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Abstract.

A method to reconstruct missing data in satellite data using a neural network is presented. Satellite observations working

in the optical and infrared bands are affected by clouds, which obscure part of the ocean underneath. In this paper, a neural

network with the structure of a convolutional auto-encoder is developed to reconstruct the missing data based on the available

cloud-free pixels in satellite images. However, it is unclear how to handle missing data (or data with variable accuracy) in a5

neural network when using incomplete satellite data in the training phase. The present work shows a consistent approach which

uses essentially the satellite data and its expected error variance as input and provides the reconstructed field along with its

expected error variance as output. The neural network is trained by maximizing likelihood of the observed value. The approach,

called DINCAE (Data-Interpolating Convolutional Auto-Encoder) is applied to a relatively long time-series of Advanced Very

High Resolution Radiometer (AVHRR) sea surface temperature data and compared to DINEOF (Data Interpolating Empirical10

Orthogonal Functions), a method to reconstruct missing data based on an EOF decomposition. The reconstruction error of both

approaches is computed using cross-validation and in situ observations from the World Ocean Database. DINCAE results have

lower error, while showing higher variability than the DINEOF reconstruction.

1 Introduction

The ocean temperature is an essential variable to study the dynamics of the ocean because density is a function of temperature15

and therefore part of the ocean current signal depends on ocean temperature. The amount of heat stored in the ocean is also

critical for weather predictions at various scales (like hurricane path prediction in the short range, as well as for seasonal and

climate predictions).

The ocean sea surface temperature (SST) is routinely measured since the beginning of the 1980s. However, as for any sensor20

working in the infrared or visible bands, clouds often obscure large parts of the field-of-view. Several techniques have been

proposed for reconstructing gappy satellite data, but often small scale information is filtered out because of the transient and

stochastic nature of these structures. DINEOF (Data Interpolating Empirical Orthogonal Functions), provides an accurate way

of retrieving missing data and reducing noise in satellite datasets using a set of optimal EOFs. The optimal number of EOF
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is determined by cross-validation. More information on the DINEOF approach is documented in (Beckers and Rixen, 2003;

Alvera-Azcárate et al., 2005). DINEOF has been applied to several oceanographic variables, at different spatial resolutions

(e.g. Alvera-Azcárate et al. (2005) for SST, Alvera-Azcárate et al. (2007) for ocean colour, Alvera-Azcárate et al. (2016) for

Sea Surface Salinity), providing accurate reconstructions. A truncated EOF basis is used to remove noise, although some small

scale and transient features can also be removed from the analysis, resulting in a smooth reconstruction.5

Neural networks are mathematical models that can efficiently extract nonlinear relationships from a mapping problem (i.e.

an input/output relationship that can be determined through a mathematical function). Neural networks are therefore specially

well positioned to detect the presence of nonlinear, stochastic features measured at the sea surface by satellite sensors, and

their use might prove efficient in retaining these structures when analysing satellite data, for example for reconstructing miss-10

ing data. However, neural networks are typically applied on a large and complete data set (i.e. no or almost no gaps) as input

data, and therefore a solution needs to be found to handle a large number of missing data.

The use of neural networks in the frame of Earth Observation has been increasing recently. Garcia-Gorriz and Garcia-

Sanchez (2007), for example, used meteorological variables like wind and air temperature (among others) to infer SST, with15

the aim of reproducing annual and interannual variability of SST during the pre-satellite era. Patil and Deo (2017) used a

wavelet neural network to predict SST at various locations in the Indian Ocean, which allowed to focus on daily variations

of SST. Pisoni et al. (2008) resorted to past instances and averaging to overcome gaps in SST, which results in smooth re-

constructions. Krasnopolsky et al. (2016) used neural networks to infer ocean colour in the complete absence of these data

