 

 

4. The fact that EQM leads to correct distributions for the fitting data is trivially true by 

construction. The informative part of the validation of statistical models is related to the 

aspects that are not trivially in agreement with observations. For each aspect of the 

validation it should be discussed to what extent a good skill can be expected by construction. 

For instance, given the unclear setup for fitting and application of the bias correction, it is 

not clear what causes the differences between observed and corrected distributions in Fig.3, 

or the differences in Fig. 4 and Fig. 5.  

Some problems related to the validation of bias correction methods are discussed in  

Maraun, D. and M. Widmann, 2018, ‘Cross-validation of bias-corrected climate simulations 

is misleading’, HESS, 22(9), 4867-4873.  

 

RESPONSE: 

 

We thank the reviewer for this comment and agree that the validation discussion can be 

improved. As noted by Bennett et al. (2014), the importance of cross-validation methods is that 

they can test the ability of bias-correction techniques on a different climate state. However, this 

might not be reasonable as the biases of the other climate state may not remain unchanged and 

the method’s accomplishment relies on the biases caught during the period the method is 

trained on. We also recognise that recent studies by Maraun et al. (2017) and Maraun and 

Widmann (2018) have argued against carrying out a cross-validation for evaluating bias 

corrections. The authors remarked that the observational and simulated data sets do not have a 

synchronised internal climate variability. Thus, this asynchronism in the internal climate 

variability may be one of the sources of the biases in free-running models.  

 

Furthermore, as mentioned by Maraun and Widmann (2018), our cross-validation method does 

not compare the correction to the observations on the validation period (future or past climate 

state), which can produce false positive or true negative results due to internal variability in the 

model or observations, but the method assesses whether the statistical evolution of the model 

is kept.  

 

Moreover, one of the reasons that may explain the remaining difference between the 

observational and the corrected data sets, as mentioned in the manuscript, can be traced back 

to the fact that some height classes sample over regions with slightly different biases. Hence, 

biases of one area could be diminished by the biases that are shared by the other areas. For 

instance, the strong negative biases observed in the Rhone Valley and Ticino are not fully 

corrected because the slight underestimation across the Swiss Plateau dominates the bias in 

this height-class.  

 

Nevertheless, we agree that the evaluation and the argumentation for the remaining biases is 

not discussed clearly enough in the manuscript and that this should be better explained. Thus, 



we have extended the discussion more explicitly in the results and conclusion section of next 

version of the manuscript.  

 

Bennett, James C., Michael R. Grose, Stuart P. Corney, Christopher J. White, Gregory K. Holz, 

Jack J. Katzfey, David A. Post, and Nathaniel L. Bindoff. 2014. ‘Performance of an empirical 

bias-correction of a high-resolution climate dataset’. International Journal of Climatology 34 

(7): 2189–2204. https://doi.org/10.1002/joc.3830. 

 

 

5. It is not clear why the wet-day frequency is adjusted prior to the fitting of the EQM. 

If EQM is applied to the whole distribution including dry days, this adjustment is included 

in the EQM fitting. The justification might be linked to the unexplained details in the fitting 

setup. 

 

RESPONSE: 

 

We thank the reviewer for highlighting this point and recognize that this adjustment may not 

be clear enough. We would like to mention that the adjustment does not mainly focus on the 

wet-day frequency, but the very low intensity values. As clarified already in the answer for 

reviewer 1, we agree that the argumentation for this adjustment can be better explained. To 

make this clear, we would like to mention that, in our study, we use an empirical quantile 

mapping technique (EQM) that differs from the parametric quantile mapping technique (QM). 

The reason of using an EQM is because this technique uses an empirical cumulative 

distribution function and does not fit any parametric distribution to the sample, i.e, (sub-) 

groups, as it is done in the QM. Therefore, we do not assume any known distribution either in 

our data sets or in the possible application to other climate states. However, the results of the 

EQM can become unrealistic if the very low intensity values are not adjusted previously. The 

reason for this is that these values can produce inappropriate TFs due to an important shift in 

the distribution, i.e., the quantiles (Teutschbein and Seibert, 2012; Lafon et al. 2013).  

  

To adjust these very low values, an additional parameter is included in the definition of days 

without precipitation that has been mentioned before in the respond of the second major point 

of reviewer 1. The days without precipitation are not considered for calculating the TFs when 

they fall below a certain threshold. Many studies use a static threshold for entire data set that 

is between 0.01 and 1.00 mm day-1, whereas in our study, we calculate a static threshold for 

each group (or subgroup) and months of the year. This allows to be the consistent with the 

different biases-treatment across the groups (or subgroups) and months of the year. The 

threshold is calculated using the local intensity scaling method and can vary vary in our study 

from 0.001 to 1.00 mm day-1. To clarify this, we have made some changes that are presented in 

the revised manuscript and also in response to the fifth major comment of reviewer 1.  

 

Changes in the manuscript are presented as follows: 

 

-  Page 5 lines 13 – 14 

 

…2010). To correct precipitation with very low-intensity the first part of the local intensity 

scaling method is used (Schmidli et al., 2006). It consists … 

 

…2010), which can distort the precipitation distribution substantially, i.e., shifting the 

quantiles, producing inappropriate corrections in the third step when EQM is applied 



(Teutschbein and Seibert, 2012). To correct precipitation with very low intensity, an additional 

parameter is included in the definition of dry days related with the uncorrected precipitation. 

Dry days are not considered for calculating the TFs when they fall below a certain threshold. 

Many studies use a static threshold for the entire data set which is between 0.01 and 1.00 mm 

day-1 (Piani et al., 2010a; Lafon et al., 2013; Maraun, 2013). We calculate a static threshold for 

each group (or subgroup) and months of the year. This allows to be the consistent with the 

different biases-treatment across the groups (or subgroups) and months of the year. Then, we 

carry out the local intensity scaling method (Schmidli et al., 2006) that is also used by 

Teutschbein and Seibert (2012) before using the quantile mapping technique. This method 

consists … 

 

- Page 5 lines 16 – 17 

 

…The threshold can vary from group to group, but it is often close to or smaller than 1 mm 

day-1 Schmidli et al., 2006). 

 

…In our work, the threshold can vary from group to group and from month to month between 

0.001 and 1 mm day-1 as in Schmidli et al. (2006) … 

 

 

6. Although it is mentioned that the errors in the observations should be taken into 

account when interpreting the results, there is no substantial effort to actually do this. For 

instance, it would be instructive to do a rough correction for the substantial undercatch of 

precipitation falling as snow, which strongly affects the high elevations, and assess to what 

extent the validation results are sensitive to this error.  

 

RESPONSE: 

 

We appreciate this comment. We agree that we missed to show a wider discussion about the 

error in the observational data sets when interpreting the results of the correction method. As 

reviewer 1 asked a similar question we present there the same answer:  As mentioned by (Isotta, 

2014), the gridded observational data sets do not only present errors due to the interpolation 

methods, but they also show errors that may differ in quantity from one to the other station 

(Sevruk, 1985; Richter, 1995) and are related to the “gauge undercatch”, whose magnitudes 

range from 5% over the flatland regions to 30% above 1500 m a.s.l.. Therefore, we have 

included a better discussion of these errors when analysing the correction, which is presented 

in the results discussion part of the revised manuscript.	
	

Sevruk B. 1985. Systematischer Niederschlagmessfehler in der Schweiz. Der Niederschlag in 

der Schweiz, Beitr¨age zur. Geologischen Karte der Schweiz-Hydrologie 31: 65–75. 

 

Richter D. 1995. Ergebnisse methodischer Untersuchungen zur Korrektur des systematischen 

Messfehlers des Hellmann-Niederschlagsmessers. Bericht Deutschen Wetterdienstes 194, 93 

pp. (To be obtained from German Weather Service, Offenbach a.M., Germany.) 

 

 

7. As the realization of internal variability is different the observations and in a free-

running GCM (as opposed to a reanalysis) some differences between observations and 

simulations will be due to internal variability. This effect should be roughly quantified, for 



instance by showing fitting and validating the method for 10 or 15 year sub-periods (which 

would lead to 9 or 4 possible combinations of fitting and validation subperiods).  

 

RESPONSE: 

 

We thank the reviewer for bringing to our attention the approach to quantify the biases that 

may be caused by differences between the internal variability of the observational data set and 

the simulated one. Furthermore, we would like to mention that correction methods are sensitive 

to the period the methods are trained on, and their accuracies would increase as more 

information from the observational data sets is taken into account (Lafon et al., 2013). 

Therefore, since the accuracy of our correction method needs to be kept as high as possible, 

we have carried out the suggestion made by the reviewer by splitting the data sets into two sub-

periods, which is explained and analysed in the following paragraphs. 

 

To quantify any difference that may be caused by using data sets with different internal 

variabilities, we have calculated two additional sets of Int-TFs using the first and last 15 years, 

separately. Note that we avoid shorter periods (like the suggested 10 yrs) as less data is 

available to estimate the TFs. Each set of Int-TFs is then applied to the 30-year simulated 

precipitation over Switzerland, to be comparable with the 30-yr period used so far in the 

manuscript. Thus, we obtain two newly corrected precipitation data sets (15yr-A and 15yr-B, 

respectively) that are compared to the data set that was obtained by the correction trained with 

the 30-year period (30yr). To assess the difference related to colder and warmer months, we 

select, as in the manuscript, two months that mainly represent each period; namely, January 

and July.  

 

Focusing on the biases in the climatological mean value of precipitation intensity, and 

comparing the original biases with the three approaches, we observe that the methods carried 

out with 15yr-A and 15yr-B illustrate a correction similar to the method with 30yr. Namely, 

they reduce the overestimation over high mountain regions during colder months and the 

general underestimation during warmer months. In addition, the regions with remaining biases 

agree with the remaining biases of the correction with 30yr. Still, some differences between 

the 15yr-A and 15yr-B and the method using 30yr are evident:  During January, the method 

using 15yr-A shows a better performance over the high altitudes but not over the flatlands and 

in the Ticino, and inversely, the method using 15yr-B outperforms the latter areas but not over 

the mountains (Fig. R7). During July, the method using 15yr-A outperforms over the flatlands 

and the Ticino but not the high altitudes, and inversely, the method using 15yr-B shows a better 

performance over the latter area but not over the flatlands and in the Ticino (Fig. R8). This 

demonstrates that the method calibrated with the two sub-periods can slightly influence the 

correction method but its effects can be considered minimal when the work by Lafon et al. 

(2013) is taken into account. As described before, Lafon et al. (2013) found that the accuracy 

of the correction methods is sensitive to the period the methods are trained on, which could 

explain some of the remaining biases when using 15yr-A and 15yr-B Therefore, we have 

mentioned this experiment in the results part of the revised manuscript but its figures are not 

shown due to the minimal effects.  

 



 
Figure R7. Biases in the climatological mean value of precipitation intensity in January over Switzerland. (a) 

represents the original biases, (b) the biases after being corrected using Int-TFs obtained from the 30-year 

period, (c) as in (b) but from the first 15-year period, (d) as (c) but the second 15-year period. 

 

 

 
Figure R8. Biases in the climatological mean value of precipitation intensity in July over Switzerland. (a) 

represents the original biases, (b) the biases after being corrected using Int-TFs obtained from the 30-year 

period, (c) and (d) as in (b) but Int-TFs obtained from the first and second 15-year period, respectively. 

 

 

 

Once again, we would like to thank the reviewer for the time invested to review our paper so 

carefully and we are looking forward to meeting the reviewers’ expectations.  

 

Best regards, 

 

Patricio Velasquez  
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A new bias-correction method for precipitation over complex
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Abstract. This work presents a new bias-correction method for precipitation that considers orographic characteristics, which

makes it flexible to be used under highly different climate conditions, e.g., glacial conditions. The new bias-correction and its

performance are presented for Switzerland using a regional climate simulation under perpetual 1990 conditions at 2-km resolu-

tion driven by a simulation performed with a global climate model. Comparing the regional simulations with observations, we

find a strong seasonal and height dependence of the bias in precipitation commonly observed in regional climate modelling over5

complex terrain. Thus, we suggest a 3-step correction method consisting of (i) a separation into different orographic character-

istics, (ii) correction of
✿✿✿

very
✿

low intensity precipitation, and finally (iii) the application of empirical quantile mapping, which is

applied to each month separately. Testing different orographic characteristics shows that separating in 400-m height-intervals

provides the overall most reasonable correction of the biases in precipitation and additionally at the lowest computational costs.

The seasonal precipitation bias induced by the global climate model is fully corrected, whereas some regional biases remain,10

in particular positive biases in winter over mountains and negative biases in winter and summer in deep valleys and Ticino.

The biases over mountains are difficult to judge, as observations over complex terrain are afflicted with uncertainties, which

may be more than 30 % above 1500 m a.s.l. A rigorous cross validation, which trains the correction method with independent

observations from Germany, Austria and France, exhibits a similar performance compared to just using Switzerland as training

and verification region. This illustrates the robustness of the new method. Thus, the new bias-correction provides a flexible tool15

which is suitable in studies where orography strongly changes, e.g., during glacial times.

Copyright statement.

