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Abstract. Routing streamflow through a river network is a fundamental requirement to verify lateral water fluxes simulated

by hydrologic and land surface models. River routing is performed at diverse resolutions ranging from few kilometers to

around 1◦. The presented multiscale Routing Model mRM calculates streamflow at diverse spatial and temporal resolutions.

mRM solves the kinematic wave equation using a finite difference scheme. An adaptive time stepping scheme fulfilling a

numerical stability criteria is introduced in this study and compared against the original parametrization of mRM that has been5

developed within the mesoscale Hydrologic Model (mHM). mRM requires a high-resolution river network, which is upscaled

internally to the desired spatial resolution. The user can change the spatial resolution by simply changing one number in the

configuration file without any further adjustments of the input data. The performance of mRM is investigated on two datasets:

a high-resolution German dataset and a slightly lower resolution European dataset. The adaptive time step scheme within

mRM shows a remarkable scalability compared to its predecessor. Median Kling-Gupta efficiencies change less than 3 percent10

when the model parametrization is transferred from 3 to 48 km resolution. mRM also exhibits seamless scalability in time,

providing identical results when forced with hourly and daily runoff. The streamflow calculated over the Danube catchment

by the Regional Climate Model REMO coupled to mRM is comparable at 25 and 50 km resolution. The mRM source code is

freely available and highly modular facilitating an easy internal coupling in existing Earth System Models.

1 Introduction15

Streamflow provides an integrated signal of lateral hydrologic fluxes at the land surface over a catchment area. Streamflow

observations are routinely used within hydrologic modeling to perform model characterization or calibration/validation (Beven,

2012). Comparisons between simulated and observed streamflow are typically conducted using measures focusing on daily

values (Nash and Sutcliffe, 1970; Gupta et al., 2009). Similarly to hydrologic models (HM), land-surface models (LSM) also

represent the terrestrial hydrologic cycle. They additionally include the terrestrial energy budget and biogeochemical cycles,20

such as the carbon cycle, to provide the exchange fluxes of the land-surface with the atmosphere in, for example, Regional

Circulation Models (RCM) or Earth System Models (ESM). Streamflow is estimated in ESMs to provide fresh water input of

the land surface into the ocean (Sein et al., 2015). Streamflow observations are also used in land surface models in the context
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of climate studies to validate the hydrologic cycle at daily (a.o., Marx et al., 2018; Thober et al., 2018; Samaniego et al., 2018),

monthly (a.o., Hagemann et al., 2009; Li et al., 2015; Zhang et al., 2016) or even annual time scales (a.o., Zhou et al., 2012).

Hydrologic models and land surface models (LSM) are historically run at different spatial resolutions. Hydrologic models

(HM) are, for instance, applied at scales of few kilometers and less, even in continental-scale applications (Wood et al., 2011;

Marx et al., 2018; Thober et al., 2018; Samaniego et al., 2018), whereas LSMs are applied at resolutions of tens of kilometers5

and more within climate change studies (Van der Linden and Mitchell, 2009; Taylor et al., 2012). However, a substantial

increase in model resolution has been achieved for Regional Circulation Models (RCM) in the past years and these are run

nowadays at different resolutions down to the convection-permitting scale of a few kilometers (Jacob et al., 2014). Applying

RCMs at diverse resolutions implies that the same LSM (i.e., the same representation of water, energy, and biogeochemical

processes) is used on diverse resolutions. This imposes a challenge on the LSM parametrizations to be able to represent all10

included processes at the different resolutions (Wood et al., 1998; Haddeland et al., 2002; Boone et al., 2004). One goal of this

study is to make streamflow observations accessible to LSMs independent of their modeling resolution.

River routing is the process of predicting the hydrograph evolution as runoff moves through a river network. It can be

described at different levels of complexity. The general governing equation of this phenomena are the uni-dimensional Saint-

Venant equations (de Saint-Venant, 1871). Models using the Saint-Venant equations are referred to as hydraulic models that15

are especially suited if backwater effects occur such as in flat regions or river deltas (Paiva et al., 2011; Miguez Macho and

Fan, 2012; Paiva et al., 2013; Yamazaki et al., 2013). These models exploit remote sensing to derive model parameters and

setup (Neal et al., 2012; Beighley et al., 2009). If rivers are steep enough and relatively shallow, simplification of the Saint-

Venant equations such as the kinematic wave equation are sufficient (Lohmann et al., 1996; Hagemann and Dümenil, 1997;

Todini, 2007). They require less information about river topography and only account for wave advection and attenuation.20

These models are not applicable for large river basins with extensive floodplains such as the Amazonas and Niger because

they cannot account for floodplain inundation (Neal et al., 2012; Getirana et al., 2012; Pontes et al., 2017), which causes a

negatively skewed hydrograph (Collischonn et al., 2017). It is worth noting that the impact of floodplain processes dominates

the differences between a hydrodynamic model and kinematic wave models (Paiva et al., 2013).

A common approach to achieve scale-independent streamflow is to perform the river routing calculations on a fixed spatial25

and temporal resolution, regardless of the resolution of the hydrologic or land surface model providing the input runoff flux.

Global routing schemes, for example, often use fixed 0.5° or 1.0° resolutions to produce river discharge of large river basins

globally (Hagemann and Dümenil, 1997; Pappenberger et al., 2009; Hagemann et al., 2009; Oki et al., 1999). Within hydrologic

models, high-resolution routing algorithms at fixed scales of 5 to 16 km are used (David et al., 2011; Kumar et al., 2013b, a).

Only few studies have explicitly investigated the spatial scaling capabilities of existing routing approaches by introducing30

sub-grid and between-grid heterogeneities (Li et al., 2013).

The main objective of the multiscale Routing Model mRM presented in this study is to provide a simple, both in model

complexity and applicability, river routing of hydrologic and land surface model outputs at various spatial resolutions ranging

from the kilometer scale to large scales at 50 km or more in a seamless way (Samaniego et al., 2017b). The stand-alone model

allows the user to adjust freely the spatial resolution by simply changing a single number in a configuration file without any35
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further modifications of the input data. The resolution of routing should thereby not influence the obtained streamflow, other-

wise model re-calibrations at each resolution would be necessary. mRM also keeps the computational demand to a minimum,

one major advantage of a scalable modeling system (Kumar et al., 2013a).

The analysis of the scaling capabilities of the multiscale Routing Model mRM is shown at 622 catchments in Europe ranging

in size from about 100 km2 to 100 000 km2 and spatial resolutions from 1 to 48 km (section 3.2). The river network has to be5

provided only at the highest spatial resolution supported by the available data, for example a digital elevation map. This high-

resolution river network is then internally upscaled to the resolution specified by the user in a configuration file. The upscaling

accounts for the correct representation of the catchment area/stream network without any further data requirement (section 2.4).

A parameter sensitivity analysis is presented at all of the 622 catchments, which highlights the little influence of the model

parameter of mRM (section 3.1). The multiscale Routing Model mRM is coupled internally to the mesoscale Hydrologic Model10

mHM (Samaniego et al., 2010; Kumar et al., 2013b) and the improvement of mRM over the original routing parametrization

in mHM is demonstrated (section 3.3). The overall focus of mRM is to provide a simple routing tool that can be coupled to any

land-surface and hydrologic model across several spatial resolutions, and giving them access to streamflow observations. mRM

is applied as a stand-alone post-processor to the output of the REMO Regional Climate model over the Danube catchment for

demonstration (section 3.4).15

2 Description of the multiscale Routing Model mRM

2.1 Finite Difference Approximation of Kinematic Wave Equation

The multiscale Routing Model mRM uses the kinematic wave equation, first analyzed by Lighthill and Whitham (1955), to

describe the water flow within a stream as

∂Q

∂t
+ c

∂Q

∂x
= 0, (1)20

where Q (m3 s−1) is streamflow, x (m) the space dimension, t (s) the time dimension, and c (m s−1) the celerity. The kinematic

wave equation is a simplification of the Saint-Venant equations (Chow et al., 1988). The derivation is based on the assumption

that the continuity equation is sufficient to describe the movement of flood waves. In detail, a constant river bed slope and time-

invariant celerity c have to be assumed (Lighthill and Whitham, 1955). Kinematic waves account for the advection of water but

not for complex fluvial processes such as flood wave attenuation, backwater effects, and floodplain inundation. However, it is25

widely used because advection is the governing fluvial process as long as backwater and floodplain inundation effects can be

neglected (Paiva et al., 2013). mRM employs the classical finite difference weighted approximation on a four points scheme to

solve equation (1). Details about the derivation can be found in Chow et al. (1988) and Todini (2007). It is summarized shortly

in the following.
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The partial derivatives within equation (1) are represented as finite differences between four values, that means on two

locations at two points in time:

∂Q

∂t
≈ ε(Q(xj ,ti+1)−Q(xj ,ti))+(1−ε)(Q(xj+1,ti+1)−Q(xj+1,ti))

∆t , (2)

∂Q

∂x
≈ ϕ(Q(xj+1,ti+1)−Q(xj ,ti+1))+(1−ϕ)(Q(xj+1,ti)−Q(xj ,ti))

∆x ,

where j denotes the spatial location (i.e., reach id) and i denotes the timestep. ε is a space-weighting factor and ϕ is a time-5

weighting factor. mRM uses a rectangular grid to represent the river network with a river reach in the model connecting two

center grid locations. Different spatial locations are separated by ∆x and time steps by ∆t. The two weighting factors, ε and ϕ,

can be chosen between 0 and 1, but the numerical solution becomes unstable for ε > 0.5 (Cunge, 1969). The numerical diffusion

depends linearly on ε (Cunge, 1969), with 0 implying full numerical diffusion and 0.5 no numerical diffusion, respectively.

