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Abstract. In this study, we present the development of a regional atmospheric transport model for greenhouse gas (GHG) 

simulation based on an operational weather forecast model and a chemical transport model at Environment and Climate Change 

Canada (ECCC), with the goal of improving our understanding of the high spatio-temporal resolution interaction between the 

atmosphere and surface GHG fluxes over Canada and the United States. The regional model uses 10 km x 10 km horizontal 10 

grid spacing and 80 vertical levels spanning the ground to 0.1 hPa. The lateral boundary conditions of meteorology and tracers 

are provided by the global transport model used for GHG simulation at ECCC. The performance of the regional model and 

added benefit of the regional model over our lower resolution global models is investigated in terms of modelled CO2 

concentration and meteorological forecast quality for multiple seasons in 2015. We find that our regional model has the 

capability to simulate high spatial (horizontal and vertical) and temporal scales of atmospheric CO2 concentrations, based on 15 

comparisons to surface and aircraft observations. In addition, reduced bias and standard deviation of forecast error in boreal 

summer are obtained by the regional model. Better representation of model topography in the regional model results in 

improved simulation of the CO2 diurnal cycle compared to the global model at Walnut Grove, California. The new regional 

model will form the basis of a flux inversion system that estimates regional scale fluxes of GHGs over Canada. 

1 Introduction 20 

The global mean atmospheric carbon dioxide (CO2) concentration or mixing ratio (in mole fractions of dry air) has been 

increasing since the industrial revolution mainly due to anthropogenic emissions into the atmosphere, while terrestrial and 

oceanic uptake moderate the increase of CO2 in the atmosphere (Canadell et al., 2007; Le Quéré et al., 2009). Apart from this 

global increase, information about each component affecting the global carbon budget and its uncertainties are estimated and 

updated regularly at the global scale, using a wide range of methods and data (Le Quéré et al., 2009; 2018). Since the ocean 25 

CO2 sink have been increasing constantly in line with the increased CO2 in the atmosphere (Le Quéré et al., 2018), the 

interannual variability of the CO2 growth in the atmosphere is primarily attributed to that of terrestrial fluxes. Recently, the 

mean annual atmospheric CO2 growth rate reached a record high mainly due to the impact of El Niño Southern Oscillation on 

the interannual variability of biospheric fluxes (Buchwitz et al., 2018) and increased net biospheric respiration in the tropics 
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(Liu et al., 2017). Globally, increased CO2 and temperature are positively or negatively associated with terrestrial uptake by 

enhancing photosynthesis or respiration (Fernández-Martínez et al., 2018). Regionally, however, the carbon balance of 

Canadian boreal forest and its impact on global carbon budget is highly uncertain and the ecosystems of Canada are vulnerable 

to a changing climate (Kurz et al., 2013; Bush and Lemmen, 2019). Therefore, correctly accounting for biospheric fluxes over 

Canada is important for understanding both the global and regional carbon cycles. 5 

Surface sources and sinks of CO2 can be estimated through inverse modelling using atmospheric CO2 concentrations 

as a constraint to adjust prior fluxes so as to minimize the difference between the modelled CO2 concentrations and observed 

values (Ciais et al., 2010). Many atmospheric inversion studies have been conducted to quantify surface CO2 fluxes on both 

global and regional scales (Tans et al., 1990; Gurney et al., 2002; Peters et al., 2007; Lauvaux et al., 2008, 2012b). Although 

there is a consensus of estimated fluxes at the global scale, significant discrepancies among different inversion system results 10 

still exist, especially in partitioning terrestrial fluxes at continental scales (Peylin et al., 2013; Crowell et al., 2019) due to the 

contribution of atmospheric transport model errors and prescribed fossil fuel emissions (Peylin et al., 2011; Gaubert et al., 

2019). 

In an atmospheric inversion of CO2, the transport model plays a key role in transforming the surface CO2 flux 

information into atmospheric CO2 concentrations and can be used as a verification tool for estimated surface CO2 fluxes (Ciais 15 

et al., 2010; Nisbet and Weiss, 2010; Bergamaschi et al., 2018). The errors caused by an imperfect transport model can 

introduce biases and uncertainties into estimated fluxes during the inversion process (Law et al., 1996; Gloor et al., 1999; 

Engelen et al., 2002; Houweling et al., 2010; Chevallier et al., 2010, 2014; Locatelli et al., 2013). Such errors may arise from 

a variety of sources: model formulation, meteorological fields and representativeness errors. Model formulation errors may 

arise from processes associated with parametrizations of vertical mixing within the planetary boundary layer (PBL) (Lauvaux 20 

and Davis, 2014), vertical mixing between the PBL and the free troposphere (Stephen et al., 2007), isentropic transport 

(Parazoo et al., 2012; Barnes et al., 2016), synoptic scale variations due to advection and convection (Parazoo et al., 2008) and 

mid-latitude storm tracks (Parazoo et al., 2011). In fact, the impact of synoptic and mesoscale transport on the variability of 

CO2 is comparable with that of surface fluxes (Chan et al., 2004). Since an atmospheric transport model is driven by 

meteorology, uncertainties in meteorological model and observations is another important source of error in the transport of 25 

tracers (Liu et al., 2011; Miller et al., 2015; Polavarapu et al., 2016). Finally, representation error is also a source of errors in 

inversions. The mismatch between coarse resolution transport model simulations and observations from real CO2 field impacts 

the ability to resolve sub-grid scale variability of CO2. In particular, unresolved synoptic and mesoscale processes increase 

representation error (Engelen et al., 2002). 

The sparseness of the CO2 observation network used in inversions is another major contributing factor to the 30 

uncertainty in estimated fluxes. Increasing the density of the surface observation network is beneficial for reducing uncertainty 

and improving the accuracy of retrieved fluxes in the context of both global (Bruhwiler et al., 2011) and regional inverse 

modelling (Lauvaux et al., 2012a; Schuh et al., 2013). Since a number of new measurement sites have been established over 

Canada and the US in recent decades (e.g. Worthy et al., 2005; Andrews et al., 2014; Bush et al., 2019), it should now be 
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possible to obtain optimized fluxes on finer spatial scales and with reduced uncertainties. However, in order to better interpret 

information from spatially dense observation networks which contain information on strongly varying biospheric fluxes and 

strong sources of anthropogenic emissions, a high resolution atmospheric transport model capable of capturing these signals 

is needed.  

 Resolving the fine scale spatial and temporal variability of CO2 generated by heterogeneous land surface and complex 5 

topography, which is not resolved by typical grid sizes of global models, is the primary motivation for regional scale inverse 

modelling. Increased horizontal resolution could alleviate transport and representation errors and thus improve simulations of 

synoptic variations of CO2 concentrations (Patra et al., 2008; Remaud et al., 2018). Indeed, Gerbig et al. (2003) suggested that 

in order to resolve spatial variations of CO2 in the PBL over a continent, a horizontal grid spacing no larger than 30 km is 

required. In addition, Pillai et al. (2011) showed that a maximum horizontal resolution of 12 km is required to represent the 10 

variability of CO2 concentrations especially over mountainous or complex terrain. To this end, several studies focusing on 

forward CO2 simulation at regional scales were carried out, using different models and configurations over various regions of 

interest. One approach to simulate atmospheric CO2 concentration at finer spatial and temporal resolution is using zooming or 

nested domains within a global model (Krol et al., 2005; Lin et al., 2018). Another option is to use a regional atmospheric 

transport model. Various kinds of regional scale modelling studies have been conducted for the mid continental region of 15 

North America (Díaz-Isaac et al., 2014), south west France (Ahmadodv et al., 2007, 2009), western Europe (Kretschmer et al., 

2014) and East Asia (Ballav et al., 2012). By increasing horizontal and vertical resolutions, regional models have an advantage 

over global models in terms of simulating CO2 concentrations as shown by intercomparison experiments (Geels et al., 2007; 

Pillai et al., 2010; Díaz-Isaac et al., 2014). 

At Environment and Climate Change Canada (ECCC), a carbon assimilation system (EC-CAS) is under development 20 

in order to estimate surface greenhouse gas (GHG) states and fluxes. To this end, a GHG forward modelling system which 

includes coupled meteorology and tracer transport model with full model physics, namely GEM-MACH-GHG (Polavarapu et 

al., 2016), has been developed. GEM-MACH-GHG is based on an operational weather forecast model, Global Environmental 

Multiscale model (GEM) at Canadian Meteorological Centre (CMC) (Côté et al. 1998a, b; Girard et al., 2014), and a chemical 

transport model with complete tropospheric chemistry, GEM-Modelling Air quality and Chemistry (GEM-MACH) model 25 

(Moran et al., 2010; Robichaud and Ménard, 2014; Makar et al., 2015), although the tropospheric chemistry module is not 

used in GEM-MACH-GHG simulations. GEM-MACH-GHG with 0.9° horizontal grid spacing is capable of simulating CO2 

concentrations over the globe acceptably well in comparison with in-situ and surface-based column averaged CO2 

observations. GEM-MACH-GHG was also used to investigate the uncertainty of CO2 transport across different global transport 

models (Polavarapu et al., 2018), and was tested with the Canadian Land Surface Scheme and Canadian Terrestrial Ecosystem 30 

Model (CLASS-CTEM) in order to be able eventually to consistently simulate atmosphere-land exchange of CO2 over the 

globe (Badawy et al., 2018). While a limited area version of the GEM model exists for operational weather and air quality 

forecasting, the ability to simulate GHGs on a regional model domain over a continental region had not been developed before 

now. 
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In this paper, in order to obtain a better understanding of the variability of atmospheric CO2 concentration at finer 

spatio-temporal scales over a continental region during a relatively long time period, a regional scale atmospheric transport 

model for GHG simulation based on GEM-MACH-GHG is developed and tested. As a first step, CO2 simulations with a 10 

km grid spacing are performed for the year 2015, on a domain covering most of Canada and the US. The performance of the 

new model is investigated using meteorological and CO2 concentration observations. In addition, the added benefit of the 5 

regional model over the global model in terms of CO2 simulation as well as weather forecasts is investigated. The article is 

organized as follows. A description of the model, data and methodologies used in this study is provided in Sect. 2. In Sect. 3 

the performance of the regional model is assessed in terms of its meteorological forecast and CO2 simulation capability through 

comparisons with global model results. The benefit of higher horizontal resolution is investigated in section 4, followed by a 

discussion of the results and a conclusion in Section 5. 10 

2 Methods and data 

2.1 Model description 

2.1.1 GEM-MACH-GHG 

GEM-MACH-GHG (Polavarapu et al., 2016) is a global GHG transport model, coupled with the meteorological model, 

wherein tracers are transported every time step. The horizontal resolution of the model is 0.9° using a global uniform latitude-15 

longitude grid (400 × 200 grid points) and there are 80 vertical levels, spanning the surface to 0.1 hPa. For meteorology and 

tracer transport, a semi-Lagrangian advection scheme is used. Additionally, a global mass fixer was implemented for the 

transport of tracers in order to conserve the global mass of CO2 during model forecasts. Kain and Fritsch (Kain and Fritsch, 

1990; Kain, 2004) was implemented for convective transport of tracers through deep convection. More details about the model 

can be found in Polavarapu et al. (2016). While CO2 is regarded as an inert trace gas in the model, methane (CH4) and carbon 20 

monoxide (CO) utilise a simple parameterized climate chemistry. Specifically, the full troposphere chemistry package 

employed in GEM-MACH is replaced by simple hydroxide reactions related to oxidations of CH4 and CO in the atmosphere, 

along with the conversion of CH4 to CO.  

As the operational version of GEM is updated periodically, model parameters are invariably tuned to optimize the 

performance of the model. In the previous configuration of GEM-MACH-GHG used in Polavarapu et al. (2016), thermal eddy 25 

diffusivity values within the PBL calculated by GEM were overridden to enhance vertical mixing of CO2 concentration. A 

minimum value of 10 m2 s-1 was imposed within the PBL to prevent too little vertical mixing of CO2 in boreal summer because 

low values resulted in spuriously low CO2 concentrations on model levels near the surface in daytime when the magnitude of 

biospheric fluxes sinks is great (Polavarapu et al., 2016). In contrast, the lower limit imposed in the operational version of 

GEM-MACH is 0.1 m2 s-1 which was also empirically chosen for air quality applications. In this study, we use a more recent 30 

version of GEM which has better vertical mixing within PBL than the version used in the previous study. This improvement 
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allowed us to revise the thermal eddy diffusivity minimum imposed with the PBL to 1 m2 s-1 from 10 m2 s-1 for all simulations 

(with both global and regional models) conducted in this study because the previous value resulted in too low CO2 

concentrations at model levels near the surface over snow covered regions, e.g. Alberta and Saskatchewan, in boreal winter. 

The impact of the revised value in summer daytime is minimal, and some improvements are found in night time, making the 

diurnal cycle of modelled CO2 concentrations more realistic overall. 5 

Results from the global model with 0.9° horizontal grid spacing are used as the reference experiment for the 

verification of the newly developed regional model. However, to provide lateral boundary conditions (LBC) of CO2 

concentration and meteorology to the regional model, a higher horizontal resolution of 0.45° (800 × 400 grid points) is needed 

to avoid numerical instability in meteorological forecasts caused by drastic change of spatial resolution at the lateral boundary 

of the regional model domain. The original configuration is somewhat coarse to be used as LBCs for our regional model with 10 

10 km horizontal resolution. Therefore, we also run the global model with a 0.45º horizontal grid spacing. All other 

configurations except horizontal grid spacing are the same with those used in coarse (0.9°) resolution global model. 

2.1.2 Extension to regional domain 

For the regional model simulation, a rotated latitude-longitude map projection with approximately 10 km horizontal grid 

spacing and a hybrid vertical coordinate is used. The domain of the regional model covers most of Canada and the US, as 15 

shown in Fig. 1, and consists of 528 by 708 grid points. The number of vertical levels is the same as in the global model as 

described in section 2.1.1, namely, 80 levels spanning the atmosphere from the surface to 0.1 hPa. Since the number of grid 

points is also almost 5 times greater than that used in the 0.9° global model, the new regional model is more expensive to run. 