1 Introduction

The hydrological cycle has been
✿✿

is an important component in the Earth’s climate system, because of its capability to transport

and redistribute mass and energy around the world. Changes in the hydrological cycle can on one hand lead to droughts or floods20
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and thus impact the ecosystem services, but it has also been shown that it plays an important role in shaping the Earth’s climate

history (Mayewski et al., 2004). The latter is because the hydrological cycle shows a strong response to different external

forcing functions and to changes in atmospheric compositions (Ganopolski and Calov, 2011; Stocker et al., 2013). Namely,

hydrology and water resources are strongly influenced by changes in precipitation patterns (Stocker et al., 2013; Raible et al.,

2016). In consequence of this, important modelling tools have been developed, e.g., global atmospheric climate models and5

hydrological models. These offer valuable information to improve the understanding of the Earth’s system responses and

feedbacks to internal and external forcings on time scales longer than some centuries (e.g., Xu, 2000; Andréasson et al., 2004;

Xu et al., 2005; Fowler et al., 2007a; Yang et al., 2010; Chen et al., 2012).

Still, uncertainties remain, in particular in the hydrological cycle, as not all relevant processes are explicitly simulated by

the models (e.g., Ban et al., 2014; Giorgi et al., 2016). This is especially true for global models, which still have a relatively10

✿✿✿✿

have
✿

a
✿✿✿✿✿✿✿✿✿✿

comparably
✿

coarse spatial resolution. Hence, most processes governing regional- to local-scale precipitation are not

resolved yet and need to be parameterised (Leung et al., 2003; Su et al., 2012), resulting in a strong parameter dependence

when simulating regional-scale precipitation (Rougier et al., 2009).

To avoid
✿✿

To
✿✿✿✿✿✿✿✿✿

overcome some of the uncertainties, regional climate models (RCMs) are used to dynamically
✿✿✿✿✿✿

further downscale

global climate models . Still, precipitation patterns
✿✿✿✿✿✿✿✿✿✿

dynamically.
✿✿✿✿✿

Many
✿✿✿✿✿

RCM
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿

are
✿✿✿✿✿✿

carried
✿✿✿

out
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿✿✿✿✿

framework15

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

Coordinated
✿✿✿✿✿✿✿

Regional
✿✿✿✿✿✿✿✿✿✿✿

Downscaling
✿✿✿✿✿✿✿✿✿✿

Experiment
✿✿✿✿✿✿✿✿✿✿✿

(CORDEX),
✿✿✿✿✿

which
✿✿✿✿✿✿

defines
✿✿✿

one
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

premier
✿✿✿✿✿

goals
✿✿

to
✿✿✿✿✿

better
✿✿✿✿✿✿✿✿✿

understand

✿✿✿✿✿✿

relevant
✿✿✿✿✿✿✿✿✿✿

phenomena
✿✿

at
✿✿✿✿

finer
✿✿✿✿✿✿

scales
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Moss et al., 2010)
✿

.
✿✿✿✿

Even
✿✿✿✿✿✿

though
✿✿✿✿✿✿✿

regional
✿✿✿✿✿✿✿

climate
✿✿✿✿✿✿

models
✿✿✿

can
✿✿✿✿✿

solve
✿✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿✿✿✿

equations

✿✿

on
✿✿

a
✿✿✿✿✿

much
✿✿✿✿

finer
✿✿✿✿✿

scale
✿✿✿✿

than
✿✿✿✿✿✿

global
✿✿✿✿✿✿✿

models,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

simulated
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿

patterns
✿✿✿✿

still
✿✿✿✿✿

show
✿✿✿✿

large
✿✿✿✿✿✿

biases
✿

for present day cli-

mate show large biases when comparing them to observations, as .
✿✿✿✿✿

This
✿✿✿

has
✿✿✿

for
✿✿✿✿✿✿✿

example
✿✿✿✿✿

been illustrated by the simulations

performed by , e. g., the Coordinated Regional Downscaling Experiment (CORDEX) (e.g., Rajczak and Schär, 2017). The20

biases are mainly related to the
✿✿✿✿✿✿✿✿

CORDEX
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿✿✿✿

analysed
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Casanueva et al. (2016); Rajczak and Schär (2017).
✿✿✿✿✿✿

These

✿✿✿✿✿

biases
✿✿✿

are
✿✿✿

not
✿✿✿✿✿

only
✿✿✿✿✿✿✿✿

produced
✿✿✿

by
✿✿✿✿✿

initial
✿✿✿✿

and
✿✿✿✿✿✿✿✿

boundary
✿✿✿✿✿✿✿✿✿

conditions
✿✿✿✿✿✿✿✿

provided
✿✿✿

by
✿✿✿✿✿✿✿

GCMs,
✿✿✿

but
✿✿✿✿

they
✿✿✿

are
✿✿✿✿

also
✿✿✿✿✿✿✿

related
✿✿

to
✿✿✿✿✿✿✿

regions

✿✿✿✿✿✿✿✿✿✿✿

characterized
✿✿

by
✿✿✿✿✿✿✿✿

complex
✿✿✿✿✿✿✿✿✿

topography
✿✿✿✿

and
✿✿

to processes that correspond to a finer scaleand are still insufficiently described due

to the model resolution (Boer, 1993; Zhang and McFarlane, 1995; Fu, 1996; Yang et al., 2013)
✿

,
✿✿✿✿

such
✿✿✿

as
✿✿✿✿✿

cloud
✿✿✿✿✿✿✿✿✿✿✿✿

microphysical

✿✿✿✿✿✿✿✿

processes.
✿✿✿✿✿

These
✿✿✿✿✿✿✿✿✿

processes
✿✿✿✿

need
✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿✿✿✿

parameterised
✿✿

as
✿✿✿✿

they
✿✿✿✿✿✿

cannot
✿✿

be
✿✿✿✿✿✿✿✿

explicitly
✿✿✿✿✿✿✿

resolved
✿✿✿✿✿✿✿

because
✿✿

of
✿✿✿

the
✿✿✿✿✿

RCM
✿✿✿✿✿✿✿✿✿

resolution
✿✿✿✿

used25

✿✿

in
✿✿✿✿✿✿✿✿

CORDEX
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Boer, 1993; Zhang and McFarlane, 1995; Fu, 1996; Haslinger et al., 2013; Yang et al., 2013; Warrach-Sagi et al., 2013; Maraun

. To overcome these shortcomings, RCMs are run to
✿✿✿

need
✿✿

to
✿✿✿

be
✿✿✿

run
✿✿

at
✿

a
✿✿✿✿✿✿✿✿✿

resolution
✿✿✿✿✿

where
✿✿✿✿

they
✿✿✿

can explicitly resolve some of the

relevant processes, e.g. convection (e.g., Giorgi et al., 2016; Messmer et al., 2017). Even though the convection-resolving RCMs

can describe precipitation much more precisely, biases are still evident (e.g., Ban et al., 2014; Gómez-Navarro et al., 2018).

Hence, one important problem in regional climate modelling is that precipitation is simulated more frequently than observed but30

for most of the RCMs with a weaker intensity (Murphy, 1999; Fowler et al., 2007b; Maraun, 2013). A second problem is that

the precipitation is still biased over complex topography by most of the RCMs, even though they are carried out with a higher

resolution than the GCMs (Haslinger et al., 2013; Warrach-Sagi et al., 2013; Maraun and Widmann, 2015; Hui et al., 2016). These

inconsistencies and uncertainties impact, e.g., the results obtained through hydrological and glacier modelling that follow next

in the modelling chain (Allen and Ingram, 2002; Seguinot et al., 2014).35
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Some climate change studies try to correct parts of these errors in precipitation patterns and amounts
✿✿✿✿✿✿✿✿

intensities
✿

by so-

called bias-correction methods (Maraun et al., 2010). So far, several correction methods are suggested in the literature, e.g.,

linear scaling, local intensity scaling, or power transformation (e.g., Berg et al., 2012; Fang et al., 2015; Lafon et al., 2013).

Another important bias-correction method is the empirical quantile mapping (EQM) known as one of the best techniques to

correct the precipitation biases (e.g., Lafon et al., 2013; Teutschbein and Seibert, 2013; Teng et al., 2015)
✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿

biases5

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g., Lafon et al., 2013; Teutschbein and Seibert, 2012, 2013; Teng et al., 2015). All these methods have in common that
✿✿✿✿✿

suffer

✿✿✿✿✿✿✿

basically
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assumption
✿✿

of
✿✿✿✿✿✿✿✿✿

stationary
✿✿✿✿✿

biases
✿✿✿✿✿✿✿

because
✿✿✿✿

they
✿✿✿✿

are
✿✿✿✿✿✿

trained
✿✿✿✿

with
✿✿

a
✿✿✿✿✿✿

climate
✿✿✿✿

that
✿✿✿✿

does
✿✿✿✿

not
✿✿✿✿✿✿✿✿✿

correspond
✿✿✿

to
✿✿✿

the

✿✿✿✿✿✿✿✿

simulated
✿✿✿✿✿✿

climate
✿✿✿✿

that
✿✿

is
✿✿✿✿✿✿✿✿✿

afterwards
✿✿✿✿✿✿✿✿✿✿✿✿

bias-corrected.
✿✿✿✿✿✿✿✿

Namely, statistical relationships between observations and model output

are used to estimate transfer functions in the observed period and are then applied to different climate states, e.g., past and

future climate change scenarios. Besides the strong
✿✿

For
✿✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿

reviews
✿✿

of
✿✿✿✿

bias
✿✿✿✿✿✿✿✿

correction
✿✿✿✿✿✿✿✿

methods
✿✿✿

see
✿✿✿✿✿✿✿✿✿✿✿✿✿

Maraun (2016)
✿✿✿

and10

✿✿

the
✿✿✿✿✿

book
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Maraun and Widmann (2018)
✿

.
✿✿✿✿✿✿✿

Besides
✿✿✿

the assumption of stationarity of the transfer functions, these correction

methods do not
✿✿✿✿

only
✿✿✿✿✿✿✿✿

implicitly
✿

consider orographic features that strongly affect precipitation and its biases (e.g., Piani et al.,

2010b; Amengual et al., 2011; Berg et al., 2012; Chen et al., 2013; Cannon et al., 2015; Fang et al., 2015). Hence, the applica-

bility to a different climate state may not be justified for climate states where orography has strongly changed, e.g., during
✿✿

of

✿✿✿

bias
✿✿✿✿✿✿✿✿✿✿

corrections
✿✿

to
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿

climate
✿✿✿✿✿

states
✿✿✿✿

such
✿✿

as
✿

the Last Glacial Maximum (LGM) where the European Alps were covered15

with an icecap (Kleman et al., 2013; Ludwig et al., 2019)
✿✿✿✿

may
✿✿✿

not
✿✿✿

be
✿✿✿✿✿✿✿

justified
✿✿✿✿✿✿✿

because
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

before
✿✿✿✿✿✿✿✿✿

mentioned
✿✿✿✿✿✿✿✿✿✿✿

assumptions

✿✿✿

and
✿✿✿✿✿✿✿✿✿

limitations.

This calls for a flexible method , which is able to correct biases also for highly different climatestates
✿✿✿

that
✿✿✿

can
✿✿✿✿✿✿✿✿

decrease

✿✿

the
✿✿✿✿✿✿

danger
✿✿✿

of
✿✿✿✿✿✿✿✿

assuming
✿✿✿✿✿✿✿✿

stationary
✿✿✿✿✿✿

biases
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿

correcting
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿

errors.
✿✿✿

One
✿✿✿✿✿✿✿✿✿

possibility
✿✿

is
✿✿

to
✿✿✿✿✿

apply
✿✿

a
✿✿✿✿✿✿

cluster
✿✿✿✿✿✿✿

analysis
✿✿

to

✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿

and
✿✿

its
✿✿✿✿✿

biases
✿✿

to
✿✿✿✿✿✿✿

identify
✿✿✿✿✿✿

classes
✿✿✿✿

with
✿✿✿✿✿✿

similar
✿✿✿✿

bias
✿✿✿✿✿✿✿✿✿

behaviour.
✿✿✿

An
✿✿✿✿✿✿✿

example
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

Switzerland
✿✿

of
✿✿✿✿✿

such
✿✿

an
✿✿✿✿✿✿✿✿

approach
✿✿

is20

✿✿✿✿✿✿✿✿

presented
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Gómez-Navarro et al. (2018).
✿✿✿✿