Setting ϕ to 0.5, which represents a time-centered scheme, and substituting equation (3) into equation (1) results in the10

classical linear equation:

Q(xj+1, ti+1) = C1Q(xj , ti+1) +C2Q(xj , ti) +C3Q(xj+1, ti), (3)

with the coefficients C1, C2 and C3 being:

C1 = −2∆xε+c∆t
2∆x(1−ε)+c∆t ,

C2 = 2∆xε+c∆t
2∆x(1−ε)+c∆t , (4)15

C3 = 2∆x(1−ε)−c∆t
2∆x(1−ε)+c∆t .

The coefficientsC1,C2 andC3 add up to one. The spatial resolution at which equation 3 is applied is called “routing” resolution

in the following.

2.2 Stream Celerity Parametrization based on Terrain Slope

Two parametrizations of equation (5) are available in mRM: firstly the regionalized Muskingum-Cunge (rMC) parametrization20

with a fixed time step as implemented in the mesoscale Hydrologic Model mHM presented in Samaniego et al. (2010) and

Kumar et al. (2013b), and secondly the newly developed parametrization using spatially varying celerities in combination with

an adaptive time step (aTS). A short summary of the former is presented in the Appendix A and is referred to as rMC in the

following. The latter is described in detail in this and the next section and is referred to as aTS scheme.

The aTS calculates stream celerity as a function of terrain slope using a simple relationship:25

ci = γ
√
si, (5)

where ci, si and γ are celerity, terrain slope and a free model parameter, respectively, and i is the grid cell index. Equation 5

was proposed by Miller et al. (1994) for evaluating the accuracy of atmospheric GCMs against streamflow observations. They

used γ = 49 with a topography at 5’ resolution (ca. 10 km at the equator). Coe (2000) used the same formulation also at 5’
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resolution but set γ = 113. γ = c0/
√
s0 is the ratio of a minimum celerity c0 over the square root of a reference slope s0. The

latter should depend on the resolution of the input data so that the aTS model parameter γ should theoretically also depend on

the resolution of the underlying terrain data, i.e., the Digital Elevation Model (DEM). Because both parameters, c0 and s0, are

unknown, aTS uses only the combined model parameter γ. It is set to range between 0.1 and 30 in this study because values

above 30 led to unrealistic celerities with the two DEMs of 100 m and 500 m resolution used (see below). The parametrization5

used here (equation 5) is an alternative to Manning’s equation (Manning, 1891; Chow et al., 1988), which is more physically

based than equation 5, but additionally requires information of river cross sections and Manning’s roughness coefficient, which

need to be parametrized if observations are not available. Manning’s equation thus typically requires more parameters than the

equation 5. The latter is used in aTS because of its simplicity and the sufficiently high model performance (see Section 3.1).

The celerity relationship (equation 5) is applied at the resolution of the Digital Elevation Model (DEM), from which terrain10

slope is derived. Ideally, channel slope instead of terrain slope should be used in equation 5, but it is not as available as

terrain slope. Applying equation 5 at the resolution of the DEM provides a compromise because a high-resolution DEM

provides a close approximation of channel slope. A median absolute deviation (MAD) filter (Sachs, 1999) is applied to the

high resolution slope data along the path of the main river with a threshold value of 2.25 to correct for outliers. Large slope

outliers happen easily in DEMs, for example, when the river flows in a valley and one grid cell represents the valley while the15

next grid cell represents the hill top. A minimum river bed slope of 0.1% is further assumed. The celerities are then upscaled

to the routing resolution, i.e., the resolution at which the kinematic wave equation is solved (equation 3). The upscaling is

by averaging with the harmonic mean, the correct averaging operator for celerities (or speed). This follows the Multiscale

Parameter Regionalization (MPR) approach (Samaniego et al., 2010; Kumar et al., 2013b), which relates model parameters to

physiographic characteristics at the highest resolution possible. The upscaling considers also only those high-resolution grid20

cells that align with the path of the main river because aTS only considers the flow in the main river reach, assuming that travel

times in the main reach dominate the routing process in tributaries. Alternative models such as MOSART (Li et al., 2013) also

consider flow in tributaries and head waters.

2.3 Adaptive Time Step (aTS) Implementation

The aTS scheme uses an adaptive time step to calculate the linear coefficients in equation (5). The basic idea is that the time step25

should be such that water has not been transported further than ∆x during a single step. This condition is generally known as

Courant-Friedrich-Lewy criterium, which is a necessary condition for numerical stability of finite difference schemes (Courant

et al., 1928). The condition can be expressed as:

Cr =
c∆t
∆x
≤ Cmax = 1, (6)

where Cmax is the Courant number. aTS uses a Courant number of 1 (Bates et al., 2010). The Courant condition couples the30

applied spatial resolution with the integration time step of the finite difference scheme. Celerities ci are typically in the order

of a few m s−1, calculated using equation 5 and averaged harmonically along the river path. Spatial grids are in the range of

a few kilometers to around 100 km in the case of regional to continental applications. The time step ∆t is chosen such that it
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does not deviate too much from the Courant number Cmax (equation 6) to keep computational demand to a minimum. This

implies that ∆t ranges from a few minutes for high-resolution grids to a few hours for continental scale applications.

In detail, aTS chooses ∆t from a set of prescribed values such that ci∆t/∆x is close to but less than 1 for all celerities ci.

The prescribed values range from one minute to one day, namely: 1 min, 2 min, 3 min, 4 min, 5 min, 6 min, 10 min, 12 min,

15 min, 20 min, 30 min, 1 h, 2 h, 3 h, 4 h, 6 h, 8 h, 12 h, and 1 day. The choice of these values is motivated from the fact that5

these represent multiples or dividers of hourly and daily time steps. These time steps allow in principle model applications

from 100 m to 100 km, for typical celerities around 1.5 m s−1.

Note that the chosen time step depends only on the spatial resolution and is independent of the time resolution of the provided

forcing. For example, applying aTS at 12 km resolution using a celerity of c = 1.5 m s−1 gives ∆x/c of 2.2 hours and, hence, a

time step of two hours will be chosen. If aTS is forced with hourly input, it will aggregate the input over two consecutive time10

steps prior to the routing. The calculated streamflow is then distributed to the previous two time steps because these represent

the mean flow over this period. If aTS is forced with daily input, it will use internally 12 iterations of 2-hour time steps to route

the water through the river network. In this case, aTS will also return the average of the calculated 12 streamflow values at each

reach.

2.4 Data Requirements and Model Setup15

High-resolution river network

Grid specific runoff

Upscaled river network

Kinematic wave solver

Q(xj+1, ti+1) = C1Q(xj , ti+1)
+ C2Q(xj , ti)
+ C3Q(xj+1, ti)

Streamflow at every reach

Inputs Processing

Outputs

Figure 1. Flowchart of the processing steps required to run the multiscale Routing Model mRM: left, input: static high-resolution information

about the routing network and dynamic runoff field; middle, internal mRM processing: aggregation of static and dynamic data to the routing

resolution given by the user and execution of routing at this resolution; right, output: calculated streamflow at prescribed gauge.
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Three different input variables are required to run the multiscale Routing Model mRM. First, mRM requires information

about the river network. mRM uses a rectangular grid to represent the river network over a domain (Yamazaki et al., 2011).

Water can only be transported from a specific grid cell to one of the eight neighboring cells following the steepest slope direction

(D8 method, O’Calaghan and Mark, 1984). This procedure has to be carried at the highest possible resolution supported by the

available dataset. For example, a high-resolution 100 m digital elevation model (DEM) can be used to calculate flow directions5

following the D8 method (Figure 1 top left). It is worth mentioning that DEMs typically have to be adjusted to align with

existing river networks using additional information about river locations (Döll and Lehner, 2002). High-resolution datasets

such as HydroSHEDS (Lehner et al., 2006) can be used alternatively. Once the high-resolution flow direction is obtained

following the nomenclature of 1 – east to 128 – north east clockwise, it is internally upscaled in mRM (Figure 1 center top)

to the routing resolution specified by the user, employing the method of Döll and Lehner (2002). This upscaling technique has10

already been implemented in Samaniego et al. (2010). The flow direction at a low resolution grid cell (3×3 grid in Figure 1) is

equal to the flow direction of the underlying high resolution grid cell with the highest flow accumulation. If this high resolution

grid cell is not along an edge of the low resolution grid cell, then the low resolution grid cell is an outflow of the domain.