(i.e. emulating a sensor failure). Jo et al (2018) infers ocean colour from related data (SST and wind among others), taking20

advantage of the close relation between different ocean variables, but also at a lower spatial resolution. Renosh et al (2018)

produced a suspended particulate matter dataset from model and in situ data using Self Organizing Maps, that was compared

to satellite data. Chapman and Charantonis (2017) used surface satellite data to infer subsurface ocean currents also using Self

Organizing Maps. Also using Self Organizing Maps, Jouini et al (2013) reconstructed missing data in chlorophyll maps using

the relation between this variable and ocean currents (proxied by SST and sea surface height).25

The objective of this manuscript is to present a neural network in the form of a convolutional auto-encoder which can be

trained on gappy satellite observations, in order to reconstruct missing observations and also to provide an error estimate of the

reconstruction. This neural network is referred in the following as DINCAE (data-interpolating convolutional auto-encoder).

An auto-encoder is a particular type of network which can compress and decompress the information in an input dataset (Hin-30

ton and Salakhutdinov, 2006),effectively reducing the dimensionality in the input data.

In section 2, the SST dataset used in this study is presented. This dataset is first reconstructed with DINEOF (section 3). The

structure of the network and its cost-function able to provide an error estimate of the reconstruction are presented in section 4.
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The results are validated by cross-validation and by a comparison to the World Ocean Database 2018 in section 5. Finally, the

conclusions are presented in section 6.

2 Data availability

Having long time series to train neural networks is quite important to achieve good results. For this study we used the longest

available time series coming from the Advanced Very High Resolution Radiometer (AVHRR) dataset (Kilpatrick et al., 2001)5

spanning 25 years, from 1 April 1985 to 31 December 2009. The data are distributed by the Physical Oceanography Distributed

Active Archive Center (PODAAC), and have a spatial resolution of 4 km and a temporal resolution of 1 day. The dataset can

directly be accessed by following the DOI link in the references (AVHRR Data). In this study, we focus on part of the Provençal

basin (4.5625oE, 9.5oE and 39.5oN, 44.4375oN, Figure 1) where the main circulation features are the Western Corsican Cur-

rent (WCC) and the Northern Corsican Current (NC) describing a cyclonic circulation pattern. In addition, several mesoscale10

and submesoscale circulation features are present in this area. With a resolution of 4 km, the SST data measures only mesoscale

and basin-wide variability.

For this study, only SST data with quality flags of 4 or higher are retained (Evans et al., 2009). One single image is com-

posed by 112 x 112 grid points. If a given pixel has measurements less than 5% of the time, then it is not reconstructed and it15

is considered as a land point in the following. In total, 27% of grid points correspond to land. Images with at least 20% of valid

sea points are retained for the reconstruction which corresponds to a total 5266 time instances.

To assess the accuracy of the reconstruction method, cross-validation is used as follows: in the last 50 images we removed

data according to the cloud mask of the first 50 images of the SST time series. These data are not used at all during either the20

training or the reconstruction phases, and can therefore be considered independent. In total, 106 816 measurements have been

withheld this way.
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Figure 1. The red rectangle delimits the studied region and the color represents the bathymetry in meters. The arrows represent the main
currents: the Western Corsican Current (WCC), the Eastern Corsican Current (ECC) and the Northern Corsican Current (NC)

3 DINEOF reconstruction

DINEOF is applied to the SST time series of 25 years. Before calculating the EOFs, the spatial and temporal mean is removed

from the data, and the missing data are set to zero. The missing data are then calculated through an iterative procedure, as ex-

plained in Alvera-Azcárate et al. (2005). A temporal low-pass filter with a cut-off period of 1.08 days is applied to improve the

temporal coherency of the results, following Alvera-Azcárate et al. (2009). This filter effectively propagates the information in5

time so that for a given date also the satellite data from the previous and next days are used in the reconstruction. The optimal
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Table 1. Comparison with the independent cross-validation data and the dependent data used for training (in oC)