The physics packages used in the regional model are similar to those of the global model and GEM-MACH, and include 

radiation (Li and Barker, 2005), boundary layer mixing (Bélair et al., 1999), shallow (Bélair et al., 2005) and deep convection 20 

(Kain and Fritsch, 1990; Kain, 2004), orographic gravity wave drag (McFarlane, 1987) and nonorographic gravity wave drag 

(Hines, 1997a, b) schemes. More details are provided in Mailhot et al. (1998). 

For a simulation with tagged tracers to distinguish each component of CO2, e.g. those associated with biospheric, 

ocean and fossil fuel fluxes etc., a transport model should have the ability to simulate consistent masses across different 

components. In other words, the mass of the total CO2 field should exactly equal the sum of the tagged CO2 species, both 25 

globally and locally. This property is also required for estimating surface fluxes through Bayesian synthesis inversion (e.g. 

Enting, 2002). As already described in Polavarapu et al. (2016), the semi-Lagrangian advection scheme implemented in GEM 

alters mass slightly during model integration. The magnitude of the change for short range forecasts is negligible but this is 

not the case for the lengthy simulations of inert trace gases such as CO2. To compensate for mass losses of tracers, a mass 

conservation scheme (Bermejo and Conde, 2002) and a shape preserving locally mass conserving scheme (Sørensen et al., 30 

2013) were applied to tracer fields. At the lateral boundaries of the regional model domain, a mass restoration scheme (Aranami 

et al. (2015) scheme) is applied. These schemes, however, can make mixing ratios across multiple tracers inconsistent since 

they correct for global mass changes in local regions where tracer gradients are large. Since each tagged component has rather 
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different spatial structure and gradients from the total CO2 field, the mass fixes made to the individual tagged variables need 

not be consistent with that made to the total field. As a result, the sum of each component may not equal the total CO2 

concentration field. To address this issue, the monotonicity and mass conservation schemes applied during the advection step 

are turned off in the regional model. The impact of the configuration on total mass of CO2 within the regional model domain 

was compared with total mass of CO2 from an experiment using mass related schemes turned on. The results show that there 5 

is no significant difference between two configurations in terms of total mass of CO2 in the whole model domain as well as 

modelled CO2 concentrations at the lowest model level in which most surface-based in-situ observation sites are located (not 

shown). This occurs because the majority of tracers’ mass are injected into the regional model domain through its lateral 

boundaries. The mass of CO2 from the surface flux is small compared to the total mass of CO2 in the atmosphere of the regional 

model domain and the signal of surface fluxes exits the lateral boundaries during model integration before they reach the upper 10 

levels of the atmosphere (e.g. upper troposphere and stratosphere). Therefore, in the regional model, we obtain perfect 

“additivity” of the tagged components with negligible loss of mass conservation.  

2.2 Surface flux 

In this study, the optimised CO2 fluxes from NOAA’s CarbonTracker, version CT2016 (Peters et al., 2007, with updates 

documented at http://carbontracker.noaa.gov) were used as surface CO2 fluxes for CO2 simulations. The temporal resolution 15 

of the surface flux is 3 h. Because of their ready availability and careful validation, many studies aimed at global to regional 

to urban scales have used optimized fluxes from CarbonTracker for forward CO2 simulations (Houweling et al., 2010; Ballav 

et al., 2012; Díaz-Isaac et al., 2014; Polavarapu et al., 2016; Li et al., 2017; Wu et al., 2018). 

The original CT2016 flux product is available on 1° by 1° horizontal grid spacing. However, the global and regional 

models have different horizontal grid spacing. Thus, fluxes are re-gridded to GEM’s grids with 0.9°, 0.45° and 10 km horizontal 20 

spacing grid, respectively, in a mass-conservative way. In addition, one more redistribution method is applied to re-gridded 

fluxes on the 10 km grid. This process applies a land-sea mask to the regional model grid in order to avoid unphysical modelled 

CO2 concentrations caused by the different behaviour of vertical mixing over land and water grid cells. Because coarse 

resolution fluxes do not contain all the information needed for high resolution grid cells, considering only the size of a grid 

cell in re-gridding is insufficient because it would lead to too low or high modelled CO2 concentrations relative to observed 25 

CO2 concentrations in regions of strong surface CO2 fluxes. With respect to fossil fuel emissions, for example, dynamic 

consistency is one of the important factors in regional scale CO2 concentration simulation, in particular along coastal margins 

(Zhang et al., 2014). Hence, biospheric and fossil fuel flux components on water grid cells where the fraction of land is less 

than 30%, including lakes and oceans, are redistributed into land grid cells (within a radius of 30 grid points) in order to 

simulate realistic CO2 concentrations along coastlines in the regional model domain while minimizing the impact of 30 

redistributed surface fluxes on CO2 simulation and while conserving the total mass of surface fluxes within the regional model 

domain. 
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2.3 Observations 

Modelled CO2 concentrations are verified against observations from ObsPack (Masarie et al., 2014) which is maintained and 

provided by NOAA. For surface measurement sites, not all observations available in the regional model domain are used in 

the evaluation. The following selection criteria are applied: (1) sites were used to infer optimized CO2 fluxes in CT2016. Thus, 

we can expect that optimized surface fluxes from CT2016 provide information about sources and sinks consistent with 5 

observed CO2 concentrations at those sites so that differences in model simulation results may be attributable to model error, 

(2) sites have continuous measurements, (e.g. hourly data) as we want verify the results for all forecast hours, (3) sites have 

no periods of missing data longer than one month (except for ESP (See Table 1 for full list of station abbreviations ) which 

has no data in January 2015) so results can be obtained for all seasons during experimental period. As a result, 19 measurement 

sites (11 sites in Canada and 8 tower sites in the US) are selected as shown in Fig 1 and listed in Table 1. For aircraft profiles 10 

of CO2, measurement sites available over Canada and the US in the year 2015 were selected. 

2.4 Experiment design 

Three experiments are performed as listed in Table 2. GLB90 is the reference experiment using the global model with 0.9° 

horizontal grid spacing. GLB45 which uses the global model with 0.45° horizontal grid spacing is carried out to provide LBCs 

to the regional model. LAM is the regional model run with 10 km horizontal grid spacing. The simulation period is one year 15 

for 2015. In the analysis, the first 10-days of simulations are regarded as a spin-up period and discarded. 

Figure 2 depicts the global and regional model cycles. In each forecast, the weather forecast and CO2 transport by 

forecasted wind fields are performed simultaneously in every time step. For the initial condition (IC) of meteorological fields 

for the two global models at the beginning of every cycle, the operational global analysis products from the global deterministic 

prediction system (GDPS; Buehner et al., 2015), whose horizontal resolution is roughly 25 km on a regular lat-long grid or, as 20 

of 15 December 2015, a yin-yang grid (Qaddouri and Lee, 2011) are used. The archived data are interpolated to our low-

resolution grids and topographies of GLB90 and GLB45, separately. For the IC of meteorological fields for the regional model, 

the operational regional analysis products from the regional deterministic prediction system (RDPS; Fillion et al., 2010; Caron 

et al., 2015) are used. The regional model grid is a subset of the model domain of the operational RDPS with the same horizontal 

resolution, sharing grid points on the same latitudes and longitudes. Therefore, it is not necessary to perform a horizontal 25 

interpolation at the start of every cycle. Also, a spin-up period for the meteorological forecast is unnecessary. Both operational 

global and regional meteorological analyses are produced 4 times per day with a 6 h assimilation window centred on the 

analysis time. We only use analyses produced on 00:00 UTC every day as an IC of meteorology. Thus, a 24-hour weather 

forecast is produced during each 24 h CO2 cycle and these forecasts are replaced by new analyses every 00:00 UTC, with the 

exception of microphysics tracers which are retained to allow a hot start for hydrometeor fields (Milbrandt et al., 2016). On 30 

the other hand, the mass of CO2 in a model grid volume is kept during cycles without replacements. The 24 h forecast of CO2 

from the previous cycle is used as the IC of the CO2 field for the next cycle at 00:00 UTC. This is combined with the updated 
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meteorological analysis for a complete initial state for the coupled model. Such 24 h forecast cycles are also used in other 

global model systems (e.g. Agustí-Panareda et al., 2014; Ott et al., 2015). 

 The IC of 3-D atmospheric CO2 concentrations at the beginning of all three experiments is taken from CT2016 CO2 

concentrations at 00:00 UTC 1 January 2015. The LBC of CO2 concentrations for the regional model are obtained from GLB45 

and include hourly meteorological and CO2 fields. 5 

One more possible configuration is that of using operational RDPS forecasts as meteorological LBCs for the regional 

model, which is similar to the configuration of the operational regional GEM-MACH (Moran et al., 2010). We tested this 

configuration and compared modelled CO2 concentrations with the LAM experiment’s modelled CO2 concentrations. 

Negligible difference was found (not shown), therefore we decided not to include that configuration in this study because our 

purpose is in developing an integrated global/regional forward modelling framework for GHG simulation as shown in Fig. 2. 10 

2.5 Sampling method and metrics 

In order to evaluate the performance of CO2 simulations and meteorological forecasts, a series of metrics are used as described 

below. Modelled or forecasted values are sampled at the observed location by applying horizontal and vertical interpolation to 

model fields rather than selecting the nearest grid point to measurement locations, and selecting the time step closest to 

observed time. To sample modelled CO2 concentrations, the sampling height above the ground level (or the model surface 15 

level) is considered to determine the altitude for vertical interpolation instead of using the actual sampling height above sea 

level (i.e. the sum of the altitude of an observation site plus intake height). Coarse horizontal resolution models cannot resolve 

well the complex topography (e.g. mountain regions) around some measurement sites. As a result, the altitude of model 

topography may be far above or below the actual height of a measurement site. If the height of a model-sampled observation 

is erroneously placed in the PBL (free troposphere) as a result of coarse model topography, this can result in an unphysical, 20 

too strong (too weak) diurnal cycle of CO2 compared to observed values (see Agustí-Panareda et al., 2019). From a comparison 

of the two sampling methods, it was found that the LAM experiment is not sensitive to the vertical sampling method, as 

expected, because it can resolve actual topography well thanks to the higher spatial resolution, but the GLB90 experiment is 

sensitive to the method at a number of measurement sites (not shown). Thus, in order to reduce the topography mismatch 

problem in the coarse resolution global model and investigate the impact of higher horizontal resolution without this problem, 25 

the method using intake height is used to help the global model capture the behaviour of the PBL variations with time and 

height. A detailed discussion of the vertical sampling methods in connection with horizontal resolution is found in Agustí-

Panareda et al. (2019). 

To analyse our results, including CO2 and meteorology, bias and standard deviation of forecast error (STDE) are used.  

The bias is defined as 30 

 Bias = 𝑋ത =
ଵ

ே
∑ (𝑀௜ − 𝑂௜)
ே
௜ୀଵ ,  (1) 
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where 𝑁 indicates the number of observations,𝑀௜ indicates modelled CO2 concentration or meteorological forecast and 𝑂௜  

indicates the corresponding observation. 

The STDE is defined as 

STDE = ට
ଵ

ே
∑ (𝑋௜ − 𝑋ത)ଶே
௜ୀଵ ,  (2) 

where  5 

𝑋௜ = 𝑀௜ − 𝑂௜ and the overbar refers to the bias of the quantity. 

 To calculate the amplitude of CO2 diurnal cycle (or other frequencies) for a measurement site or grid point, we use a 

Discrete Fourier Transform (DFT) technique. The linear trend in hourly CO2 time series from a specific location is removed 

first, then the DFT technique is applied to the detrended CO2 time series to extract the amplitude of CO2 variability across 

temporal scales, from synoptic to diurnal to sub-daily scales, as discussed in Section 4.4. 10 

3 Model evaluation 

3.1 Evaluation of meteorological fields 

Before considering CO2 simulation results, weather forecasts from the three experiments are verified against observations over 

the regional model domain and are compared with each other. The motivation for doing this is two-fold: (1) to check that the 

meteorological forecasts from our regional model have not drifted away from the operational forecasts which have been 15 

produced and maintained by the CMC for many decades and (2) to compare the regional model results with the global model 

results. The first check is necessary because the configuration for weather prediction and the GEM model version used in this 

study are different from what was used to produce the operational forecast in 2015. For example, LBC in RDPS were obtained 

from a global model forecast using a 33 km horizontal grid spacing (Caron et al., 2015) (or with a 25 km horizontal grid 

spacing as of 15 December 2015), with a different model domain extent and vertical coordinate. As shown by Polavarapu et 20 

al. (2016), the performance of the weather forecast by the global model is already well evaluated. The uncertainty of 24 h 

weather forecasts in the global model corresponding to GLB90 experiment in this study is comparable with those of reanalyses 

provided by three operational centres; monthly and zonal means of fields in 2009 and 2010 are within acceptable range on 

global scales. Thus, in this section, we focus on the regional model’s results and on differences between experiments on the 

regional domain. 25 

 Figure 3 shows the bias and STDE of 24 h forecast error of the three experiments for vertical levels from 1000 hPa 

to 10 hPa in July 2015. The same numbers of North American radiosonde observations are used in each of the three sets of 

verifications and these are indicated in the right of each panel. Statistical significance of the differences using a T-test for the 

means and an F-test for the standard deviations with the 95% confidence level were computed but not shown explicitly.  

