
1 

 

Author's Response 

First of all, we’d like to thank the referees and editors, the comments and advices they mentioned help us a lot to improve the 

manuscript. We modify the manuscript with more general description and some of our new insight. 

Replys to Anonymous Referee #1 

Thank you very much for reading our manuscript meticulously, those problems you found and the advices you mentioned, 5 

help us a lot to improve the description and strictness to the manuscript. There are some opinions we’d like to discuss and 

share with you. 

The main theme of this manuscript is finding out a method to extend the square conservation scheme, from regular latitude-

longitude grid to an arbitrarily structured C-grids dynamic core, TRiSK, meanwhile, the intrinsic property of TRiSK (including 

accuracy of operators and conservation properties) should not be broken down. 10 

 

There are some problems with the presentation in the manuscript (details below), which it should be possible to fix. However, 

the key ideas needed to obtain exact energy conservation on arbitrary meshes have been around for a while; this paper merely 

brings them together. Also, temporal truncation errors tend to be much smaller than spatial truncation errors in atmospheric 

models, so only a small improvement (if any) is obtained by replacing an energy-conserving spatial discretization by an energy-15 

conserving space-time discretization, (as the results in this paper confirm). Thus, I think the manuscript lacks the originality 

and significance needed to justify publication in GMD. 

Reply: 

The most of so-called energy conservation schemes on arbitrary meshes merely conserve total energy within time truncation 

error, i.e. (Ringler et al,2010), (Thi-Thao-Phuong Hoang,2019), the energy is still slightly dissipative during temporal 20 

integration. As Eq.(24) in the manuscript, the energy is strictly conserved only if 2𝜏𝑛(𝜑
𝑛, 𝐹𝑛) + 𝜏𝑛

2‖𝜑𝑛‖2 = 0, unfortunately, 

most of temporal integration schemes do not satisfy this condition. Conserving energy within time truncation error is not 

equivalent to strict/exact energy conservation, the former allows slightly energy dissipative/anti-dissipative during temporal 

integration, the later conserving total energy in round-off error. In the manuscript, Figure 3c, Figure 4c and Figure 5c (the 

same as the following figures, from left to right) are showing the differences between “Conserving energy within truncation 25 

error” (blue line) and “Strictly conserving energy” (red line).  
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Indeed, there are some methods to exactly conserve energy on arbitrary meshes, i.e. taking energy as an evolution variable, 

based on conservation law, the energy flux is balanced between each cell, therefore energy is conserved anywhere and anytime 

(Satoh, 2004, Section 1.2.3). But these methods are not quadratic conservation in mathematics. In the shallow water system, 

one can obtain the exact energy conservation by replacing the continuous equation by energy equation, but this method 5 

sacrifices mass conservation; or in another way, replacing the momentum equation by energy equation, but the flow direction 

will not able to be determined, and sometimes worse situation appears, since the lack of constrain from momentum equation, 

potential energy could be greater than total energy, which result in the wind speed becomes imaginary number.  

By implementing the square conservation scheme, neither momentum equation nor continuous equation needs to be replaced 

by energy equation, the total energy is strictly conserved, rather than conserved within time truncation error, meanwhile, there 10 

are not influences to the other conservative properties, such as mass and absolute vorticity.  

About the originality. The prerequisite of implementing square conservation scheme is that the spatial discrete operator must 

be anti-symmetrical, but it is hard to construct an anti-symmetrical operator on quasi-uniform grids directly, therefore we try 

to find another way to obtain the anti-symmetrical operator. Energy conservation is one of the intrinsic properties of TRiSK 

shallow water dynamic core, and as we mentioned in Section 3.2, Eq.(13) is the key to connecting square conservation and 15 

energy conservation, by using this simple combination of original TRiSK spatial discrete operators, the anti-symmetrical 

operator is built. 

Note that, for constructing the anti-symmetrical operator in shallow water system, the units of the evolution variables must be 

unified, otherwise, the addition is not able to operate between different variables, this is the reason we take IAP transformation. 

Improving the conservation property is not like improving accuracy of the model, the convergence rate of spatial discrete 20 

operator, and the accuracy of temporal integration scheme are not changed in our study. Indeed, the reductions of errors are 

not such significant, but the physical characteristics are more analogous to the real system. The differences are not obvious in 

short term simulation, but in long term simulation, the advantage of strict energy conservation scheme may be huge, this is 

intuitively showed by the numerical test in (Wang,1996), which we’d like to share with you in Response for specific comment 

#2. 25 

In the following content, we response your specific comments. 

 

Response for specific comment #1: 
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Sections 3.1, 3.2. The notation ℒ𝐹, ℳ𝑢, 𝒩𝜙 suggests that ℒ, ℳ, 𝒩 are linear functions of F, u, and - respectively. In fact 

they are all nonlinear functions. Moreover, ℳ and 𝒩 are actually functions of both 𝑢 and 𝜙. These two sections are over-

elaborate and presented in a very confusing way. In several places it is not obvious what is assumed and what is claimed to be 

proved. All that is really needed is the fact that the energy at a point can be written as a squared quantity by making a certain 

change of variables. 5 

Reply: 

Thank you for reminding, indeed, the derivation does not depend on the linear operation, but indeed the expression is not strict 

enough. The following expression is better 

{

𝜕𝒖

𝜕𝑡
+ℳ(𝜙, 𝑢) = 0

𝜕𝜙

𝜕𝑡
+𝒩(𝜙, 𝑢) = 0

 , 

For simplify expression, we write ℳ =ℳ(𝜙, 𝑢),𝒩 = 𝒩(𝜙, 𝑢) 10 

𝜕𝑼

𝜕𝑡
= √𝜙

𝜕𝒖

𝜕𝑡
+

𝒖

2√𝜙

𝜕𝜙

𝜕𝑡
= −√𝜙ℳ −

𝒖

2√𝜙
𝒩  

(ℒ(𝑭), 𝑭) = −(
𝜕𝑼

𝜕𝑡
, 𝑼) − (

𝜕𝜙

𝜕𝑡
, 𝜙)  

= ∯ −𝑼
𝜕𝑼

𝜕𝑡
− 𝜙

𝜕𝜙

𝜕𝑡
 𝑑𝑠

Ω
  

 = ∯ −𝑼(−√𝜙ℳ −
𝒖

2√𝜙
𝒩) + 𝜙𝒩 𝑑𝑠

Ω
  

= ∯ 𝜙𝑢 ∙ℳ +
|𝒖|2

2
𝒩 +𝜙𝒩 𝑑𝑠

Ω
  15 

= (ℳ,𝜙𝑢) + (𝒩, 𝐸)  

= 0   

All of the similar expressions are fixed in the new version manuscript. 

About “the energy at a point can be written as a squared quantity by making a certain change of variables”, this is what we are 

talking about in Section 3.1, the square conservation is equivalent to energy conservation in a continuous system. 20 

 

Response for specific comment #2:  

P1 line 27, also P2 lines 3-5. The opening sentence is too categorical. For a quantity like energy or potential enstrophy, in a 

numerical model the total is made up of resolved and unresolved contributions. Therefore, it is not obvious that conserving the 

resolved contribution is necessary for a good solution; indeed, it may be necessary to dissipate the resolved contribution (e.g. 25 

to prevent ‘spectral blocking’). One can argue for a conservative numerical method by saying that we want to parameterize 

any dissipation, not leave it to numerical errors, but the opposite argument can also be made. Such ideas are extensively 

discussed in the literature. 