Second, the gridded runoff fields have to be provided in Network Common Data Form (NetCDF). Units of the forcing can

be either mm h−1 or kg m−2 s−1 to facilitate applications to hydrologic models as well as land surface models. The spatial15

resolution of the runoff field is required to be a multiple of the resolution of the flow direction field. The most common use

case is that streamflow is calculated at the resolution of the runoff and mRM will upscale the river network to the resolution as

described before. However, mRM puts no constraints on model resolution and simulations at higher or lower resolutions can

be conducted as long as it is a multiple of both, the runoff grid and the grid of the flow directions. In this case, runoff will be

up-/down-scaled employing weighted area fractions, which guarantees mass conservation.20

Third, observed river streamflow can be provided to mRM at multiple locations within the river network. These locations

have to be specified within the high-resolution river network and are then located on the upscaled river network internally within

mRM. However, users should be cautious when selecting the model resolution so that the streams represented by the gauging

data are still resolved within the upscaled river network. Thus, the upscaled flow accumulation in each grid cell is given in an

output NetCDF file, which allows comparison to the drainage area of a given gauge. Observed discharge data is not required25

for mRM when applied, for example, at ungauged locations. It is, however, mandatory when performing model optimization.

Different error measures such as Nash-Shutcliffe efficiency (Nash and Sutcliffe, 1970) and Kling-Gupta efficiency (Gupta

et al., 2009) can be calculated directly in mRM to inform the user about model performance.

A test basin is provided alongside the model code to illustrate the different data required to run the model and their formatting.

The model code also contains pre-processing scripts to calculate the flow direction from a given DEM, or flow accumulation30

from given flow directions.

2.5 Experimental Setup

A total of 622 stream gauges are used in this study to assess the performance and scaling capabilities of mRM (Figure 2).

These contain 368 basins in the German dataset (Figure 2a) and 254 basins in the European dataset (Figure 2b). Input for mRM
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Figure 2. Discharge gauges used for the evaluation of the multiscale Routing Model mRM: a) 368 gauges in the German dataset, b) 254

gauges in the European dataset. In the background, the results of a pan-European simulation using the multiscale Routing Model mRM and

the mesoscale Hydrologic Model mHM at a 5 km resolution is shown. The simulated streamflow Q is depicted for the 5th Aug 2002.

is derived from simulations carried out with the mesoscale Hydrologic Model mHM (Samaniego et al., 2010; Kumar et al.,

2013b). Two different model setups for mHM are used in this study. The setup for the German dataset is identical to Samaniego

et al. (2013) and Zink et al. (2016) with details given in Zink et al. (2017). The flow direction and accumulation are derived

from a 100 m DEM. The setup for the European dataset was used in Thober et al. (2015) with details given in Rakovec et al.

(2016). The DEM used to derive the river network has a 500 m resolution in this case. Runoff simulated by mHM was stored5

at hourly and daily resolution NetCDF files for both sets of basins. mHM simulations for German dataset are provided at 4 km

resolution while European simulations are provided at 24 km spatial resolution. The difference originates from the available

meteorological forcing datasets, which are derived from station data of the German weather service at 4 km resolution (Zink

et al., 2017) while E-OBS data at 24 km resolution (Haylock et al., 2008) was used for the European dataset. To study the

spatial scalability of mRM, streamflow is routed at different spatial resolutions, which are 1 km, 2 km, 4 km, 8 km, and 16 km10

for the German dataset and 3 km, 6 km, 12 km, 24 km, and 48 km for the European dataset. The selected resolutions cover a

range of hydrologic applications from small to large scale modeling studies (Wood et al., 2011; Samaniego et al., 2017a) as

well as scales of 0.5° used in climate studies (Taylor et al., 2012). Input runoff on 4 km for the German dataset and on 24 km

for the European dataset is rescaled internally in mRM to the desired routing resolution that is provided in a configuration file.

The mesoscale Hydrologic Model mHM coupled to mRM using the regionalized Muskingum-Cunge (rMC) and adaptive15

time step (aTS) parametrization were calibrated at all catchments to provide a realistic representation of the hydrologic cycle.

Details about model calibration can be found in Samaniego et al. (2010); Kumar et al. (2013b); Rakovec et al. (2016), and Zink
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et al. (2017). The calibrations of both mHM and mRM parameters are carried out using the Shuffled Complex Evolution (SCE)

algorithm (Duan et al., 1992). SCE is coupled internally to both models and SCE parameters (e.g., number of complexes) can

be specified by users in a namelist.

The Kling-Gupta efficiency (KGE) is selected as a metric for evaluating model performance (Gupta et al., 2009). KGE is

composed of three measures that relate simulated and observed streamflow. These are the ratio of simulated and observed mean5

values, the ratio of simulated and observed standard deviations, and the Pearson correlation coefficient. In comparison to the

Nash-Sutcliffe efficiency (NSE, Nash and Sutcliffe, 1970), KGE provides a more balanced metric that is less sensitive to high

streamflow values than NSE.

The model calibration and evaluation employs daily values of observed streamflow, which was obtained from the Global

Runoff Data Centre (GRDC) for the period from 1950 to 2010. Although mRM is run internally at higher temporal resolutions,10

the simulated streamflow is eventually aggregated to daily values for comparison against observations. Daily observed values

are chosen here because they allow to investigate the hydrologic cycle in greater detail compared to monthly values, commonly

used with land surface models (e.g., Hagemann et al., 2009; Zhang et al., 2016).

3 Results

3.1 General Model Performance and Parameter Sensitivities15

The adaptive time step parameterization (aTS) in mRM has one parameter modulating the relationship between terrain slope

and streamflow celerity (γ in equation 5). There is also an adjustable coefficient for the space weighting in the finite difference

solver (ε in equation 3). The sensitivity of aTS to ε and γ is explored here. The performance of simulated streamflow of aTS

appears to be very high in general and exhibits limited impact to changes of ε and γ.

The density function peaks around ∆KGE = 0 for the space-weighting factor ε. The ∆KGE estimated across all basins are20

within the interval −0.03 to 0.01. All changes in KGE below a magnitude of 0.01 are considered negligible, in alignment with

previous literature, corresponding roughly to an error level in stream flow of 1 mm d−1 (Kollat et al., 2012). Some large basins

in the European dataset show up to 0.03 higher KGE values using ε = 0 compared to ε = 0.5. Note that the numerical diffusion

of this finite difference solver (equation 5) depends linearly on ε (Cunge, 1969). An ε value of 0 corresponds to full numeric

diffusion, whereas a value of 0.5 to no diffusion. The numerical diffusion is often chosen to correspond to the actual physical25

diffusion of the river by adjusting the value of ε (Todini, 2007; Beighley et al., 2009). aTS is using a space-weighting factor ε =

0 because this value provides slightly better estimates than a value of 0.5, but the impact of this factor is overall negligible.

The density function of ∆KGE is skewed when comparing the performances between optimized γ values at each gauging

station and resolution with a constant value of 15 for all stations (Figure 3b). A value of 15 is chosen because it provides

the best compromise solution of the obtained optimized values (Figure 3d). It can be expected that optimized parameters give30

higher performances than a fixed value. The performance increments with optimized parameters were, however, less than 0.01

in more than 37% of the basins while only about 42% of the basins exhibited ∆KGE values of 0.01 to 0.05. This means that

performance increments with optimized γ values were below 0.05 in 79% of the basins (Figure 3b).
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Figure 3. Differences in KGE between no numeric diffusion (ε= 0.5) and full numeric diffusion (ε= 0.) for the combined European and

German datasets (panel a), and differences in KGE between model runs with optimized parameter values at each gauge and one constant

parameter for all gauges (panel b). Probability density functions (PDF) are shown as black lines. The integrals of the PDFs over intervals

of 0.02 (e.g., -0.01 to 0.01) are shown as gray bars normalized with respect to all basins. Panel c: Cumulative distribution functions (cdfs)

of Kling-Gupta Efficiencies (KGE) for the European and German datasets separately based on optimized parameters γ. Panel d: CDF of

optimized γ for the two datasets. The underlying data shown in panels a-d is pooled for all catchments and all resolutions. Panels e) and f)

show the hydrographs for two catchments at 4 km resolution for a parameter value of γ = 15 (solid gray line) and the optimized value (dashed

black line).

Overall, the KGE values for the European and German dataset are very high with only 4% of the basins exhibiting a KGE

value less than 0.6 (Figure 3c). The median KGE values are 0.89 and 0.94 for the European and German dataset, respectively.

KGE values are, however, highly dependent on the used hydrologic model (i.e., mHM) and the quality of the input data.