However, the discussion below uses this information in that we only mention results that are statistically significant. The three 30 

experiments show good agreement with observations in terms of bias and STDE. For zonal wind, there are quite small 
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differences among experiments and the scores remain within the range of operational forecasts, except at 925 and 850 hPa 

where biases in the GLB90 and GLB45 experiments are slightly better than those in the LAM experiment (Fig. 3a). For wind 

speed, unlike the zonal wind, forecasts in LAM experiment are better than those from the GLB90 experiment for levels from 

925 hPa to 50 hPa and better than those in the GLB45 experiment for levels from 300 hPa to 70 hPa and at 700 hPa (Fig. 3b). 

For geopotential height, the forecasts in the LAM experiment are better than those in the GLB90 and GLB45 experiments from 5 

400 hPa to 10 hPa where relatively large positive biases in GLB90 and GLB45 experiments exist. In addition, the STDE in 

the LAM experiment is better at all vertical levels except a few levels (Fig. 3c). For temperature, the forecasts in the LAM 

experiment are better than those in the GLB90 and GLB45 experiments from 1000 hPa to 70 hPa with the exception of 150 

hPa (Fig. 3d). 

 The scores for December 2015 are shown in Fig. 4. The differences in bias and STDE among experiments are smaller 10 

than those in July. In addition, patterns in the reduction of bias and STDE from coarse horizontal resolution to higher horizontal 

resolution can be seen much more clearly than in July, which means that the values in the GLB45 experiment are located 

between those of the GLB90 and LAM experiments. For zonal wind, there are quite small differences in bias and STDE among 

experiments as was the case in July (Fig. 4a). For wind speed, forecasts in the LAM experiment are better than those in the 

GLB90 experiment from 850 hPa to 150 hPa and those in the GLB 45 experiment at 500 hPa and 400 hPa, but not better at 15 

925 hPa (Fig. 4b). For geopotential height, both bias and STDE in the LAM experiment are better than those in the GLB90 

experiment at most pressure levels except from 700 hPa to 400 hPa, while the LAM experiment is better than GLB45 from 

1000 hPa and 925 hPa (Fig. 4c). For temperature, the bias in the LAM experiment is better than that in the GLB90 and GLB45 

experiments from 925 hPa to 250 hPa (Fig. 4d).   

It is also worth considering how our meteorological forecasts compare to those of other systems. Agustí-Panareda et 20 

al. (2019) show RMSEs of vector wind for January and July 2014 from 1 d forecasts from the Copernicus Atmosphere 

Monitoring Service (CAMS). Our RMSE scores computed using the data from Figs. 3 and 4 for wind speed are shown in Table 

S1 and these can be compared to their Fig. 4. Our LAM scores are lower than those of the 9 km CAMS at all heights in January 

and July. However, this is not a fair comparison since their scores are for global domain whereas we consider the North 

American domain, and their values are for 2014 but ours are for 2015. Nevertheless, the comparability of the scores further 25 

suggests that our LAM is performing well in terms of 24 h meteorological forecasts.  

The number of available observations at 1000 hPa is much smaller than that of other pressure levels (see numbers in 

right side of each panel in Fig. 3 and 4) because typical altitudes of many sites are above the level corresponding to 1000 hPa 

and surface pressures may be below 1000 hPa depending on the synoptic situation, there is little confidence in the verification 

at this level by means of radiosondes. A better approach to rigorously investigate the performance of weather forecasts at lower 30 

levels is to use surface observations because of their much greater numbers (in both space and time). Therefore, weather 

forecasts in the three experiments are also verified against observations near the surface. Figure 5 shows bias and STDE of sea 

level pressure, 2-m temperature and 10-m wind speed as well as the Heidke Skill Score (HSS) (Wilks, 2006) of 10-m wind 

speed for July 2015. The STDE of sea level pressure in the LAM experiment is lower than those in the GLB90 and GLB45 
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experiments, while the bias of sea level pressure in the LAM experiment is slightly lower than those of the GLB90 and GLB45 

experiments. However, the difference between the LAM and the GLB90 and GLB45 biases does not exceed 0.5 hPa (Fig. 5a). 

The STDEs of 2-m temperature and 10-m wind speed in the LAM experiment are smaller than those in GLB90 and GLB45 

experiments for all forecast hours (Fig. 5b and c), which implies that the error of forecasts from the LAM experiment fluctuates 

less than those of the GLB90 and GLB45 experiments. Also, the better results of the LAM experiment in 10-m wind direction 5 

is evident in the higher HSS of the LAM experiment (Fig 5d). Higher HSS means a better forecast of wind direction. In 

addition, root-mean squared errors (RMSEs) of variables in the LAM experiment are lower than those of the GLB90 and 

GLB45 experiments (not shown). 

 In December 2015, the better forecasts in the LAM experiment compared to those of the GLB90 and GLB45 

experiments can be seen more clearly (Fig. 6). The bias and STDE of each variable in the LAM experiment are lower than 10 

those of GLB90 and GLB45 experiments at most forecast hours (Fig. 6a-c), and higher HSS of 10-m wind direction are evident 

at all forecast hours (Fig. 6d). 

In summary, the LAM experiment produces reasonable meteorological forecasts in comparison with meteorological 

observations and better results relative to the GLB90 and GLB45 experiments, in particular at surface levels which are 

important for correctly capturing the flow of CO2 affected by surface fluxes and boundary layer mixing, with reductions in 15 

both bias and STDE. Since forecasted meteorological fields are used to transport CO2 in each simulation individually, better 

CO2 simulations in the LAM experiment can be expected in the verification of modelled CO2 concentrations. 

3.2 Evaluation of CO2 fields 

The CO2 fields in the LAM and other experiments are investigated in terms of monthly bias and STDE of daily afternoon 

(12:00-16:00 LST) modelled CO2 concentrations at the measurement sites shown in Fig. 1 and listed in Table 1 (Fig. 7). Daily 20 

afternoon time was selected because this is what CT2016 used to estimate surface CO2 fluxes. Also, CT2016 results are 

included as a reference since this is what all our model experiments used as input fluxes. In general, bias and STDE in summer 

are larger than in other seasons at most sites except BAO, SCT, WGC and WKT. Better results in CT2016 than in all three 

experiments at many sites can be seen, especially in June to October. Surface CO2 fluxes from CT2016 were inferred by 

minimizing the difference between observations and forecasts of TM5 (Krol et al., 2005) which is the transport model used in 25 

CT2016, reflecting the signature of TM5’s transport which may not match with GEM-MACH-GHG’s transport (Polavarapu 

et al., 2016). As a result, larger biases in the three experiments relative to CT2016 at the above mentioned sites may be expected 

due to the discrepancies of modelled CO2 concentrations between CT2016 and GEM-MACH-GHG. In contrast, the three 

models show similar biases to each other, except at ESP and WGC especially in boreal summer. Since the LAM experiment 

uses LBCs of CO2 concentrations from the GLB45 experiment, information about large scale transport of CO2 concentration 30 

is reflected in LAM experiment. 

 Now we consider the seasonal variation of the performance of the LAM model over the regional (North American) 

domain. The seasonal bias and STDE of modelled CO2 concentrations in the LAM experiment are shown in Fig. 8, based on 
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daily afternoon CO2 concentrations. In boreal winter (DJF) and spring (MAM), there are mainly positive biases at most 

Canadian sites, while STDE are small relative to other sites in the US. The magnitude of surface CO2 fluxes in those seasons 

over Canada is quite small (not shown), and thus bias at the Canadian sites contributes little to the overestimation of CO2 

concentrations. This result suggests that biases included implicitly in the LBC of CO2 concentrations provided by the GLB45 

experiment is more important in determining the biases in the regional model domain in those seasons. Four sites (BRA, EST, 5 

ETL and LLB) in Alberta and Saskatchewan provinces show relatively large STDE in DJF due to local influences of surface 

fluxes trapped within a shallow boundary layer by low temperatures. On the other hand, in boreal summer (JJA), large STDE 

can be seen with negative biases at most sites. The large biases and STDE in JJA may be attributed to errors in terrestrial CO2 

fluxes within the regional model domain. As shown in Fig. 7, the GLB90 and GLB45 experiments underestimate CO2 

concentrations over northern sites in JJA. That is also reflected in the underestimation of CO2 concentrations in LAM 10 

experiment because the same surface fluxes are used in the simulations. Finally, in boreal autumn (SON), both biases and 

STDE show moderate values between MAM and JJA. Negative biases at northern sites in LAM experiment is partially due to 

biases in LBCs obtained from the GLB45 experiment. In summary, the performance of the regional model partially depends 

on biases in the global model which provides the LBC, and the relative importance of these biases varies with season.  In this 

regard, the use of CT2016 posterior fluxes to drive our global models exacerbates such biases. However, in the future when 15 

our global models provide their own flux estimates, such biases may be reduced. Furthermore, the need for a better 

understanding of the relative role of initial and boundary conditions and surface fluxes in controlling CO2 distributions within 

the regional model’s domain is evident. This is the subject of our future work.   

4 The impact of horizontal resolution on CO2 simulation 

Since our regional model requires more computational resources (due to the greater number of grid points and shorter time 20 

step) than our global (GLB90) model, it is important to consider the added benefit of the higher horizontal resolution on CO2 

simulations. In this section, modelled CO2 concentrations from the three experiments are analysed from the perspective of 

spatial patterns and vertical profiles of CO2 concentrations and the reproducibility of temporal patterns against atmospheric 

CO2 observations. 

4.1 Spatial patterns of surface CO2 concentrations 25 

Biases between two experiments are compared pairwise for four seasons (Fig. 9). Three comparisons are shown because three 

experiments are conducted. Since bias can have both positive and negative values, absolute bias is used in the calculation. Blue 

(red) colour means the higher horizontal resolution model simulated smaller (larger) absolute bias compared to coarser one. In 

DJF, the GLB45 and LAM experiments are better than the GLB90 experiment. However, the LAM experiment is not better 

than GLB45 experiment at U.S. sites except WGC and BAO. In MAM, the differences among the experiments are the smallest, 30 

except at ESP near the west coast of North America. Differences between the LAM and GLB45 experiments at northern 
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Canadian sites are quite small in DJF and MAM, which is associated with weak surface CO2 fluxes in those seasons. In JJA, 

the reduction in bias resulting from the higher horizontal resolution model can be seen clearly and the magnitude of reduction 

is higher probably due to better weather simulation (less transport errors) as shown in Figs. 3, 4, 5 and 6. The LAM experiment 

shows better results than both the GLB90 and GLB45 experiments at most sites. On the other hand, the GLB45 experiment is 

not better than the GLB90 experiment except at a few sites. This nonlinearity of the improvement with increased resolution is 5 

consistent with the results of Agustí-Panareda et al. (2019) although their conclusions are based on RMSE rather than absolute 

bias. In SON, the results are similar to those in JJA, namely, the LAM experiment is better than both the GLB90 and GLB45 

experiments at most sites except ESP. At many sites, the benefit of finer grid spacing is evident, but higher horizontal grid 

spacing does not always guarantee a lower magnitude of bias for all sites. Part of the reason that improvement is not clear at 

certain sites in Figure 9 may be due to the focus on afternoon mean values. For example, if we consider higher temporal 10 

frequency output (i.e. hourly residuals), the LAM is better than GLB90 and GLB45 even at ESP in November (Fig. S1). 

 Figure 10 shows the differences of STDE between two experiments. The spatial pattern of differences of STDE is 

different from that of bias. More blue dots are evident indicating that the STDE of higher horizontal resolution model is smaller 

than that of the coarser horizontal resolution model at most sites. Specifically, the LAM experiment shows better results than 

both the GLB90 and GLB45 experiments in DJF. As shown in Fig. 6c and d, better forecasts of 10-m wind speed and direction 15 

at screen level in the LAM experiment should help to reduce STDE in LAM experiment relative to the two global model 

experiments. In MAM, the impact of horizontal resolution is very small at most sites except near the southern boundary of the 

regional model domain due to the weak magnitude of surface CO2 flux in this season. The ratio between CO2 concentrations 

resulting from surface CO2 fluxes within the regional model domain and background CO2 concentrations from the GLB45 

experiment shows that the contribution of surface CO2 flux is least in MAM due to the small magnitude of surface CO2 flux 20 

(not shown). In JJA, on the other hand, the magnitude of the difference is larger than in other seasons in both positive and 

negative directions. Finally, in SON, the improvement due to finer grid spacing can be seen. 

 In summary, the difference of bias and STDE between experiments provide evidence of improvement in CO2 

simulations due to finer horizontal resolution and better wind forecasts near the surface in the LAM experiment. The pattern 

of the differences are strongly associated with the spatial and seasonal patterns of the magnitude of surface CO2 fluxes used in 25 

simulations. 

4.2 Vertical profile of CO2 concentrations 

We now consider the quality of modelled CO2 concentrations in the free troposphere. Observed profiles of CO2 can reveal the 

signatures of vertical mixing, so they can be used to measure the performance of transport models (Lin et al., 2006). The 

seasonal bias and STDE of vertical profiles of modelled CO2 concentrations against NOAA aircraft profiles (Sweeney et al., 30 

2015) over sites in Canada and the US inside the regional model domain are shown in Fig. 11. Modelled CO2 concentrations 

are sampled at the exact location and height of observations by applying vertical and horizontal interpolation to 3-D model 

fields at a time step close to observed time. Then, averages over all profiles of modelled and observed values for a season are 
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binned into 1 km thick layers. The three experiments generally overestimate CO2 concentrations in DJF (at 1000 m) and MAM 

and underestimate them in JJA and SON, which is consistent with the comparisons against surface CO2 measurement sites 

shown in Fig. 8. The magnitude of the bias does not exceed about 2 ppm in any altitude or season, and it decreases with 

altitude. Profiles of CO2 concentrations near the ground are difficult to simulate due to the strong influence of surface fluxes 

(Geels et al., 2007). The range of the biases in the three experiments are similar to that seen in our previous study (Polavarapu 5 

et al., 2016) as is the direction of the biases. Specifically, the bias changes sign with height, with positive biases at low altitudes 

and negative biases in DJF and MAM.  In JJA and SON, the bias remains negative at almost all heights. The LAM experiment 

generally has the smallest biases for all seasons and altitudes, in particular, below 4000 m in JJA when the influence of surface 

CO2 fluxes is significant through active vertical mixing. Lower wind speeds in boreal summer compared to other seasons 

causes accumulation of surface fluxes over North America in the lower 4000 m (Sweeney et al., 2015). Reduced bias and 10 

STDE of forecasted temperature profiles in the LAM experiment in July (Fig. 3d) may help to improve vertical advection in 

the LAM simulations relative to the global model experiments through improved buoyancy calculations. This may explain 

why the LAM experiment has a better ability to simulate vertical profiles of CO2. 