Reply: 
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Indeed, there are resolvable and unresolvable energy contributions. Since the model resolution is not able to reach a molecule 

level, the numerical model cannot resolve all the mass, there are resolvable and unresolvable mass contributions either, as 

widely known, it’s hard to obtain a good result without total mass conservation. For total energy, the influence is not significant 

in short-term simulation, but the long-term simulation, without total energy conservation, often lead to a terrible result. 

On the other hand, energy conservation is one of the intrinsic conservation properties of the spatial discrete operator in TRiSK 5 

shallow water dynamic core (Ringler et al, 2010, Section 3.7), however, this property is lost during temporal integration by 

using original Runge-Kutta scheme. The temporal integration scheme brings time truncation error into the model, rather than 

spatial discrete operator, which means that the temporal integration scheme makes the model loses one of the intrinsic 

properties which is provided by spatial discrete scheme. 

Figure 3c in the manuscript, a detail is that the square conservation scheme strictly conserves energy, even though the steady 10 

geostrophic flow collapses, but the original TRiSK scheme cannot maintain the total energy after collapse, this is an obvious 

difference between the “Conserving energy within truncation error” and “Strictly conserving energy”. The reason is that the 

square conservation scheme maintains the conservation properties of spatial discrete operators faithfully, but original temporal 

integration scheme does not. 

An interesting example can be found in (Wang, 1996), the numerical test of the linear ODE 15 

{

𝑑𝑥

𝑑𝑡
= −𝑎𝑦

𝑑𝑦

𝑑𝑡
= 𝑏𝑥

 

the true solution of the equation is an ellipse conform to  𝑏𝑥2 + 𝑎𝑦2 = 𝑐 (𝑐 is a constant), after long term numerical simulation 

(after 108 steps) with original Runge-Kutta, the generalized energy tends to zero, and the solution tends to a single point (Fig. 

2(a), Wang, 1996, as showing as follow), but the Runge-Kutta with square conservative property is able to maintain the 

generalized energy strictly conserved, and the solution is still a ellipse as initial time (Fig. 2(b) , Wang, 1996). 20 
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This class of Runge-Kutta scheme with square conservative property is exactly what we mentioned in the manuscript Section 

3.3. 

 

Response for specific comment #3: 5 

P1 line 29, Figs. 3b, 5b, 7b, P19 line 17. On a spherical domain the vanishing of the global integral of vorticity is a purely 

kinematic identity. Provided the vorticity and its integral are calculated in a self-consistent way, the same result must hold in 

the discrete case (e.g. P10 line 20). Thus, conservation of the global integral of vorticity is a test only of the fact that the 

vorticity is calculated consistently; it says nothing about the properties of the numerical methods used to solve the equations. 

Reply: 10 

Total absolute vorticity conservation is one of the intrinsic properties of TRiSK shallow water dynamic core, in the manuscript, 

we are not trying to discuss the importance of absolute vorticity conservation, but to maintain the total energy conservation 

without breaking down the intrinsic properties of TRiSK, The figures and the demonstrations about the conservation of total 

absolute vorticity are here to prove that the square conservation scheme has no influence to the other conservation properties 

of TRiSK shallow water dynamic core. 15 

 

Response for specific comment #4: 

P1 line 29. ‘...five basic physical conserved properties’. Actually potential enstrophy is just one member of an infinite family 

(so-called Casimirs). 

Reply: 20 
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Thank you for reminding, indeed, potential enstrophy is one member of an infinite family, in the manuscript, we are not tending 

to discuss all of the invariants, the description about five basic physical conservative properties is based on (Wang, 2008). 

 

Response for specific comment #5: 

P3 line 23. This form of the equations is usually called ‘vector-invariant’ (as on P19 line 16). 5 

Reply: 

Indeed, thank you very much, it has been fixed in the new version of manuscript 

 

Response for specific comment #6: 

P4. Equation (3) is inconsistent with the definition of the 2-norm on line 5. This paragraph seems to be mixing up point values 10 

and global integrals. 

Reply: 

Indeed, the total energy should be defined as follow 

∯ 𝜖 𝑑𝑠
𝛺

= ∯ 𝑔𝜖𝑅10 𝑑𝑠𝛺
= ∯ 𝜙𝐾 +

1

2
𝜙2 + 𝜙𝜙𝑠 𝑑𝑠𝛺

= ‖𝜙𝐾‖ + ‖
1

2
𝜙2‖ + ‖𝜙𝜙𝑠‖  

 15 

Response for specific comment #7: 

Figure 1. Note that the grid used need not be uniform and regular (as suggested by the figure). 

Reply: 

Indeed, uniform and non-uniform grid do not influence the location of the variables and the structure of spatial discrete 

operators are the same as well. The square conservation scheme is available on arbitrarily structured C-grids as the title of the 20 

manuscript. As shown in Fig.1, Fig.2, Fig.3, (Ringler et. al, 2010), the regular is clear to introduce the structure of the SCVT 

mesh. 

 

Response for specific comment #8: 

P5. Note that the sign convection for 𝑢𝑒 is related to the direction of the unit normal -this is crucial to get everything to work 25 

out. Also crucial for energy conservation is that 𝑄𝑒
⊥ is constructed to satisfy the equation on P20 line 9. 

Reply: 

The description of indicator function 𝑛𝑒,𝑖 for identifying the direction of 𝑢𝑒 can be found in the end of Section 2, 𝑛𝑒,𝑖 appears 

in all of the correlative derivations in the manuscript. 

The spatial discrete operators, that we described in the manuscript, are the same as those in (Ringler et al., 2010), we construct 30 

the anti-symmetrical spatial discrete operator by using the original spatial discrete operator in TRiSK shallow water dynamic 

core, therefore, all of the properties, mentioned by (Ringler et. al,2010), are still applicable in the manuscript. Indeed, there are 
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two methods of calculating 𝑄𝑒
⊥  in (Ringler et al,2010), in our manuscript, the algorithm of calculating  𝑄𝑒

⊥  satisfies the 

condition to keep energy conservation, which is described in Section 3.7.2, Ringler et al. (2010). 

 

Response for specific comment #9: 

P5 line 22. ‘...new type of Runge-Kutta’. Not so new (1996). 5 

Reply: 

It is not so new, we try not to modify the title of (Wang, 1996), “A Class of New Explicit Runge-Kutta Schemes”, in the new 

version of manuscript, this expression is changed. 

 

Response for specific comment #10: 10 

P6 line 11. It would be helpful to give a reference for ‘IAP transformation’. 

Reply: 

The earliest description about IAP transformation can be found in (Section 2, Zeng, 1987), and also cited by (Wang, 2004). 

 

Response for specific comment #11: 15 

P11 lines 22-23. The text does not make sense - it seems to be mixing up point values and global integrals. 

Reply: 

Indeed, there is a mistake, the error measure function should be 𝐼(𝑋𝑛) =
𝑆(𝑋𝑖

𝑛)−𝑆(𝑋𝑖
0)

𝑆(𝑋𝑖
0)

 , where 𝑆(𝑋) =
∑ 𝑋(𝑖)𝐴(𝑖)𝑁
𝑖=1

∑ 𝐴(𝑖)𝑁
𝑖=1

, 𝑋𝑖
𝑛 is the 

variable at the 𝑛th time point on the ith cell and 𝑋𝑖
0 is the variable at the initial time, and 𝐴(𝑖) is the area of the 𝑖th cell. This is 

similar to (135)-(140), Williamson, 1992, but the coordinate is no longer latitude-longitude, in the quasi-uniformed grid, the 20 

weight is now area of each cell. For a simpler expression 𝐼(𝑋𝑛) =
∑ (𝑋𝑖

𝑛−𝑋𝑖
0)𝐴(𝑖)𝑁

𝑖=1

∑ 𝑋𝑖
0𝐴(𝑖)𝑁

𝑖=1

, the result is equivalent to the former 

expression. 