The hydrologic model determines the partitioning of precipitation into evapotranspiration and runoff as well as the temporal
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dynamics of generated runoff. It thus affects all three components of KGE: the bias, the variance and the correlation. The

routing model, on the other hand, is not able to change the long-term water balance and is thus not affecting the bias term of the

KGE. The routing model is, however, able to change the dynamics of simulated streamflow and thus greatly affect the variance

term of KGE. The distribution of the optimized parameter values is very different for the German and the European datasets

with median values of 4 and 21, respectively (Figure 3d). These differences originate from the resolution of the underlying5

digital elevation model (DEM) and hence the slopes used in equation 5. The slope data for the German dataset is available at

a 100 m resolution, while it is at 500 m resolution for the European dataset. The slopes will hence be larger and more variable

at 100 m resolution compared to 500 m resolution. This implies that lower slope values (European dataset) are associated with

higher γ values and higher slope values (German dataset) are associated with lower γ values, which results in similar celerities

for the two datasets. This highlights that the obtained parameter values are highly dependent on the underlying dataset, which10

has been identified as a major source of hydrologic modelling uncertainty (Livneh et al., 2015).

Hydrographs for two German river basins that exhibit ∆KGEs of 0.05 and 0.11, respectively, are shown in Figure 3e and

Figure 3f. These ∆KGE values were among the highest of all basins and model resolutions considered in this study. A shift

in peak flows of about one day can be spotted visually at ∆KGE values of 0.05 (Figure 3e). This difference is representative

for around 21% of all catchments. A difference in KGE of 0.11 implies a change in the amount and timing of peak flows15

(Figure 3f) and is representative for around 8% of all catchments. The overall recession dynamics are comparable regardless

of the change in γ (Figure 3e and 3f). Moreover, no substantial shift in amount and timing of peak flows is observed in 79% of

the catchments. It will ultimately depend on the preference of the model user if parameter calibration is applied for a specific

use case.

3.2 Temporal and Spatial Scalability20

The aTS scheme is run firstly with different temporally aggregated inputs and secondly on different spatial resolutions to

demonstrate its scalability across time and space.

The adaptive time step procedure of aTS allows to use different input time steps. This might be the case if input runoff

is provided as an aggregate over a specific period, for example as daily runoff. aTS aggregates or disaggregates any given

temporal resolution to the internal time step constrained by a Courant number of 1 (equation 6). Similar performances are25

achieved with aTS using either daily or hourly inputs across all basins in the German and European dataset at every spatial

resolution (Figure 4). This is achieved because of the aggregation and disaggregation to the internal time step but it is also

affected by the fact that we compare against observed daily discharge. Sub-daily differences are thus averaged out before

comparison. Observed hourly discharge would contain information about sub-daily variability that could not be obtained from

daily inputs and, thus, hourly inputs might perform better in this case. However, observed discharge is mainly available on a30

daily resolution.

Evidently, aggregated input provides less variable runoff to the routing scheme, leading to less variable river discharge.

Aggregation does, however, not change absolute values (bias). The ∆KGE values therefore appear due to changes in streamflow

variability, which should be reduced with aggregated runoff values.
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Figure 4. Probability density functions (PDF) of differences in KGE values obtained with hourly and daily input to aTS. PDFs are limited

to the minimum and maximum ∆KGE values and have been normalized with respect to its width to ease the comparison. A thin dashed

horizontal line is given at ∆KGE = 0 for reference. Dashed lines in the violins indicate the medians, dotted lines the 25th and 75th percentiles

and solid lines the 5th and 95th percentiles.

A subtle differences exist between the ∆KGE values for the German and European dataset. The median ∆KGE values are

almost zero for the European basins (Figure 4b) with very little standard deviations. Median ∆KGE values for German dataset

are in contrast slightly negative around −0.005 (Figure 4a). The differences between the German and European dataset come

mainly from the spatial resolution at which gridded runoff inputs for mRM were generated. Forcing for mRM was provided

at 4 km resolution for the German dataset, which is the lowest resolution of the meteorological input (Zink et al., 2017). The5

input runoff for mRM has been generated at a 24 km resolution for the European dataset, which corresponds to the resolution

of the meteorological E-OBS dataset (Haylock et al., 2008). Runoff data at 4 km scale exhibit much higher spatial variability

compared to the coarser 24 km runoff. The higher spatial variability of the German dataset is substantially reduced when using

daily runoff compared to hourly runoff, which generates the little mismatch between using hourly and daily inputs for the

German dataset (Figure 4a). The equalization of variability from averaging is less pronounced in the less variable runoff fields10

of the European dataset.

For the spatial scaling, KGE values relative to the finest possible model resolutions (1 km for German and 3 km for European

dataset) are reported (Figure 5). In other words, the reference values (observations) in the calculations of KGE are replaced by

simulated streamflow obtained with optimized parameters at the highest resolution. Perfect spatial scaling is hence indicated

by a relative KGE value of one. Figure 5 shows the probability density functions of the relative KGE values estimated over all15

basins for each model resolution. The optimized parameter obtained at the highest spatial resolution for each basin is transferred

for the aTS and the rMC parametrization to the model runs at the coarser spatial resolutions.

Results shown in Figure 5 clearly demonstrate a remarkable spatial scalability of aTS in comparison to the original rMC

parametrization (Appendix A). The lowest median relative KGE of 0.977, which represents a change of less than 3 percent,
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Figure 5. Probability density functions (PDF) of relative KGE values for adaptive time step scheme (aTS) (dark gray violins) and the

regionalized Muskingum-Cunge (rMC) routing scheme (light gray violins). KGE values are calculated relative to the finest possible spatial

resolution, which is 1 km for the German (a) and 3 km for the European dataset (b). PDFs are limited to the minimum and maximum relative

KGE values and have scaled to the same widths. Dashed lines in the violins indicate the medians, dotted lines the 25th and 75th percentiles

and solid lines the 5th and 95th percentiles.

is observed at the coarsest resolution of 48 km for the European dataset. The overall lowest relative KGE is 0.85 for aTS and

0.22 for the rMC scheme. The aTS scheme shows an improved scalability because it considers the between-grid heterogeniety

of celerities through the parametrization based on terrain slope (equation 5) and the numerical stability criteria (equation 6).

The spatial scalability of aTS is higher for the German dataset compared to the European. This can be attributed to the spatial

resolution of the slope data used in the parametrization of celerity (equation 5), which is available at 100 m resolution in the5

German dataset compared to 500 m in the European dataset. The representation of river slopes is thus more realistic in the

German dataset. Notably, a similar spatial scalability is found for both aTS and rMC parametrization if default parameters are

used (not shown).

The adaptive time step scheme (aTS) shows, in summary, remarkable temporal and spatial scalability in comparison to its

predecessor. The adaptive time step allows for aggregated or disaggregated input (generated runoff) from any given temporal10

resolution.

3.3 Comparison of Adaptive Time Step Routing with Regionalized Muskingum-Cunge Parametrization

The adaptive time step scheme (aTS) is the successor of the regionalized Muskingum-Cunge (rMC) routing implemented in

mHM. A detailed analysis of the differences in model performances between the two routing parametrizations is presented

here for the German and European dataset and selected spatial resolutions (Figure 6).15
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Figure 6. Differences in KGE between the multiscale Routing Model mRM using a optimized parameter γ, constant parameter value γ =

15 and the original Muskingum-Cunge routing scheme (rMC) implemented in the mesoscale Hydrologic Model mHM for the German (left

column) and European dataset (right column). ∆KGE values between aTS and rMC using optimized parameter values on each basin and at

each resolution are shown for the respective basins on the right of each panel, where basins are sorted according to catchment area (note the

logarithmic scale). Cumulative distribution functions of ∆KGE between aTS and rMC using optimized parameter values (solid blue line)

and aTS with constant parameter and rMC with optimized ones (dashed red line) are depicted on the left sides of the panels. The zeroth line

(dashed black line) is added for reference.

If aTS and rMC are calibrated individually on each basin and at each resolution, then the performances are comparable

across the German and European dataset (Figure 6). However, the cumulative distribution functions (cdfs) of ∆KGE values is

skewed towards positive values indicating in general higher performance for aTS than rMC (Figure 6a-6j, solid blue line in right

panels). This improvement is slightly higher for the German dataset compared to the European one, which can be attributed

to the higher spatial resolution of the slope data in the former. ∆KGE values are closer to zero for resolutions finer than 4 km5
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indicating a more comparable model performance for aTS and rMC at higher spatial resolutions than at coarser ones. This is

due to the fact that the original rMC routing scheme was developed at this resolution (Samaniego et al., 2010; Kumar et al.,

2013b). At spatial resolution coarser than 12 km, the rMC routing strongly violates the Courant-Friedrichs-Lewy criterium

(i.e., c∆t/∆x ≤ 1) which results in poorer performance. Even re-optimizing the routing parameters could not compensate for

the scaling error because water is moved too fast through the river network. At these coarse resolutions, the aTS scheme is still5

outperforming the rMC scheme when run with a constant γ = 15 parameter for all catchments (Figure 6a-6j, dashed red line in

right panels).