The
✿✿✿✿✿✿✿✿

drawback
✿✿

of
✿✿✿✿✿

such
✿✿

an
✿✿✿✿✿✿✿✿

approach
✿✿✿

for
✿✿✿

our
✿✿✿✿✿✿✿

purpose
✿✿

is
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿

cluster
✿✿✿✿✿✿✿

analysis
✿✿✿✿

still

✿✿✿✿

relies
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

characteristics
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

circulation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

current
✿✿✿✿✿✿

climate. Thus, the purpose of this study is to fill this gap and develop a

✿✿

to
✿✿

be
✿✿

as
✿✿✿✿✿

much
✿✿✿✿✿✿✿✿✿✿

independent
✿✿✿✿✿

from
✿✿✿✿✿✿

current
✿✿✿✿✿✿✿

climates
✿✿

as
✿✿✿✿✿✿✿

possible
✿✿✿

and
✿✿

to
✿✿✿✿✿✿✿

provide
✿

a
✿✿✿✿✿✿✿✿✿

correction
✿✿✿

that
✿✿✿✿✿✿✿✿

includes
✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿✿✿✿✿✿

characteristics

✿✿

of
✿✿✿

the
✿✿✿✿✿

Alpine
✿✿✿✿✿✿✿

climate,
✿✿✿

we
✿✿✿✿✿

came
✿✿

up
✿✿✿✿

with
✿✿✿✿✿✿✿

“static”
✿✿✿✿✿✿✿✿✿✿✿✿

characteristics,
✿✿✿

i.e.
✿✿✿✿✿✿✿✿✿

topography
✿✿✿✿✿✿

height
✿✿✿

and
✿✿✿✿✿

slope
✿✿✿✿✿✿✿✿✿

orientation
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assumption

✿✿✿

that
✿✿✿✿✿✿✿✿✿✿✿

relationships
✿✿

to
✿✿✿✿

these
✿✿✿✿✿

static
✿✿✿✿✿✿✿✿✿✿✿✿

characteristics
✿✿✿✿✿✿

remain
✿✿✿✿✿✿✿✿✿

unchanged
✿✿

in
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿

climate
✿✿✿✿✿

states.
✿✿✿✿✿

Thus,
✿✿✿

our
✿✿✿✿✿

work
✿✿✿✿

aims
✿✿

at
✿✿✿✿✿✿✿✿✿

presenting25

✿

a new bias-correction method for RCMs
✿✿✿

that
✿✿✿✿

fills
✿✿✿

this
✿✿✿

gap
✿✿✿

by
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿✿

orographic
✿✿✿✿✿✿✿

features
✿✿

as
✿✿✿✿✿✿✿✿

variables
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

correction.
✿✿✿✿

Such
✿✿

a

✿✿✿✿✿✿✿✿

correction
✿✿✿✿✿✿

avoids
✿✿✿

the
✿✿✿✿✿

usage
✿✿

of
✿✿✿✿✿✿

current
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿✿✿✿✿✿

circulation,
✿✿✿✿✿

which
✿✿✿✿✿✿

makes
✿✿✿

the
✿✿✿✿✿✿✿✿

technique
✿✿✿✿✿

better
✿

applicable to highly different

climate states. The new method is based on EQM (Lafon et al., 2013; Teutschbein and Seibert, 2013; Teng et al., 2015) and at

the same time includes orographic characteristics.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Lafon et al., 2013; Teutschbein and Seibert, 2012, 2013; Teng et al., 2015)

✿✿✿✿✿✿✿✿

explicitly
✿✿✿✿✿✿✿✿

combined
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

orographic
✿✿✿✿✿✿✿✿✿✿✿✿

characteristics,
✿✿✿

and
✿✿✿✿✿✿✿✿

attempts
✿

to
✿✿✿✿✿✿

correct
✿✿✿✿

wet
✿✿

or
✿✿✿

dry
✿✿✿✿✿

biases
✿✿✿

that
✿✿✿

are
✿✿✿✿✿✿✿✿✿

introduced
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

parameterisations30

✿✿✿

and
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿✿✿✿✿

formulations
✿✿

in
✿✿✿✿✿✿

either
✿✿✿✿✿

global
✿✿

or
✿✿✿✿✿✿✿✿

regional
✿✿✿✿✿✿

models
✿✿

or
✿✿✿✿✿

both.
✿✿✿✿✿

Such
✿✿✿✿✿

biases
✿✿✿✿✿✿

include
✿✿✿✿✿✿✿✿✿

especially
✿✿✿✿✿

those
✿✿✿✿

that
✿✿✿

are
✿✿✿✿✿✿

mainly

✿✿✿✿✿✿✿✿

associated
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿

orographic
✿✿✿✿✿✿

effects,
✿✿✿✿✿✿✿

namely,
✿✿✿✿✿✿✿

vertical
✿✿✿✿✿✿

motion
✿✿✿✿✿✿✿

leading
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿

precipitation.
✿

The data to be corrected stems from a

present day climate simulation performed with the high-resolution RCM Weather Research and Forecasting (WRF) model

(Skamarock and Klemp, 2008) that is driven by a simulation under perpetual 1990 conditions using the Community Climate

System Model version 4 (CCSM4, Gent et al., 2011). To estimate the transfer functions of the EQM we use two observation35
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data sets, separately; one for Switzerland (MeteoSwiss, 2013) and one for the Alpine region (Isotta et al., 2014). The focus of

the presented study is on the method itself and its evaluation over the Alps.

The paper is structured as follows. Section 2 describes the models and data sets used to construct the method. Section 3

presents the new bias-correction method. Section 4 evaluates the new method. Finally, conclusive remarks are given in Sect. 5.

2 Model
✿✿✿✿✿✿

Models
✿

and data5

The global climate simulation is performed with the Community Climate System Model (version 4; CCSM4; Gent et al.,

2011). The model’s atmospheric component is calculated by the Community Atmosphere Model version 4 (CAM4, Neale

et al., 2010) and the land component by the Community Land Model version 4 (CLM4, Oleson et al., 2010). We only use these

two components and so-called data models are used for the ocean and sea ice, i.e., the atmospheric component is forced by

time-varying sea surface temperatures and sea ice cover obtained from a coarser resolved fully coupled 1990 AD simulation10

with CCSM3 (Hofer et al., 2012a). The atmosphere land-only model was run with a horizontal resolution of 1.25◦ × 0.9◦

(longitude × latitude) and with 26 vertical hybrid sigma-pressure levels. The global climate simulation covers 31 years using

perpetual 1990 AD conditions, i.e., the orbital forcing and atmospheric composition (Table 1). The time resolution of the output

is 6-hourly. More detailed information on this simulation and its setting
✿✿✿✿✿✿

settings
✿

are presented in Hofer et al. (2012a, b) and

Merz et al. (2013, 2014a, b, 2015).15

To investigate the climate over central Europe and in particular over Switzerland in more detail, an RCM is used for the

dynamical downscaling. Note that Switzerland is only covered by 12 grid points and the Alps are represented with a maximum

height of approximately 1400 m a.s.l. in CCSM4. As RCM, we use the WRF version 3.8.1 (Skamarock and Klemp, 2008). The

model is set up with four two-way nested domains with a nest ratio of 1:3. The domains have a horizontal resolution of 56, 18, 6

and 2 km, respectively, and 40 vertical eta levels. The outermost domain includes an extended westward and northward area that20

takes as midpoint the Alpine region, which allows to capture the influence of the North Atlantic and Scandinavia on the central

European and Alpine climate (Fig. 1a). Moreover, the innermost domain focusses on the Alpine region. The fine resolution of

2 km over this area is important as it covers a highly complex terrain. The resolution in the two innermost domains permits the

explicit resolution of convective processes, thus, the parameterisation for convection can be switched off in these two domains.

Convection permitting model resolutions are preferred as
✿

in
✿✿✿✿✿✿

general
✿✿✿✿✿✿✿✿

preferred
✿✿

as
✿✿✿✿✿

many recent studies show a better performance25

in simulating precipitation (e.g., Ban et al., 2014; Prein et al., 2015).
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g., Ban et al., 2014; Prein et al., 2015; Kendon et al., 2017; Berthou

✿

.
✿✿✿✿✿✿✿✿

However,
✿✿

we
✿✿✿✿✿

shall
✿✿✿✿

keep
✿✿

in
✿✿✿✿✿

mind
✿✿✿

that
✿✿✿✿✿

some
✿✿✿✿✿

biases
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿

and
✿✿✿✿✿

cloud
✿✿✿✿✿✿✿✿

formation
✿✿✿✿

may
✿✿✿

be
✿✿✿✿✿✿✿✿

produced
✿✿

by
✿✿✿✿

this
✿✿

set
✿✿✿

up,
✿✿✿✿✿✿

which

✿✿✿

may
✿✿✿✿

lead
✿✿

to
✿✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿

biases
✿✿✿

in
✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿

as
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ban et al. (2014)
✿

. The relevant parameterisation schemes chosen to

run WRF
✿✿✿✿

with are listed in Table 2.

WRF is driven by the global simulation and is run for 30 years using perpetual 1990
✿✿✿

AD conditions (Table 1). Note that the30

RCM is not nudged to the global simulation. The simulation is
✿✿✿✿✿✿

30-years
✿✿✿✿✿✿✿✿✿

simulation
✿✿

is
✿✿✿✿

split
✿✿

up
✿✿✿✿

into
✿✿✿

ten
✿✿✿✿✿

single
✿✿✿✿✿✿

3-years
✿✿✿✿✿✿✿✿✿✿

simulations

✿✿✿

and
✿

carried out with adapting
✿✿✿✿✿✿✿

adaptive
✿

time-step in order to increase the throughput on the available computer facilities.

Furthermore, the 30-years simulation is split up into ten single 3-years simulations that have a spin-up of 2-months each
✿✿✿✿✿✿

spin-up
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✿✿✿✿

time
✿✿

is
✿✿✿✿✿✿✿✿✿

considered
✿✿✿

for
✿✿✿✿

each
✿✿✿✿✿✿✿

3-years
✿✿✿✿✿✿✿✿✿

simulation
✿✿✿✿✿✿✿

because
✿✿✿✿✿

WRF
✿✿✿✿

has
✿✿✿✿

only
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿✿✿✿✿✿

component
✿✿✿✿

and
✿✿

its
✿✿✿✿✿✿✿✿✿

interaction
✿✿✿✿✿

with

✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿

variables,
✿✿✿✿

e.g.,
✿✿✿

ice
✿✿✿✿✿

cover
✿✿✿

and
✿✿✿✿

soil,
✿✿

is
✿✿✿✿

fully
✿✿✿✿✿✿✿✿✿✿✿✿

parametrised.
✿✿✿✿

Note
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿

variables
✿✿✿

are
✿✿✿✿✿✿✿✿

provided
✿✿

by
✿✿✿

the
✿✿✿✿✿

GCM
✿✿✿✿

and

✿✿✿

they
✿✿✿

are
✿✿

in
✿✿✿✿✿✿✿✿✿✿

equilibrium.

Two gridded observational data sets for daily precipitation are used: daily precipitation RhiresD (MeteoSwiss, 2013) and

the Alpine Precipitation Grid Dataset (APGD; Isotta et al., 2014). Both data sets cover more than 35 years. In this study,5

we use only the 30-years period 1979–2008. The RhiresD has a spatial resolution of approximately 2 × 2 km and cov-

ers only Switzerland (MeteoSwiss, 2013). This data set is based on rain gauge measurements distributed across Switzer-

land (for more details see, Isotta et al., 2014; Güttler et al., 2015)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(for more details see; Isotta et al., 2014; Güttler et al., 2015).

These point measurements are spatially interpolated to obtain a gridded data set, which is described in more detail in Frei

and Schär (1998), Shepard (1984) and Schwarb et al. (2001). The APGD encompasses the entire Alpine region with a spatial10

resolution of 5 × 5 km (Isotta et al., 2014).
✿✿✿

For
✿✿✿

our
✿✿✿✿✿✿✿

analysis,
✿✿✿

the
✿✿✿✿✿✿

Alpine
✿✿✿✿✿

areas
✿✿

of
✿✿✿✿✿

Italy
✿✿✿

and
✿✿✿✿✿✿✿✿

Slovenia
✿✿✿

are
✿✿✿✿✿✿✿✿

excluded
✿✿✿✿✿✿

because
✿✿✿

of

✿✿✿✿

their
✿✿✿✿

poor
✿✿✿✿✿✿

station
✿✿✿✿✿✿

density
✿✿✿✿✿✿✿✿

covering
✿✿✿

the
✿✿✿✿✿✿

period
✿✿✿✿

1979
✿✿

–
✿✿✿✿

2008
✿✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿✿✿✿✿✿

RhiresD,
✿✿✿✿✿✿✿✿

especially
✿✿✿✿✿

over
✿

a
✿✿✿✿✿✿✿✿

complex
✿✿✿✿✿✿✿✿✿

topography
✿✿✿✿

and

✿

at
✿✿✿✿✿

high
✿✿✿✿✿✿✿

altitudes.
✿

It was developed in the framework of EURO4M (European Reanalysis and Observations for Monitoring) by

using a distance-angular weighting scheme that integrates climatological precipitation using the local orography and the rain

gauge measurements (Isotta et al., 2014).
✿✿✿✿

Note
✿✿✿

that
✿✿✿

all
✿✿✿

data
✿✿✿✿

sets
✿✿✿✿✿✿✿

consider
✿✿✿✿

daily
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿

as
✿✿✿✿

total
✿✿✿✿✿✿✿✿✿✿✿

precipitation,
✿✿✿

i.e.,
✿✿✿✿

both
✿✿✿✿✿

solid15

✿✿✿

and
✿✿✿✿✿

liquid
✿✿✿✿✿✿✿✿✿✿✿

precipitation,
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

convective
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿

non-convective
✿✿✿✿✿✿✿✿✿✿✿

precipitation.
✿✿✿✿✿✿✿✿✿

Moreover,
✿✿✿✿

days
✿✿✿✿✿✿✿

without
✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿

are
✿✿✿✿✿✿

treated
✿✿✿

as

✿✿✿✿✿✿✿

censored
✿✿✿✿✿✿

values,
✿✿✿✿

i.e.,
✿✿✿

not
✿✿✿✿✿✿✿✿✿

considered
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

analysis,
✿✿✿✿

when
✿✿✿✿✿

daily
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿

is
✿✿✿✿

equal
✿✿✿

to
✿

0
✿✿✿✿

mm
✿✿✿✿✿✿

day−1,
✿✿✿✿✿✿✿

although
✿✿✿

in
✿✿✿

the
✿✿✿✿

case
✿✿

of

✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿

this
✿✿

is
✿✿✿✿✿✿✿✿✿

equivalent
✿✿

to
✿✿✿

0.1
✿✿✿✿

mm
✿✿✿✿✿

day−1

✿✿✿✿

due
✿✿

to
✿✿✿✿✿

gauge
✿✿✿✿✿✿✿✿

precision.
✿

The observational gridded data sets provide valuable insights, in particular in areas where observations are not possible

due to extreme weather conditions or insufficient accessibility, such as mountain peaks. However, they also contain some20

discrepancies and uncertainties
✿✿✿

due
✿✿

to
✿✿✿✿✿

inter-
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

extrapolation
✿✿✿✿✿✿✿✿

methods, e.g., high precipitation intensities are systematically

underestimated and low intensities overestimated. ,
✿✿✿✿✿✿✿✿✿

especially
✿✿

in
✿✿✿✿

areas
✿✿✿✿✿

where
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿✿

available,
✿✿

i.e.
✿✿✿

on
✿✿✿✿

high
✿✿✿✿✿✿✿

elevated

✿✿✿✿✿

areas,
✿✿✿✿

such
✿✿

as
✿✿✿✿✿✿✿✿

mountain
✿✿✿✿✿✿

peaks. The magnitude of these errors depends on the season and the altitude. In regions above 1500

m a.s.l., the error can reach higher values than 30 % because of an undercatch
✿

a
✿✿✿✿✿✿

“gauge
✿✿✿✿✿✿✿✿✿✿

undercatch”
✿

induced by strong winds

and the interpolation method
✿✿✿✿✿✿

applied
✿✿✿✿✿✿✿✿✿✿✿

interpolation
✿✿✿✿✿✿✿

method
✿✿✿✿✿✿

carried
✿✿✿

out
✿✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

distance-angular
✿✿✿✿✿✿✿✿✿

weighting
✿✿✿✿✿✿✿

scheme (Frei and25

Schär, 1998; Nešpor and Sevruk, 1999; Auer et al., 2001; Ungersböck et al., 2001; Schmidli et al., 2002; Frei et al., 2003;