4.3 Temporal patterns 

We evaluate modelled CO2 concentrations at various temporal scales including synoptic variability and the diurnal cycle. First, 15 

synoptic variability of modelled CO2 concentrations is analysed. Figure 12 shows Taylor diagrams (Taylor, 2011) of modelled 

CO2 concentrations in the afternoon compared with observations. Since the domain of the LAM experiment covers a variety 

of geographic regions across Canada and the US, including mountain, continental and coastal sites, the synoptic variability of 

CO2 is not expected to be captured well at all sites. In DJF, the variability of modelled CO2 concentrations in the LAM 

experiment is closer to the observed variability than that captured in the GLB90 and GLB45 experiments in accordance with 20 

decreased STDE seen in Fig. 10 (Fig. 12a). In MAM, the variability of modelled CO2 is scattered with relatively lower 

correlations than other seasons (Fig. 12b). In general, due to the onset of growing season in MAM, transport models tend to 

produce lower correlations with observed CO2 (Geels et al., 2004; Pillai et al., 2011; Agustí-Panareda et al., 2014). In JJA, 

despite having larger biases than in other seasons (Fig. 7), correlations are quite reasonable lying mostly between 0.6 and 0.95 

(Fig. 12c). However, the variability in the CO2 concentrations tend to be overestimated. This could be mainly due to the large 25 

uncertainty in biospheric fluxes (Patra et al., 2008). Also, the range of correlations is the biggest -- between approximately 0 

and 0.95. In SON, the synoptic variability of CO2 is well captured by all experiments (Fig. 12d). Many sites have correlations 

higher than 0.9, standard deviations similar to observed variability, and the least normalised RMSE (the distance from the 

reference point on the x axis) relative to other seasons. We expect the LAM experiment to produce higher correlations and 

smaller normalised RMSEs, and normalised standard deviations approaching 1. Indeed, the LAM experiment tends to simulate 30 

well the observed variability of CO2 and it produces smaller normalised RMSE relative to the GLB90 and GLB45 experiments 

to some extent although the results vary according to site, and each experiment shows similar seasonal patterns which are 

driven by the weather forecasts and surface fluxes.  
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Thus far, modelled CO2 concentrations in the afternoon time (12:00-16:00 LST) have been analysed. Henceforth, 

data at all times of the day and night are retained. Figure 13 shows the mean diurnal cycle of modelled and observed CO2 

concentrations for July and December at WGC where the most significant differences among the three experiments are 

observed. In general, the three experiments simulate similar CO2 diurnal cycles for other sites (not shown). Three sampling 

levels data are available at WGC in 2015. CT2016 is included as well for comparison purposes, but only results at the highest 5 

sampling level are shown because only observations at this level were used in the inversion in CT2016. The LAM experiment 

captures the CO2 diurnal cycle well, but the GLB90 and GLB45 experiments and CT2016 do not, especially in July (Fig. 13a, 

c and e). At the sampling level of 483 m, the GLB90 experiment overestimates morning time CO2 concentrations and CT2016 

overestimates night time CO2 concentrations in July, while the GLB45 and LAM experiments capture the diurnal cycle (Fig. 

13a) relatively well. This level (483 m) has a comparatively weak diurnal cycle because it is mostly decoupled from the surface 10 

at night and daytime enhancements are significantly diluted relative to lower levels. At lower sampling levels, 91 m and 30 m, 

both the GLB90 and GLB45 experiments overestimate night time CO2 concentrations in July, whereas the LAM experiment 

captures both day and night time CO2 concentrations well (Fig. 13 c and e). This greater sensitivity to model resolution at night 

was also seen by Agustí-Panareda et al. (2019). WGC is located in a valley between two mountain ranges. The model 

topographies of GLB90 and GLB45 do not resolve this geography well due to their coarse horizontal resolutions. In contrast, 15 

the LAM experiment resolves the actual topography around the WGC site well relative to the two global models. In daytime, 

CO2 concentrations are well simulated in the LAM and GLB45 experiments due to the strong vertical mixing (Fig. 13a, c and 

e). In contrast, accumulated CO2 in night time still remains in the afternoon time in the GLB90 experiment, leading to an 

overestimation of CO2 in the afternoon at all sampling levels. In December, the LAM experiment simulates slightly better CO2 

concentrations and its standard deviation at all sampling levels, while the GLB90 and GLB45 experiments underestimate CO2 20 

concentrations (Fig. 13b, d and f). 

In order to analyse CO2 time series across various temporal scales beyond the diurnal cycle, the DFT method 

explained in Section 2.5 is applied to hourly CO2 time series. Figure 14 shows the amplitude of hourly CO2 concentration time 

series across different temporal scales from 2 h to 92 days for the period from June to August 2015 at the LEF and WGC sites. 

Unfortunately, not all sites have hourly observations without missing values for the year 2015. These two sites have hourly 25 

data available for three months from June to August 2015 without missing values and, fortunately, reveal different properties. 

Thus, they were selected to illustrate the impact of increased horizontal resolution on CO2 simulations on the time scales 

captured by the models. At LEF, one sampling level, 396 m, satisfies our constraint of no missing data, and, at WGC, two 

sampling levels, 483 m and 91m, meet this constraint. At the LEF site, the three experiments capture well the signals across 

all temporal scales in observed CO2 time series, including synoptic and diurnal variations (Fig. 14a and b). The topography 30 

mismatch of the GLB90 and GLB45 experiments are relatively small around at the LEF site. The intake height of 

measurements at LEF is 396 m above the ground at which laminar flow is more dominant than turbulent flow in night time so 

that the respiration signal from surface does not reach the free troposphere and synoptic variability is more dominant (Davis 

et al., 2003; Wang et al., 2007). As a result, the differences of amplitude in the three experiments are less than about 0.8 ppm 
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for all temporal periods (Fig. 14b). At the WGC site, on the other hand, as already shown in Fig. 13, the GLB90 experiment 

simulates too strong diurnal cycles of CO2 at lower sampling heights in July, which can be seen clearly as well in Fig 14c-f, 

with largest overestimation at the lowest sampling level (Fig. 14 e and f). However, it is not just the diurnal cycle of CO2 from 

June to August that is overestimated in the GLB90 experiment. Periods from sub-diurnal to longer day periods are also 

overestimated (Fig. 14c-f). Furthermore, while GLB45 performs better than GBL90, it also overestimates the diurnal cycle 5 

amplitudes and longer time scales at 483 m and 91m. Hence, the larger mismatch of topography results not only in inaccurate 

daily time scales but also other scales such as synoptic scales longer than 4-days. A similar result was also found for time 

periods for 92 to 300 days (Fig. S2). The amplitude of the diurnal cycle can also be computed in model space to illustrate its 

spatial variability as a function of model resolution (Fig. S3).  With the same prescribed fluxes, greater spatial heterogeneity 

of diurnal cycle amplitude occurs with increased resolution.  However, the validation of these finer spatial scales requires a 10 

dense observation network and is not possible at present. 

5 Discussion and conclusions 

We have developed a regional atmospheric transport model for GHG gas simulation, as an extension of GEM-MACH-GHG 

which is ECCC’s global atmospheric transport model for GHG simulation. The regional model shares much of the 

configuration of the global model, while its model domain is focused on Canada and the U.S. One gain from using the same 15 

vertical coordinate in both the regional and global models is that there is consistency at lateral boundaries of the regional model 

domain. CO2 simulations using the same surface CO2 fluxes from CT2016 are performed with three configurations of 2 global 

models and 1 regional model in order to assess whether the newly developed regional model is working properly and to assess 

the benefit of the regional model over the global model in terms of weather forecasts and CO2 simulations. In a given 

experiment, a series of 24 h forecasts are replaced by operational analyses every cycle and used to transport CO2 every time 20 

step, whereas transported CO2 fields are not replaced but are kept during each 1-year simulations. 

Meteorological forecasts in three experiments are verified against North American radiosondes and surface 

observations at screen level. All experiments show acceptable ranges of bias and STDE compared to observations. Overall, 

meteorological forecasts in the regional model show better results than both global models, especially in wind speed and 

direction at screen level which are of particular importance for CO2 transport near the surface. We demonstrate the 25 

improvement of weather forecasts with increasing of horizontal resolution, which is most apparent in boreal winter. In addition, 

good quality meteorological forecasts in the global model are also required for providing meteorological LBCs to the regional 

model with reduced errors at large scales. Indeed, the GLB45 experiment can provide good quality of meteorological LBCs to 

the regional model every hour which is more frequent than when using reanalyses that are available at 3 h or 6 h intervals.  

While the meteorological forecasts from the higher resolution region model are demonstrably better than those of the 30 

coarser resolution global models, demonstrating improved CO2 simulations with higher resolution is more challenging. For 

example, the impact of biases in the LBCs provided by the GLB45 experiment on CO2 simulations near the Arctic region in 
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the regional model is large, especially in boreal spring. In a regional scale inverse modelling system, estimated fluxes within 

the regional model domain are strongly influenced by the inflow of CO2 from the global transport model through lateral 

boundary (Schuh et al., 2010). Because LBCs of CO2 include information of sources and sinks outside of the regional model 

domain, correct information at the lateral boundary is important to determine the sources and sinks in the regional model 

domain (Gerbig et al., 2003). As discussed in Polavarapu et al. (2016), GEM has different transport behaviour from the 5 

transport model used in CarbonTracker, in particular over the Arctic region, as seen in time series of CO2 concentrations and 

column-averaged CO2. Thus, our models are not expected to perform better than CT2016 because we use surface CO2 fluxes 

inferred by an inversion framework using a different transport model which has different transport behaviour. That is why our 

focus in this work is in the comparison of our regional and global models. We are able to find some benefits of our regional 

model over our global model when looking at the diurnal cycle of CO2 concentrations at particular sites in which large 10 

topography mismatches exist, e.g., WGC. Our global models did not capture diurnal cycles well, while our regional model 

did. This is a promising result because it suggests that using night time data in an inversion to estimate night time fluxes (e.g. 

Lauvaux et al., 2008) may be beneficial if a high resolution model is used. Currently, a GHG state estimation system using 

GEM-MACH-GHG and ECCC’s operational Ensemble Kalman filter data assimilation system (Houtekamer et al., 2014) is 

under development. When posterior fluxes become available from our global model, this will alleviate the issue of model 15 

transport error mismatches with CarbonTracker. However, we will still have transport error, which is one of the biggest sources 

of posterior uncertainties in an inversion (Schuh et al., 2019). To address this issue, we plan to use multiple sources of 

meteorology to better account for transport error in posterior flux and uncertainty estimates. 

The regional model produces lower STDEs of CO2 at surface measurement sites, in line with its lower STDE of 

meteorological forecasts. With respect to aircraft CO2 profile comparisons, clear improvement of profiles of modelled CO2 in 20 

the LAM experiment occurs at altitudes lower than 4000 m in boreal summer. Although the regional model domain is vast 

enough to include most of Canada and the U.S. so as to be able to estimate national to provincial scale surface GHG fluxes at 

finer spatial resolution via inverse modelling in the future, it is not easy to obtain better results everywhere. For example, at 

the ESP site located on the coastline of Vancouver Island, British Columbia, the LAM experiment does not have a lower bias 

of modelled CO2 than the GLB90 and GLB45 experiments in MAM and SON. Nonetheless, the overall performance of CO2 25 

simulations by the regional model is better than our global models. It is well known that only afternoon time CO2 concentrations 

are typically used in inversions due to the difficulty in capturing boundary layer evolution in most global transport models 

(Law et al., 2008; Patra et al., 2008). Noticeable improvement in reproducing the CO2 diurnal cycle by the regional model can 

be seen at WGC which is located in complex terrain. Reduced topographic mismatch in the finer horizontal resolution model 

is the major driving force behind reduced sampling and representation error. This effect is not limited to just the diurnal cycle 30 

but also occurs for synoptic variability of CO2 at the level where large scale motions are dominant, and even more so at lower 

sampling levels near the surface. In addition, the potential benefit in reproducing detailed diurnal cycles over regions with 

complex terrains hypothesized here is consistent with the findings of Agustí-Panareda et al. (2019). 
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Previous studies comparing high and low horizontal resolution transport models for CO2 simulations concluded that 

some advantages can be attained by using higher horizontal resolution (Geels et al., 2007; Pillai et al., 2010; Díaz-Isaac et al., 

2014). For example, better resolved amplitude and phase of short-term variability of CO2 (Geels et al., 2007), reduced 

representation errors (Pillai et al., 2010) and smaller-scale structures of modelled CO2 that are more sensitive to the distribution 

of CO2 fluxes (Díaz-Isaac et al., 2014) were attained by using higher spatial resolution of transport model. Indeed, we also find 5 

similar results as mentioned above, but these advantages from the regional model experiment are not obtained at every 

observation site (Fig. 9 and 10). Basically, increasing horizontal resolution gives some positive impact to some extent but it 

generally has a mixed impact in this study. Part of the reason may be due to the fact that our models are variants of the same 

model but with different grid spacing and/or domain. Furthermore, the same coarse resolution surface fluxes were used with 

all models and this limits the potential for improvement (Remaud et al., 2018). In addition, the global model configurations 10 

used in this study already have relatively higher horizontal resolutions (0.9° and 0.45°) compared to other coarse resolution 

global transport models (e.g. Geels et al., 2007) and they all use the same number of (80) vertical levels as the regional model. 