CV data non-CV data
RMS CRMS bias RMS CRMS bias

DINEOF 0.4629 0.4536 -0.0922 0.3864 0.3864 -0.0029
DINEOF (2008-2009) 0.4789 0.4715 -0.0839 0.3376 0.3375 -0.0038
DINCAE (no skip connections) 0.4458 0.4456 0.0147 0.2957 0.2953 0.0153
DINCAE (2 skip connections) 0.4222 0.4217 0.0198 0.1519 0.1504 -0.0210
DINCAE (all skip connections) 0.3900 0.3895 0.0199 0.1383 0.1380 -0.0097
DINCAE (all skip connections - median) 0.3922 0.3918 0.0190 0.1342 0.1342 -0.0012
DINCAE (all skip connections and wider layers) 0.4005 0.4003 0.0147 0.1339 0.1328 0.0175
DINCAE (all skip connections and narrower layers) 0.3928 0.3915 0.0318 0.1379 0.1345 -0.0300
DINCAE (all skip connections and less layers) 0.4603 0.4557 -0.0648 0.1396 0.1364 -0.0295
DINCAE (all skip connections and more layers) 0.3991 0.3990 0.0083 0.1350 0.1346 -0.0101
DINCAE (all skip connections and average pooling) 0.3835 0.3834 0.0102 0.1251 0.1250 -0.0063

number of EOFs retained in this reconstruction is 13 modes, which explain 99.4% of the variability of the initial data.

The classical DINEOF technique reconstructs the cross-validation data points withheld in the last 50 images with an error of

0.4629oC and a slight negative bias of -0.0922 oC (Table 1). As only 13 modes are retrained by DINEOF for the reconstruction,

some small scale structures are smoothed-out, which is a well known property of a truncated EOF decomposition (e.g. Alvera-5

Azcárate et al., 2009). This smoothing effect results in an RMS error of 0.3864oC when comparing the reconstructed dataset

to all the initially present SST (i.e. used for the reconstruction). A somewhat surprising result is that when using less data (only

from the last two years, i.e. 2008 to 2009), 19 EOFs modes are retained, leading to a reconstruction with richer structures.

Therefore, the RMS error compared to all the initially present SST provided to DINEOF (but excluding the cross-validation

data) is lower (0.3375oC) than when the 25 years dataset is used. However, the RMS error compared to the cross-validation10

data is slightly worse with the 2 years dataset (0.4789oC). As the main validation statistic for this study is the RMS error

compared to the cross-validation dataset, we use the DINEOF reconstruction of the full 25 years dataset in the following.

4 Neural network with missing data as input

Convolutional and other deep neural networks are extensively used in computer vision and Earth sciences (Rasp et al., 2018;

Bolton and Zanna, 2019; Zhou et al., 2016; Geng et al., 2015) where full datasets are available, at least for training a network.15

However, when using satellite data the number of images without any clouds is very small and it is difficult to provide enough

training data when only clear images are used. Therefore the aim is to derive a reconstruction strategy which can cope with the

large amounts of missing data typically found in remote sensing data.

The handling of missing data is done in analogy to the assimilation of data in numerical ocean models. The standard optimal

interpolation equations (e.g. Bretherton et al., 1976; Buongiorno Nardelli, 2012) can be written as follows:20
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Pa−1xa = Pf−1
xf +HT R−1yo (1)

Pa−1 = Pf−1
+HT R−1H (2)

where xf is the model forecast with error covariance Pf , yo are the observations with error covariance R and H is the

observation operator extracting the observed part from the state vector xf . The analysis xa is the combined estimate with the

error covariance matrix Pa. We use these equations as an analogy to propose an approach to handle of missing data (or data5

with different errors) in a convolutional auto-encoder (CAE). The main input datasets of the CAE are i) the SST divided by its

error variance and ii) the inverse of the error variance. If a data point is missing, then the corresponding error variance is con-

sidered infinitely large and the value at this point would be zero for both input datasets. The main difference is that in optimal

interpolation, the observation vector yo is multiplied by the inverse of the error covariance (possibly including non-diagonal

elements) while in the present case we use only the error variance. The structure of the neural network will be used to spatially10

propagate the information from the observations.