MeteoSwiss, 2013; Isotta et al., 2014). Note that the limitations of the observational data sets are not included in the analysis

of this study, i.e., we consider the observational gridded data sets as truth. Nevertheless, one shall keep the limitations of the

observational data in mind, in particular when discussing the remaining biases in areas and seasons where the observational

data sets also have problems.30

For the analysis, in particular the comparison between the observational and simulated data, a bilinear interpolation method

is used to convert the original grid of WRF into the corresponding one of the observational data sets.
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3 Bias correction

The correction method, developed in this study, consists of three steps: (i) separation with respect to different orographic

characteristics, (ii) adjustment of low-intensity daily precipitation, and (iii) application of the EQM. Each of these three steps

are
✿

is
✿

described in more detail in the following paragraphs.

In a first step, three orographic characteristics are used to separate the region of interest into several groups. These char-5

acteristics are height, slope-orientations, and a combination of both. The height ranges from circa 200 m a.s.l. to a maximal

value of 3.800 m a.s.l. over the area of interest. Thus, the groups are selected by height-intervals, which cover the range

from 400 to 3.200 m a.s.l. Two height intervals are tested separately: 100 or 400 m (e.g., height-intervals of 400 m are

shown in Fig. 1c). The heights below 400 and above 3.200 m a.s.l. are considered as two additional height-intervals. The

second characteristic, used to group the region of interest, are four slope-orientations: north ( 315◦ ≤ slope-orientation < 45◦),10

east (45◦ ≤ slope-orientation < 135◦), south (135◦ ≤ slope-orientation < 225◦) and west (225◦ ≤ slope-orientations < 315◦).

✿✿✿✿

Note
✿✿✿

that
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿✿✿

characteristic
✿✿

is
✿✿✿✿✿✿✿

obtained
✿✿✿

by
✿✿✿✿✿✿✿✿

summing
✿✿✿

the
✿✿✿

two
✿✿✿✿✿

slope
✿✿✿✿✿✿

vectors
✿✿✿✿

that
✿✿✿

are
✿✿✿✿✿✿✿

directly
✿✿✿✿✿✿✿

provided
✿✿✿

by
✿✿✿

the
✿✿✿✿✿

RCM.
✿

Combining

both characteristics, the groups are selected by height-intervals and then separated into sub-groups by the slope-orientations.

In a second step, we correct the daily simulated precipitation with very low-intensity in each group (or sub-group) and each

month of the year, separately. The reason for this is that the frequency of precipitation with very low-intensity is often strongly15

overestimated due to the drizzle effect produced by the RCM (Murphy, 1999; Fowler et al., 2007b; Maraun et al., 2010).
✿

,

✿✿✿✿✿

which
✿✿✿

can
✿✿✿✿✿✿

distort
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿✿✿✿✿✿✿✿✿

substantially,
✿✿✿✿

i.e.,
✿✿✿✿✿✿

shifting
✿✿✿✿

the
✿✿✿✿✿✿✿✿

quantiles,
✿✿✿✿✿✿✿✿✿

producing
✿✿✿✿✿✿✿✿✿✿✿

inappropriate
✿✿✿✿✿✿✿✿✿✿

corrections

✿✿

in
✿✿✿

the
✿✿✿✿

third
✿✿✿✿

step
✿✿✿✿✿

when
✿✿✿✿✿

EQM
✿✿

is
✿✿✿✿✿✿

applied
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Teutschbein and Seibert, 2012; Lafon et al., 2013)
✿

.
✿

To correct precipitation with very

low-intensitythe first part of the ,
✿✿✿

an
✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿✿✿

parameter
✿✿

is
✿✿✿✿✿✿✿

included
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

definition
✿✿

of
✿✿✿✿

dry
✿✿✿✿

days
✿✿✿✿✿✿

related
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

uncorrected

✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿

that
✿

is
✿✿✿✿✿✿✿✿

described
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

section
✿✿

of
✿✿✿✿✿✿

model
✿✿✿

and
✿✿✿✿

data
✿✿✿✿✿✿

before.
✿✿✿✿

Dry
✿✿✿✿

days
✿✿✿

are
✿✿

not
✿✿✿✿✿✿✿✿✿✿

considered
✿✿

for
✿✿✿✿✿✿✿✿✿✿

calculating
✿✿

the
✿✿✿✿

TFs
✿✿✿✿✿

when20

✿✿✿

they
✿✿✿✿

fall
✿✿✿✿✿

below
✿

a
✿✿✿✿✿✿

certain
✿✿✿✿✿✿✿✿✿

threshold.
✿✿✿✿✿

Many
✿✿✿✿✿✿

studies
✿✿✿✿

use
✿

a
✿✿✿✿✿

static
✿✿✿✿✿✿✿✿

threshold
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

entire
✿✿✿✿

data
✿✿✿

set
✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿✿

between
✿✿✿✿

0.01
✿✿✿✿

and
✿✿✿✿

1.00

✿✿✿

mm
✿✿✿✿✿✿

day−1

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Piani et al., 2010a; Lafon et al., 2013; Maraun, 2013)
✿

.
✿✿✿

We
✿✿✿✿✿✿✿

calculate
✿✿

a
✿✿✿✿

static
✿✿✿✿✿✿✿✿

threshold
✿✿✿

for
✿✿✿✿

each
✿✿✿✿✿

group
✿✿✿

(or
✿✿✿✿✿✿✿✿✿

subgroup)

✿✿✿

and
✿✿✿✿✿✿

months
✿✿✿

of
✿✿✿

the
✿✿✿✿

year.
✿✿✿✿

This
✿✿✿✿✿✿

allows
✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿

consistent
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿✿✿✿✿

biases-treatment
✿✿✿✿✿✿

across
✿✿✿

the
✿✿✿✿✿✿

groups
✿✿✿

(or
✿✿✿✿✿✿✿✿✿

subgroups)
✿✿✿✿

and

✿✿✿✿✿✿

months
✿✿

of
✿✿✿

the
✿✿✿✿

year.
✿✿✿✿✿

Then,
✿✿✿

we
✿✿✿✿✿

carry
✿✿✿

out
✿✿✿

the local intensity scaling method is used (Schmidli et al., 2006). It consists of deleting

precipitation values that
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Schmidli et al., 2006)
✿✿✿

that
✿✿

is
✿✿✿

also
✿✿✿✿✿

used
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Teutschbein and Seibert (2012)
✿✿✿✿✿✿

before
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿

quantile25

✿✿✿✿✿✿✿

mapping
✿✿✿✿✿✿✿✿✿

technique.
✿✿✿✿

This
✿✿✿✿✿✿

method
✿✿✿✿✿✿✿

consists
✿✿

of
✿✿✿✿✿✿✿✿

censoring
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿

values
✿✿✿

by
✿✿✿✿✿✿

setting
✿✿✿✿

them
✿✿✿✿

zero
✿✿✿✿✿

when
✿✿✿✿

they are below a specific

threshold . This threshold is determined from the daily simulated precipitation such that the threshold exceedance coincides

with the precipitation-day occurrence from the observations. The
✿✿

In
✿✿✿

our
✿✿✿✿✿

work,
✿✿✿

the threshold can vary from group to group , but

it is often close to or smaller than
✿✿✿

and
✿✿✿✿✿

from
✿✿✿✿✿

month
✿✿

to
✿✿✿✿✿✿

month
✿✿✿✿✿✿✿

between
✿✿✿✿✿

0.001
✿✿✿

and
✿

1 mm day−1(Schmidli et al., 2006)
✿

,
✿✿✿✿✿✿

similar
✿✿

to

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Schmidli et al. (2006).30

In a third step, we correct the daily precipitation rate using an EQM method (Themessl et al., 2011; Lafon et al., 2013;

Fang et al., 2015; Teng et al., 2015). EQM is based on the assumption that all probability distribution functions are unknown,

i.e. non-parametric (Wilks, 2011). The method consists of adjusting the quantile values from a simulation (Q-SIM) with those

from observations (Q-OBS) through a transfer function (TF; Fig. 2). The method is implemented by splitting each cumulative
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distribution function, i.e., observed and modelled, into 100 discrete quantiles. For each quantile value, the adjustment is carried

out with a linear correction, where Q-SIM is transformed into Q-SIM∗ (corrected quantile) so that Q-SIM∗ = TF × Q-SIM

and TF = Q-OBS / Q-SIM (Lafon et al., 2013). This linear correction is akin to the ‘factor of change ’ or ‘delta change ’
✿✿

or

✿✿✿✿

delta
✿✿✿✿✿✿

change
✿

used in Hay et al. (2000). For values that are between quantiles, the same linear correction is used, but the TF

is approximated by using a linear interpolation between the TFs related to the two nearest quantiles. In cases where values5

are below (above) the first (last) quantile, the TF related to the first (last) quantile is used for the adjustment. Similar methods

were successfully applied to correct biases in precipitation simulated by RCMs (e.g., Sun et al., 2011; Themessl et al., 2012;

Rajczak et al., 2016; Gómez-Navarro et al., 2018).

To combine all steps, the EQM is
✿✿✿✿

local
✿✿✿✿✿✿✿✿

intensity
✿✿✿✿✿✿

scaling
✿✿✿✿✿✿

method
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿

EQM
✿✿✿

are applied to each (sub-) group and
✿✿✿✿✿✿

defined

✿✿

in
✿✿✿

the
✿✿✿

first
✿✿✿✿

step
✿✿✿✿

and
✿✿

to each month of the year, separately
✿

,
✿✿✿

by
✿✿✿✿✿✿

pooling
✿✿✿

all
✿✿✿✿

grid
✿✿✿✿✿

points
✿✿✿✿

that
✿✿✿✿✿✿

belong
✿✿

to
✿✿✿✿

each
✿✿✿✿✿✿

group
✿✿✿

and
✿✿✿✿✿✿✿✿

handling10

✿✿✿✿

them
✿✿

as
✿✿

a
✿✿✿✿✿

single
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿

of
✿✿✿✿✿

daily
✿✿✿✿✿✿✿✿✿✿✿

precipitation. This results in a set of TFs for each (sub-) group and each month of the

year.
✿✿✿

For
✿✿✿✿✿✿✿✿

instance,
✿✿✿✿✿

when
✿✿✿

the
✿✿✿✿✿✿✿✿✿

correction
✿✿

is
✿✿✿✿✿✿

carried
✿✿✿

out
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿✿✿✿✿

height-classes
✿✿

of
✿✿✿✿

400
✿✿✿

m,
✿

a
✿✿✿

TF
✿✿

is
✿✿✿✿✿✿✿

defined
✿✿✿

for
✿✿✿✿

each
✿✿✿✿✿✿

height
✿✿✿✿✿✿

group,

✿✿✿✿✿✿✿

resulting
✿✿

in
✿✿✿✿

nine
✿✿✿

TFs
✿✿✿

for
✿✿✿✿

each
✿✿✿✿✿✿

month
✿✿✿

and
✿✿

in
✿✿✿✿

total
✿✿✿✿

108
✿✿✿

TFs
✿✿✿✿✿✿✿✿✿

throughout
✿✿✿

the
✿✿✿✿✿

year.
✿✿✿✿✿✿✿✿

Moreover,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

correction
✿✿

is
✿✿✿✿✿✿✿✿

afterwards
✿✿✿✿✿✿✿

applied
✿✿

to

✿✿

the
✿✿✿✿✿

daily
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿

at
✿✿✿✿

every
✿✿✿✿

grid
✿✿✿✿✿

point
✿✿✿✿✿

using
✿✿✿

the
✿✿✿

TFs
✿✿✿✿

that
✿✿✿

are
✿✿✿✿✿✿✿

common
✿✿

to
✿✿✿

all
✿✿✿✿✿✿✿

elements
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿

same
✿✿✿✿✿✿

group
✿✿

(or
✿✿✿✿✿✿✿✿✿✿

sub-group)

✿✿✿

and
✿✿✿✿✿✿

month.
✿

Thus, the new correction method guarantees that seasonality and height are taken into account making the method15

flexible for climate states with a changed orography, e.g., the LGM.