Another major difference is that our global model is not an offline transport model which generally uses reanalyses as a 

meteorological driver for transport. Instead we take advantage of operational analyses to initialize weather forecasts every day 

and produce weather forecasts at every model time step. A major limitation in validating the overall improved ability to capture 15 

fine spatial scales may simply be due to the current sparsity of verifying observations of CO2. With vastly greater numbers of 

verifying observations, the meteorological simulations are demonstrably better with increased resolution. Since the regional 

model can better simulate the spatial heterogeneity of the diurnal cycle of CO2 in model space (Fig. S3), better observational 

density is needed to validate the performance of CO2 simulations in the regional model in more detail. 

While this work has focused on the benefit of our higher resolution regional model over our global model for CO2 20 

simulation, both models are “online” in that the meteorology is coupled to the tracer transport every time step. An interesting 

question that was not addressed here is the impact of increased horizontal resolution in the context of an “offline” transport 

model which ingests meteorological analyses or reanalyses from another model (e.g. Kjellström et al., 2002; Geels et al., 2004, 

2007).  Additional errors arise due to spatial and temporal interpolation from another model’s grid to the offline model’s grid 

then arise. 25 

A limitation of this study is the use of coarse resolution surface CO2 fluxes in conjunction with the fine horizontal 

grid spacing of the regional model. For better simulation of CO2, not only high-quality meteorological forcing but also high 

resolution prescribed surface fluxes are demanded (Locatelli et al., 2015). Higher spatial and temporal resolution fluxes could 

lead to better simulation of CO2 concentrations (Feng et al., 2016; Lin et al., 2018) if the fluxes have correct space and time 

information about the distribution of sources and sinks of CO2 fluxes. The challenge is in obtaining high spatial and temporal 30 

resolution surface fluxes that are accurate. One way to deal with this issue is to model biogenic fluxes explicitly at the same 

horizontal resolution as the transport model (e.g. Agustí-Panareda et al., 2019). Indeed, this is an avenue we plan to investigate 

in the future. Preliminary investigations with a high resolution anthropogenic flux product revealed improved comparisons to 

observations at some sites but degradation at other sites. For that reason, we chose to start of investigation of the regional 
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model by using fluxes with the same resolution as the global model and limiting the potential benefit of high resolution to 

improved meteorological depictions. 

The LBCs of CO2 from the global model plays an important role, as shown in Fig. 8, dominating the bias in the 

regional model when the magnitude of surface flux is weak. In addition, the LBCs of meteorology also play an important role 

in CO2 simulations. For example, the meteorological IC and LBC contribute to the variability of daytime CO2 in the PBL 5 

(Díaz-Isaac et al., 2018). Thus there is a need to better understand the relative importance of initial conditions, boundary 

conditions and surface fluxes on the performance of the regional model in order to better characterize these components of 

CO2 model error within the regional domain. Indeed, the predictability of CO2 on the regional domain and the relative role of 

initial and boundary conditions and surface fluxes on model error is a topic that is currently under investigation.  

There are a number of extensions to this work that are envisioned. For example, the newly developed regional model 10 

is not limited to CO2 simulations but also includes other greenhouse gases such as CH4. Thus, a separate validation of the 

regional model’s ability to simulate CH4 is planned. The regional model can also be utilized to provide information (e.g. IC 

and LBC) to urban scale forward or inverse modelling systems (e.g. Feng et al., 2016; Pugliese et al., 2018; Ishizawa et al., 

2019). Lastly, and most importantly, an inverse modelling system for estimating surface CO2 fluxes is being developed using 

the new regional GHG transport model to better understand the carbon cycle in Canada at finer spatial and temporal scales. 15 
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rdc.ec.gc.ca/CCMR/pub/2019_Kim_GMD_Canadian_atmospheric_transport_model_for_simulating_greenhouse_gas_evolut

ion_on_regional_scales/. 

 

Author contribution. JK and MN developed model code. JK designed and carried out the experiments. All authors participated 

in the analysis of the results. The manuscript was prepared with contributions from all authors. 25 

 

Acknowledgements. We are grateful to Colm Sweeney (NOAA ESRL) for providing the NOAA aircraft profiles and to Ken 

Masarie of the NOAA Global Monitoring Division in Boulder, Colorado for compiling ObsPack. The National Oceanic and 

Atmospheric Administration (NOAA) North American Carbon Program has funded NOAA/ESRL Global Greenhouse Gas 

Reference Network Aircraft program. CarbonTracker CT2016 results were provided by NOAA ESRL, Boulder, Colorado, 30 

USA, from the website at http://carbontracker.noaa.gov. The ObsPack data 

(obspack_co2_1_GLOBALVIEWplus_v3.1_2017_10_18) were obtained for the period 2015 from 

http://dx.doi.org/10.15138/G3T055. We would like to thank Doug Worthy of Atmospheric Science and Technology 

Directorate, Environment and Climate Change Canada, for developing and maintaining ECCC’s greenhouse gas measurement 



20 
 

network and for providing the CO2 concentration measurement data. We thank Marc L. Fischer for useful comments on the 

manuscript. Data collection at the WGC site was partially supported by the California Air Resources Board through work at 

the Lawrence Berkeley National Laboratory, operating under U.S. Department of Energy under Contract No. DE-AC02-

05CH11231. We thank Monique Tanguay and Felix Vogel for their careful internal review. 

References 5 

Agustí-Panareda, A., Diamantakis, M., Massart, S., Chevallier, F., Muñoz-Sabater, J., Barré, J., Curcoll, R., Engelen, R., 

Langerock, B., Law, R. M., Loh, Z., Morguí, J. A., Parrington, M., Peuch, V.-H., Ramonet, M., Roehl, C., Vermeulen, A. T., 

Warneke, T., and Wunch, D.: Modelling CO2 weather – why horizontal resolution matters, Atmos. Chem. Phys., 19, 7347–

7376, https://doi.org/10.5194/acp-19-7347-2019, 2019. 

Agustí-Panareda, A., Massart, S., Chevallier, F., Boussetta, S., Balsamo, G., Beljaars, A., Ciais, P., Deutscher, N. M., Engelen, 10 

R., Jones, L., Kivi, R., Paris, J.-D., Peuch, V.-H., Sherlock, V., Vermeulen, A. T., Wennberg, P. O., and Wunch, D.: Forecasting 

global atmospheric CO2, Atmos. Chem. Phys., 14, 11959-11983, https://doi.org/10.5194/acp-14-11959-2014, 2014. 

Ahmadov R., Gerbig, C., Kretschmer, R., Koerner, S., Neininger, B., Dolman, A. J., and Sarrat, C.: Mesoscale covariance of 

transport and CO2 fluxes: Evidence from observations and simulations using the WRF-VPRM coupled atmosphere-biosphere 

model, J. Geophys. Res., 112, D22107, doi:10.1029/2007JD008552, 2007. 15 

Ahmadov, R., Gerbig, C., Kretschmer, R., Körner, S., Rödenbeck, C., Bousquet, P., and Ramonet, M.: Comparing high 

resolution WRF-VPRM simulations and two global CO2 transport models with coastal tower measurements of CO2, 

Biogeosciences, 6, 807-819, 2009. 

Andrews, A. E., Kofler, J. D., Trudeau, M. E., Williams, J. C., Neff, D. H., Masarie, K. A., Chao, D. Y., Kitzis, D. R., Novelli, 

P. C., Zhao, C. L., Dlugokencky, E. J., Lang, P. M., Crotwell, M. J., Fischer, M. L., Parker, M. J., Lee, J. T., Baumann, D. D., 20 

Desai, A. R., Stanier, C. O., De Wekker, S. F. J., Wolfe, D. E., Munger, J. W., and Tans, P. P.: CO2, CO, and CH4 measurements 

from tall towers in the NOAA Earth System Research Laboratory’s Global Greenhouse Gas Reference Network: 

instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts, 

Atmos. Meas. Tech., 7, 647–687, doi:10.5194/amt-7-647-2014, 2014. 

Aranami, K., Davies, T., and Wood, N.: A mass restoration scheme for limited-area models with semi-Lagrangian advection. 25 

Q. J. Roy. Meteorol. Soc., 141, 1795-1803, doi:10.1002/qj.2482, 2015. 

Badawy, B., Polavarapu, S., Jones, D. B. A., Deng, F., Neish, M., Melton, J. R., Nassar, R., and Arora, V. K.: Coupling the 

Canadian Terrestrial Ecosystem Model (CTEM v. 2.0) to Environment and Climate Change Canada's greenhouse gas forecast 

model (v.107-glb), Geosci. Model Dev., 11, 631-663, https://doi.org/10.5194/gmd-11-631-2018, 2018. 

Ballav, S., Patra, P. K., Takigawa, M., Ghosh, S., De, U. K., Maksyutov, S., Murayama, S., Mukai, H., and Hashimoto, S.: 30 

Simulation of CO2 Concentration over East Asia Using the Regional Transport Model WRF-CO2, J. Meteorol. Soc. Jpn., 90, 

959–976, doi:10.2151/jmsj.2012-607, 2012. 



21 
 

Barnes, E. A., Parazoo, N., Orbe, C., and Denning, A. S.: Isentropic transport and the seasonal cycle amplitude of CO2, J. 

Geophys. Res.-Atmos., 121, 8106–8124, https://doi.org/10.1002/2016JD025109, 2016. 

Bélair, S., Mailhot, J., Strapp, J. W., and MacPherson, J. I.: An Examination of Local versus Nonlocal Aspects of a TKE-

Based Boundary Layer Scheme in Clear Convective Conditions, J. Appl. Meteorol., 38, 1499–1518, doi:10.1175/1520-

0450(1999)038<1499:AEOLVN>2.0.CO;2, 1999. 5 

Bélair, S., Mailhot, J., Girard, C., and Vaillancourt, P.: Boundary layer and shallow cumulus clouds in a medium-range forecast 

of a large-scale weather system, Mon. Weather Rev., 133, 1938–1960, https://doi.org/10.1175/MWR2958.1, 2005. 

Bergamaschi, P., Danila, A., Weiss, R. F., Ciais, P., Thompson, R. L., Brunner, D., Levin, I., Meijer, Y., Chevallier, F., 

Janssens-Maenhout, G., Bovensmann, H., Crisp, D., Basu, S., Dlugokencky, E., Engelen, R., Gerbig, C., Günther, D., Hammer, 

S., Henne, S., Houweling, S., Karstens, U., Kort, E., Maione, M., Manning, A. J., Miller, J., Montzka, S., Pandey, S., Peters, 10 

W., Peylin, P., Pinty, B., Ramonet, M., Reimann, S., Röckmann, T., Schmidt, M., Strogies, M., Sussams, J., Tarasova, O., van 

Aardenne, J., Vermeulen, A. T., and Vogel, F.: Atmospheric monitoring and inverse modelling for verification of greenhouse 

gas inventories, Publications Office of the European Union, Luxembourg, doi:10.2760/759928, 2018. 

Bermejo, R. and Conde, J.: A conservative quasi-monotone semi-Lagrangian scheme, Mon. Weather Rev. 130, 423–430, 2002. 

Buchwitz, M., Reuter, M., Schneising, O., Noël, S., Gier, B., Bovensmann, H., Burrows, J. P., Boesch, H., Anand, J., Parker, 15 

R. J., Somkuti, P., Detmers, R. G., Hasekamp, O. P., Aben, I., Butz, A., Kuze, A., Suto, H., Yoshida, Y., Crisp, D., and O'Dell, 

C.: Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 

2003–2016, Atmos. Chem. Phys., 18, 17355-17370, https://doi.org/10.5194/acp-18-17355-2018, 2018. 

Buehner, M., McTaggart-Cowan, R., Beaulne, A., Charette, C., Garand, L., Heilliette, S., Lapalme, E., Laroche, S., 

Macpherson, S. R., Morneau, J., and Zadra, A.: Implementation of Deterministic Weather Forecasting Systems based on 20 

Ensemble-Variational Data Assimilation at Environment Canada. Part I: The Global System, Mon. Weather Rev., 143, 2532–

2559, doi:10.1175/MWR-D-14-00354.1, 2015. 

Bush, E., Gillett, N., Watson, E., Fyfe, J., Vogel, F. and Swart, N.: Understanding Observed Global Climate Change, Chapter 

2 in Canada’s Changing Climate Report, edited by: Bush, E. and Lemmen, D. S., Government of Canada, Ottawa, Canada,  

24–72, 2019. 25 

Bush, E. and Lemmen, D. S. (Eds.): Canada’s Changing Climate Report, Government of Canada, Ottawa, Canada, 444 p., 

2019. 

Bruhwiler, L. M. P., Michalak, A. M., and Tans, P. P.: Spatial and temporal resolution of carbon flux estimates for 1983-2002, 

Biogeosciences, 8, 1309-1331, doi:10.5194/bg-8-1309-2011, 2011. 

Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., Conway, T. J., Gillett, N. P., Houghton, 30 

R. A., and Marland, G.: Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and 

efficiency of natural sinks, P. Natl. Acad. Sci. USA, 104, 18866–18870, https://doi.org/10.1073/pnas.0702737104, 2007. 



22 
 

Caron, J.-F., Milewski, T., Buehner, M., Fillion, L., Reszka, M., Macpherson, S., and St-James, J.: Implementation of 

deterministic weather forecasting systems based on ensemble–variational data assimilation at Environment Canada. Part II: 

The regional system, Mon. Weather Rev., 143, 2560–2580, doi:10.1175/MWR-D-14-00353.1, 2015. 