In a neural network, a neuron with a value of zero does not trigger any activation in the following layers and forcibly putting

the value of a random neuron to zero is a common strategy (called drop-out) to avoid overfitting.

15

The time average has been removed from the SST dataset (computed over all years but excluding the cross-validation

dataset). The neural network works thus with anomalies relative to this mean SST. To obtain reasonable results the network

uses more input than merely SST divided by its error variance and the inverse of the error variance. The total list of input

parameters is consequently the following:

– SST anomalies scaled by the inverse of the error variance (zero if the data is missing)20

– Inverse of the error variance (zero if the data is missing)

– Scaled SST anomalies and inverse of error variance of the previous day

– Scaled SST anomalies and inverse of error variance of the next day

– Longitude (scaled linearly between -1 and 1)

– Latitude (scaled linearly between -1 and 1)25

– cosinus of the day of the year divided by 365.25

– sinus of the day of the year divided by 365.25
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The complete dataset is this represented by an array of the size 8 x 112 x 112 x 5266. The inverse of the error variance is

either zero (for missing data) or a constant. The precise value of this constant is not important because it will be multiplied by

a weight matrix and this weight matrix will be optimized by training the network. In future studies, it would be interesting to

use sensor specific error statistics provided with GHRSST products, i.e. spatially and temporally varying error estimate. The

final layer of the neural network produces the following output:5

– SST scaled by the inverse of the expected error variance

– Logarithm of the inverse of the expected error variance

The main building blocks of the neural network (Table 2) are convolutional layers (LeCun et al., 1998; Krizhevsky et al.,

2012). DINCAE uses 5 encoding and 5 decoding layers with a different number of filter sizes. Beside the input and output

layer, the filter sizes are 16, 24, 36 and 54 (the filter sizes increase 50% from one encoding convolutional layer to the next).10

All convolutional layers have a receptive field of 3x3 grid points (Simonyan and Zisserman, 2015). Between the convolutional

layers there are max pooling or average pooling layers (Scherer et al., 2010) to progressively reduce the spatial resolution

by only retaining either the maximum or average value of a region of 2x2 grid points. After the last encoding convolutional

layer, there are two fully connected layers (the so-called bottleneck). The number of neurons in the bottleneck is a fifth of

the number of the last pooling layer of the encoder (rounded to the nearest integer). Drop-out is used in the fully connected15

layers to avoid overfitting. The decoding layers are composed by convolutional layers and interpolation layers (to nearest

neighbor) to upsample the results. We also added skip connections between the output of pooling layers and the upsampling

layers (Ronneberger et al., 2015). These skip connections correspond to layers 16, 19, 22 and 25 of Table 2. The motivation

of this choice is that large-scale information of the SST would be captured by the neurons in the bottle-neck, but small-scale

structures unrelated to the overall structure in the SST would be handled by these skip connections. In the absence of the skip20

connections, the small scale structures would be removed from the dataset.

A rectified linear unit (RELU) activation function is commonly used in neural networks which is defined as:

f(x) = max(x,0) (3)

However, in our case it leads quickly (in 10 epochs) to a zero gradient and thus to no improvements in training. This problem

is solved by choosing a leaky RELU (Maas et al., 2013) for the convolutions and the standard RELU for the fully connected25

layers.

f(x) = max(x,αx) (4)

where we use here α= 0.2. The output of the network, i.e. the 26th layer of Table 2, is an array T (26)
ijk with 112 x 112 x

2 elements. The first slice k = 1 is essentially interpreted as the logarithm of the inverse of the expected error variance and
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Table 2. List of all steps in DINCAE. The additional dimension of the size of the minibatch is omitted in the output sizes below. Max pooling
and average pooling are tested for the pooling layers.