To come up with a final method for the Alpine regionwe first test
✿

,
✿✿✿

we
✿✿✿

first
✿✿✿✿✿✿✿

evaluate
✿

the influence of the different orographic

characteristics (step 1). To be consistent with former studies (e.g., Sun et al., 2011; Themessl et al., 2012; Wilcke et al.,

2013; Rajczak et al., 2016), the evaluation of the new method first uses the same region where the TFs are estimated. To be

more rigorous
✿✿✿✿✿✿✿✿✿

Explicitly,
✿✿✿

this
✿✿✿✿✿✿

means
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿

Swiss
✿✿✿✿✿✿

region
✿✿

in
✿✿✿

the
✿✿✿✿✿

WRF
✿✿✿✿✿✿

output
✿✿✿

(at
✿✿

2
✿✿✿

km
✿✿✿✿✿✿✿✿✿

resolution)
✿✿

is
✿✿✿✿✿✿✿

defined
✿✿

as
✿✿✿

the
✿✿✿✿

area
✿✿✿

to20

✿✿

be
✿✿✿✿✿✿✿✿

corrected
✿✿✿

and
✿✿✿✿

the
✿✿✿✿✿✿✿

RhiresD
✿✿✿✿

data
✿✿✿

set
✿✿

(at
✿✿

2
✿✿✿

km
✿✿✿✿✿✿✿✿✿✿

resolution)
✿✿

is
✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿

obtain
✿✿✿

the
✿✿✿✿

TFs
✿✿✿

and
✿✿

to
✿✿✿✿✿✿✿

evaluate
✿✿✿✿

the
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿

correction

✿✿✿✿✿✿✿

methods.
✿✿✿✿✿✿

These
✿✿✿✿

TFs
✿✿✿

are
✿✿✿✿✿

called
✿✿✿✿✿✿✿

Internal
✿✿✿✿

TFs
✿✿✿✿✿✿✿

(Int-TF)
✿✿✿✿✿✿

during
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-validation
✿✿✿✿✿✿

process
✿✿✿✿✿

later
✿✿✿

on.
✿✿✿✿✿

Once
✿✿✿

the
✿✿✿✿

final
✿✿✿✿✿✿✿

method
✿✿

is

✿✿✿✿✿✿✿✿✿

determined, we additionally apply a cross-validation
✿✿

to
✿✿✿

test
✿✿✿✿

the
✿✿✿✿✿✿

method
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿

rigorously: Thereby, Switzerland is defined

as the area to be corrected ; then, we calculate two different TFs; namely, from the same Swiss region called Internal TFs

(
✿✿✿✿✿

(WRF
✿✿✿✿✿

output
✿✿✿

at
✿

2
✿✿✿✿

km
✿✿✿✿✿✿✿✿✿✿

resolution);
✿✿

in
✿✿✿✿✿✿✿

addition
✿✿

to
✿✿✿✿

the Int-TF ), and
✿✿✿

(see
✿✿✿✿✿✿

above),
✿✿✿✿✿✿

which
✿✿✿✿

uses
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿

region
✿✿

to
✿✿✿✿✿✿

define
✿✿✿✿

TFs25

✿✿✿

and
✿✿

to
✿✿✿✿✿

apply
✿✿✿

the
✿✿✿✿✿✿✿✿✿

correction,
✿✿✿

we
✿✿✿✿

also
✿✿✿✿✿✿✿✿

calculate
✿

a
✿✿✿✿✿✿

second
✿✿✿

set
✿✿

of
✿✿✿✿

TFs.
✿✿✿✿

The
✿✿✿✿✿✿

second
✿✿✿

set
✿✿

of
✿✿✿✿

TFs
✿✿

is
✿✿✿✿✿✿✿

obtained
✿

from the corresponding

Alpine region of Germany, France, and Austria altogether called External TFs (Ext-TF) (Fig. 1c
✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿

APGD
✿✿✿✿

data
✿✿✿

set
✿✿✿

(at

✿

5
✿✿✿

km
✿✿✿✿✿✿✿✿✿✿

resolution;
✿✿✿

Fig.
✿✿✿

1c). Note that Ext-TFs are carried out at 5 km horizontal resolution
✿✿✿

and
✿✿✿✿✿✿

applied
✿✿✿

to
✿✿✿✿✿✿✿✿✿✿

Switzerland
✿✿

at
✿✿

2

✿✿✿

km
✿✿✿✿✿✿✿✿

resolution. To demonstrate the improvement of using the new method, we further compare it to a commonly used
✿✿✿✿✿✿

simple

method that is carried out without orographic features and uses TFs deduced for the entire region of Switzerland (
✿✿

at 2 km30

) (similar to Berg et al., 2012; Maraun, 2013; Fang et al., 2015).
✿✿✿✿✿✿✿✿

resolution,
✿✿✿

12
✿✿✿✿

TFs
✿✿

in
✿✿✿✿✿✿

total).
✿✿✿✿

Note
✿✿✿✿

that
✿✿✿

our
✿✿✿✿✿✿✿✿

approach
✿✿✿✿✿✿✿

mainly

✿✿✿✿✿✿

focuses
✿✿

on
✿✿✿✿✿✿✿✿✿

correcting
✿✿✿✿✿

biases
✿✿✿✿✿✿

caused
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

parameterisations
✿✿✿

and
✿✿✿✿✿✿✿✿✿

systematic
✿✿✿✿✿

errors
✿✿✿✿✿✿

related
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

topography.
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4 Results

4.1 Evaluation of WRF: Seasonality and bias

To obtain insights into the performance of the RCM over complex topography, we compare the spatial and temporal represen-

tation of the simulated precipitation (the raw model output) with the RhiresD data. Focusing on monthly precipitation
✿✿✿✿✿

mean

✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿✿

intensity across Switzerland, the box plots illustrate biases in the climatological annual mean cycle (Fig. 3a).5

Mean
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿

climatological
✿✿✿✿✿

mean
✿

values are slightly overestimated during colder months, i.e., between November and March,

and are underestimated during warmer months, i.e., between April and October,
✿✿✿

but especially in September. In addition to the

✿✿✿✿✿✿✿✿✿✿✿

climatological
✿

mean values, Fig. 3a also shows the distributions of daily precipitation
✿✿✿✿✿✿✿

monthly
✿✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿

intensity
✿

and

their interquartile ranges. In colder months, the simulated distributions of daily precipitation are wider and shifted to higher

values than the observed distribution
✿✿✿✿✿✿✿✿✿✿

distributions, whereas during warmer months a clear shift to less precipitation is found10

compared to the observed ones. Overall the interquartile ranges are reasonably simulated, which means that WRF realisti-

cally represents the variability of daily precipitation
✿✿✿✿✿✿✿

monthly
✿✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿

intensity. Extreme precipitation, however, is

strongly underestimated.

To
✿✿✿

The
✿✿✿✿✿✿

annual
✿✿✿✿

cycle
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

distributions
✿✿

of
✿✿✿✿✿✿✿✿

monthly
✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿✿

intensity
✿✿✿

are
✿✿✿✿✿✿✿✿

estimated
✿✿✿

for
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿✿✿✿

height-classes

✿✿

to get additional understanding of the behaviour of the simulated precipitation , the annual cycle and the monthly distributions15

of daily precipitation are estimated for different height-classes. Figure
✿✿✿

and
✿✿✿✿

also
✿✿✿

to
✿✿✿✿✿✿✿✿

explicitly
✿✿✿✿✿✿✿✿

illustrate
✿✿✿

the
✿✿✿✿✿✿✿

relation
✿✿

of
✿✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿

biases
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

topography.
✿✿✿✿✿

This
✿✿

is
✿✿✿✿✿✿✿✿✿✿

summarised
✿✿

in
✿✿✿✿✿

Figs.
✿

3b and 3c show the boxplots for the height class 400–

800 m and 2800–3200 m , respectively, to illustrate the precipitation bias and its relation to the topography of Switzerland
✿✿✿

that

✿✿✿✿✿

mostly
✿✿✿✿✿✿✿✿

represent
✿✿✿

the
✿✿✿✿

low
✿✿✿

and
✿✿✿✿✿

high
✿✿✿✿✿✿✿

altitudes,
✿✿✿✿✿✿✿✿✿✿✿

respectively. The climatological monthly means of the colder months, i.e., from

November to March, are generally underestimated in the lower height-classes , but overestimated at high altitudes. Hence, we20

identify a positive correlation between the main biases and the topography during these colder months. In the warm months,

i.e., April to October, the height-classes 400–800 m and 2800–3200 m both reveal an underestimation in the climatological

monthly means compared to the observations. Therefore, the simulated annual cycle changes from a weak cycle at low alti-

tudes, in agreement with the one of the observations, to a strong and inverse seasonal cycle at high altitudes (Fig. 3b and 3c).

An inverse annual cycle is also identified by Gómez-Navarro et al. (2018), where they carried out WRF simulations using a25

similar global climate model as
✿✿

for initial and boundary conditions
✿

as
✿✿✿✿✿

used
✿✿

in
✿✿✿

this
✿✿✿✿✿

study. These authors found that the inversed

annual cycle in precipitation is caused by the driving global climate model. Furthermore, we observe positive biases in the

interquartile ranges during colder months, and a slight underestimation during warmer months (Fig. 3b and 3c).
✿✿✿✿✿

Thus,
✿✿✿

the

✿✿✿✿✿✿✿

splitting
✿✿✿

into
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿✿✿

height-classes
✿✿✿✿✿✿✿✿✿✿✿

demonstrates
✿✿

to
✿✿✿

be
✿✿✿✿✿✿✿✿✿

appropriate
✿✿✿

for
✿✿✿✿✿

being
✿✿✿✿

used
✿✿

in
✿✿✿

the
✿✿✿✿

bias
✿✿✿✿✿✿✿✿✿

correction.
✿

To better describe the spatial biases related to colder and warmer months, we select two months that mainly represent each30

period; namely, January and July. For these example months, we present the patterns of biases
✿✿✿✿✿

spatial
✿✿✿✿✿✿✿

patterns
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

biases

✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

monthly
✿✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿

intensity,
✿

in precipitation, changes in the distribution of daily precipitation,
✿✿

the
✿✿✿✿✿✿✿✿✿

variability

illustrated by the interquartile rangeas well as biases in
✿

,
✿✿✿

and
✿✿

in
✿✿✿

the wet-day frequency. Note that we consider
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observational

✿✿✿

data
✿✿✿✿

sets
✿✿✿

are
✿✿✿✿✿✿✿✿✿

considered
✿✿✿✿✿✿✿✿

generally
✿✿✿✿✿✿✿

reliable
✿✿✿

and
✿✿✿✿✿✿✿✿

represent
✿✿✿✿✿✿✿✿✿

orographic
✿✿✿✿✿✿✿

features
✿✿✿✿✿

well,
✿✿✿✿✿✿✿

although
✿✿

at
✿✿✿✿

high
✿✿✿✿✿✿✿✿

altitudes
✿✿✿

less
✿✿✿✿✿✿✿✿✿✿✿

observations
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✿✿

are
✿✿✿✿✿✿✿✿

available
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Isotta et al., 2014).
✿✿✿✿✿✿✿✿✿✿✿

Furthermore,
✿✿✿✿✿

these
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿

patterns
✿✿✿✿✿✿✿✿

implicitly
✿✿✿✿✿✿✿

illustrate
✿✿✿

the
✿✿✿✿✿✿✿

relation
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

precipitation

✿✿✿✿✿

biases
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

topography
✿✿✿✿✿✿✿✿✿✿

considering an uncertainty of around 30 % acceptable in the simulated precipitation due to the

uncertainty in the observational data sets (Sect. 2).