 

Response for specific comment #12: 

Section 5.2. The fact that the solid body rotation flow eventually breaks down, despite the conservation properties of the 25 

scheme, is intriguing. Could this be a manifestation of the ‘Hollingsworth instability’ (as discussed, for example, in Skamarock 

et al 2012)? 

Reply: 

We are not sure the connection between the collapse of steady geostrophic flow and ‘Hollingsworth instability’, but we found 

another way to delay the collapse, we observed that once we site the cell centers on two poles, the poles are just like the sources 30 

of errors, so we tried to rotate the mesh, and did not let any cell center site on poles, the errors was much more smaller, and 

the collapse has delayed obviously. Therefore, in our opinion, the principal cause of collapse is not the conservation properties, 
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but maybe something like polar singularity, as we mentioned in the manuscript, maintaining the strict energy conservation just 

delays the collapse, this phenomenon needs further study. 

 

Response for specific comment #13: 

P19 line 26. Sign error? Line 30. What is ℎ𝑒? 5 

Reply: 

Thanks a lot. 

P19 line 26 should be (𝑈,
𝜕𝑈

𝜕𝑡
)
𝑒
+ (𝜙,

𝜕𝜙

𝜕𝑡
)
𝑖
= 0, and line 30 should be (𝑈,

𝜕𝑈

𝜕𝑡
)
𝑒
= ∑ 𝑈𝑒 (𝐶𝑒

∂𝑢𝑒

∂t
+

𝑢𝑒

2𝐶𝑒

∂𝜙𝑒

∂t
)𝐴𝑒

𝑛𝐸𝑑𝑔𝑒𝑠
𝑒=1  

Even though, there is no influence to the result, these errors shouldn’t be happened. 

 10 

Response for specific comment #14: 

References are not in alphabetical order. 

Reply: 

This problem is fixed in new version of manuscript. Thank you for reminding. 

 15 

Replys to Anonymous Referee #2 

We would like to thank you for the positive comments and constructive advices, which help us to make the manuscript more 

clearly and more persuasive. The responses for the comments are in following text. 

 

Response for specific comment #1: 20 

The necessity to conserve the resolved energy in numerical solutions to an energy conservation system is actually the same as 

that to conserve the resolved mass. To highlight the significance of constructing an energy conservation scheme for the TRiSK 

dynamic core, a clear explanation on the necessity should be provided in Section 1. 

Reply: 

This is a good advice, energy conservation is an important property for the closed physical system, the shallow water system 25 

without any energy sink or source is one of the closed system, and the numerical model such as TRiSK shallow water dynamic 

core is a kind of approximation to the closed system, therefore, the basic integral invariants should be conserved, as we cited 

from (Arakawa, 1977), the maintenance of integral make the physics of the discrete model more analogous to the physics of 

the continuous atmosphere, and on the other hand make the errors less systematic. Another interesting example could be found 

in (Wang, 1996), the numerical test of the linear ODE 30 
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{

𝑑𝑥

𝑑𝑡
= −𝑎𝑦

𝑑𝑦

𝑑𝑡
= 𝑏𝑥

 

the true solution of the equation is an ellipse conform to  𝑏𝑥2 + 𝑎𝑦2 = 𝑐 (𝑐 is a constant), but after long term numerical 

simulation (after 108 steps) with original Runge-Kutta, the generalized energy tends to zero, and the solution tends to a single 

point(Fig.2, Wang, 1996). I think it’s clearly to see the importance of keeping energy conservation. The references are packed 

in the zip file. 5 

 

Response for specific comment #2: 

Line 19/Page 2: CRK is improperly used as the abbreviation of “a new class of Runger-Kutta scheme”, because the word 

“class” does not describe the main characteristics of this scheme. NRK is better. 

Reply: 10 

CRK stands for Conservative Runge-Kutta in my opinion, which means this kind of Runge-Kutta helps make the square 

conservation, it’s just an abbreviation, but of course, the naming right belongs to the proposer of the scheme, Bin Wang. I use 

this abbreviation just to make the article concise. 

 

Response for specific comment #3: 15 

I wonder why the title of Section 2 is exactly the same as that of Section 1 (Lin 22/Page 3). 

Reply: 

Thank you for finding out the problem. The right title of Section 2 is “Introduction of  TRiSK”. 

 

Response for specific comment #4: 20 

The equality (3) (Line 4/Page 4) is not true, which missed the integration sign after the second equal mark. 

Reply: 

Indeed, the total energy should be defined as follow 

∯ 𝜖 𝑑𝑠
𝛺

= ∯ 𝑔𝜖𝑅10 𝑑𝑠𝛺
= ∯ 𝜙𝐾 +

1

2
𝜙2 + 𝜙𝜙𝑠 𝑑𝑠𝛺

= ‖𝜙𝐾‖ + ‖
1

2
𝜙2‖ + ‖𝜙𝜙𝑠‖  

 25 

Response for specific comment #5: 

The semi-discrete form of the shallow water equation set [Equations (4)-(5) on Lines 4-5/Page 5] should no longer be a partial 

differential equation set, but an ordinary differential equation set. 

Reply: 

We are trying to express the same discrete system as which in (Ringler, 2010) Eqs.(19)-(20), you’re right, “semi-discrete form” 30 

should be modified to “discrete system”. 
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Response for specific comment #6: 

Line 6/Page 5: u and v are not the variables of Eqs.(4)-(5). 

Reply: 

You are right, 𝑢 is the evolution variable for the equation, 𝑣 does not appear in Eqs.(4) and (5). 5 

 

Response for specific comment #7: 

Line 20/Page 7: The equality is not true, because a negative sign is missed before (not sure, but there is only one equation) 

Reply: 

Indeed, the derivation should be 10 

{

𝜕𝒖

𝜕𝑡
+ℳ(𝜙, 𝑢) = 0

𝜕𝜙

𝜕𝑡
+𝒩(𝜙, 𝑢) = 0

 , 

For simplify expression, we write ℳ =ℳ(𝜙, 𝑢),𝒩 = 𝒩(𝜙, 𝑢) 

𝜕𝑼

𝜕𝑡
= √𝜙

𝜕𝒖

𝜕𝑡
+

𝒖

2√𝜙

𝜕𝜙

𝜕𝑡
= −√𝜙ℳ −

𝒖

2√𝜙
𝒩  

(ℒ(𝑭), 𝑭) = −(
𝜕𝑼

𝜕𝑡
, 𝑼) − (

𝜕𝜙

𝜕𝑡
, 𝜙)  

= ∯ −𝑼
𝜕𝑼

𝜕𝑡
− 𝜙

𝜕𝜙

𝜕𝑡
 𝑑𝑠

Ω
  15 

 = ∯ −𝑼(−√𝜙ℳ −
𝒖

2√𝜙
𝒩) + 𝜙𝒩 𝑑𝑠

Ω
  

= ∯ 𝜙𝑢 ∙ℳ +
|𝒖|2

2
𝒩 +𝜙𝒩 𝑑𝑠

Ω
  

= (ℳ,𝜙𝑢) + (𝒩, 𝐸)  

= 0   

This problem does not influence the conclusion, thank you for checking the derivation meticulously. 20 

 

Response for minor comment #8: 

Line 10/Page 1: “The square conservation theory is widely used on latitude-longitude grids” –> “The square conservation law 

is maintained in the dynamic cores on latitude-longitude grids”. 