number type output size parameters

1 input 112 x 112 x 8
2 conv. 2d 112 x 112 x 16 n. filters = 16, kernel size = (3,3)
3 pooling 2d 56 x 56 x 16 pool size = (2,2), strides = (2,2)
4 conv. 2d 56 x 56 x 24 n. filters = 24, kernel size = (3,3)
5 pooling 2d 28 x 28 x 24 pool size = (2,2), strides = (2,2)
7 conv. 2d 28 x 28 x 36 n. filters = 36, kernel size = (3,3)
8 pooling 2d 14 x 14 x 36 pool size = (2,2), strides = (2,2)
9 conv. 2d 14 x 14 x 54 n. filters = 54, kernel size = (3,3)
10 pooling 2d 7 x 7 x 54 pool size = (2,2), strides = (2,2)
11 fully connected layer 529
12 drop-out layer 529 drop-out rate for training = 0.3
13 fully connected layer 2646
14 drop-out layer 2646 drop-out rate for training = 0.3
15 nearest neighbor interpolation 14 x 14 x 54
16 concatenate output of 15 and 8 14 x 14 x 90
17 conv. 2d 14 x 14 x 36 n. filters = 36, kernel size = (3,3)
18 nearest neighbor interpolation 28 x 28 x 36
19 concatenate output of 18 and 5 28 x 28 x 60
20 conv. 2d 28 x 28 x 24 n. filters = 24, kernel size = (3,3)
21 nearest neighbor interpolation 56 x 56 x 24
22 concatenate output of 21 and 3 56 x 56 x 40
23 conv. 2d 56 x 56 x 16 n. filters = 16, kernel size = (3,3)
24 nearest neighbor interpolation 112 x 112 x 16
25 concatenate output of 24 and 1 112 x 112 x 26
26 conv. 2d 112 x 112 x 2 n. filters = 2, kernel size = (3,3)

the second slice is the temperature anomaly divided by the error variance. The reconstructed temperature anomaly ŷij and the

corresponding error variance σ̂2
ij are computed as:

σ̂2
ij =

1

max(exp(min(T (26)
ij1 ,γ), δ)

(5)

ŷij = T
(26)
ij2 σ̂2

ij (6)

where γ = 10 and δ = 10−3 ◦C−2. The min and max functions in the previous equations are introduced to avoid a division5

by a value close to zero or a floating point overflow.
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4.1 Training of the neural network

The input data set is randomly shuffled (over the time dimension) and partitioned into so-called mini-batches of 50 images, as

an array of the size 8 x 112 x 112 x 50. The complete time series is splitted into 105 minibatches with 50 images each and

one last minibatch with only 16 images (representing a total of 5266 as mentioned before). The splitting of the dataset into

minibatches is necessary because the graphical processing unit (GPU) has only a limited amount of memory. Computing the5

gradient over randomly chosen subsets introduces also some stochasticity which prevents the minimization algorithm to be

trapped in a local minima. An optimization cycle using all 106 minibatches is called an epoch.

For every input image, more data points were masked (in addition to the cross-validation) by using a randomly chosen cloud

mask during training. The cloud mask of a training image would thus be the union of the cloud mask of the input dataset and a10

randomly chosen cloud mask. This allows to assess the capability of the network to recover missing data under clouds. Without

the additional clouds, the neural network would simply learn reproduce the SST values that are already received as input.

The aim of DINCAE is to provide a good SST reconstruction but also an assessment of the accuracy of the reconstruction.