The biases in the climatological mean precipitation
✿✿✿✿✿✿✿

intensity at each grid point (Fig. 4a and 4d) confirms the strong height

dependence and seasonality already shown in Fig. 3
✿

,
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿✿✿

demonstrates
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿

splitting
✿✿✿✿

into
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿✿✿✿

height-classes
✿✿

is5

✿✿✿✿✿✿✿✿✿

appropriate
✿✿

to
✿✿✿

be
✿✿✿✿

used
✿✿

in
✿✿✿✿

the
✿✿✿

bias
✿✿✿✿✿✿✿✿✿

correction. The strongest positive biases are mainly observed over mountains and during

colder months, whereas the Swiss Plateau seems to be reasonably well simulated (Fig. 4a).
✿✿✿✿

Note
✿✿✿✿

that
✿✿✿✿

also
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observations

✿✿✿

tend
✿✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿

underestimate
✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿

in
✿✿✿✿✿✿✿✿

mountain
✿✿✿✿✿✿

regions
✿✿✿

so
✿✿✿✿

that
✿

a
✿✿✿✿

part
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

strong
✿✿✿✿✿✿✿

positive
✿✿✿✿

bias
✿✿

is
✿✿✿✿✿✿

related
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿

observational

✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Isotta et al., 2014)
✿

.
✿

In warmer months, the strongest negative biases are found in the north-western part of

Switzerland, Ticino and in the steep valleys, where the Rhone Valley is marked by the strongest biases, whereas in .
✿✿✿

In10

high mountain regions smaller positive biases are identified during warmer months than during colder months (Fig. 4d). The

strongest biases over mountains and in steep valleys seem to be induced by an amplification of different observed precipita-

tion climatologies that govern those areas; namely, the mountains are known as wet regions and the steep valleys as dry areas

(for more details see, Frei and Schär, 1998; Schwarb et al., 2001)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(for more details see; Frei and Schär, 1998; Schwarb et al., 2001)

. This gives a first hint that different processes may lead to the biases. The positive precipitation bias over mountains in colder15

months may be mainly related to wet bias of the global simulation and synoptic transport, which is also overestimated in

the global simulation (Hofer et al., 2012a, b). Note also that the observations have the strongest measurement errors over the

mountains, i.e., they tend to underestimate precipitation. The resolution of the RCM seems to be important as this affects the

representation of steep valleys, especially during convective processes in warmer months. The same is also true for colder

months, but to a lesser extent, as convective processes only play a minor role in these months.20

The biases in the interquartile range of the daily precipitation distribution
✿✿✿✿✿✿✿✿✿

distribution
✿✿

of
✿✿✿✿✿✿✿

monthly
✿✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿✿

intensity

at each grid point (Fig. 5a and 5d) are strongly overestimated to a large extent over the Alps during colder months, whereas

during warmer months the interquartile range is generally smaller compared to the observations. The biases are stronger than

the ones observed in the climatological mean
✿✿✿✿✿

value (Fig. 4a and 4d), which means that the variability simulated by WRF is

strongly season-dependent (Fig. 5a and 5d). The simulated increase in variability during colder months is a hint that processes25

common during winter, e.g., the overestimated synoptic atmospheric systems in the global simulation, may be too efficient

in producing precipitation compared to the observations. The reduced variability in the warmer months hints to remaining

problems in convective processes as these are more relevant during summer.
✿✿✿✿

Also
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿

do
✿✿✿

not
✿✿✿✿✿✿✿

perfectly
✿✿✿✿✿✿✿✿

estimate
✿✿✿

the

✿✿✿✿

range
✿✿✿✿

due
✿✿

to
✿✿✿✿

their
✿✿✿✿✿✿✿✿✿

incertainty
✿✿✿✿✿✿

whose
✿✿✿✿✿✿✿✿✿✿

magnitudes
✿✿✿✿✿

range
✿✿✿✿

from
✿✿✿✿

5%
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿✿

flatland
✿✿✿✿✿✿✿

regions
✿✿

to
✿✿✿✿✿

more
✿✿✿✿

than
✿✿✿✿

30%
✿✿

in
✿✿✿✿

high
✿✿✿✿✿✿✿✿

altitudes

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Isotta et al., 2014)
✿

.30

Another important measure to characterize
✿✿✿✿✿✿✿✿✿✿

characterise
✿

precipitation is the occurrence of precipitation at each grid point,

defined by the wet-day frequency (the number of days with precipitation rate of at least 1 mm day−1). The wet-day frequency

is strongly overestimated during colder months, but shows only a slight overestimation during warmer months (Fig. 6a and 6d).

✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿✿✿

overestimation
✿✿✿

can
✿✿✿

be
✿✿✿

also
✿✿✿✿✿✿

related
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

well-known
✿✿✿✿✿✿✿

problem
✿✿

in
✿✿✿✿✿✿✿

regional
✿✿✿✿✿✿✿

climate
✿✿✿✿✿✿✿✿✿

modelling,
✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿✿

defined
✿✿

as
✿

a
✿✿✿✿✿✿

higher

✿✿✿✿✿✿✿✿

frequency
✿✿

in
✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿

but
✿✿

at
✿✿✿

the
✿✿✿✿

same
✿✿✿✿

time
✿✿✿✿

with
✿✿

a
✿✿✿✿

lower
✿✿✿✿✿✿✿✿

intensity
✿✿✿✿

than
✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Murphy, 1999; Fowler et al., 2007b; Maraun, 2013)35
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✿

. The overestimation in wet-day frequency, so-called drizzle effect, can be mainly related to the occurrence of synoptic atmo-

spheric systems commonly observed during colder months and not to local convective processes that are frequently observed

during summer (for climatology see Frei and Schär, 1998; Isotta et al., 2014). Furthermore, the positive bias in the wet-day fre-

quency may also explain
✿✿✿✿✿✿

slightly
✿✿✿✿✿✿✿✿

contribute
✿✿

to
✿

the underestimation of the extreme precipitation (Fig. 3) as moisture
✿✿✿✿✿✿✿✿✿✿

precipitable

✿✿✿✿

water
✿

necessary for extreme precipitation events is removed via the drizzle effect.
✿✿✿✿✿✿

Namely,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

precipitable
✿✿✿✿✿

water
✿✿✿✿✿✿✿✿

available
✿✿✿

for5

✿

a
✿✿✿✿✿

daily
✿✿✿✿✿✿✿

extreme
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿

event
✿✿

is
✿✿✿✿✿✿✿✿✿

distributed
✿✿✿✿

over
✿✿✿✿✿✿✿

several
✿✿✿✿

days
✿✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿✿

problems
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

parameterisations
✿✿

of
✿✿✿✿

the
✿✿✿✿✿

cloud

✿✿✿✿✿✿✿✿✿✿✿

microphysical
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿✿

processes
✿✿✿

as
✿✿✿✿✿

found
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Knist et al. (2018).
✿

4.2 Influence of different orographic characteristics on the performance of the bias-correction method

Different orographic characteristics are suggested to be used as classification in the new bias-correction method (step 1 in Sect.

3): the height-intervals (100 m and 400 m), the slope-orientations, and a combination of both using the height interval of 400 m10

(combined-features). Note that the results are not affected by interchanges in the order of the orographic characteristics in the

combined-features (therefore not shown). We assess in the following, which of these characteristics are necessary to improve

the
✿

a
✿

simple approach of applying one EQM to the entire domain, often used in studies for present day and future climate

change (e.g., Evans et al., 2017; Li et al., 2017; Ivanov et al., 2018)
✿✿✿✿✿

where
✿✿✿✿✿✿✿✿✿

orographic
✿✿✿✿✿✿✿

features
✿✿✿

are
✿✿✿✿

not
✿✿✿✿✿✿✿✿✿

considered. Therefore,

we use Taylor diagrams (Fig. 7) for four months namely January, April, July, and September, as the biases show a strong15

seasonality (see previous section). The evaluation is carried out with three statistics: the spatial correlation, the spatial root-

mean-square-error and the spatial standard deviation.

Figure 7a shows that the correction methods using height-intervals of both, 100 and 400 m, and the combined-features

have a better performance during the colder months than the other methods, using just orientation or one EQM for the entire

domain: the standard deviation is better adjusted, especially by using height-intervals of 100 m, the root-mean-square-error20

is reduced by roughly 32 %, and the correlation is slightly increased (Fig. 7b). During the cold-to-warm transition months

(here illustrated by April), the correction using height-intervals of 400 m and the combined-features have a better performance

than the other settings. This is because the standard deviation is fully adjusted, the root-mean-square-error is reduced by 17

%, and the correlation is increased to r = 0.75 (Fig. 7b). During the warmer months, all correction methods except the one

using height-intervals of 100 m show a similar good performance, i.e., the standard deviation is fully adjusted, the root-mean-25

square-error is slightly reduced, and the correlation is slightly increased (Fig. 7c). During the warm-to-cold transition months

(September, Fig. 7d) all correction methods show a similar performance increase compared to the observations, correlation

and root-mean-square-error are only slightly improved. The method using height-intervals of 100 m often reduces the standard

deviation, which may
✿✿

can
✿

be explained by a weak data coverage in
✿✿✿✿✿✿✿

reduced
✿✿✿✿

data
✿✿✿✿✿✿✿

coverage
✿✿✿✿

and
✿✿✿

thus
✿✿✿✿

less
✿✿✿✿✿✿✿✿

variability
✿✿✿✿✿✿

within
✿

some

height classes.30

Even though, all the settings mostly show a good performance, the one using height-intervals of 400 m outperforms in

most measures and months. In addition, the correction method using the height-intervals of 400 m needs less computational

time compared to the similarly good correction method using height-intervals of 400 m and slope-orientations. Therefore, the

method using height-intervals of 400 m seems to be the most appropriate and is used in the following analysis.

10



4.3 Application of the bias-correction method and cross-validation

The bias-correction method using height-intervals of 400 m is now assessed in more details. First, we focus on results where

the TFs in the method are estimated in the domain of Switzerland (Int-TFs) and then results obtained by the cross-validation

are discussed, i.e., estimating the TFs with the surrounding Alpine region, excluding Switzerland (Ext-TFs).

To illustrate the improvement by the correction method using Int-TFs, we compare the spatial and temporal representation of5

the corrected precipitation with the RhiresD data set. Focusing on the monthly precipitation
✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿

intensity
✿

across

Switzerland, we find that the climatological annual cycle of mean precipitation
✿✿✿✿✿✿✿

intensity fully coincides with the one of the ob-

servations (Fig. 3a). Also, the monthly distributions of daily precipitation
✿✿✿✿✿✿✿✿✿✿

distributions
✿✿

of
✿✿✿✿✿✿✿

monthly
✿✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿✿

intensity

are fully adjusted and the corresponding interquartile ranges mainly correspond to the ones of the observations when using the

new bias-correction method. Still, the extreme precipitation events are underestimated with the new method, which is expected10

as the TF of the extreme values is poorly constrained in the EQM approach (e.g., Themessl et al., 2011). The segregation into

the height-classes (Fig. 3b and 3c) show
✿✿✿✿✿

shows
✿

that the climatological monthly means and the monthly distributions of daily

precipitation
✿✿✿✿✿✿✿✿✿✿

distributions
✿✿

of
✿✿✿✿✿✿✿

monthly
✿✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿

intensity
✿

are also well adjusted compared to the observations. This

illustrates that the bias-correction method using height-intervals of 400 m works.

To further describe the spatial improvements of the new bias-correction method, we select here, as in the Sect. 4.1, two15

months that mainly represent the colder and warmer months, e.g., January and July. We again focus on biases in precipitation,

changes in the distribution of daily precipitation,
✿✿

the
✿✿✿✿✿✿✿

monthly
✿✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿✿

intensity,
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

variability illustrated by the

interquartile rangeas well as biases in
✿

,
✿✿✿

and
✿✿

in
✿✿✿

the
✿

wet-day frequency.

Comparing
✿

A
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿✿✿✿✿✿✿

between Fig. 4a and 4d with Fig. 4b and 4e, shows that the mean precipitation biases
✿✿✿✿✿

biases

✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿

climatological
✿✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿

intensity
✿

are substantially reduced, especially the overestimation over high mountain20

regions during colder months and the general underestimation during warmer months. Still, regions with positive and negative

biases remain over the eastern part of the mountains in colder months and in the steep valleys like the Rhone Valley in warmer

months. Also, the negative bias in the Ticino during colder months remains, albeit it is slightly ameliorated. The rather moderate

performance in these regions can be traced back to the fact that some height classes sample over regions with different biases.

Hence, biases of one area are strongly diminished by the biases that are shared by the other areas. For instance, the strong25

negative biases observed in the Rhone Valley and Ticino are not fully decreased because the slight underestimation from the

Swiss Plateau dominates this height-class (Fig. 4b and 4e).

To assess the improvements with respect to precipitation variability, we focus on the interquartile range of the daily precipitation

distribution
✿✿✿✿✿✿✿✿✿

distribution
✿✿

of
✿✿✿✿✿✿✿✿

monthly
✿✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿✿

intensity
✿

at each grid point (Fig. 5b and 5e compared to Fig. 5a and

5d). The biases of the interquartile range improve only moderately, i.e., the strong overestimation over the mountains is partly30

corrected during colder months but not during warmer months. The underestimation over the flatlands and steep valleys is

corrected during warmer months and poorly during colder months.

For the wet-day frequency, we find that the positive biases are mostly reduced, especially the strong overestimation over the

mountains during colder months (Fig. 6b and 6e). However, the regions of Rhone Valley and Ticino, which show no biases in
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the raw model output, are slightly underestimated during colder months. The negative biases observed in the region of Grisons

become stronger during colder months and in the region of Rhone Valley during warmer months (Fig. 6b and 6e). This effect

is again caused by sampling different regions with different biases in the height classes.