In summary, the adaptive time step scheme (aTS) demonstrates at least the same performances as its calibrated predecessor,

the regionalized Muskingum-Cunge routing scheme (rMC). The scalability of mHM across spatial resolutions has been demon-

strated before, but employing a fixed spatial routing resolution for the rMC scheme (see Kumar et al., 2013a). For this purpose,10

the gridded runoff fields are spatially up- or down-scaled to the desired spatial resolution (e.g., 8 km runoff field disaggregated

to 4 km). The aTS parametrization allows to simultaneously scale both the hydrologic and routing model. Notably, aTS requires

no specific up/downscaling of runoff fields and parameters can be transferred across spatial and temporal resolutions. Both of

these properties offers distinct advantages in reducing the computational costs because mRM can be directly applied at the

resolution of the gridded runoff input. Using a constant γ = 15 parameter for all catchments, avoiding optimisation, further15

reduce the computational costs but might result in slightly decreased model performances in comparison to model runs with

optimized γs (∆KGE ≈ 0.1 (95% confidence)). This is, however, still little compared to the impact that has the hydrologic

model used as input to the routing scheme. Using fixed γ parameters also allows further the seamless application of aTS at

ungauged basins (Rakovec et al., 2016).

3.4 Streamflow Simulations over the Danube Catchment by applying mRM to the Regional Climate Model REMO20

Regional Climate Models (RCMs) are used to dynamically downscale Global Climate Models over a specific region to obtain

higher resolution information about the local climate. The evaluation of RCMs often focuses on surface fluxes and states,

such as 2 m air temperature, precipitation, and evapotranspiration amongst others. River runoff, which provides an integrated

signal of the water cycle over a region, is not often used as a further model diagnostic. This might be due, besides other

reasons, to the fact that RCMs are designed to be run at various spatial resolutions, ranging from few kilometers (e.g., Jacob25

et al., 2014) to tenth of kilometers (e.g., Van der Linden and Mitchell, 2009). RCM output has hence to be aggregated or

disaggregated to current routing schemes with fixed routing resolutions. This is not necessary with the multiscale Routing

Model mRM employing the adaptive time step parameterization (aTS) that runs seamlessly at various spatial and temporal

scales (section 3.2). This eases the comparison of RCM-derived streamflow with observations as the routing model has to be

setup only once and can then be applied at different resolutions without adjusting the model parameter γ or the model setup.30

Note that mRM is not limited to regular grids if high resolution flow directions are given already on a rotated grid, for example

from a rotated digital elevation model.

This section shows one exemplary application of mRM to output of the Regional Climate Model REMO (Jacob et al., 2001)

over the Danube catchment. Generated runoff by REMO has been obtained from the ENSEMBLES project (Van der Linden and
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Figure 7. Hydrographs for the Danube river basin at the gauging station Ceteal-Izmail obtained by routing drainage output from the regional

climate model REMO with mRM employing the adaptive time step parameterization (aTS) at 25 km (a) and 50 km (b) spatial resolutions. c)

Q-Q plot of the two routed REMO outputs.

Mitchell, 2009) at 25 km and 50 km resolutions. Both resolutions were used to run mRM employing the aTS parameterization

(γ = 15) over the Danube catchment (Figure 7a for 25 km and 7b for 50 km). REMO was nested into ERA-40 reanalysis in the

ENSEMBLES project, which therefore allows the comparison against observed streamflow. The Danube basin is part of the

European dataset used for the evaluation in previous sections. The same setup was used for routing gridded runoff fields of the

REMO model and only the number indicating the routing resolution had to be changed in the mRM configuration file.5

There are striking differences between the observed and simulated streamflow (Figure 7). This comes from the fact that

REMO uses a simple runoff generation consisting of direct surface runoff and soil drainage. There is no groundwater descrip-

tion in REMO so that the only water storage is in the river itself and baseflow is therefore much too low. This highlights a

common misunderstanding when using river routing with land surface models: most land surface models include only a simple
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runoff generation that does not account for the temporal variability of the runoff signal such as fast flow, interflow and baseflow.

Routing directly drainage fluxes leads to seasonal high flows that are much earlier than observed. Using very low celerities

in the routing models might improve model-data mismatch (see Oki et al., 1999, for celerities in several routing schemes).

Other runoff schemes represent different runoff components within the model code (e.g., Lohmann et al., 1996; Hagemann and

Dümenil, 1997; Pappenberger et al., 2009). The multiscale Routing Model mRM does not contain runoff generation because5

most hydrologic models already include detailed runoff generation and also land surface models start to include groundwater

components nowadays (e.g., Niu et al., 2011; Clark et al., 2015). Details of these components depend strongly on model focus

which should not be imposed by the river routing model (cf. section 4).

Three main conclusions can be drawn from the comparison of modeled and observed discharge: first, REMO is able to

capture the overall seasonal variations of runoff. There is a pronounced seasonality within the first four years in both, ob-10

servation and REMO simulated streamflow, which is much reduced in the last two years (Figure 7a & b). Seasonality in the

Danube catchment is dominated by spring melt, which is very little in the last two years. REMO is therefore able to simulate

inter-annual variations in precipitation and surface temperature over the Danube catchment.

Second, REMO produces too little runoff on average at both resolutions. Runoff is underestimated by about 50% on both

25 km and 50 km resolution, whereas biases in catchment average precipitation are less than 10% compared to E-OBS (Haylock15

et al., 2008). Hence, the partitioning of precipitation into runoff and evapotranspiration is not correct in REMO, under the

reasonable assumption that groundwater tables around the Danube river exhibit no significant trend over the simulation period.

This implies that evapotranspiration is overestimated in REMO but very similarly on 25 km and on 50 km resolution.

Third, REMO exhibits statistically very similar runoff on both model resolutions, 25 km and 50 km. The quantile-quantile

plot (Figure 7c) shows only very little for the different deciles.20

This section underlines the fact that hydrologic and land surface models have to include the processes of runoff generation

and groundwater for a fair comparison of modeled and observed discharge. It also highlights the added value of investigat-

ing simulated streamflow from Regional Climate Models even with a simple runoff generation by pinpointing overestimated

evapotranspiration within REMO. In particular, REMO’s very good reproducibility on different spatial scales is shown. Once

runoff generation has been improved, the multiscale Routing Model mRM would allow to further analyze the responses of land25

surface models to climatic extremes (Reichstein et al., 2013) using indices and signatures of the discharge time series (Thober

and Samaniego, 2014; Shafii and Tolson, 2015).

4 Comparison with Existing Routing Schemes

River routing is performed at various resolutions, depending on the application. Global streamflow simulations, using output

of land-surface models (LSMs) or hydrological models (HMs) for example, are typically carried out at 0.5° or 1.0° resolutions30

(a.o., Oki et al., 1999; Hagemann et al., 2009; Pappenberger et al., 2009; Zhang et al., 2016). However, climate models are

run on ever increasing spatial scales (Jacob et al., 2014), or using even internally nested grids or zooming functionality (Zängl

et al., 2014). Also, spatial resolutions of few kilometers are used within the hydrologic modeling community to obtain national
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and continental estimates of hydrologic fluxes and states (David et al., 2011; Marx et al., 2018; Thober et al., 2018). Despite

the fact that diverse spatial resolutions are used to represent the hydrologic cycle, spatial resolutions of routing are mostly fixed

and cannot be changed easily. In many models, the user needs to provide the input data (e.g., flow direction, DEM, channel

information) for every resolution the model is applied on (a. o., Lohmann et al., 1998; Beighley et al., 2011; Neal et al., 2012).

The multiscale Routing Model mRM, on the other hand, is able to scale the river network to the desired routing resolution5

internally. This allows to make full use of the information provided by the input runoff data, without uncertainties coming from

the rescaling process (e.g., from a 12 km LSM output to a 0.5° river network). It also avoids further computational demand by

scaling the generated runoff to a hyper-resolution river network, which then requires high-performance computing resources

such as in the case of the RAPID framework (David et al., 2011). This might especially be valuable if parameter estimations

using discharge data is to be carried out, which requires multiple model evaluations.10

Current solvers describing water movement within a river network can principally be applied at different resolutions. For

example, the solution of the diffusion equation by Greens functions proposed by Lohmann et al. (1996) is valid independently

of the resolution of the river network. The CaMa-Flood model can similarly be applied to different resolutions as long as the

Courant-Friedrichs-Lewy condition is fulfilled (Yamazaki et al., 2013). aTS employs the same condition to identify an adaptive

time step that guarantees the numerical stability and achieves a scalability across spatial resolution. Yamazaki et al. (2009) also15

developed a pre-processor for the CaMa-Flood model that explicitly allows to generate a river network at different spatial

resolutions. mRM follows the same idea but it internally includes the upscaling of the river network to the required resolution

in the model code. The user has to provide the routing network only once even if the application will focus on different

spatial resolutions. The derived river network can be stored in a restart file to further speed-up the computation. However, aTS

performance is dependent on the resolution of the underlying slope data (see Section 3.1 and 3.2) and it is advisable to use the20

highest resolution data available. This is due to the fact that channel slope instead of terrain slope should be used in equation 5

and a high-resolution DEM provides a close approximation of channel slope.