The output the neural network (for every single grid point i, j) is a Gaussian probability distribution function characterized by15

a mean ŷij and a standard deviation σ̂ij . Given this pdf one can compute the likelihood p(yij |ŷij , σ̂ij) of the observed values

yij . The weights and biases in the neural network are adjusted to maximize the likelihood of all observations. Maximizing the

likelihood is equivalent to minimizing the negative log-likelihood:

J(ŷij , σ̂ij) =− 1
N

∑

ij

log(p(yij |ŷij , σ̂ij)) (7)

whereN is the number of measurements in yij (excluding thus land points and cross-validation points). Including the number20

measurements N is important as the number can change from one mini-batch to the other. The likelihood of the observations

p(yij |ŷij , σ̂ij) is given by a Gaussian distribution:

p(yij |ŷij , σ̂ij) =
1√

2πσ̂2
ij

exp

(
− (yij − ŷij)2

2σ̂2
ij

)
(8)

For other remote sensed variables like chlorophyll or sediment concentration a log-normal distribution is probably more

appropriate. The cost function has finally the following form:25

J(ŷij , σ̂ij) =
1

2N

∑

ij

[(
yij − ŷij

σ̂ij

)2

+ log(σ̂2
ij) + 2log(

√
2π)

]
(9)
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The first term of the cost function is directly related to the mean square error, but scaled by the estimated error standard

deviation. The second term penalizes any over-estimation of the error standard deviation. The third term is a constant term

which can be neglected in the following as it does not influence the gradient. The sum in the previous equation runs over all

grid points where a measurement is available but excluding the measurements withheld for cross-validation as the later are

never used during training.5

We used the Adam optimizer (Kingma and Ba, 2014) with the standard parameters for the learning rate α= 0.001, the

exponential decay rate for the first moment estimates β1 = 0.9, and for the second-moment estimates β1 = 0.999, regularization

parameter ε= 10−8.

During the development of the neural network, it was clear that it tended to overfit the provided observations, leading

to degraded results when comparing the network to cross-validation data. Commonly used strategies were therefore used to10

avoid overfitting, namely introducing a drop-out layer between the fully connected layers of the network. The drop-out layer

randomly sets, with a probability of 0.3, the output of these intermediate layers to zero during the training of the network. We

also added some Gaussian-distributed noise to the input of the network with a zero mean and a standard deviation of 0.05oC.

5 Results

Figure 2 shows the RMS error relative to the cross-validation dataset computed every ten epochs (during this reconstruction15

phase drop-out is disabled). There is an initial sharp decrease of the cross-validation error and after 200 epochs the RMS error

has mostly stabilized but still presents some fluctuations. These fluctuations are due to the fact that the gradient computed at

every optimization set is computed over a subset of the data and this subset varies at every optimization step. As mentioned

before, in every minibatch a random subset (in form of clouds) of data is marked as missing and the gradient is computed over

this randomly changing subset which leads to some fluctuations in the gradient and thus in the parameters of the neural net-20

work. In order to obtain a better estimate of the reconstruction, we average the output of the neural network between epoch 200

and epoch 1000 (saved at every 10th epoch) which leads to a better reconstruction than every individual intermediate results.

The expected error of the reconstruction is similarly averaged. Ideally, one would take the correlation of the error between

the different reconstructions into account. Ignoring these error correlations results in overestimating the expected error of the

reconstruction.25

Instead of using the average, the median reconstruction was also tested, as the median is more robust to outliers. The results

were very similar and slightly better with the average instead of the median SST. In the following only the average estimate is

used.
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Figure 2. RMS difference with cross-validation dataset as a function of iteration. The solid blue line represent the DINCAE reconstruction
at different steps of the iterative minimization algorithm. The dashed cyan line is the DINEOF reconstruction and the dashed red line is the
average DINCAE reconstruction between epoch 200 and 1000.

Training this network for 1000 epochs takes 32 hours on a GeForce GTX 1080 and Intel Core i7-7700 with the neural

network library tensorflow (Abadi et al., 2015). All computations are done in single precision.
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Figure 3. RMS difference with cross-validation dataset as a function of iteration

Figure 3 shows a scatter plot of the true SST (withheld during cross-validation) and the corresponding reconstructed SST.