Reply: 25 

The square conservation scheme is implemented in The Grid-point Atmospheric Model of IAP LASG(GAMIL), and the result 

of GAMIL was published in CMILP5, but your advice is good. 

 

Response for minor comment #9 and #10: 

9) Line 4/Page 2: “which is” –> “which are”. 30 
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10) Line 26/Page 2: “polar problem” –> “polar instability” or “polar singularity”. 

Reply: 

Thank you for finding out those mistakes, they are fixed in the 4th version of manuscript. 

 

  5 



12 

 

List of relevant changes made in the manuscript 

1. Switch all of the CRK to NRK. 

2. In Abstract, we fix some description of square conservation and add more introductions of two kinds of energy 

conservation scheme. 

3. In Introduction 5 

(1) Add more references to introduce the importance of energy conservation 

(2) Expound the differences between conserving energy in time truncation-error and conserving energy in round-off 

error. 

(3) Switch “polar problem” to “polar singularity”. 

4. In Section 2 10 

(1) Switch “flux format” to “vector-invariant format” 

(2) Fix the mistake of total energy expression as 

∯𝜖 𝑑𝑠
𝛺

=∯𝑔𝜖𝑅10 𝑑𝑠
𝛺

=∯ 𝜙𝐾 +
1

2
𝜙2 + 𝜙𝜙𝑠 𝑑𝑠

𝛺

= ‖𝜙𝐾‖ + ‖
1

2
𝜙2‖ + ‖𝜙𝜙𝑠‖ 

(3) Add description for Figure 1. 

(4) Modify some other details. 15 

5. In Section 3 

(1) Add references about IAP transformation. 

(2) Switch ℒ𝐹 to ℒ(𝐹) 
(3) Switch 𝐿𝐹 to 𝐿(𝐹) 
(4) Switch operators ℳ and 𝒩 to function ℳ =ℳ(𝜙, 𝑢) and 𝒩 = 𝒩(𝜙, 𝑢) 20 

(5) Switch operators 𝑀 and 𝑁 to function 𝑀 = 𝑀(𝜙, 𝑢) and 𝑁 = 𝑁(𝜙, 𝑢) 

(6) Add description of √𝜙𝑒 and 𝜙𝑒. 

(7) Correct the sign for Eq.(20) 

(8) Modify some other details. 

6. In Section 5 25 

(1) Add description of the differences between conserving energy in time truncation-error and conserving energy in 

round-off error during entire temporal integration period. 

(2) Correct 𝐼(𝑋𝑛) =
𝑆(𝑋𝑖

𝑛)−𝑆(𝑋𝑖
0)

𝑆(𝑋𝑖
𝑛)

 to 𝐼(𝑋𝑛) =
𝑆(𝑋𝑖

𝑛)−𝑆(𝑋𝑖
0)

𝑆(𝑋𝑖
0)

 

(3) Add the discussion about the benefits of implementing square conservation scheme in TRiSK in the end of this 

section. 30 

7. In Appendix A 

(1) Correct (𝑈,
𝜕𝑈

𝜕𝑡
)
𝑒
= (𝜙,

𝜕𝜙

𝜕𝑡
)
𝑖
 to (𝑈,

𝜕𝑈

𝜕𝑡
)
𝑒
+ (𝜙,

𝜕𝜙

𝜕𝑡
)
𝑖
= 0 

(2) Correct (𝑈,
𝜕𝑈

𝜕𝑡
)
𝑒
= ∑ 𝑈𝑒 (𝐶𝑒

∂𝑢𝑒

∂t
+

𝑢𝑒

2ℎ𝑒

∂𝜙𝑒

∂t
) 𝐴𝑒

𝑛𝐸𝑑𝑔𝑒𝑠
𝑒=1  to (𝑈,

𝜕𝑈

𝜕𝑡
)
𝑒
= ∑ 𝑈𝑒 (𝐶𝑒

∂𝑢𝑒

∂t
+

𝑢𝑒

2𝐶𝑒

∂𝜙𝑒

∂t
)𝐴𝑒

𝑛𝐸𝑑𝑔𝑒𝑠
𝑒=1  

8. In References, we adjust the sequence of the references to fit the alphabetical order. 
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Abstract. The square conservation law is implemented in the atmospheric dynamic cores on latitude-longitude gridsThe square 10 

conservation theory is widely used on latitude–longitude grids, but it is rarely implemented on quasi-uniform grids, given the 

difficulty involved in constructing anti-symmetrical spatial discrete operators on these grids. Increasingly more models are 

developed on quasi-uniform grids, such as arbitrarily structured C-grids. Thuburn–Ringler–Skamarock–Klemp (TRiSK) is a 

shallow water dynamic core on an arbitrarily structured C-grid. The spatial discrete operator of TRiSK is able to naturally 

maintain the conservation properties of total mass, total absolute vorticity and instantaneousconserving  total energy with time 15 

truncation error. T, the first 2 integral invariants are entirely exactly conserved during integration, but the total energy dissipates 

when using the dissipative temporal integration schemes, i.e., Runge-Kutta. The method of strictly conserving the total energy 

simultaneously, which means conserving energy in round-off error during entire temporal integration period, uses both an anti-

symmetrical spatial discrete operator and square conservative temporal integration scheme. In this study, we demonstrate that 

square conservation is equivalent to energy conservation in both a continuous shallow water system and a discrete shallow 20 

water system of TRiSK, attempting to extend the square conservation theory law to the TRiSK framework. To overcome the 

challenge of constructing an anti-symmetrical spatial discrete operator, we unify the unit of evolution variables of shallow 

water equations by Institute of Atmospheric Physics (IAP) transformation, expressing the temporal trend of the evolution 

variable by using the original operators of TRiSK the temporal derivates of new evolution variables can be expressed by a 

combination of temporal derivates of original evolution variables, which means the square conservative spatial discrete 25 

operator can be obtain by using original spatial discrete operator in TRiSK. Using the square conservative Runge-Kutta scheme, 

the total energy is completely conserved, and there is no influence on the properties of conserving total mass and total absolute 

vorticity. In the standard shallow water numerical test, the square conservative scheme not only helps maintain total 

conservation of the three integral invariants but also creates less simulation error norms. 

mailto:fengjm@tea.ac.cn
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1 Introduction 

In a statistical sense, The the maintenance of integral constraints is necessary to determine the true solution, following a path 

upon which the statistics are analogous to those of the true solutionmake the physics of the discrete model more analogous to 

the physics of the continuous atmosphere, and also make the errors less systematic (Arakawa, 1977). Shallow water equation 

sets, without any outer sources and frictions, have five basic physical conservation properties, including total mass, total energy, 5 

total absolute vorticity (total potential vorticity), total potential enstrophy and total angular momentum. These conservation 

properties are important in an atmosphere model, especially with regard to long-term simulation; however, in a discrete system, 

some conservation properties cannot be maintained (Wang, 2008). If the square of a quantity is conserved with time when 

summed up over all the grid points in a domain, the quantity itself will be bounded, at every individual grid point, throughout 

the entire period of integration, this might be helpful for preventing nonlinear computational instability (Arakawa, 1966), and 10 

energy is one kind of the quadratic quantities. Toy and Nair (2017) developed an energy and potential enstrophy conserving 

scheme for shallow water equations on generalized curvilinear coordinates, they mentioned conserving analogues of total 

energy and total potential enstrophy in numerical models are known to prevent a spurious cascade of energy toward small 

scales. For a short-term simulation, the influences of slight energy dissipation are not obvious, but this dissipation accumulates 

in every time step, and finally, in a long-term simulation, leads to a quiet different result, i.e., an ellipse orbit tends to a single 15 

point after 108 steps (Wang, 1996). 