✿✿✿✿✿✿

Recent
✿✿✿✿✿✿

studies
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Maraun et al. (2017)
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Maraun and Widmann (2018)
✿✿✿✿✿✿

remark
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observational
✿✿✿

and
✿✿✿✿✿✿✿✿✿

simulated
✿✿✿✿

data

✿✿✿

sets
✿✿✿

do
✿✿✿

not
✿✿✿✿

have
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

synchronised
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿

climate
✿✿✿✿✿✿✿✿✿

variability
✿✿✿✿

and,
✿✿✿✿

thus,
✿✿✿

this
✿✿✿✿

may
✿✿✿

be
✿✿✿

one
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

sources
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

remaining
✿✿✿✿✿✿

biases5

✿✿

in
✿✿✿✿✿✿✿✿✿✿

free-running
✿✿✿✿✿✿

model.
✿✿✿

To
✿✿✿✿✿

assess
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿

remaining
✿✿✿✿✿✿

biases,
✿✿✿✿

two
✿✿✿✿✿✿✿✿

additional
✿✿✿✿

tests
✿✿✿

are
✿✿✿✿✿✿

carried
✿✿✿✿

out
✿✿✿✿

with
✿✿✿✿✿✿✿

different
✿✿✿

sets
✿✿✿

of
✿✿✿✿✿✿

Int-TFs
✿✿✿✿

that

✿✿

are
✿✿✿✿✿✿✿✿✿

calculated
✿✿✿✿

from
✿✿✿

the
✿✿✿✿

first
✿✿✿

and
✿✿✿

last
✿✿✿

15
✿✿✿✿✿

years
✿✿

of
✿✿✿

the
✿✿✿✿

30-yr
✿✿✿✿✿✿✿

period,
✿✿✿✿✿✿✿✿✿

separately.
✿✿✿✿

Note
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

accuracy
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

correction
✿✿✿✿✿✿✿

method
✿✿

is

✿✿✿✿✿✿✿

sensitive
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

length
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

calibration
✿✿✿✿✿✿

period
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Lafon et al., 2013).
✿✿✿✿

The
✿✿✿

two
✿✿✿✿

tests
✿✿✿

are
✿✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

correction
✿✿✿✿✿✿

method
✿✿✿✿

that

✿

is
✿✿✿✿✿✿

trained
✿✿✿

on
✿✿✿

the
✿✿✿✿✿

entire
✿✿✿✿✿✿✿

30-year
✿✿✿✿✿✿

period.
✿✿✿

The
✿✿✿✿

tests
✿✿✿✿✿✿✿

perform
✿✿✿✿✿✿

similar
✿✿✿

to
✿✿

the
✿✿✿✿✿✿✿✿✿

correction
✿✿✿✿✿✿✿

method
✿✿✿✿

using
✿✿✿

30
✿✿✿✿✿

years,
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿✿✿

demonstrates

✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿

calibration
✿✿✿✿✿✿

length
✿✿✿

has
✿✿✿✿

only
✿

a
✿✿✿✿✿

weak
✿✿✿

and
✿✿✿✿✿✿✿✿✿

negligible
✿✿✿✿✿

effect
✿✿✿

on
✿✿

the
✿✿✿✿✿✿✿✿

resulting
✿✿✿✿✿✿✿✿

corrected
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿

data
✿✿✿

set
✿✿✿✿✿✿✿✿✿

(therefore
✿✿✿

not10

✿✿✿✿✿✿

shown).
✿

To check the robustness of the new bias-correction method, a cross-validation is performed.
✿✿✿

As
✿✿✿✿

noted
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Bennett et al. (2014)

✿

,
✿✿

the
✿✿✿✿✿✿✿✿✿✿

importance
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-validation
✿✿

is
✿✿

to
✿✿✿

test
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

transferability
✿✿

of
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

bias-correction
✿✿✿✿✿✿✿

method
✿✿

to
✿

a
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿

climate
✿✿✿✿

state.
✿

Thereby,

the TFs are estimated from an independent data set of the Alpine region (the APGD in coarser resolution of 5 km) excluding

Switzerland (Ext-TFs) and then these TFs are applied to the Swiss region .
✿✿

(at
✿✿

2
✿✿✿

km
✿✿✿✿✿✿✿✿✿

resolution)
✿✿

to
✿✿✿✿✿✿✿

directly
✿✿✿✿✿✿✿

compare
✿✿✿

the
✿✿✿✿✿✿

results15

✿✿✿✿

with
✿✿✿

the
✿✿✿✿

ones
✿✿✿✿✿✿✿

obtained
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿

application
✿✿

of
✿✿✿✿✿✿✿

Int-TFs
✿✿✿

(at
✿

2
✿✿✿

km
✿✿✿✿✿✿✿✿✿✿

resolution)
✿✿✿

and
✿✿

to
✿✿✿✿✿

avoid
✿✿✿✿

any
✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿✿✿✿✿

produced

✿✿

by
✿✿✿✿✿✿✿✿✿✿✿

interpolation.
✿✿✿✿✿✿✿✿✿✿✿

Additionally,
✿✿✿

we
✿✿✿✿

also
✿✿✿✿✿✿✿

evaluate
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

performance
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

correction
✿✿✿✿

when
✿✿✿✿✿

using
✿✿✿✿✿✿✿

Ext-TFs
✿✿✿✿✿✿

trained
✿✿

at
✿

5
✿✿✿

km
✿✿✿✿

and
✿✿✿✿

then

✿✿✿✿✿✿

applied
✿✿

to
✿✿✿

the
✿✿✿✿✿

Swiss
✿✿✿✿✿✿

region
✿✿

at
✿

5
✿✿✿

km
✿✿✿✿✿✿✿✿✿

resolution,
✿✿✿✿✿✿

which
✿✿✿✿✿

shows
✿✿✿✿✿✿✿

minimal
✿✿✿✿✿✿✿✿✿

differences
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿

results
✿✿✿✿✿✿✿✿

(therefore
✿✿✿

not
✿✿✿✿✿✿✿

shown). To have

insights into the effects of the correction method using Ext-TFs, we compare the spatial and temporal representation of the

corrected precipitation with the results obtained by the Int-TFs. Note that for the bias calculation always the
✿✿✿

the RhiresD data20

set is
✿✿✿✿✿✿

always used as observations
✿✿✿

for
✿✿

the
✿✿✿✿

bias
✿✿✿✿✿✿✿✿✿

calculation. Again, to describe the spatial effects, we select here two months that

mainly represent the colder and warmer months, i.e., January and July.

Comparing
✿

A
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿✿✿✿✿✿

between Fig. 4c with 4b shows almost the same pattern, i.e., the improvement in mean precipita-

tion achieved by using Ext-TFs is similar to the Int-TFs during colder months. Still, some positive biases over the mountains

seem to be smaller using Ext-TFs than Int-TFs, whereas the remaining negative biases are slightly stronger than the ones after25

using Int-TFs (Fig. 4b and 4c). The reason for the latter could lie in the coarser resolution of APGD data set used to estimate

the Ext-TFs or the inclusion of larger regions in the north and west of the Alps mixing different climate conditions and thus

bias behaviours. The slightly better performance in the mountain regions is probably due to the fact that for these height classes

more data are available, i.e., more grid-points at high altitudes (Fig. 1c), and thus a better constraint of the TFs is possible. In

the warmer months, we find that the method using Ext-TFs show
✿✿✿✿✿

shows
✿

slightly more negative biases than with Int-TFs, in30

particular over the Swiss plateau. Again, we hypothesise that the inclusion of larger regions in the north and west of the Alps

is responsible for this bias behaviour.

The interquartile ranges of the monthly distribution of daily precipitation
✿✿✿✿✿✿✿✿✿

distribution
✿✿

of
✿✿✿✿✿✿✿

monthly
✿✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿✿

intensity

are similar when using either Ext-TFs or Int-TFs for the colder months (Fig. 5c compared to 5b). During warmer months, the
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negative biases in the western part of Switzerland are less improved using Ext-TFs than Int-TFs, again a hint that the inclusion

of larger regions in the north and west of the Alps in the lower height classes plays a role in the bias of the interquartile range.

The wet-day frequencies are very similarly corrected as in the approach using Ext-TFs compared to Int-TFs (Fig. 6c and 6f

compared to Fig. 6b and 6e). Thus, the wet-day frequency seems to be insensitive to the region where the TFs are estimated

from.5

In summary, the new correction method reasonably well corrects biases in different precipitation variables
✿✿✿

the
✿✿✿✿✿✿✿

monthly
✿✿✿✿✿

mean

✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿✿

intensity,
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

variability
✿✿✿✿✿✿✿✿✿

illustrated
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

interquartile
✿✿✿✿✿

range,
✿✿✿✿

and
✿✿

in
✿✿

the
✿✿✿✿✿✿✿

wet-day
✿✿✿✿✿✿✿✿✿

frequency. The cross-validation

shows that using different observational data sources from independent regions have only a minor effect on the improvement

obtained by the method and thus demonstrates its robustness.

5 Conclusions10

In this study, we present a new bias-correction method for precipitation over complex topography, which takes orographic

characteristics into account. To illustrate the performance of the new method, a simulation under perpetual 1990
✿✿✿

AD conditions

is carried out with the regional climate model WRF at 2-km resolution over Switzerland. This simulation is driven by the general

circulation model CCSM4.

The comparison between the dynamically downscaled simulation and the observations over Switzerland shows that the15

biases are seasonal
✿✿✿✿✿

season
✿

dependent and strongly related to the complexity of the topography. Colder months (November to

March) exhibit positive biases over mountains and negative biases in steep valleys, whereas during the warmer months (April

to October) negative biases dominate, especially in the Rhone Valley and Ticino. Parts of the biases are introduced by the

global climate model, in particular the seasonal biases as shown by Gómez-Navarro et al. (2018). Moreover, the large scale

atmospheric circulation of the global climate model is too zonal – a known problem in many models (e.g., Raible et al., 2005,20

2014; Hofer et al., 2012a, b; Mitchell et al., 2017) – which cannot be fully compensated by the regional climate model. Thus, the

wet bias present in the global simulation (Hofer et al., 2012a, b) may be transported into the regional model domain rendering

especially the colder months with more precipitation.
✿✿✿✿

Still,
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿

are
✿✿✿✿

also
✿✿✿

not
✿✿✿✿✿✿✿

perfect
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

underestimate
✿✿✿✿✿✿✿✿✿✿✿

precipitation

✿✿

in
✿✿✿✿✿✿✿✿

particular
✿✿

in
✿✿✿✿

high
✿✿✿✿✿✿✿✿

altitudes
✿✿

by
✿✿✿

up
✿✿

to
✿✿✿✿

30%
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Isotta et al., 2014)
✿

. Other biases are potentially induced by the regional climate

model, e.g., a WRF simulation using a similar setting but driven by ERA-Interim (Gómez-Navarro et al., 2018) shows also25

a similar overestimation of precipitation over mountain regions as the simulation used in this study. In addition, we find that

the extreme precipitation values are underestimated. This is due to the drizzle effect (Murphy, 1999; Fowler et al., 2007b) that

can remove moisture needed for the extreme precipitation, which mainly comes from physical parameterisations of the model

itself (Solman et al., 2008; Menéndez et al., 2010; Gianotti et al., 2011; Carril et al., 2012; Jerez et al., 2013). A hint for this is

given by the fact that the wet-day frequency in the simulation is enhanced compared to the observations.30

Although numerous approaches to correct biases exist (e.g, Maraun, 2013; Teng et al., 2015; Casanueva et al., 2016; Ivanov

et al., 2018), a new method is needed, which
✿✿✿

can
✿✿✿✿✿✿✿

decrease
✿✿✿

the
✿✿✿✿✿✿

danger
✿✿

of
✿✿✿✿✿✿✿✿

assuming
✿✿✿✿✿✿✿✿✿

stationarity
✿✿✿✿✿✿

biases
✿✿✿

and is flexible enough to be

applicable to different climate states like glacial times which are characterized
✿✿✿✿✿✿✿✿✿✿✿

characterised by a strongly changed topography.
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The new method consists of three steps: the orographic characteristics differentiation, the
✿✿✿✿✿✿✿✿✿

adjustment
✿✿

of
✿✿✿✿

very low precipitation

intensityadjustment, and the EQM. Different orographic characteristics, i.e., the height-intervals, the slope-orientations, and the

combination of both, are tested showing that the method using height-intervals of 400 m is generally the most skilful correction

compared to other orographic characteristics and at the same time is computationally the most efficient one. Clearly, the new

method outperforms the standard
✿✿✿✿✿✿

simple method of applying one EQM transfer function
✿✿✿

that
✿✿

is deduced for the entire region5

of interest , which is commonly used (Berg et al., 2012; Maraun, 2013; Fang et al., 2015)
✿✿✿

and
✿✿✿✿

does
✿✿✿

not
✿✿✿✿✿✿✿

consider
✿✿✿✿

any
✿✿✿✿✿✿✿✿✿

orographic

✿✿✿✿✿✿

features.

Applying the new bias-correction method to the Swiss region exclusively shows that the biases are mostly corrected. In

particular, the distribution of the monthly precipitation across Switzerland is mainly adjusted, the mean precipitation biases

are substantially reduced, and the biases in the wet-day frequency are mostly reduced. The method better corrects the positive10

biases during colder than warmer months, and reversely, the negative biases during warmer than colder months. However, some

biases are still observed, which is explained by the fact that some height classes sample over regions with different biases and

that the deficient constraint of the TFs in uttermost quantiles poorly corrects extreme values, i.e., below the first quantile and

above the last quantile.
✿✿✿✿✿✿✿✿✿✿

Furthermore,
✿✿✿✿

part
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

remaining
✿✿✿✿✿

biases
✿✿✿✿

may
✿✿✿✿

also
✿✿

be
✿✿✿✿✿✿✿✿✿

interpreted
✿✿

as
✿✿✿✿✿✿✿

possible
✿✿✿✿✿

error
✿✿✿✿✿✿✿✿✿✿

propagation,
✿✿✿✿✿✿

which

✿✿✿✿✿✿

initially
✿✿✿✿✿✿

comes
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

interpolation
✿✿✿✿✿✿✿

methods
✿✿✿✿

and
✿✿✿✿✿✿

“gauge
✿✿✿✿✿✿✿✿✿✿

undercatch”
✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿

gridded
✿✿✿✿✿✿✿✿✿✿✿✿

observational
✿✿✿✿

data
✿✿✿✿

sets,
✿✿✿✿✿✿✿✿✿

especially
✿✿

at15

✿✿✿✿

high
✿✿✿✿✿✿✿

altitudes
✿✿✿✿✿

where
✿✿✿✿

less
✿✿✿✿

data
✿

is
✿✿✿✿✿✿✿✿

available
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(for more details see; Sevruk, 1985; Richter, 1995; Isotta et al., 2014)
✿

.