The color represents the estimated expected error standard deviation of the reconstruction. Low error values are expected to be

closer to the dashed line. Reconstructed and cross-validation SST tends to cluster relatively well around the ideal dashed line.

Typically the lower expected errors are found more often near the dashed line than at the edge of the cluster of points.

5
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Figure 4. Scaled error are computed as the difference between the reconstructed SST and the actual measured SST (withheld during cross-
validation) divided by the expected standard deviation error.

To obtain a clearer idea of the reliability of the expected error we computed the difference between the cross-validation SST

and the reconstructed SST divided by the expected error standard deviation. A histogram of the scaled differences is shown in

Figure 4. The scaled error follows the theoretical distribution relatively well. When a Gaussian pdf is fitted to the histogram of

the scaled error, one obtains a mean of -0.02 and a standard deviation 0.85 (both adimensional). The averaged results of DIN-

CAE underestimate the actual error by 15% but one can argue that an underestimation of the expected error of this magnitude5

should be acceptable for most purposes.

Different variants of the neural network are tested in order to optimize its structure. The number of skip connections has a

quite significant impact on the results. The cross-validation RMS error is reduced from 0.4458 oC (no skip connections), to

0.4222 oC with 2 skips connections (layer 22 and 25 of Table 2), and further to 0.3900 oC with all skip connections between the10
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encoder and decoder layer of the same size. At the same time, the degree of smoothing of the used data (i.e. data not reserved

for cross-validation) is reduced from 0.2957 oC (no skip connections) to 0.1383 oC with all skip connections.

Increasing the filter sizes of the convolutional layers from 16, 24, 36, 54 to 16, 32, 48, 64 (with the input convolution layer

fixed by 8 filters as it has to correspond to the number of inputs) and increasing the number of neurons of the bottleneck5

accordingly leads to a slight degradation for the present case compared to the cross-validation dataset, which indicates that the

neural network starts to overfit if the number of filters is increased. A subsequent test with narrower convolutional layers of

size 16, 22, 31 and 44 lead to very similar but slightly worse results with 0.3928 oC.

The DINCAE neural network with an increasing or decreasing number of layers did not improve the results. However, it is

possible that the depth of the neural network is dependent on the available training data set and that for a more extensive data,10

increasing the number of layers could have a positive effect.

Max pooling layers are used commonly in image classification problems (e.g. Simonyan and Zisserman, 2015; Krizhevsky

et al., 2012) where the strongest detected feature is passed from one layer to the next. However, the purpose of this network

here is rather different as we intend to recover missing data which requires to spread the information spatially. Therefore we15

also tried the network with average pooling instead of max pooling, which further reduced the reconstruction error to 0.3835
oC.

In all cases the biases are relatively small and the present discussion is essentially also valid when considering the centred

RMS (i.e. the RMS difference when the bias is removed). In the following we only use DINCAE with all skip connections and

4 convolutional layers with filter sizes 16, 24, 36, 54 and average pooling for future comparison.20
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Figure 5. Example reconstruction with DINCAE and DINEOF for the date 2009-10-13

Figure 5 shows the SST reconstructions for 13 October 2009. The overall SST structure is reasonable in all reconstructions.

The cold water in the western part of the domain is better defined in the DINCAE reconstruction, and the general position of

the 21oC isotherm agrees better with the SST observations in the DINCAE reconstruction than in the DINEOF results.
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Table 3. Comparison with the World Ocean Database for SST grid points covered by clouds

RMS CRMS bias

DINEOF 1.1676 1.1102 -0.3616
DINCAE 1.1362 1.0879 -0.3278

Figure 6. Example reconstruction with some artefacts for the date 2009-09-29

In some cases the DINCAE reconstruction introduces also some artefacts as some zonal and meridional gradients near the

open boundaries (Figure 6). In the convolutional layers, zero padding is applied so that the convolution operation does not

change the size of the arrays. As this issue is relatively localized at the border it is recommended that one chooses a slightly

larger domain than the primary domain of interest for the reconstruction.