A numerical scheme, with an energy conservation or energy dissipative property, is prerequisite to prevent nonlinear 

computational instability; however, an energy dissipative scheme will limit short-waves, which isare meaningful for the 

atmosphere (Shen, 2013; Zeng, 1981).  

On a latitude–longitude grid, energy is able to be entirely conserved by constructing a square conservative finite difference 20 

scheme (Ji and Wang, 1991), or a multi-conservation finite difference scheme (Wang and Ji, 2003), the former of which is 

better developed. Wang and Ji (1994a) discussed the square conservative scheme (SCS), the complete square conservative 

scheme (CSCS), the instantaneous square conservative scheme (ISCS) and the explicit complete square conservative scheme 

with adjustable time intervals (ECSCSA). The ISCS maintains square conservation only in the spatial discrete scheme and not 

in the temporal integration scheme, which implies the spatial discrete operator of the model is a square conservative (i.e., an 25 

anti-symmetrical operator). However, the temporal integration scheme does not possess the square conservation property 

because therefore the model is energy dissipative during integration. The CSCS maintains square conservation in both the 

spatial and temporal schemes. The model, which adopts CSCS, is able to maintain complete energy conservation during 

integration. The first step of applying the square conservation theory is to construct an anti-symmetrical spatial discrete 

operator and then integrate the model with a square conservative temporal integration scheme, i.e., a modified predict-corrector, 30 

modified leap-frog (Wang and Ji, 2006), harmonious dissipative operators (Wang and Ji, 1994b), etc.  

To improve integration precision on the temporal direction of the square conservative scheme, a new class of Runge-Kutta 

schemes, hereafter CRKNRK, were developed by Wang et al. (1996). The CRKNRK scheme maintains the complete square 
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conservation property by adjusting the length of temporal integration steps and maintaining the same integral precision order 

as the original Runge-Kutta scheme, hereafter RK. 

The SCS was implemented in the grid-point atmospheric model of IAP LASG (GAMIL, Wang et al. 2004, Wang and Ji, 2006). 

GAMIL is widely used in climate simulation (Li et al., 2007, 2013; Wu and Li, 2008). The square conservation theory is rarely 

used on quasi-uniform grids or nonuniform grids because it is hard to construct a spatial discrete operator with an anti-5 

symmetrical property on those grids. 

In the most recent two decades, to avoid the polar problem singularity of the latitude–longitude grid, increasingly more 

atmosphere models have been built on the quasi-uniform grid, i.e., spectral transform methods (Swarztrauber, 1996); the finite 

volume method (Lin, 2004; Putman and Lin, 2007; Chen and Xiao, 2008); and an extension on the finite difference method to 

the generalized curvilinear coordinates (Toy and Nair, 2017).  10 

Thuburn et al. (2009) and Ringler et al. (2010), provided a spatial discrete scheme based on arbitrarily structured C-grids, 

known as Thuburn–Ringler–Skamarock–Klemp (TRiSK). TRiSK is able to conserve the total mass and total absolute vorticity, 

and the total energy is instantaneously conservedconserved within time-truncation error. These important properties enable 

models using quasi-uniform Voronoi grids, the accuracies of which are similar to latitude–longitude grids (Weller et al., 2012). 

Based on Thuburn et al. (2009) and Ringler et al. (2010), a global/regional model, the Model for Prediction Across Scales 15 

(MPAS), was developed by the National Center for Atmospheric Research (NCAR) and Los Alamos National Laboratory 

(LANL) (Skamarock et al., 2012, 2018). 

Although the semispatial- discrete operator designed by Ringler et al. (2010) results in instantaneous energy 

conservationconservation, the total energy is still dissipative while using dissipative temporal integration schemes, i.e., Runge-

Kutta, in other words, the conservation property of spatial discrete operator is not able to be maintain during temporal 20 

integration, this is so-call conserving total energy in time truncation error. In this paper we attempt to construct a square 

conservative scheme for TRiSK, which is able to conserve total energy in round-off error, but not just in time truncation error, 

which means that the variation of total energy should be in round-off error during entire temporal integration period, we call 

this complete energy conservation.Energy will be completely conserved only when the spatial discrete operator is anti-

symmetrical and the temporal integration scheme is square conservative (Wang and Ji, 2006).  25 

Total Energy will be completely conserved only if the spatial discrete operator is anti-symmetrical and the temporal integration 

scheme is square conservative (Wang and Ji, 2006). The main obstacle of extending square conservation to the quasi-uniform 

grids is constructing the anti-symmetrical spatial discrete operator. Because many quasi-uniform grids are unstructured and 

the shapes of cells are not uniform, it is difficult to find the next or previous cell. In this study, we use the instantaneous energy 

conservation property of TRiSK to overcome the challenge of constructing an anti-symmetrical spatial operator on a quasi-30 

uniform grid. After using CRKNRK as a temporal integration scheme, the square conservative constrains are satisfied for both 

spatial and temporal directions, and the total energy, total mass and total absolute vorticity are completely conserved during 

the integration. 
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This paper is presented as follows: In section 2, we review the TRiSK framework which was described by Ringler et al. (2010). 

Section 3 describes the method of extending square conservation to TRiSK in 3 parts. The first part presents a review of square 

conservation and a demonstration of the equivalent relationship between square conservation and energy conservation in a 

continuous shallow water system. In the second part of section 3, we obtain the anti-symmetrical spatial discrete operator by 

using the derivative rule and the energy conservation property of TRiSK, a method that is key to extending square conservation 5 

to TRiSK. In the last part of section 3, we review a new type of Runge-Kutta with 4th-order precision, which was developed 

by Wang et al. (1996) as the square conservative temporal integration scheme. In section 4, by using the square conservation 

scheme, we demonstrate that the total mass and total absolute vorticity remain perfectly conservative. Section 5 exhibits the 

results of three different numerical tests, including the 2nd, 5th and 6th test cases mentioned by Williamson (1992). 

2 Introduction of TRiSK 10 

The shallow water equation set may be written in a vector-invariantflux format as follows: 

𝜕𝒖

𝜕𝑡
− 𝜉𝑎𝒌 × 𝒖 + ∇𝐸 = 0 ,           (1) 

𝜕𝜙

𝜕𝑡
+ ∇ ∙ (𝜙𝒖) = 0 ,           (2) 

where, 𝜉𝑎 = 𝜉 + 𝑓 denotes the absolute vorticity; 𝜉 = ∇ × 𝒖 represents the relative vorticity; 𝑓 = 2𝛺 𝑠𝑖𝑛 𝜃 is the Coriolis 

parameter; 𝐸 = 𝐾 + 𝑔(ℎ + ℎ𝑠) = 𝐾 + 𝜙 + 𝜙𝑠, 𝜙 = 𝑔ℎ is the geopotential depth of the fluid; 𝜙𝑠 = 𝑔ℎ𝑠 is the geopotential 15 

height of the underlying surface; 𝜙𝑡 = 𝜙 + 𝜙𝑠 is the free surface (top) of the fluid; 𝐾 =
|𝒖|2

2
 is the kinetic energy; 𝒖 is the 

velocity vector; ℎ and ℎ𝑠 are the fluid thickness and surface height, respectively; 𝜃 represents the latitude; and 𝑔 and Ω are 

acceleration of gravity and angular velocity of the earth.  