Chan, D., Yuen, C. W., Higuchi, K., Shashkov, A., Liu, J., Chen, J., and Worthy, D.: On the CO2 exchange between the 

atmosphere and the biosphere: the role of synoptic and mesoscale processes, Tellus B, 56, 3, doi:10.3402/tellusb.v56i3.16424, 5 

2004. 

Chevallier, F., Feng, L., Bösch, H., Palmer, P. I., and Rayner: On the impact of transport model errors for the estimation of 

CO2 surface fluxes from GOSAT observations, Geophys. Res. Lett., 37, L21803, doi:10.1029/2010GL044652, 2010. 

Chevallier, F., Palmer, P. I., Feng, L., Boesch, H., O’Dell, C. W., and Bousquet, P.: Toward robust and consistent regional 

CO2 flux estimates from in situ and spaceborne measurements of atmospheric CO2, Geophys. Res. Lett., 41, 1065–1070, 10 

doi:10.1002/2013GL058772, 2014. 

Ciais, P., Rayner, P., Chevallier, F., Bousquet, P., Logan, M., Peylin, P., and Ramonet, M.: Atmospheric inversions for 

estimating CO2 fluxes: methods and perspectives, Climatic Change, 103, 69–92, doi:10.1007/s10584-010-9909-3, 2010. 

Côté, J., Gravel, S., Méthot, A., Patoine, A., Roch, M., and Staniforth, A.: The operational CMC–MRB Global Environmental 

Multiscale (GEM) model. Part I: Design considerations and formulation, Mon. Weather Rev., 126, 1373–1395, 15 

https://doi.org/10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2, 1998a. 

Côté, J., Desmarais, J.-G., Gravel, S., Méthot, A., Patoine, A., Roch, M., and Staniforth, A.: The Operational CMC/MRB 

Global Environment Multiscale (GEM) Model. Part II: Results, Mon. Weather Rev., 126, 1397–1418, 1998b. 

Davis, K. J., Bakwin, P. S., Yi, C., Berger, B. W., Zhao, C., Teclaw, R. M., and Isebrands, J. G.: The annual cycles of CO2 

and H2O exchange over a northern mixed forest as observed from a very tall tower, Glob. Change Biol., 9, 1278–1293, 20 

https://doi.org/10.1046/j.1365-2486.2003.00672.x, 2003. 

Crowell, S., Baker, D., Schuh, A., Basu, S., Jacobson, A. R., Chevallier, F., Liu, J., Deng, F., Feng, L., McKain, K., Chatterjee, 

A., Miller, J. B., Stephens, B. B., Eldering, A., Crisp, D., Schimel, D., Nassar, R., O'Dell, C. W., Oda, T., Sweeney, C., Palmer, 

P. I., and Jones, D. B. A.: The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network, Atmos. Chem. 

Phys., 19, 9797–9831, https://doi.org/10.5194/acp-19-9797-2019, 2019.Díaz-Isaac, L. I., Lauvaux, T., Davis, K. J., Miles, N. 25 

L., Richardson, S. J., Jacobson, A. R., and Andrews, A. E.: Model-data comparison of MCI field campaign atmospheric CO2 

mole fractions, J. Geophys. Res. Atmos. 119, 10536-10551, doi:10.1002/2014JD021593, 2014. 

Díaz-Isaac, L. I., Lauvaux, T., and Davis, K. J.: Impact of physical parameterizations and initial conditions on simulated 

atmospheric transport and CO2 mole fractions in the US Midwest, Atmos. Chem. Phys., 18, 14813–14835, 

https://doi.org/10.5194/acp-18-14813-2018, 2018. 30 

Engelen, R. J., Denning, A. S., Gurney, K. R., and TransCom3 modelers: On error estimation in atmospheric CO2 inversions, 

J. Geophys. Res., 107, 4635, doi:10.1029/2002JD002195, 2002. 



23 
 

Enting, I. G.: Inverse Problems in Atmospheric Constituent Transport, Cambridge University Press, Edward Tipping, Centre 

for Ecology & Hydrology, Windermere Series, Cambridge Atmospheric and Space Science Series ISBN:9780521018081, 

2002. 

Feng, S., Lauvaux, T., Newman, S., Rao, P., Ahmadov, R., Deng, A., Díaz-Isaac, L. I., Duren, R. M., Fischer, M. L., Gerbig, 

C., Gurney, K. R., Huang, J., Jeong, S., Li, Z., Miller, C. E., O'Keeffe, D., Patarasuk, R., Sander, S. P., Song, Y., Wong, K. 5 

W., and Yung, Y. L.: Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO2 emissions, 

Atmos. Chem. Phys., 16, 9019–9045, https://doi.org/10.5194/acp-16-9019-2016, 2016. 

Fernández-Martínez, M., Sardans, J., Chevallier, F., Ciais, P., Obersteiner, M., Vicca, S., Canadell, J. G., Bastos, A., 

Friedlingstein, P., Sitch, S., Piao, S. L., Janssens, I. A., and Peñuelas, J.: Global trends in carbon sinks and their relationships 

with CO2 and temperature, Nat. Clim. Change, 9, 73-79, https://doi.org/10.1038/s41558-018-0367-7, 2018. 10 

Fillion, L., Tanguay, M., Lapalme, E., Denis, B., Desgagné, M., Lee, V., Ek, N., Liu, Z., Lajoie, M., Caron, J.-F., and Pagé, 

C.: The Canadian regional data assimilation and forecasting system, Weather Forecast., 25, 1645–1669, 2010. 

Gaubert, B., Stephens, B. B., Basu, S., Chevallier, F., Deng, F., Kort, E. A., Patra, P. K., Peters, W., Rödenbeck, C., Saeki, T., 

Schimel, D., Van der Laan-Luijkx, I., Wofsy, S., and Yin, Y.: Global atmospheric CO2 inverse models converging on neutral 

tropical land exchange, but disagreeing on fossil fuel and atmospheric growth rate, Biogeosciences, 16, 117-134, 15 

https://doi.org/10.5194/bg-16-117-2019, 2019. 

Geels, C., Doney, S., Dargaville, R., Brandt, J., and Christensen, J.: Investigating the sources of synoptic variability in 

atmospheric CO2 measurements over the Northern Hemisphere continents: a regional model study, Tellus B, 56, 35–50, 2004. 

Geels, C., Gloor, M., Ciais, P., Bousquet, P., Peylin, P., Vermeulen, A. T., Dargaville, R., Aalto, T., Brandt, J., Christensen, J. 

H., Frohn, L. M., Haszpra, L., Karstens, U., Rödenbeck, C., Ramonet, M., Carboni, G., and Santaguida, R.: Comparing 20 

atmospheric transport models for future regional inversions over Europe – Part 1: Mapping the atmospheric CO2 signals, 

Atmos. Chem. Phys., 7, 3461–3479, doi:10.5194/acp-7-3461-2007, 2007. 

Gerbig, C., Lin, J. C., Wofsy, S. C., Daube, B. C., Andrews, A. E., Stephens, B. B., Bakwin, P. S., and Grainger, C. A.: Toward 

constraining regional-scale fluxes of CO2 with atmospheric observations over a continent: 1. Observed spatial variability from 

airborne platforms, J. Geophys. Res., 108(D24), 4756, doi:10.1029/2002JD003018, 2003. 25 

Girard, C., Plante, A., Desgagné, M., McTaggart-Cowan, R., Côté, J., Charron, M., Gravel, S., Lee, V., Patoine, A., Qaddouri, 

A., Roch, M., Spacek, L., Tanguay, M., Vaillancourt, P., and Zadra, A.: Staggered Vertical Discretization of the Canadian 

Environmental Multiscale (GEM) model using a coordinate of the loghydrostatic-pressure type, Mon. Weather Rev., 142, 

1183–1196, 2014. 

Gloor, M., Fan, S.-M., Pacala, S., Sarmiento, J., and Ramonet, M.: A model-based evaluation of inversions of atmospheric 30 

transport, using annual mean mixing ratios, as a tool to monitor fluxes of nonreactive trace substances like CO2 on a continental 

scale, J. Geophys. Res., 104, 14245, doi:10.1029/1999JD900132, 1999. 

Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fan, 

S., Fung, I. Y., Gloor, M., Heimann, M., Higuchi, K., John, J., Maki, T., Maksyutov, S., Masari, K., Peylin, P., Prather, M., 



24 
 

Pak, B. C., Randerson, J., Sarmiento, J., Taguchi, S., Takahashi T., and Yuen, C.-W.: Towards robust regional estimates of 

CO2 sources and sinks using atmospheric transport models, Nature, 415, 626–630, 2002. 

Hines, C. O.: Doppler-spread parameterization of gravity wave momentum deposition in the middle atmosphere. Part 1: Basic 

formulation, J. Atmos. Sol.-Terr. Phy., 59, 371–386, 1997a. 

Hines, C. O.: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: Broad 5 

and quasi monochromatic spectra, and implementation, J. Atmos. Sol.-Terr. Phy., 59, 387–400, 1997b. 

Houtekamer, P. L., Deng, X., Mitchell, H. L., Baek, S.-J., and Gagnon, N.: Higher Resolution in an Operational Ensemble 

Kalman Filter, Mon. Weather Rev., 142, 1143–1162, https://doi.org/10.1175/MWR-D-13-00138.1, 2014. 

Houweling, S., Aben, I., Breon, F.-M., Chevallier, F., Deutscher, N., Engelen, R., Gerbig, C., Griffith, D., Hungershoefer, K., 

Macatangay, R., Marshall, J., Notholt, J., Peters, W., and Serrar, S.: The importance of transport model uncertainties for the 10 

estimation of CO2 sources and sinks using satellite measurements, Atmos. Chem. Phys., 10, 9981–9992, doi:10.5194/acp-10-

9981-2010, 2010. 

Ishizawa, M., Chan, D., Worthy, D., Chan, E., Vogel, F., and Maksyutov, S.: Analysis of atmospheric CH4 in Canadian Arctic 

and estimation of the regional CH4 fluxes, Atmos. Chem. Phys., 19, 4637-4658, https://doi.org/10.5194/acp-19-4637-2019, 

2019. 15 

Kain, J. S.: The Kain-Fritsch convective parameterization: an update, J. Appl. Meteorol. 43, 170–181, 2004.  

Kain, J. S. and Fritsch, J. M.: A one-dimensional entraining/detraining plume model and its application in convective 

parameterizations, J. Atmos. Sci., 47, 2784–2802, 1990. 

Kjellström, E., Holmén, K., Eneroth, K., and Engardt, M.: Summertime Siberian CO2 simulations with the regional transport 

model MATCH: a feasibility study of carbon uptake calculations from EUROSIB data, Tellus, 54B, 834-849, 20 

https://doi.org/10.3402/tellusb.v54i5.16733, 2002. 

Kretschmer, R., Gerbig, C., Karstens, U., Biavati, G., Vermeulen, A., Vogel, F., Hammer, S., and Totsche, K. U.: Impact of 

optimized mixing heights on simulated regional atmospheric transport of CO2, Atmos. Chem. Phys., 14, 7149-7172, 

https://doi.org/10.5194/acp-14-7149-2014, 2014. 

Krol, M., Houweling, S., Bregman, B., van den Broek, M., Segers, A., van Velthoven, P., Peters, W., Dentener, F., and 25 

Bergamaschi, P.: The two-way nested global chemistry-transport zoom model TM5: algorithm and applications, Atmos. Chem. 

Phys., 5, 417-432, https://doi.org/10.5194/acp-5-417-2005, 2005. 

Kurz, W. A., Shaw, C. H., Boisvenue, C., Stinson, G., Metsaranta, J., Leckie, D., Dyk, A., and Smyth, C.: Carbon in Canada’s 

boreal forecast – A synthesis, Environ. Rev., 21, 260-292, dx.doi.org/10.1139/er-2013-0041, 2013. 

Lauvaux, T. and Davis, K. J.: Planetary boundary layer errors in mesoscale inversions of column-integrated CO2 30 

measurements, J. Geophys. Res.-Atmos., 119, 490–508, doi:10.1002/2013jd020175, 2014. 

Lauvaux, T., Schuh, A. E., Bocquet, M., Wu, L., Richardson, S.., Miles, N., and Davis, K. J.: Network design for mesoscale 

inversions of CO2 sources and sinks, Tellus B, 64, 17980, doi:10.3402/tellusb.v64i0.17980, 2012a. 



25 
 

Lauvaux, T., Schuh, A. E., Uliasz, M., Richardson, S., Miles, N., Andrews, A. E., Sweeney, C., Diaz, L. I., Martins, D., 

Shepson, P. B., and Davis, K. J.: Constraining the CO2 budget of the corn belt: exploring uncertainties from the assumptions 

in a mesoscale inverse system, Atmos. Chem. Phys., 12, 337-354, https://doi.org/10.5194/acp-12-337-2012, 2012b. 

Lauvaux, T., Uliasz, M., Sarrat, C., Chevallier, F., Bousquet, P., Lac, C., Davis, K. J., Ciais, P., Denning, A. S., and Rayner, 

P. J.: Mesoscale inversion: first results from the CERES campaign with synthetic data, Atmos. Chem. Phys., 8, 3459-3471, 5 

https://doi.org/10.5194/acp-8-3459-2008, 2008. 

Law, R. M., Rayner, P. J., Denning, A. S., Erickson, D., Fung, I. Y., Heimann, M., Piper, S. C., Romonet, M., Taguchi, S., 

Taylor, J. A., Trudinger, C. M., and Watterson, I. G.: Variations in modeled atmospheric transport of carbon dioxide and the 

consequences for CO2 inversions, Global Biogeochem. Cy., 10, 783–796, 1996. 