The cross-validation
✿✿✿✿✿✿✿✿

presented
✿✿

in
✿✿✿

this
✿✿✿✿✿

work
✿✿✿✿✿

might
✿✿✿

not
✿✿

be
✿✿✿✿✿✿✿✿✿✿

reasonable
✿✿

as
✿✿✿

the
✿✿✿✿✿

biases
✿✿

of
✿✿✿

the
✿✿✿✿✿

other
✿✿✿✿✿✿

climate
✿✿✿✿✿

state
✿✿✿✿

may
✿✿✿

not
✿✿✿✿✿✿

remain

✿✿✿✿✿✿✿✿✿

unchanged
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

method’s
✿✿✿✿✿✿✿✿✿✿✿✿✿

accomplishment
✿✿✿✿✿

relies
✿✿

on
✿✿✿

the
✿✿✿✿✿

biases
✿✿✿✿✿✿

caught
✿✿✿✿✿✿

during
✿✿✿

the
✿✿✿✿✿

period
✿✿✿

the
✿✿✿✿✿✿✿

method
✿

is
✿✿✿✿✿✿

trained
✿✿✿

on.
✿✿

In
✿✿✿✿✿✿✿✿

addition,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Maraun et al. (2017)
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Maraun and Widmann (2018)
✿✿✿

have
✿✿✿✿✿✿

argued
✿✿✿✿✿✿

against
✿✿✿✿✿✿✿✿

carrying
✿✿✿

out
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-validation
✿✿✿

for
✿✿✿✿✿✿✿✿✿

evaluating
✿✿✿✿

bias

✿✿✿✿✿✿✿✿✿

corrections
✿✿✿

due
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

asynchronism
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

internal
✿✿✿✿✿✿

climate
✿✿✿✿✿✿✿✿✿

variability
✿✿

of
✿✿✿

the
✿✿✿✿

data
✿✿✿✿

sets.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Maraun and Widmann (2018)
✿✿✿✿✿✿

argued20

✿✿✿

that
✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-validation
✿✿✿✿✿✿✿✿

methods
✿✿✿✿

shall
✿✿✿✿✿✿✿

compare
✿✿✿

the
✿✿✿✿✿✿✿✿✿

correction
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿

on
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿✿

climate
✿✿✿✿✿✿

states,
✿✿✿

i.e.,
✿✿✿

the
✿✿✿✿✿✿

future
✿✿

or

✿✿✿

past
✿✿✿✿✿✿✿

climate
✿✿✿✿

state,
✿✿✿✿✿✿✿✿✿

otherwise
✿✿✿✿

they
✿✿✿

can
✿✿✿✿✿✿✿

produce
✿✿✿✿✿

false
✿✿✿✿✿✿✿

positive
✿✿

or
✿✿✿✿

true
✿✿✿✿✿✿✿

negative
✿✿✿✿✿✿

results.
✿✿✿

To
✿✿✿✿✿✿✿✿

overcome
✿✿✿✿✿

these
✿✿✿✿✿✿✿

possible
✿✿✿✿✿✿✿✿✿✿

limitations,

✿✿

we
✿✿✿✿

first
✿✿✿✿✿

check
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

transferability
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

bias-correction
✿✿✿✿✿✿

method
✿✿

to
✿✿

a
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿

climate
✿✿✿✿

state
✿✿✿

by
✿✿✿✿✿✿✿✿

selecting
✿✿

an
✿✿✿✿✿✿✿✿✿✿✿

independent
✿✿✿✿

data

✿✿

set
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

Alpine
✿✿✿✿✿✿

region
✿✿✿✿✿✿✿

(APGD)
✿✿✿✿✿✿✿✿✿

excluding
✿✿✿✿✿✿✿✿✿✿✿

Switzerland.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-validation using independent data to estimate the transfer

functions (Ext-TFs) shows a similar improvement as the correction performed with data over the Swiss region exclusively25

(Int-TFs). Even though, the positive biases are slightly better corrected compared to using the Int-TFs, the remaining negative

biases are slightly stronger than using the Int-TFs. We find that the inclusion of larger mountainous regions in the east and

west of the Swiss Alps may be responsible for the improvement in positive bias-correction. The less efficient correction of

the negative biases is related to the inclusion of larger areas of grid points in lower height classes in the north and west of

Switzerland mixing different climate conditions and bias behaviours.
✿✿✿✿✿✿✿✿

Moreover,
✿✿✿

we
✿✿✿✿✿✿✿

evaluate
✿✿✿

the
✿✿✿✿✿✿✿✿✿

influence
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

different30

✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿✿

variabilities
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿

correction
✿✿✿✿✿✿✿✿✿✿

performance
✿✿✿

by
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿✿

periods
✿✿

to
✿✿✿✿✿✿✿✿

calibrate
✿✿✿

the
✿✿✿✿

TFs.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿

evaluation
✿✿✿✿✿✿✿✿

performs

✿✿✿✿✿✿

similar
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

correction
✿✿✿✿✿✿✿

method
✿✿✿✿

using
✿✿✿

30
✿✿✿✿✿

years,
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿✿✿

demonstrates
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿

calibration
✿✿✿✿✿✿

length
✿✿✿

has
✿✿✿✿

only
✿

a
✿✿✿✿✿

weak
✿✿✿

and
✿✿✿✿✿✿✿✿✿

negligible

✿✿✿✿✿

effect
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿

resulting
✿✿✿✿✿✿✿✿

corrected
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿

data
✿✿✿

set.
✿

Thus, the cross-validation shows that the new bias-correction method is

less dependent on
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability
✿✿✿

and
✿✿✿

on
✿✿✿

the
✿✿✿✿✿

region
✿✿✿✿✿✿

which the region, which is used for fitting the TFs, than other

14



methods commonly used
✿✿✿✿✿✿

method
✿✿

is
✿✿✿✿✿✿

trained
✿✿✿

on
✿✿✿

than
✿✿✿✿✿✿✿✿✿

commonly
✿✿✿✿✿

used
✿✿✿✿✿✿✿

methods (e.g., Berg et al., 2012; Maraun, 2013; Fang et al.,

2015). This demonstrates the robustness of the new method.

Still, some of the limitations could be improved in a future work by using additional features; e.g. a two-dimensional

concavity index that can not
✿✿✿✿✿

cannot
✿

only describe the form and orientation of the valleys, but also distinguish the flatlands

from the valleys that are located in the middle of the Alps. Besides, one of the next steps will be the application of this new5

method to other climate states that have a different complex topography, e.g., the LGM. Glaciologists can benefit from a better

accuracy of precipitation data that is used as input data by their models
✿

,
✿✿✿✿✿✿

whose
✿✿✿✿✿

results
✿✿✿✿

may
✿✿✿✿✿✿✿

provide
✿✿

an
✿✿✿✿✿✿✿✿✿

alternative
✿✿✿✿✿✿✿

method
✿✿✿

for

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-validation
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿

evaluating
✿✿✿

the
✿✿✿✿✿✿✿✿✿

prediction
✿✿✿

and
✿✿✿✿✿

proxy
✿✿✿✿

data
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

glacier
✿✿✿✿✿✿

extents.

Code and data availability. WRF is a community model that can be downloaded from its web page (http://www2.mmm.ucar.edu/wrf/users/

code_admin.php). The two climate simulations (global: CCSM4 and regional: WRF) occupy several terabytes and thus are not freely avail-10

able. Nevertheless, they can be accessed upon request to the contributing authors. The post-processed daily precipitation that is used to

perform the bias-correction is archived on Zenodo (Velasquez et al., 2019). The RhiresD and APGD data set can be requested from Me-

teoSwiss. Simple calculations carried out at a grid point level are performed with Climate Data Operator (CDO, Schulzweida, 2019) and

NCAR Command Language (NCL, UCAR/NCAR/CISL/TDD, 2019). The figures are performed with NCL (UCAR/NCAR/CISL/TDD,

2019) and RStudio (RStudio Team, 2015). The codes to perform the bias-correction, the simple calculations and the figures are archived on15

Zenodo (Velasquez et al., 2019).
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Figure 1. WRF domains and topography. (a) illustrates the topography and the four domains used by WRF. (b) shows the fourth domain

including the area of interest (Switzerland) outlined by a black line. (c) indicates the height-classes used for the correction method (400

m interval) for the Int-TFs at 2-km resolution (Switzerland, black outline) and for the Ext-TFs at 5-km resolution (other shaded areas).

Additionally, some labels are added to identify some specific areas in Switzerland that are used throughout the paper.

23



1.0

0.0

Q
u
a
n
ti
le

s

precipitation

Observations

Model data

 

transfer

functions

transfer

functions

Precipitation

Cumulative density function

Figure 2. Diagram of empirical quantile mapping technique. Solid (dashed) line shows a schematic simulated (observed) cumulative distri-

bution.

24



Observations Raw simulation Corrected simulation

P
re

c
ip

it
a
ti
o
n
 i
n
te

n
s
it
y
  
[m

m
 d

a
y

-1
]

(c) 2800 - 3200 mAll grid-points(a)

Time [month]

(b) 400 - 800 m

Figure 3. Boxplots are illustrating
✿✿✿✿✿✿✿

illustrate the annual cycle and monthly
✿✿✿✿✿

spatial distribution of daily
✿✿✿✿✿✿
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✿✿✿✿

mean
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✿✿

of
✿

precipitation

✿✿✿✿✿✿

intensity
✿✿✿✿✿
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the
✿✿✿

area
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covers
✿✿

all
✿✿✿✿

grid
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points
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over entire Switzerland, (b) all
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grid points in the

height class of 400–800
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–
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m, and (c)
✿✿
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grid
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points
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–
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m. Black box-plots represent the

observations (RhiresD data), blue and red ones the raw and corrected simulation, respectively. Top and bottom ends of the dashed lines

represent the maximum and minimum values, respectively. Dots represent the
✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿✿✿

climatological mean
✿✿✿
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Figure 4. Biases of precipitation in terms
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

climatological
✿✿✿✿

mean
✿✿✿✿

value
✿

of
✿✿✿✿✿✿✿✿✿✿

precipitation intensity over Switzerland. (a) represents the original

biases in January, (b) the biases after being corrected using Int-TFs in January, (c) the biases after being corrected using Ext-TFs in January,

(d), (e), and (f) as (a), (b), and (c) but in July, respectively.
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Figure 5. Biases of precipitation in terms of
✿✿✿

the interquartile range
✿

of
✿✿✿✿✿✿✿

monthly
✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿

intensity
✿

over Switzerland. (a) represents

the original biases in January, (b) the biases after being corrected using Int-TFs in January, (c) the biases after being corrected using Ext-TFs

in January, (d), (e), and (f) as (a), (b), and (c) but in July, respectively.
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Figure 6. Biases of precipitation in terms of
✿✿

the
✿

wet-day frequency
✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿✿

30-year
✿✿✿✿✿

period
✿

over Switzerland. (a) represents the original

biases in January, (b) the biases after being corrected using Int-TFs in January, (c) the biases after being corrected using Ext-TFs in January,

(d), (e), and (f) as (a), (b), and (c) but in July, respectively.
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Figure 7. Performance of bias-correction with different settings. (a) shows a Taylor diagram for January, (b) for April, (c) for July and (d)

for September. Blue dots represent the raw simulation, red dots the simulation corrected by using height-intervals of 400 m, cyan dots the

simulation corrected by using height-intervals of 100 m, petrol triangles the simulation corrected by using height-intervals of 400 m and

slope-orientations, petrol diamonds the simulation corrected by slope-orientations, and cyan squares the simulation corrected by the usual

approach (the entire Swiss region). Note that in the Taylor diagram the spatial correlation, spatial root-mean-square-error and spatial standard

deviation are shown.
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Table 1. External forcing used in Hofer et al. (2012a, b) for 1990 AD conditions.

Parameter name Value

TSI (W m−2 ) 1361.77

Eccentricity 1.6708 × 10−2

Obliquity (◦) 23.441

Angular precession (◦) 102.72

CO2 (ppm) 353.9

CH4 (ppb) 1693.6

N2O (ppb) 310.1
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Table 2. Important parameterisations used to run WRF.

Parameterisation Parameter name Chosen parameterisation Applied to

Microphysics mp_physics WRF single moment 6-class scheme Domain 1 – 4

Longwave radiation ra_lw_physiscs RRTM scheme Domain 1 – 4

Shortwave radiation ra_sw_physics Dudhia scheme Domain 1 – 4

Surface layer sf_sfclay_pysics MM5 similarity Domain 1 – 4

Land/water surface sf_surface_physics Noah–Multiparameterization Land Surface Model Domain 1 – 4

Planetary boundary layer bl_pbl_physics Yonsei University scheme Domain 1 – 4

Cumulus cu_physics Kain–Fritsch scheme Domain 1 – 2

No parameterisation Domain 3 – 4
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