Another reason that hampers the scalability of existing routing models is that they include not only the routing of water in

the river network but also a runoff generation mechanism, which represents a variety of other components of the hydrologic

cycle (Pappenberger et al., 2009). The complexity of existing runoff generation descriptions reflects the diversity of use cases25

of hydrologic and land surface models. Descriptions range from simple linear models (Niu et al., 2011; Beven, 2012) to more

complex representations considering surface groundwater interactions (Maxwell and Kollet, 2008; Miguez Macho and Fan,

2012). Existing routing schemes often opt for more simple parsimonious representations. For example, routing models use

linear reservoirs for overland flow, baseflow and riverflow to delay runoff generated by the land surface (e.g., Hagemann and

Dümenil, 1997; Pappenberger et al., 2009; Getirana et al., 2012). mRM does not include any runoff generation because it is30

beyond the scope of a river routing model to reflect the complexity of existing runoff generation processes. Notably, there

is currently ongoing research in understanding how a particular process parametrization impacts hydrologic simulations (Niu

et al., 2011; Clark et al., 2015). Runoff generation also hampers the scalability of routing models because of their highly non-

linear behavior. The Multiscale Parameter Regionalization (MPR, Samaniego et al., 2010) is one of few approaches that has
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proven to provide consistent generated runoff at resolutions ranging from 2 km to 16 km for mesoscale catchments (Kumar

et al., 2013b) and from 0.125◦ to 1◦ for continental scale basins (Kumar et al., 2013a).

Among the plethora of routing models presented over the past decades, only few have rigorously evaluated their spatial

scalability. The “Model for Scale Adaptive River Transport” (MOSART) has been developed explicitly to achieve seamless

application of river routing across scales (Li et al., 2013), similar to mRM. MOSART has been successfully coupled, for5

example, to the Community Land Model (CLM) to compare with global discharge data (Li et al., 2015). MOSART differs from

mRM in that it solves the kinematic wave equation with Manning’s equation for channel velocity (Manning, 1891) not only for

the main channel but also for hillslope routing and subgrid tributaries. It thus explicitly accounts for sub-grid heterogeneity by

considering all lateral travel times across hillslopes and tributaries. mRM, on the other hand, solves a kinematic wave equation

with spatially varying velocities for the main channel only (equation 1 and 5). The assumption within mRM is that travel times10

in the main channel dominate travel times at hill slopes and tributaries and the latter are negligible. This, in turn, leads to a

simpler approach with one model parameter. However, further research is needed to explicitly investigate the validity of this

model assumption. It is for example possible to return to the original formulation of Miller et al. (1994), using a reference slope

s0, that should depend on the underlying digital elevation model (DEM). But two DEM resolutions, as in this study, are not

enough to find a suitable formulation for the dependence of s0 on DEM characteristics such as resolution or maximal slope. s015

was hence lumped with the minimum celerity c0 to give only one identifiable parameter γ.

It is worth reminding that mRM represents a simple approach towards river routing. The results in this study demonstrate

that mRM employing the adaptive time step parameterization in combination with upscaled high resolution celerities (aTS)

achieves almost identical daily streamflow simulations at various model resolutions in diverse German and European catch-

ments. Recent literature has shown that a realistic representation of streamflow in river basins with extensive floodplains such20

as the Amazonas, Niger, and Congo require the representation of floodplain inundation processes (Getirana et al., 2012; Paiva

et al., 2013; Fleischmann et al., 2016; Pontes et al., 2017). Floodplain processes are currently not considered in mRM and fur-

ther research is required to include these. Paiva et al. (2013) showed that floodplain processes dominate the difference between

a hydrodynamic and kinematic wave models. The approach used therein should be exploited within mRM to be applicable at

different resolutions.25

5 Conclusions

The adaptive time step scheme in combination with upscaled high resolution celerities (aTS) implemented in the multiscale

Routing Model mRM estimates streamflow at various resolutions ranging from the hyper-resolution of 1 km to the large scale

of 0.5°. Differences in Kling-Gupta efficiencies of simulated daily streamflow between various model resolutions and temporal

forcings (i.e., hourly or daily runoff) are negligible with a median of 0.03 over Germany and Europe (Section 3.2). The aTS30

scheme shows an improved scalability over its predecessor because it considers the linkage between spatial resolution and

integration timestep by virtue of the Courant criteria (equation 6) and it considers the between-grid heterogeniety of celerities

through the parametrization based on high-resolution terrain slope (equation 5). mRM represents the river network internally
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at the resolution of the model input, which allows seamless application to output of any hydrologic model (HM) and land

surface model (LSM). It can also easily be coupled internal in the code of HMs or LSMs, providing error measures such as

Nash-Shutcliffe and Kling-Gupta efficiencies for model evaluation or calibration.

mRM uses a simple kinematic wave equation to describe water flow within a river network. This representation is regarded

suitable as long as backwater effects and floodplain inundation processes are comparatively small. mRM does not represent5

runoff generation mechanisms, which are included in other routing models. Runoff generation is included in hydrologic models

and nowadays often in land surface models and details of the implementation depend strongly on the application of interest.

Users of river routing schemes should not be limited by the options implemented in the river routing model itself.

mRM can in principle also be used on rotated model grids commonly used for climate models if high resolution flow

directions are provided at the same grid. However, mRM represents the river network as a rectangular grid, allowing to apply a10

constant time step over the entire model domain. Future developments will focus on implementing reservoirs and natural lakes,

floodplain processes, and a location dependent time stepping scheme, which will allow the use of mRM on irregular grids or in

models with local refinement. The model source code along with a test case to validate succesful installation is freely available

within the codebase of the mesoscale Hydrologic Model mHM at www.ufz.de/mhm.

Code availability. The software code is available through a public git repository hosted at the Helmholtz-Centre for Environmental Research15

- UFZ. mRM code is hosted in a branch of the git repository of the mesoscale Hydrologic Model (mHM), that is https://git.ufz.de/mhm/mhm/

tree/varying_celerity. The software version used for this paper can also be identified by the git tag “mRMv1.0”. The manual of mHM contains

a chapter on the installation and user guide of mRM (chapter 9). Input and output data of mRM is also included in the git repository to test

succesful installation (see manual on how to run the test basin).

Appendix A: Regionalized Muskingum-Cunge (rMC) routing20

The regionalized Muskingum-Cunge (rMC) parametrization implemented in the mesoscale Hydrologic Model mHM calculates

the Muskingum coefficients C1, C2, and C3 in equation 3 as a function of high-resolution river network properties. The

coefficients C1, C2, and C3 are parametrized as follows

C1 = ν2; C2 = ν1− ν2; C3 = 1− ν1, (A1)

where the parameters ν1 and ν2 are given as25

ν1 = ∆t
β(1−ε)+ ∆t

2
; (A2)

ν2 =
∆t
2 −βε

β(1−ε)+ ∆t
2

following the nomenclature of appendix A2 in Samaniego et al. (2010). This formulation is identical to equation 5 of the

present study, using β = ∆x/c in equation A2 and substituting equation A2 into equation A1. The parameters β and ε are then
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conceptualized as

β = γ1 + γ2L+ γ3S+ γ4C; (A3)

ε = γ5
S

max(S) ,

where L is the length of the reach, S is the slope of the reach, and C is the fraction of impervious land cover within the

floodplains (see table 4 in Kumar et al. (2013b)). Overall, there are five global parameters γ1 to γ5 in equation A3 that can be5

chosen by the user. The integration time step is fixed at one hour. To guarantee the numerical stability of the parameterization,

the following upper and lower bounds are applied

0 < ε≤ 0.5, (A4)
∆t

2(1− ε) < β ≤ ∆t
2ε , (A5)

where ∆t is set to one hour.10

Author contributions. ST, MC, and LS designed the study. ST, MK, and JM conducted parameter estimation and model validation. RK and

LS provided insights into rMC parametrization. All authors contributed to the writing of the manuscript.

Acknowledgements. This study has been partially funded within the scope of the HOKLIM project (www.ufz.de/hoklim) by the German

Ministry for Education and Research (grant number 01LS1611A). This study has been partially funded by the Copernicus Climate Change

Service. ECMWF implements this Service and the Copernicus Atmosphere Monitoring Service on behalf of the European Commission. The15

study is a contribution to the Helmholtz Association climate initiative REKLIM (www.reklim.de). MC was supported by a grant overseen

by the French National Research Agency (ANR) as part of the "Investissements d’Avenir" program (ANR-11-LABX-0002-01, Lab of

Excellence ARBRE). The ENSEMBLES data used in this work was funded by the EU FP6 Integrated Project ENSEMBLES (Contract

number 505539) whose support is gratefully acknowledged. We acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES

(http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu). We also acknowledge our data20

providers: the European Environment Agency, the Harmonized World Soil Database, the Global Runoff Data Centre, German Meteorological

Service (DWD), the Joint Research Center of the European Commission, the Federal Institute for Geosciences and Natural Resources (BGR),

the Federal Agency for Cartography and Geodesesy (BKG), and the European Water Archive. The data used within the European dataset

are described in Rakovec et al. (2016) and the data used within the German dataset are described in Zink et al. (2017). Further simulation

data that supports findings of this study are available from the corresponding author upon request. We thank the editor Paul Dirmeyer for25

handling our manuscript and two anonymous reviewers for their constructive comments that helped to substantially improve our model and

manuscript.