To further quantify how well the reconstruction methods could recover data under a cloud cover, we use in situ temperature5

from the World Ocean Database 2018 (Boyer et al., 2018). For every in situ grid point, the SST image with the same time stamp
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(ignoring hour, minutes and seconds) is interpolated to the nearest grid cell relative to the location of the in situ observation.

Only in situ observations corresponding to a cloudy SST pixel are used in the following. The depth of the in situ observations

should be between 0.5 m and 1 m and if there are multiple data points between this depth range, the data point closest to the

surface is used. As expected, biases play now a more important role when comparing in situ observations with reconstructed

satellite data (3). DINCAE represented a small improvement relative to the DINEOF reconstruction confirming the results from5

the cross-validation comparison.

In Figure 7 the variability of the reconstructed SST dataset is assessed. These figures represent the standard deviation

relative to a yearly average climatology computed for the original SST, and the reconstructions from DINCAE and DINEOF.

For the original SST, the climatological mean SST and the standard deviation were computed only using the available data.10

The standard deviation derived from DINCAE matches well the standard deviation from the original data, in particular in the

interior of the domain, but the standard deviation is too large along the southern coast of France and Corsica. The DINEOF

standard deviation matches the original SST standard deviation better in those areas but generally underestimates the SST

standard deviation. Given the fact that DINCAE tends to retain more variability in the reconstruction is it thus remarkable

that it still features a lower RMS despite the so-called double penalty effect (Gilleland et al., 2009; Ebert et al., 2013), i.e.15

RMS-based error measures tend to be lower for smoother fields with lower variability, but this is not the case here.
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Figure 7. Standard deviation computed around the seasonal average

6 Conclusions

This paper presents a consistent and practical way to handle missing data in satellite images for neural networks. Essentially,

the neural network uses the measured data divided by its expected error variance. Missing data are thus treated as data with an

infinitely large error variance. The cost function of the neural network is chosen such that the network provides the reconstruc-

tion but also the confidence of the reconstruction error (quantified by the expected error variance). An over- or underestimation5

of the expected error variance are both penalized by maximising the likelihood and assuming Gaussian distributed errors. This

approach can be easily generalized to parametric probability distributions, in particular to log-normal distributions for concen-

trations like remote sensed chlorophyll concentration.

The presented reconstruction method DINCAE compared favourably to the widely used DINEOF reconstruction method10

which is based on a truncated EOF analysis. Formally there are similarities between an auto-encoder (composed by just 2

fully-connected layers) and an EOF projection followed by an EOF reconstruction (Chicco et al., 2014). However, neural net-

works can represent non-linear relationships which is not possible with an EOF approach. Both methods were compared by
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cross-validation and the DINCAE method resulted in RMS error reduction from 0.4629oC to 0.3835oC.

The expected error for the reconstruction reflects well the areas covered by the satellite measurements as well as the areas

with more intrinsic variability (like meanders of the Northern Current). The expected error predicted by the neural network

provides a good indication of the accuracy of the reconstruction.5

The accuracy of the reconstructed data under clouds was also assessed by comparing the results to in situ observations of

the World Ocean Database 2018. Also compared to this dataset, the RMS error of the DINCAE reconstruction is lower than

the corresponding results from DINEOF.

10

It is quite common that data analysis methods to reconstruct missing data tend to smooth the available observations in order

to fill the area of missing observations. Therefore, the temporal variability (relative to the seasonal cycle) of the reconstructed

sea surface temperature was computed from the original data and from the reconstructed data using DINCAE and DINEOF.

The variability of the reconstructed SST with DINEOF generally underestimated the variability in the original dataset, but the

variability of the DINCAE reconstruction matched the variability of the original data relatively well.15
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