In Ringler et al. (2010), the total energy is defined as 

𝜖𝑅10 = ℎ𝐾 + 𝑔ℎ (
1

2
ℎ + ℎ𝑠)  20 

To simplify the derivation in the following context, we define the total energy as 

∯ 𝜖 𝑑𝑠
𝛺

= ∯ 𝑔𝜖𝑅10 𝑑𝑠𝛺
= ∯ 𝜙𝐾 +

1

2
𝜙2 + 𝜙𝜙𝑠 𝑑𝑠𝛺

= ‖𝜙𝐾‖ + ‖
1

2
𝜙2‖ + ‖𝜙𝜙𝑠‖𝜖 = 𝑔𝜖𝑅10 = 𝜙𝐾 +

1

2
𝜙2 + 𝜙𝜙𝑠 =

‖𝜙𝐾‖ + ‖
1

2
𝜙2‖ + ‖𝜙𝜙𝑠‖ ,      (3) 

where ‖∙‖ = √(∙,∙) denotes the 2-norm. The inner product (∙,∙) is defined as 

(𝑋, 𝑌) = ∯ 𝑋 ∙ 𝑌 𝑑𝑠
𝛺

  25 

where Ω is the entire spherical surface. 
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Figure 1. Definition of elements in a discrete system. Blue arrows represent the indicator function 𝒏𝒆,𝒊 and red arrows are the indicator 

function 𝒕𝒆,𝒗. The uniform grid is here for clearly introducing SCVT meshes, the situation on non-uniform grid is similar. 

Per the description provided in Ringler et al. (2010), velocity points are on the edges of each cell, the mass and kinetic energy 

points are in the center of the each cell and vorticity points are on the vertices of the each cell. The shallow water equation set 5 

may be expressed as a semi-discrete form: 

𝜕𝑢𝑒

𝜕𝑡
− 𝑄𝑒

⊥ + [𝛻𝐸]𝑒 = 0 ,            (4) 

𝜕𝜙𝑖

𝜕𝑡
+ [𝛻 ∙ (𝜙𝑢)]𝑖 = 0 ,            (5) 

where 𝑢𝑒 , 𝑣, 𝜙𝑖 are the normal velocity and tangent velocitygeopotential height. The subscript 𝑒 signifies that the variable is 

defined on edge 𝑒; the subscript 𝑖 signifies that the variable is defined at the center of 𝑖tha cell. 𝑄𝑒
⊥ is the absolute vorticity 10 

flux on the tangent direction ⊥ of the edge 𝑒, which is computed according to Eq. (49) in Ringler et al. (2010). 

 [𝛻𝐸]𝑒 =
1

𝑑𝑒
∑ −𝑛𝑒,𝑖𝐸𝑖𝑖∈𝐶𝐸(𝑒)   
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[𝛻 ∙ (𝜙𝑢)]𝑖 =
1

𝐴𝑖
∑ 𝑛𝑒,𝑖𝑙𝑒𝜙𝑒𝑢𝑒𝑒∈𝐸𝐶(𝑖)   

where 𝑛𝑒,𝑖 is an indicator function, defined as 𝑛𝑒,𝑖 = 1 when 𝑛𝑒 is an outward normal vector of cell 𝑖, and 𝑛𝑒,𝑖 = −1 when 𝑛𝑒 

is an inward normal vector of cell 𝑖; 𝑙𝑒 is the length of edge 𝑒; 𝑖 ∈ 𝐶𝐸(𝑒) denotes the two cells that share edge 𝑒; and 𝑒 ∈

𝐸𝐶(𝑖) is the set of edges that define the boundary of cell 𝑖. The potential vorticity on edge 𝑞𝑒 may be computed by the midpoint 

method (Ringler et al. (2010), Eq. (50)) or the linear interpolation method (Weller, 2012, Eq. (5)). The details are presented in 5 

Figure 1. 

3 Extending the square conservation to TRiSK 

As mentioned in section 1, to obtain the complete square conservation property, the spatial discrete operator must be anti-

symmetrical, and the temporal integration scheme is square conservative. Therefore, in this section, the method of extending 

the square conservation to TRiSK is introduced in three parts. Subsection 3.1 reviews the concept of square conservation, 10 

demonstrating the equivalent relationship between the square conservation and energy conservation. Subsection 3.2 constructs 

the anti-symmetrical spatial discrete operator. Subsection 3.3 introduces the square conservative temporal integration scheme 

by reviewing a new type class of Runge-Kutta (CRKNRK), which was developed by Wang et al. (1996). 

3.1 Relationship between Square Conservation and Energy Conservation 

First, we review the concept of anti-symmetrical operators and square conservation according to the study of Wang et al. 15 

(1996), considering the nonlinear evolution equation in operator form: 

𝜕𝑭

𝜕𝑡
+ ℒ(𝑭) = 0 ,             (6) 

Definition. Suppose H is a complete inner product space on R and ℒ is an 𝐻 → 𝐻 operator; if ℒ satisfies the following inner 

product equation 

(ℒ(𝑭), 𝑭) = 0 ,             (7) 20 

then ℒ is termed an anti-symmetrical operator. 

The result of multiplying 𝐹 on both sides of (6) and integrating globally is the square conservation property: 

𝑑

𝑑𝑡
‖𝑭‖2 = 0 ,             (8) 

Next, we begin determine the relationship between energy conservation and square conservation. In the TRiSK framework, 

the evolution variables are 𝒖 and 𝜙. 25 
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The unified unit of evolution variables is the prerequisite of constructing the square conservation system. The evolution 

variables are unified by IAP transformation (Zeng and Zhang, 1987; Wang et. al, 2004), and the original evolution variable 𝒖 

is replaced by the new evolution variable 𝑼 = √𝜙𝒖, after completing IAP transformation. 

𝑭 = (
𝑼
𝜙
) = (

√𝜙𝒖

𝜙
) ,            (9) 

The physical significance of √𝜙 is the phase speed of the external-gravity wave, and the shallow water equation set may be 5 

rewritten as a vector format: 

𝜕𝑭

𝜕𝑡
+ ℒ(𝑭) =

𝜕

𝜕𝑡
(
𝑼
𝜙
) + ℒ (

𝑼
𝜙
) = 0 ,           (10) 

As defined in section 2, 𝜙𝑡 = 𝜙 + 𝜙𝑠 

𝜕𝜙𝑡

𝜕𝑡
=

𝜕𝜙

𝜕𝑡
+

𝜕𝜙𝑠

𝜕𝑡
  

The surface height is determined to be independent of time, 10 

𝜕𝜙𝑠

𝜕𝑡
= 0  

Therefore, 

𝜕𝜙𝑡

𝜕𝑡
=

𝜕𝜙

𝜕𝑡
 ,             (11) 

Defining 𝑭𝑡 = (
𝑼
𝜙𝑡
), according to (9) and (11), we have 

𝜕𝑭𝑡

𝜕𝑡
=

𝜕𝑭

𝜕𝑡
 ,             (12) 15 

Multiplying (12) by 𝑭𝑡 on both sides, and integrating globally 

𝑑

𝑑𝑡
‖
1

2
𝑭𝑡
2‖ = (𝑭𝑡 ,

𝜕𝑭

𝜕𝑡
)  

= ∯ 𝑼 
𝜕𝑼

𝜕𝑡
+ (𝜙 + 𝜙𝑠)