21

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-13
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 4 February 2019
c© Author(s) 2019. CC BY 4.0 License.



References

Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for efficient two-dimensional

flood inundation modelling, Journal of Hydrology, 387, 33–45, 2010.

Beighley, R. E., Eggert, K. G., Dunne, T., He, Y., Gummadi, V., and Verdin, K. L.: Simulating hydrologic and hydraulic processes throughout

the Amazon River Basin, Hydrological Processes, 23, 1221–1235, 2009.5

Beighley, R. E., Ray, R. L., He, Y., Lee, H., Schaller, L., Andreadis, K. M., Durand, M., Alsdorf, D. E., and Shum, C. K.: Comparing satellite

derived precipitation datasets using the Hillslope River Routing (HRR) model in the Congo River Basin, Hydrological Processes, 25,

3216–3229, 2011.

Beven, K.: Rainfall-Runoff Modelling, The Primer, Wiley-Blackwell, 2012.

Boone, A., Habets, F., Noilhan, J., Clark, D., Dirmeyer, P., Fox, S., Gusev, Y., Haddeland, I., Koster, R., Lohmann, D., Mahanama, S.,10

Mitchell, K., Nasonova, O., Niu, G. Y., Pitman, A., Polcher, J., Shmakin, A. B., Tanaka, K., Van den Hurk, B., Vérant, S., Verseghy, D.,

Viterbo, P., and Yang, Z. L.: The Rhône-Aggregation land surface scheme intercomparison project: An overview, Journal of Climate, 17,

187–208, 2004.

Chow, V. T., Maidment, D. R., and Mays, L. W.: Applied Hydrology, McGraw-Hill series in water resources and environmental engineering,

Tata McGraw-Hill Education, 1988.15

Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Freer, J. E., Gutmann, E. D., Wood, A. W., Brekke, L. D.,

Arnold, J. R., Gochis, D. J., and Rasmussen, R. M.: A unified approach for process-based hydrologic modeling: 1. Modeling concept,

Water Resources Research, 51, 2498–2514, 2015.

Coe, M. T.: Modeling terrestrial hydrological systems at the continental scale: Testing the accuracy of an atmospheric GCM, Journal of

Climate, 13, 686–704, 2000.20

Collischonn, W., Fleischmann, A., Paiva, R. C. D., and Mejia, A.: Hydraulic Causes for Basin Hydrograph Skewness, Water Resources

Research, 53, 10 603–10 618, 2017.

Courant, R., Friedrichs, K., and Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik, Mathematische Annalen,

100, 32–74, 1928.

Cunge, J. A.: On The Subject Of A Flood Propagation Computation Method (Musklngum Method), Journal of Hydraulic Research, 7,25

205–230, 1969.

David, C. H., Maidment, D. R., Niu, G.-Y., Yang, Z.-L., Habets, F., and Eijkhout, V.: River Network Routing on the NHDPlus Dataset,

Journal of Hydrometeorology, 12, 913–934, 2011.

de Saint-Venant, A. J. C. B.: Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et a l’introduction de

marées dans leurs lits, Comptes Rendus des Séances de lAcadémie des Sciences, pp. 1–11, 1871.30

Döll, P. and Lehner, B.: Validation of a new global 30-min drainage direction map, Journal of Hydrology, 258, 214–231, 2002.

Duan, Q., Sorooshian, S., and Gupta, V.: Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resources

Research, 28, 1015–1031, 1992.

Fleischmann, A. S., Paiva, R. C. D., Collischonn, W., Sorribas, M. V., and Pontes, P. R. M.: On river-floodplain interaction and hydrograph

skewness, Water Resources Research, 52, 7615–7630, 2016.35

Getirana, A. C. V., Boone, A., Yamazaki, D., Decharme, B., Papa, F., and Mognard, N.: The Hydrological Modeling and Analysis Platform

(HyMAP): Evaluation in the Amazon Basin, dx.doi.org, 13, 1641–1665, 2012.

22

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-13
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 4 February 2019
c© Author(s) 2019. CC BY 4.0 License.



Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria:

Implications for improving hydrological modelling, Journal of Hydrology, 377, 80–91, 2009.

Haddeland, I., Matheussen, B. V., and Lettenmaier, D. P.: Influence of spatial resolution on simulated streamflow in a macroscale hydrologic

model, Water Resources Research, 38, 29–1–29–10, 2002.

Hagemann, S. and Dümenil, L.: A parametrization of the lateral waterflow for the global scale, Climate Dynamics, 14, 17–31, 1997.5

Hagemann, S., Göttel, H., Jacob, D., Lorenz, P., and Roeckner, E.: Improved regional scale processes reflected in projected hydrological

changes over large European catchments, Climate Dynamics, 32, 767–781, 2009.

Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., and New, M.: A European daily high-resolution gridded data set

of surface temperature and precipitation for 1950–2006, Journal of Geophysical Research: Atmospheres (1984–2012), 113, 2008.

Jacob, D., van den Hurk, B. J. J. M., Andrae, U., Elgered, G., Fortelius, C., Graham, L. P., Jackson, S. D., Karstens, U., Köpken, C.,10

Lindau, R., Podzun, R., Rockel, B., Rubel, F., Sass, B. H., Smith, R. N. B., and Yang, X.: A comprehensive model inter-comparison study

investigating the water budget during the BALTEX-PIDCAP period, Meteorology and Atmospheric Physics, 77, 19–43, 2001.

Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Geor-

gopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski,

S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D.,15

Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-

CORDEX: new high-resolution climate change projections for European impact research, Regional Environmental Change, 14, 563–578,

2014.

Kollat, J. B., Reed, P. M., and Wagener, T.: When are multiobjective calibration trade-offs in hydrologic models meaningful?, Water Re-

sources Research, 48, 2012.20

Kumar, R., Livneh, B., and Samaniego, L.: Toward computationally efficient large-scale hydrologic predictions with a multiscale regional-

ization scheme, Water Resources Research, 49, 5700–5714, 2013a.

Kumar, R., Samaniego, L., and Attinger, S.: Implications of distributed hydrologic model parameterization on water fluxes at multiple scales

and locations, Water Resources Research, 49, 360–379, 2013b.

Lehner, B., Verdin, K., and Jarvis, A.: HydroSHEDS technical documentation, version 1.0, World Wildlife Fund US, 2006.25

Li, H., Wigmosta, M. S., Wu, H., Huang, M., Ke, Y., Coleman, A. M., and Leung, L. R.: A Physically Based Runoff Routing Model for Land

Surface and Earth System Models, Journal of Hydrometeorology, 14, 808–828, 2013.

Li, H.-Y., Leung, L. R., Getirana, A., Huang, M., Wu, H., Xu, Y., Guo, J., and Voisin, N.: Evaluating Global Streamflow Simulations by a

Physically Based Routing Model Coupled with the Community Land Model, Journal of Hydrometeorology, 16, 948–971, 2015.

Lighthill, M. J. and Whitham, G. B.: On Kinematic Waves. I. Flood Movement in Long Rivers, Proceedings of the Royal Society of London30

A: Mathematical, Physical and Engineering Sciences, 229, 281–316, 1955.

Livneh, B., Kumar, R., and Samaniego, L.: Influence of soil textural properties on hydrologic fluxes in the Mississippi river basin, Hydrolog-

ical Processes, 29, 4638–4655, 2015.

Lohmann, D., Nolte Holube, R., and Raschke, E.: A large-scale horizontal routing model to be coupled to land surface parametrization

schemes, Tellus A, 48, 708–721, 1996.35

Lohmann, D., Raschke, E., Nijssen, B., and Lettenmaier, D. P.: Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a

routing model, Hydrological Sciences Journal, 43, 131–141, 1998.

23

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-13
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 4 February 2019
c© Author(s) 2019. CC BY 4.0 License.



Manning, R.: On the flow of water in open channels and pipes , Transactions of the Institution of Civil Engineers of Ireland, 20, 161–207,

1891.

Marx, A., Kumar, R., Thober, S., Rakovec, O., Wanders, N., Zink, M., Wood, E. F., Pan, M., Sheffield, J., and Samaniego, L.: Climate change

alters low flows in Europe under global warming of 1.5, 2, and 3◦C, Hydrology and Earth System Sciences, 22, 1017–1032, 2018.

Maxwell, R. M. and Kollet, S. J.: Interdependence of groundwater dynamics and land-energy feedbacks under climate change, Nature5

Geoscience, 1, 665–669, 2008.

Miguez Macho, G. and Fan, Y.: The role of groundwater in the Amazon water cycle: 1. Influence on seasonal streamflow, flooding and

wetlands, Journal of Geophysical Research: Atmospheres (1984–2012), 117, 2012.