Law, R. M., Peters, W., Rödenbeck, C., Aulagnier, C., Baker, I., Bergmann, D. J., Bousquet, P., Brandt, J., Bruhwiler, L., 10 

Cameron-Smith, P. J., Christensen, J. H., Delage, F., Denning, A. S., Fan, S., Geels, C., Houweling, S., Imasu, R., Karstens, 

U., Kawa, S. R., Kleist, J., Krol, M. C., Lin, S.-J., Lokupitiya, R., Maki, T., Maksyutov, S., Niwa, Y., Onishi, R., Parazoo, N., 

Patra, P. K., Pieterse, G., Rivier, L., Satoh, M., Serrar, S., Taguchi, S., Takigawa, M., Vautard, R., Vermeulen, A. T., and Zhu, 

Z.: TransCom model simulations of hourly atmospheric CO2: Experimental overview and diurnal cycle results for 2002, Global 

Biogeochem. Cy., 22, GB3009, https://doi.org/10.1029/2007GB003050, 2008. 15 

Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., Pickers, P. A., Korsbakken, J. I., Peters, G. 

P., Canadell, J. G., Arneth, A., Arora, V. K., Barbero, L., Bastos, A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Doney, 

S. C., Gkritzalis, T., Goll, D. S., Harris, I., Haverd, V., Hoffman, F. M., Hoppema, M., Houghton, R. A., Hurtt, G., Ilyina, T., 

Jain, A. K., Johannessen, T., Jones, C. D., Kato, E., Keeling, R. F., Goldewijk, K. K., Landschützer, P., Lefèvre, N., Lienert, 

S., Liu, Z., Lombardozzi, D., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Neill, C., Olsen, A., Ono, T., Patra, 20 

P., Peregon, A., Peters, W., Peylin, P., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rocher, M., 

Rödenbeck, C., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Steinhoff, T., Sutton, A., Tans, P. P., Tian, H., Tilbrook, 

B., Tubiello, F. N., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., Wright, R., 

Zaehle, S., and Zheng, B.: Global Carbon Budget 2018, Earth Syst. Sci. Data, 10, 2141-2194, https://doi.org/10.5194/essd-10-

2141-2018, 2018. 25 

Le Quéré, C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L., Ciais, P., Conway, T. J., Doney, S. C., Feely, R. A., 

Foster, P., Friedlingstein, P., Gurney, K., Houghton, R. A., House, J. I., Huntingford, C., Levy, P. E., Lomas, M. R., Majkut, 

J., Metzl, N., Ometto, J. P., Peters, G. P., Prentice, I. C., Randerson, J. T., Running, S. W., Sarmiento, J. L., Schuster, U., Sitch, 

S., Takahashi, T., Viovy, N., van der Werf, G. R., and Woodward, F. I.: Trends in the sources and sinks of carbon dioxide, 

Nat. Geosci., 2, 831–836, https://doi.org/10.1038/NGEO689, 2009. 30 

Li, J. and Barker, H. W.: A radiation algorithm with correlated k-distribution. Part I: local thermal equilibrium, J. Atmos. Sci., 

62, 286–309, 2005. 

Li, R., Zhang, M., Chen, L., Kou, X., and Skorokhod, A.: CMAQ simulation of atmospheric CO2 concentration in East Asia: 

Comparison with GOSAT observations and ground measurements, Atmos. Environ. 2017, 160, 176–185, 2017. 



26 
 

Lin, J. C., Gerbig, C., Wofsy, S. C., Daube, B. C., Matross, D. M., Chow, V. Y., Gottlieb, E., Andrews, A. E., Pathmathevan, 

M., and Munger, J. W.: What have we learned from intensive atmospheric sampling field programmes of CO2?, Tellus B, 58, 

331–343, doi:10.1111/j.1600-0889.2006.00202.x, 2006. 

Lin, X., Ciais, P., Bousquet, P., Ramonet, M., Yin, Y., Balkanski, Y., Cozic, A., Delmotte, M., Evangeliou, N., Indira, N. K., 

Locatelli, R., Peng, S., Piao, S., Saunois, M., Swathi, P. S., Wang, R., Yver-Kwok, C., Tiwari, Y. K., and Zhou, L.: Simulating 5 

CH4 and CO2 over South and East Asia using the zoomed chemistry transport model LMDz-INCA, Atmos. Chem. Phys., 18, 

9475-9497, https://doi.org/10.5194/acp-18-9475-2018, 2018. 

Liu, J., Bowman, K. W., Schimel, D. S., Parazoo, N. C., Jiang, Z., Lee, M., Bloom, A. A., Wunch, D., Frankenberg, C., Sun, 

Y., O’Dell, C. W., Gurney, K. R., Menemenlis, D., Gierach, M., Crisp, D., and Eldering, A.: Contrasting carbon cycle 

responses of the tropical continents to the 2015–2016 El Niño, Science, 358, eaam5690, 10 

https://doi.org/10.1126/science.aam5690, 2017. 

Liu, J., Fung, I., Kalnay, E., and Kang, J.-S.: CO2 transport uncertainties from the uncertainties in meteorological fields, 

Geophys. Res. Lett., 38, L12808, doi:10.1029/2011GL047213, 2011. 

Locatelli, R., Bousquet, P., Chevallier, F., Fortems-Cheney, A., Szopa, S., Saunois, M., Agustí-Panareda, A., Bergmann, D., 

Bian, H., Cameron-Smith, P., Chipperfield, M. P., Gloor, E., Houweling, S., Kawa, S. R., Krol, M., Patra, P. K., Prinn, R. G., 15 

Rigby, M., Saito, R., and Wilson, C.: Impact of transport model errors on the global and regional methane emissions estimated 

by inverse modelling, Atmos. Chem. Phys., 13, 9917–9937, https://doi.org/10.5194/acp-13-9917-2013, 2013. 

Locatelli, R., Bousquet, P., Hourdin, F., Saunois, M., Cozic, A., Couvreux, F., Grandpeix, J.-Y., Lefebvre, M.-P., Rio, C., 

Bergamaschi, P., Chambers, S. D., Karstens, U., Kazan, V., van der Laan, S., Meijer, H. A. J., Moncrieff, J., Ramonet, M., 

Scheeren, H. A., Schlosser, C., Schmidt, M., Vermeulen, A., and Williams, A. G.: Atmospheric transport and chemistry of 20 

trace gases in LMDz5B: evaluation and implications for inverse modelling, Geosci. Model Dev., 8, 129-150, 

https://doi.org/10.5194/gmd-8-129-2015, 2015. 

Maihot, J., Bélair, S., Benoit, R., Bilodeau, B., Delage, Y., Fillion, L., Garand, L., Girard, C., and Tremblay, A.: Scientific 

description of RPN physics library – Version 3.6, Atmospheric Environment Service Tech. Rep., 188 pp., available at: 

http://collaboration.cmc.ec.gc.ca/science/rpn/physics/physic98.pdf (last access: 13 February 2019), 1998. 25 

Makar, P. A., Gong, W., Milbrandt, J., Hogrefe., C., Zhang, Y., Curci, G., Žabkar, R., Im, U., Balzarini, A., Baró, R., Bianconi, 

R., Cheung, P., Forkel, R., Gravel, S., Hirtl, M., Honzak, L., Hou, A., Jiménez-Guerrero, P., Langer, M., Moran, M. D., Pabla, 

B., Pérez, J. L., Pirovano, G., San José, R., Tuccella, P., Werhahn, J., Zhang, J., and Galmarini, S.: Feedbacks between air 

pollution and weather, Part 1: Effects on weather, Atmos. Environ., 115, 442–469, doi:10.1016/j.atmosenv.2014.12.003, 2015. 

Masarie, K. A., Peters, W., Jacobson, A. R., and Tans, P. P.: ObsPack: a framework for the preparation, delivery, and attribution 30 

of atmospheric greenhouse gas measurements, Earth Syst. Sci. Data, 6, 375–384, https://doi.org/10.5194/essd-6-375-2014, 

2014. 

McFarlane, N. A.: The effect of orographically excited gravity wave drag on the circulation of the lower stratosphere and 

troposphere, J. Atmos. Sci., 44, 1775–1800, doi:10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2, 1987. 



27 
 

Milbrandt, J. A., Bélair, S., Faucher, M., Vallée, M., Carrera, M. L., and Glazer, A. : The Pan-Canadian High Resolution (2.5 

km) Deterministic Prediction System, Weather and Forecasting, 31, 1791-1816, https://doi.org/10.1175/WAF-D-16-0035.1, 

2016. 

Miller, S. M., Hayek, M. N., Andrews, A. E., Fung, I., and Liu, J.: Biases in atmospheric CO2 estimates from correlated 

meteorology modeling errors, Atmos. Chem. Phys., 15, 2903-2914, https://doi.org/10.5194/acp-15-2903-2015, 2015. 5 

Moran, M. D., Ménard, S., Talbot, D., Huang, P., Makar, P. A., Gong, W., Landry, H., Gravel, S., Gong, S., Crevier, L.-P., 

Kallaur, A., and Sassi, M.: Particulate-matter forecasting with GEM-MACH15, a new Canadian air-quality forecast model, in: 

Air Pollution Modelling and Its Application XX, edited by: Steyn, D. G. and Rao, S. T., Springer, Dordrecht, 289–292, 2010. 

Neish, M., Tanguay, M., Semeniuk, K., Polavarapu, S. M., DeGrandpre, J., Girard, C., Qaddouri, A., Gravel, S., Chan, D., 

Ren, S., and GEM-MACH development team: GEM-MACH-GHG revision 137, Zenodo, doi:10.5281/zenodo.3246556, 2019. 10 

Nisbet, E., and Weiss, R.: Top-down versus bottom-up, Science, 328, 1241-1243, doi:10.1126/science.1189936, 2010. 

Ott, L. E., Pawson, S., Collatz, G. J., Gregg,W.W., Menemenlis, D., Brix, H., Rousseaux, C. S., Bowman, K. W., Liu, J., 

Eldering, A., Gunson, M. R., and Kawa, S. R.: Assessing the magnitude of CO2 flux uncertainty in atmospheric CO2 records 

using products from NASA’s Carbon Monitoring Flux Pilot Project, J. Geophys. Res.-Atmos., 120, 734–765, 

doi:10.1002/2014JD022411, 2015. 15 

Parazoo, N. C., Denning, A. S., Berry, J. A., Wolf, A., Randall, D. A., Kawa, S. R., Pauluis, O., and Doney, S. C.: Moist 

synoptic transport of CO2 along the mid-latitude storm track, Geophys. Res. Lett., 38, L09804, doi:10.1029/2011GL047238, 

2011. 

Parazoo, N. C., Denning, A. S., Kawa, S. R., Corbin, K. D., Lokupitiya, R. S., and Baker, I. T.: Mechanisms for synoptic 

variations of atmospheric CO2 in North America, South America and Europe, Atmos. Chem. Phys., 8, 7239-7254, 20 

https://doi.org/10.5194/acp-8-7239-2008, 2008. 

Parazoo, N. C., Denning, A. S., Kawa, S. R., Pawson, S., and Lokupitiya, R.: CO2 flux estimation errors associated with moist 

atmospheric processes, Atmos. Chem. Phys., 12, 6405–6416, doi:10.5194/acp-12-6405-2012, 2012. 

Patra, P. K., Law, R. M., Peters, W., Rödenbeck, C., Takigawa, M., Aulagnier, C., Baker, I., Bergmann, D. J., Bousquet, P., 

Brandt, J., Bruhwiler, L., Cameron-Smith, P. J., Christensen, J. H., Delage, F., Denning, A. S., Fan, S., Geels, C., Houweling, 25 

S., Imasu, R., Karstens, U., Kawa, S. R., Kleist, J., Krol, M. C., Lin, S.-J., Lokupitiya, R., Maki, T., Maksyutov, S., Niwa, Y., 

Onishi, R., Parazoo, N., Pieterse, G., Rivier, L., Satoh, M., Serrar, S., Taguchi, S., Vautard, R., Vermeulen, A. T., and Zhu, Z.: 

TransCom model simulations of hourly atmospheric CO2: Analysis of synoptic-scale variations for the period 2002–2003, 

Global Biogeochem. Cy., 22, GB4013, doi:10.1029/2007GB003081, 2008. 

Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K., Miller, J. B., Bruhwiler, L. M. P., 30 

Pétron, G., Hirsch, A. I.,Worthy, D. E. J., van derWerf, G. R., Randerson, J. T.,Wennberg, P. O., Krol, M. C., and Tans, P. P.: 

An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker, P. Natl. Acad. Sci. USA, 104, 

18925–18930, 2007. 



28 
 

Peylin, P., Houweling, S., Krol, M. C., Karstens, U., Rödenbeck, C., Geels, C., Vermeulen, A., Badawy, B., Aulagnier, C., 

Pregger, T., Delage, F., Pieterse, G., Ciais, P., and Heimann, M.: Importance of fossil fuel emission uncertainties over Europe 

for CO2 modeling: model intercomparison, Atmos. Chem. Phys., 11, 6607-6622, https://doi.org/10.5194/acp-11-6607-2011, 

2011. 

Peylin, P., Law, R. M., Gurney, K. R., Chevallier, F., Jacobson, A. R., Maki, T., Niwa, Y., Patra, P. K., Peters, W., Rayner, P. 5 

J., Rödenbeck, C., van der Laan-Luijkx, I. T., and Zhang, X.: Global atmospheric carbon budget: results from an ensemble of 

atmospheric CO2 inversions, Biogeosciences, 10, 6699–6720, doi:10.5194/bg-10-6699-2013, 2013. 

Pillai, D., Gerbig, C., Ahmadov, R., Rödenbeck, C., Kretschmer, R., Koch, T., Thompson, R., Neininger, B., and Lavrié, J. 

V.: High-resolution simulations of atmospheric CO2 over complex terrain – representing the Ochsenkopf mountain tall tower, 

Atmos. Chem. Phys., 11, 7445-7464, https://doi.org/10.5194/acp-11-7445-2011, 2011. 10 

Pillai, D., Gerbig, C., Marshall, J., Ahmadov, R., Kretschmer, R., Koch, T., and Karstens, U.: High resolution modeling of 

CO2 over Europe: implications for representation errors of satellite retrievals, Atmos. Chem. Phys., 10, 83-94, 

https://doi.org/10.5194/acp-10-83-2010, 2010. 