𝜕𝜙

𝜕𝑡
𝑑𝑠

𝛺
  

= ∯  
𝜕

𝜕𝑡
(
1

2
|𝑼|𝟐) +

𝜕

𝜕𝑡
(
1

2
𝜙2 + 𝜙𝜙𝑠) 𝑑𝑠𝛺

  

=
𝑑

𝑑𝑡
(‖𝜙𝐾‖ + ‖

1

2
𝜙2‖ + ‖𝜙𝜙𝑠‖)  20 

=
𝑑𝜖

𝑑𝑡
= 0  

Accordingly, square conservation is equivalent to energy conservation in a continuous system. 
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3.2 Constructing the anti-symmetrical spatial discrete operator 

In this subsection, we construct the anti-symmetrical spatial discrete operator by a specific combination of original operators 

in TRiSK. Firstly, we need to demonstrate the equivalent relationship between square conservative spatial discrete operator 

and energy conservative spatial discrete operator in continuous system, then prove that this relationship is also apply to discrete 

system. 5 

Assuming a continuous-in-time system, the evolution equation of 𝑼 is able to be expressed as 

𝜕𝑼

𝜕𝑡
= √𝜙

𝜕𝒖

𝜕𝑡
+

𝒖

2√𝜙

𝜕𝜙

𝜕𝑡
 ,           (13) 

This formula is key to connecting square conservation and energy conservation; it is difficult to directly construct the anti-

symmetrical operator on quasi-uniform grids. 

Theorem. The operators functions ℳ =ℳ(𝜙, 𝑢) and 𝒩 = 𝒩(𝜙, 𝑢) satisfy 10 

{

𝜕𝒖

𝜕𝑡
+ℳ𝑢 = 0

𝜕𝜙

𝜕𝑡
+𝒩𝜙 = 0

 ,             (14) 

and 

(ℳ𝑢, 𝜙𝑢) + (𝒩𝜙, 𝐸) = 0  

After IAP transformation (9), the evolution equation of 𝑼 may be expressed as (13), and (14) may be rewritten as (10). 

If the operator ℒ satisfies (10), then ℒ is an anti-symmetrical operator. 15 

Proof. 

𝜕𝑼

𝜕𝑡
= √𝜙

𝜕𝒖

𝜕𝑡
+

𝒖

2√𝜙

𝜕𝜙

𝜕𝑡
= −√𝜙ℳ𝑢 −

𝒖

2√𝜙
𝒩𝜙  

(ℒ(𝑭), 𝑭) = −(
𝜕𝑼

𝜕𝑡
, 𝑼) + −(

𝜕𝜙

𝜕𝑡
, 𝜙)  

= ∯ −𝑼
𝜕𝑼

𝜕𝑡
− +𝜙

𝜕𝜙

𝜕𝑡
 𝑑𝑠

Ω
  

 = ∯ −𝑼(−√𝜙ℳ𝑢 −
𝒖

2√𝜙
𝒩𝜙) − +𝜙𝒩𝜙 𝑑𝑠

Ω
  20 

= ∯ −𝜙𝑢 ∙ ℳ𝑢 + −
|𝒖|2

2
𝒩𝜙 +−𝜙𝒩𝜙 𝑑𝑠

Ω
  

= −(ℳ𝑢,𝜙𝑢) + −(𝒩𝜙, 𝐸)  

= 0   

This theorem is proved in a continuous system, but the model is built in a discrete system; therefore, it is necessary to discuss 

the situation in a discrete system. 25 

Following Ringler et al. (2010), we set the discrete operators functions 𝑀 = 𝑀(𝜙, 𝑢) and 𝑁 = 𝑁(𝜙, 𝑢) as: 

𝑀𝑢 = [𝛻𝐸]𝑒 − 𝑄𝑒
⊥  
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𝑁𝜙 = [𝛻 ∙ (𝜙𝑢)]𝑖   

And the semi-discrete shallow water equation set becomes 

𝜕𝑢

𝜕𝑡
+𝑀𝑢 = 0 ,            (15) 

𝜕𝜙

𝜕𝑡
+ 𝑁𝜙 = 0 ,            (16) 

Because the semi-spatial discrete operator of TRiSK has an instantaneous energy conservation property, it is easy to prove 5 

(𝑀𝑢, 𝜙𝑢) + (𝑁𝜙, 𝐸) = 0. (Details in Ringler et al. (2010), section 3.7.2) 

There are cells, edges and vertices presented as three types of points on a spherical centroidal Voronoi tessellation (SCVT) 

grid, which is the mesh used by TRiSK. We define the inner product for different types of points as: 

(𝑋, 𝑌)𝑖 = ∑ 𝑋𝑖 ∙ 𝑌𝑖 ∙ 𝐴𝑖
𝑛𝐶𝑒𝑙𝑙𝑠
𝑖=1   

(𝑋, 𝑌)𝑒 = ∑ 𝑋𝑒 ∙ 𝑌𝑒 ∙ 𝐴𝑒
𝑛𝐸𝑑𝑔𝑒𝑠
𝑒=1   10 

where 𝑋𝑖 , 𝑌𝑖 are the variables in the cell; 𝑋𝑒 , 𝑌𝑒 denote any variables on the edge; 𝐴𝑖 , 𝐴𝑒 are the areas for each cell and edge; 

𝐴𝑒 = 𝑑𝑒 × 𝑙𝑒, 𝑑𝑒 is the distance between the two cells’ centers on edge 𝑒; 𝑙𝑒 is the length of edge 𝑒; 𝑛𝐶𝑒𝑙𝑙𝑠 denotes the total 

cell number; and 𝑛𝐸𝑑𝑔𝑒𝑠 is the total edge number. 

(𝑀𝑢, 𝜙(𝜙)̂𝑒𝑢)𝑒 +
(𝑁𝜙, 𝐸)𝑖 = 0 ,          

 (17) 15 

Combining (10) and (13), and rewriting into a discrete system 

𝜕𝑭

𝜕𝑡
+ 𝐿(𝑭) =

𝜕

𝜕𝑡
(
𝑈𝑒
𝜙𝑖
) + 𝐿 (

𝑈𝑒
𝜙𝑖
) = 0 ,         

 (18) 

where 𝑈𝑒 = √𝜙𝑒𝑢𝑒, √𝜙𝑒 is the phase speed of external-gravity wave on edge 𝑒. Note we need to interpolate 𝜙𝑖 from cell 

center 𝑖 to edge 𝑒, here we set 𝜙𝑒 =
1

2
∑ 𝜙𝑖𝑖∈𝐶𝐸(𝑒) . 20 

𝜕𝑈𝑒

𝜕𝑡
= √𝜙𝑒

𝜕𝑢𝑒

𝜕𝑡
+

𝑢𝑒

2√𝜙𝑒

𝜕𝜙𝑒

𝜕𝑡
= −√𝜙𝑒𝑀𝑢 −

𝑢𝑒

2√𝜙𝑒
𝑁𝜙 ,         (19) 

As shown in the Appendix A, we have the discrete anti-symmetrical operator 𝐿 

(𝐿(𝑭), 𝑭)𝑑 = −(𝑈,
𝜕𝑈

𝜕𝑡
)
𝑒
− +(𝜙,

𝜕𝜙

𝜕𝑡
)
𝑖
= 0 ,          (20) 

The subscript 𝑑 represents that the inner product is computed in a discrete system. 

Thus, the discrete evolution equation set becomes 25 

𝜕𝑈𝑒

𝜕𝑡
+ √𝜙𝑒𝑀𝑢 +

𝑢𝑒

2√𝜙𝑒
𝑁𝜙 = 0 ,          (21) 
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𝜕𝜙𝑖

𝜕𝑡
+ 𝑁𝜙 = 0 ,            (22) 

The model will be instantaneous square conservative by incorporating (21) and (22) as the evolution equation set. 