Miller, J. R., Russell, G. L., and Caliri, G.: Continental-Scale River Flow in Climate Models, Journal of Climate, 7, 914–928, 1994.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I — A discussion of principles, Journal of Hydrology,10

10, 282–290, 1970.

Neal, J., Schumann, G., and Bates, P.: A subgrid channel model for simulating river hydraulics and floodplain inundation over large and data

sparse areas, Water Resources Research, 48, 2012.

Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and

Xia, Y.: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation15

with local-scale measurements, Journal of Geophysical Research, 116, 2011.

O’Calaghan, J. F. and Mark, D. M.: The Extraction of Drainage Networks From Digital Elevation Data, Computer Vision Graphics and

Image Processing, 28, 323–344, 1984.

Oki, T., Nishimura, T., and Dirmeyer, P.: Assessment of annual runoff from land surface models using Total Runoff Integrating Pathways

(TRIP), Journal of the Meteorological Society of Japan, 77, 235–255, 1999.20

Paiva, R. C. D., Collischonn, W., and Tucci, C. E. M.: Large scale hydrologic and hydrodynamic modeling using limited data and a GIS

based approach, Journal of Hydrology, 406, 170–181, 2011.

Paiva, R. C. D., Buarque, D. C., Collischonn, W., Bonnet, M. P., Frappart, F., Calmant, S., and Bulhões Mendes, C. A.: Large-scale hydrologic

and hydrodynamic modeling of the Amazon River basin, Water Resources Research, 49, 1226–1243, 2013.

Pappenberger, F., Cloke, H. L., Balsamo, G., Ngo-Duc, T., and Oki, T.: Global runoff routing with the hydrological component of the25

ECMWF NWP system, International Journal of Climatology, 30, 2155–2174, 2009.

Pontes, P. R. M., Fan, F. M., Fleischmann, A. S., Paiva, R. C. D., Buarque, D. C., Siqueira, V. A., Jardim, P. F., Sorribas, M. V., and

Collischonn, W.: MGB-IPH model for hydrological and hydraulic simulation of large floodplain river systems coupled with open source

GIS, Environmental Modelling & Software, 94, 1–20, 2017.

Rakovec, O., Kumar, R., Mai, J., Cuntz, M., Thober, S., Zink, M., Attinger, S., Schäfer, D., Schrön, M., and Samaniego, L.: Multiscale and30

multivariate evaluation of water fluxes and states over european river Basins, Journal of Hydrometeorology, 17, 287–307, 2016.

Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D. C.,

Papale, D., Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A., and Wattenbach, M.: Climate extremes and the

carbon cycle, Nature, 500, 287–295, 2013.

Sachs, L.: Angewandte Statistik: Anwendung statistischer Methoden, Springer-Verlag Berlin Heidelberg GmbH, 9 edn., 1999.35

Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale, Water

Resources Research, 46, 2010.

24

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-13
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 4 February 2019
c© Author(s) 2019. CC BY 4.0 License.



Samaniego, L., Kumar, R., and Zink, M.: Implications of Parameter Uncertainty on Soil Moisture Drought Analysis in Germany, Journal of

Hydrometeorology, 14, 47–68, 2013.

Samaniego, L., Kumar, R., Breuer, L., Chamorro, A., Flörke, M., Pechlivanidis, I. G., Schäfer, D., Shah, H., Vetter, T., Wortmann, M.,

and Zeng, X.: Propagation of forcing and model uncertainties on to hydrological drought characteristics in a multi-model century-long

experiment in large river basins, Climatic Change, 141, 435–449, 2017a.5

Samaniego, L., Kumar, R., Thober, S., Rakovec, O., Zink, M., Wanders, N., Eisner, S., Müller Schmied, H., Sutanudjaja, E. H., Warrach-Sagi,

K., and Attinger, S.: Toward seamless hydrologic predictions across spatial scales, Hydrology and Earth System Sciences, 21, 4323–4346,

2017b.

Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M., Zink, M., Sheffield, J., Wood, E. F., and Marx, A.: Anthropogenic

warming exacerbates European soil moisture droughts, Nature Climate Change, pp. 1–9, 2018.10

Sein, D. V., Mikolajewicz, U., Gröger, M., Fast, I., Cabos, W., Pinto, J. G., Hagemann, S., Semmler, T., Izquierdo, A., and Jacob, D.:

Regionally coupled atmosphere-ocean-sea ice-marine biogeochemistry model ROM: 1. Description and validation, Journal of Advances

in Modeling Earth Systems, 7, 268–304, 2015.

Shafii, M. and Tolson, B. A.: Optimizing hydrological consistency by incorporating hydrological signatures into model calibration objectives,

Water Resources Research, 51, 1–19, 2015.15

Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, Bulletin of the American Meteorological

Society, 93, 485–498, 2012.

Thober, S. and Samaniego, L.: Robust ensemble selection by multivariate evaluation of extreme precipitation and temperature characteristics,

Journal of Geophysical Research: Atmospheres, 119, 594–613, 2014.

Thober, S., Kumar, R., Sheffield, J., Mai, J., Schäfer, D., and Samaniego, L.: Seasonal Soil Moisture Drought Prediction over Europe Using20

the North American Multi-Model Ensemble (NMME), Journal of Hydrometeorology, 16, 2329–2344, 2015.

Thober, S., Kumar, R., Wanders, N., Marx, A., Pan, M., Rakovec, O., Samaniego, L., Sheffield, J., Wood, E. F., and Zink, M.: Multi-model

ensemble projections of European river floods and high flows at 1.5, 2, and 3 degrees global warming, Environmental Research Letters,

13, 2018.

Todini, E.: A mass conservative and water storage consistent variable parameter Muskingum-Cunge approach, Hydrology and Earth System25

Sciences, 11, 1783–1783, 2007.

Van der Linden, P. and Mitchell, J.: ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES

project, Tech. rep., Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK, 2009.

Wood, E. F., Lettenmaier, D. P., Liang, X., Lohmann, D., Boone, A., Chang, S., Chen, F., Dai, Y., Dickinson, R. E., Duan, Q., Ek, M., Gusev,

Y. M., Habets, F., Irannejad, P., Koster, R., Mitchel, K. E., Nasonova, O. N., Noilhan, J., Schaake, J., Schlosser, A., Shao, Y., Shmakin,30

A. B., Verseghy, D., Warrach, K., Wetzel, P., Xue, Y., Yang, Z.-L., and Zeng, Q.-c.: The Project for Intercomparison of Land-surface

Parameterization Schemes (PILPS) Phase 2(c) Red–Arkansas River basin experiment:, Global and Planetary Change, 19, 115–135, 1998.

Wood, E. F., Roundy, J. K., Troy, T. J., van Beek, L. P. H., Bierkens, M. F. P., Blyth, E., de Roo, A., Döll, P., Ek, M., Famiglietti, J., Gochis,

D., van de Giesen, N., Houser, P., Jaffé, P. R., Kollet, S., Lehner, B., Lettenmaier, D. P., Peters Lidard, C., Sivapalan, M., Sheffield, J.,

Wade, A., and Whitehead, P.: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earths terrestrial35

water, Water Resources Research, 47, 2011.

Yamazaki, D., Oki, T., and Kanae, S.: Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution

flow direction map, Hydrology and Earth System Sciences, 13, 2241–2251, 2009.

25

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-13
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 4 February 2019
c© Author(s) 2019. CC BY 4.0 License.



Yamazaki, D., Kanae, S., Kim, H., and Oki, T.: A physically based description of floodplain inundation dynamics in a global river routing

model, Water Resources Research, 47, 2011.

Yamazaki, D., de Almeida, G. A. M., and Bates, P. D.: Improving computational efficiency in global river models by implementing the local

inertial flow equation and a vector-based river network map, Water Resources Research, 49, 7221–7235, 2013.

Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M:5

Description of the non-hydrostatic dynamical core, Quarterly Journal of the Royal Meteorological Society, 141, 563–579, 2014.

Zhang, Y., Zheng, H., Chiew, F. H. S., Peña-Arancibia, J., Zhou, X., Zhang, Y., Zheng, H., Chiew, F. H. S., Peña-Arancibia, J., and Zhou, X.:

Evaluating Regional and Global Hydrological Models against Streamflow and Evapotranspiration Measurements, Journal of Hydromete-

orology, 17, 995–1010, 2016.

Zhou, X., Zhang, Y., Wang, Y., Zhang, H., Vaze, J., Zhang, L., Yang, Y., and Zhou, Y.: Benchmarking global land surface models against the10

observed mean annual runoff from 150 large basins, Journal of Hydrology, 470-471, 269–279, 2012.

Zink, M., Samaniego, L., Kumar, R., Thober, S., Mai, J., Schäfer, D., and Marx, A.: The German drought monitor, Environmental Research

Letters, 11, 074 002, 2016.

Zink, M., Kumar, R., Cuntz, M., and Samaniego, L.: A high-resolution dataset of water fluxes and states for Germany accounting for

parametric uncertainty, Hydrology and Earth System Sciences, 21, 1769–1790, 2017.15

26

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-13
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 4 February 2019
c© Author(s) 2019. CC BY 4.0 License.