Polavarapu, S. M., Neish, M., Tanguay, M., Girard, C., de Grandpré, J., Semeniuk, K., Gravel, S., Ren, S., Roche, S., Chan, 

D., and Strong, K.: Greenhouse gas simulations with a coupled meteorological and transport model: the predictability of CO2, 15 

Atmos. Chem. Phys., 16, 12005–12038, https://doi.org/10.5194/acp-16-12005-2016, 2016. 

Polavarapu, S. M., Deng, F., Byrne, B., Jones, D. B. A., and Neish, M.: A comparison of posterior atmospheric CO2 

adjustments obtained from in situ and GOSAT constrained flux inversions, Atmos. Chem. Phys., 18, 12011-12044, 

https://doi.org/10.5194/acp-18-12011-2018, 2018. 

Pugliese, S. C., Murphy, J. G., Vogel, F. R., Moran, M. D., Zhang, J., Zheng, Q., Stroud, C. A., Ren, S., Worthy, D., and 20 

Broquet, G.: High-resolution quantification of atmospheric CO2 mixing ratios in the Greater Toronto Area, Canada, Atmos. 

Chem. Phys., 18, 3387-3401, https://doi.org/10.5194/acp-18-3387-2018, 2018. 

Qaddouri, A. and Lee, V.: The Canadian Global Environmental Multiscale model on the Yin-Yang grid system, Q. J. Roy. 

Meteor. Soc., 137, 1913–1926, doi:10.1002/qj.873, 2011. 

Remaud, M., Chevallier, F., Cozic, A., Lin, X., and Bousquet, P.: On the impact of recent developments of the LMDz 25 

atmospheric general circulation model on the simulation of CO2 transport, Geosci. Model Dev., 11, 4489-4513, 

https://doi.org/10.5194/gmd-11-4489-2018, 2018. 

Robichaud, A. and Ménard, R.: Multi-year objective analyses of warm season ground-level ozone and PM2:5 over North 

America using real-time observations and Canadian operational air quality models, Atmos. Chem. Phys., 14, 1769–1800, 

doi:10.5194/acp-14-1769-2014, 2014. 30 

Schuh, A. E., Denning, A. S., Corbin, K. D., Baker, I. T., Uliasz, M., Parazoo, N., Andrews, A. E., and Worthy, D. E. J.: A 

regional high-resolution carbon flux inversion of North America for 2004, Biogeosciences, 7, 1625–1644, doi:10.5194/bg-7-

1625-2010, 2010. 



29 
 

Schuh, A. E., Lauvaux, T., West, T. O., Denning, A. S., Davis, K. J., Miles, N., Richardson, S., Uliasz, M., Lokupitiya, E., 

Cooley, D., Andrews, A., and Ogle, S.: Evaluating atmospheric CO2 inversions at multiple scales over a highly-inventoried 

agricultural landscape, Glob. Change Biol., 19, 1424–1439, doi:10.1111/gcb.12141, 2013. 

Schuh, A. E., Jacobson, A. R., Basu, S., Weir, B., Baker, D., Bowman, K., Chevallier, F., Crowell, S., Davis, K. J., Deng, F., 

Denning, S., Feng, L., Jones, D., Liu, J., and Palmer, P. I.: Quantifying the Impact of Atmospheric Transport Uncertainty on 5 

CO2 Surface Flux Estimates, Global Biogeochem. Cy., 33, 2018GB006086, https://doi.org/10.1029/2018GB006086, 2019. 

Stephens, B. B., Gurney, K. R., Tans, P. P., Sweeney, C., Peters, W., Bruhwiler, L., Ciais, P., Ramonet, M., Bousquet, P., 

Nakazawa, T., Aoki, S., Machida, T., Inoue, G., Vinnichenko, N., Lloyd, J., Jordan, A., Heimann, M., Shibistova, O., 

Langenfelds, R. L., Steele, L. P., Francey, R. J., and Denning, A. S.: Weak northern and strong tropical land carbon uptake 

from vertical profiles of atmospheric CO2, Science, 316, 1732–1735, doi:10.1126/science.1137004, 2007. 10 

Sørensen, B., Kaas, E., and Korsholm, U. S.: A mass-conserving and multi-tracer efficient transport scheme in the online 

integrated Enviro-HIRLAM model, Geosci. Model Dev., 6, 1029–1042, doi:10.5194/gmd-6-1029-2013, 2013. 

Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Andrews, A. E., Lang, P. M., Neff, D., 

Dlugokencky, E., Miller, J. B., Montzka, S. A., Miller, B. R., Masarie, K. A., Biraud, S. C., Novelli, P. C., Crotwell, M., 

Crotwell, A. M., Thoning, K., and Tans, P. P.: Seasonal climatology of CO2 across North America from aircraft measurements 15 

in the NOAA/ESRL Global Greenhouse Gas Reference Network, J. Geophys. Res.- Atmos., 120, 5155–5190, 

doi:10.1002/2014JD022591, 2015. 

Tans, P. P., Fung, I. Y., and Takahashi, T.: Observational Contrains on the Global Atmospheric CO2 Budget, Science, 247, 

1431–1438, doi:10.1126/science.247.4949.1431, 1990. 

Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res.-Atmos., 106(D7), 20 

7183–7192, 2001. 

Wang, J. W., Denning, A. S., Lu, L., Baker, I. T., Corbin, K. D., and Davis, K. J.: Observations and simulations of synoptic, 

regional, and local variations in atmospheric CO2, J. Geophys. Res., 112, D04108, doi:10.1029/2006JD007410, 2007. 

Wilks, D. S.: Statistical methods in the atmospheric sciences, Academic Press, 2006. 

Worthy, D. E., Platt, J. A., Kessler, R., Ernst, M., Audette, C., and Racki, S.: An update on the Canadian GHG measurement 25 

program, in: Report of the 12th WMO/IAEA Meeting of Experts on Carbon Dioxide Concentration and Related Tracer 

Measurement Techniques, Toronto, Canada, September 2003, edited by: Worthy, D. and Huang, L., World Meteorological 

Organization Global Atmosphere Watch, Report 162, 220–231, 2005. 

Wu, D., Lin, J. C., Fasoli, B., Oda, T., Ye, X., Lauvaux, T., Yang, E. G., and Kort, E. A.: A Lagrangian approach towards 

extracting signals of urban CO2 emissions from satellite observations of atmospheric column CO2 (XCO2): X-Stochastic Time-30 

Inverted Lagrangian Transport model (“X-STILT v1”), Geosci. Model Dev., 11, 4843-4871, https://doi.org/10.5194/gmd-11-

4843-2018, 2018. 



30 
 

Zhang, X., Gurney, K. R., Rayner, P., Liu, Y., and Asefi-Najafabady, S.: Sensitivity of simulated CO2 concentration to 

regridding of global fossil fuel CO2 emissions, Geosci. Model Dev., 7, 2867-2874, https://doi.org/10.5194/gmd-7-2867-2014, 

2014.  



31 
 

Table 1: Information of surface in-situ measurement sites used in this study. 

 Code Station name Latitude (°) Longitude (°) Altitude (m a.s.l.) 

1 AMT Argyle, Maine 45.0345 -68.6821 53 

2 BAO Boulder Atmospheric Observatory 45.03 -105.004 1584 

3 BCK Behchoko 62.8 -115.92 160 

4 BRA Bratts Lake 50.2 -104.71 595 

5 CBY Cambridge Bay 69.13 -105.06 35 

6 CPS Chapais 49.82 -74.98 381 

7 EGB Egbert 44.23 -79.78 251 

8 ESP Estevan Point 49.38 -126.54 7 

9 EST Esther 51.67 -110.21 707 

10 ETL East Trout Lake 54.35 -104.99 493 

11 FSD Fraserdale 49.88 -81.57 210 

12 INU Inuvik 68.32 -133.53 113 

13 LEF Park Falls, Wisconsin 45.95 -90.27 472 

14 LLB Lac La Biche 54.95 -112.47 540 

15 SCT Beech Island 33.41 -81.83 115 

16 SNP Shenandoah National Park 38.62 -78.35 1008 

17 WBI West Branch 41.72 -91.35 242 

18 WGC Walnut Grove 38.27 -121.49 0 

19 WKT Moody 31.31 -97.33 251 

 

  



32 
 

Table 2. Experiment design 

Experiment name Horizontal grid 

spacing 

Lateral boundary 

condition 

Initial condition of meteorological 

fields 

Time step 

GLB90 0.9° (~ 90 km) N/A Global operational analysis 15 min 

GLB45 0.45° (~ 45 km) N/A Global operational analysis 15 min 

LAM 0.09° (~10 km) GLB45 experiment Regional operational analysis 5 min 
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Figure 1: Model topography of the regional model with 10 km horizontal grid spacing and CO2 measurement sites used in this study 
(red dot with site code).  
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Figure 2: Schematic diagram of GEM-MACH-GHG global and regional forward model cycles. Meteorological analyses are from 

CMC’s operational global deterministic prediction system (GDPS) and regional deterministic prediction system (RDPS). Global and 

regional 24 h weather forecasts start at 00:00 UTC of each day with operational analyses, while CO2 concentrations are kept during 

cycles. The global forward model provides lateral boundary condition of meteorological and CO2 fields to the regional forward 5 

model every hour.   
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Figure 3: The bias (solid line) and standard error (dashed line) of (a) zonal wind (m s-1), (b) wind speed (m s-1), (c) geopotential height 

(dam) and (d) temperature (K) from GLB90 (red), GLB45 (green) and LAM (blue) experiments, based on comparison 24-h forecasts 

against North American radiosondes for July 2015. Numbers on the left side of each panel denote the pressure level. Numbers on 

the right side of each panel denote the number of observations used in statistics at each pressure level.  5 
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Figure 4: As in Fig. 3, but for December 2015.  
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Figure 5: The Bias (solid line) and standard error (dashed line) of (a) sea level pressure (hPa), (b) 2-m temperature (K), (c) 10-m 

wind speed (m s-1) and (d) Heidke skill score of 10-m wind direction from GLB90 (red), GLB45 (green) and LAM (blue) experiments, 

based on comparison forecasts against surface-based stations over North America for July 2015. Numbers on bottom of each panel 

denote the number of observations used in statistics at each forecast hour. 5 
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Figure 6: Same as Fig. 5, but for December 2015.  
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Figure 7: Monthly mean bias of daily afternoon averaged (12-16 LST) CO2 concentrations from GLB90 (red), GLB45 (green), LAM 

(blue) experiments and CT2016 (cyan) at all measurement sites used in this study.  
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Figure 8: Mean (left column) and standard deviation (right column) of the residuals between modelled CO2 from LAM 

experiment and observed CO2 concentrations (modelled – observed) at each observations site over January to February 

and December 2015 (first row), March to May 2015 (second row), June to August 2015 (third row) and September to 

November 2015 (fourth row). 5 
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Figure 9: The difference of absolute mean bias between GLB90 and LAM (first column), GLB45 and LAM (second column) and 

GLB90 and GLB45 (third column) over January to February and December 2015 (first row), March to May 2015 (second 

row), June to August 2015 (third row) and September to November 2015 (fourth row).  
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Figure 10: The difference of standard deviation of the residuals between modelled CO2 and observed CO2 concentrations (modelled 

– observed) between GLB90 and LAM (first column), GLB45 and LAM (second column) and GLB90 and GLB45 (third column) 

over January to February and December 2015 (first row), March to May 2015 (second row), June to August 2015 (third 

row) and September to November 2015 (fourth row).  5 
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Figure 11: Comparison of profiles of modelled CO2 concentrations from GLB90 (red), GLB45 (green) and LAM (blue) experiments 

to NOAA aircraft observations for (a) January to February and December 2015, (b) March to May 2015, (c) June to August 2015 

and (d) September to November 2015. Solid line denotes mean bias and dashed line denotes standard error. Sites used are Briggs 

dale, Colorado; Cape May, New Jersey; Dahlen, North Dakota; Estevan Point, British Columbia; East Trout Lake, Saskatchewan; 5 

Homer, Illinois; Park Falls, Wisconsin; Worcester, Massachusetts; Poker Flat, Alaska; Charleston, South Carolina; Southern Great 

Plains, Oklahoma; Sinton, Texas; Trinidad Head, California; West Branch, Iowa.  
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Figure 12: Taylor diagram showing correlations and normalised standard deviations between daily afternoon modelled CO2 

concentrations from GLB90 (red) and GLB45 (green) and LAM (blue) experiments and observed CO2 concentrations over (a) 

January to February and December 2015, (b) March to May 2015, (c) June to August 2015 and (d) September to November 2015. 
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Figure 13: Mean diurnal cycle of observed CO2 concentrations (black) and modelled CO2 concentrations from the GLB90 (red), 

GLB45 (green) and LAM (blue) experiments at WGC (Walnut Grove, California) for the intake height at (a) 483 m for July 2015 

and (b) 483 m for December 2015, (c) 91 m for July 2015 (d) 91 m for December 2015, (e) 30 m for July 2015 and (f) 30 m for 

December 2015. The grey (cyan) shaded region indicates 1 standard deviation above and below observed (CT2016) CO2 5 

concentrations while the dashed lines indicate the same for modelled CO2 concentrations. Note that CT2016 results are only available 

at 483 m.  
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Figure 14: The amplitude of hourly time series of observed CO2 (black) and modelled CO2 concentrations from GLB90 (red), GLB45 

(green) and LAM (blue) experiments across temporal scales from 2 h to 92 days at (a) LEF (the intake height at 396 m) and (b) their 

differences, (c) WGC (intake height at 483 m) and (d) their difference and (e) WGC (intake height at 91 m) and (f) their differences. 
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