3.3 Constructing the temporal integration scheme with the square conservation property 

The model is integrated in a discrete-in-time system, for the sake of guaranteeing complete square conservation, a square 

conservative temporal integration scheme is necessary. As CRKNRK has the advantage of maintaining complete square 5 

conservation with a high order of integral precision, the 4th-order CRKNRK scheme in TRiSK is adopted to obtain high integral 

precision and a long-time step. To completely introduce the square conservative temporal integration scheme, we review some  

of the details in Wang et al. (1996). 

The 4th-order CRKNRK may be expressed as 

𝐹𝑛+1 = 𝐹𝑛 + 𝜏𝑛𝜑(𝐹
𝑛 , 𝜏) ,            (23) 10 

where 𝜏𝑛 is an adjustable time step and 𝜏 is the integral time step of the model. 

𝜑(𝐹𝑛, 𝜏) = 𝜏
𝑅1+2𝑅2+2𝑅3+𝑅4

6
  

{
 
 

 
 

𝑅1 = −𝐿𝐹
𝑛

𝑅2 = −𝐿 (𝐹
𝑛 +

1

2
𝜏𝑅1)

𝑅3 = −𝐿 (𝐹
𝑛 +

1

2
𝜏𝑅2)

𝑅4 = −𝐿(𝐹𝑛 + 𝜏𝑅3)

   

Taking square operators on both sides of (23), delineating 𝜑𝑛 = 𝜑(𝐹𝑛 , 𝜏) 

‖𝐹𝑛+1‖2 = ‖𝐹𝑛‖2 + 2𝜏𝑛(𝜑
𝑛, 𝐹𝑛) + 𝜏𝑛

2‖𝜑𝑛‖2 ,         (24) 15 

We notice that although the spatial discrete operator 𝐿 is anti-symmetrical, the total energy at the 𝑛 + 1 time point remains 

different from that at the 𝑛 time point. Energy is able to be completely conserved by satisfying the following equation: 

‖𝐹𝑛+1‖2 = ‖𝐹𝑛‖2  

Therefore, 

2𝜏𝑛(𝜑
𝑛 , 𝐹𝑛) + 𝜏𝑛

2‖𝜑𝑛‖2 = 0  20 

𝜏𝑛 = −
2(𝜑𝑛,𝐹𝑛)

‖𝜑𝑛‖2
  

Considering the fitness when 𝜏 → 0, as described in Eqs. (17)–(18) in Wang et al. (1996) 

𝜏𝑛 =
𝜏

3‖𝜑𝑛‖2
[(𝑅1, 𝑅2) + (𝑅2, 𝑅3) + (𝑅3, 𝑅4)] ,         (25) 

Once adopting the CRKNRK scheme as the temporal integration scheme, the model will be completely square conservative, 

which implies the total energy will be completely conserved from the beginning to the end of the integration. The CRKNRK 25 

scheme is expected to perform better than RK in a numerical test. Moreover, CRKNRK decays to RK by setting 𝜏𝑛 = 𝜏. 



23 

 

While the integral time step is modified from 𝜏 to 𝜏𝑛, the precision order of CRKNRK is the same as RK, when constructing 

CRKNRK based on the 𝑛th order RK, CRKNRK has 𝑛th order precision either, a conclusion proven by Theorem 1 in Wang 

et al. (1996). 

4 Mass and Absolute Vorticity Conservation 

In the CSCS introduced above, although the integral time step is modified from 𝜏 to 𝜏𝑛, the total mass and total absolute 5 

vorticity are nevertheless conserved. In the following demonstrations, we notice that the mass conservation property and 

absolute vorticity conservation property are independent of temporal integration. 

4.1 Mass Conservation 

Considering the total mass, multiplying (5) by 𝐴𝑖 and summing all cells, 

∑ 𝐴𝑖
𝜕𝜙𝑖

𝜕𝑡

𝑛𝐶𝑒𝑙𝑙𝑠
𝑖=1 = −∑ 𝐴𝑖[∇ ∙ (𝜙𝑢)]𝑖

𝑛𝐶𝑒𝑙𝑙𝑠
𝑖=1 = −∑ ∑ 𝑛𝑒,𝑖𝑙𝑒𝜙𝑒𝑢𝑒𝑒∈𝐸𝐶(𝑖)

𝑛𝐶𝑒𝑙𝑙𝑠
𝑖=1 = −∑ ∑ 𝑛𝑒,𝑖𝑙𝑒𝜙𝑒𝑢𝑒𝑖∈𝐶𝐸(𝑒)

𝑛𝐸𝑑𝑔𝑒𝑠
𝑒=1 =10 

−∑ 𝑙𝑒𝜙𝑒𝑢𝑒 − 𝑙𝑒𝜙𝑒𝑢𝑒 = 0
𝑛𝐸𝑑𝑔𝑒𝑠
𝑒=1   

Notice that the mass conservation property is independent of temporal integration. 

4.2 Absolute Vorticity Conservation 

According to Ringler et al. (2010) formula (23), the relative vorticity is calculated according to the following diagnostic 

equation: 15 

𝜉 =
1

𝐴𝑣
∑ 𝑡𝑒,𝑣𝑢𝑒𝑑𝑒𝑒∈𝐸𝑉(𝑣)   

Multiplying by 𝐴𝑣 and summing all of the vertices yields 

∑ 𝐴𝑣𝜉
𝑛𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠
𝑣=1 = ∑ ∑ 𝑡𝑒,𝑣𝑢𝑒𝑑𝑒𝑒∈𝐸𝑉(𝑣)

𝑛𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠
𝑣=1 = ∑ ∑ 𝑡𝑒,𝑣𝑢𝑒𝑑𝑒𝑣∈𝑉𝐸(𝑒)

𝑛𝐸𝑑𝑔𝑒𝑠
𝑒=1 = ∑ 𝑢𝑒𝑑𝑒 − 𝑢𝑒𝑑𝑒

𝑛𝐸𝑑𝑔𝑒𝑠
𝑒=1 = 0  

where 𝑒 ∈ 𝐸𝑉(𝑣) represents the set of edges that share the vertex 𝑣; 𝑣 ∈ 𝑉𝐸(𝑒) are the two vertices on edge 𝑒. The indicator 

function 𝑡𝑒,𝑣 always points to the left side of 𝑛𝑒,𝑖. If 𝒌 × 𝑛𝑒,𝑖  is directed toward vertex 𝑣, then 𝑡𝑒,𝑣 = 1; otherwise, 𝑡𝑒,𝑣 = −1. 20 

𝒌 is the unit vector, which points in the local vertical direction. See Figure 1 for details. The total relative vorticity is shown 

to always be zero and independent of time. 

Another method to compute the relative vorticity is to use the following prognostic equation, as described in Ringler et al. 

(2010) Eq. (33) 

𝜕𝜉

𝜕𝑡
+

1

𝐴𝑣
∑ −𝑡𝑒,𝑣𝑄𝑒

⊥
𝑒∈𝐸𝑉(𝑣) 𝑑𝑒 = 0  25 

Multiplying the above equation by 𝐴𝑣 and summing all the vertices yields 

∑ 𝐴𝑣
𝜕𝜉

𝜕𝑡

𝑛𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠
𝑣=1 = ∑ ∑ 𝑡𝑒,𝑣𝑄𝑒

⊥𝑑𝑒𝑒∈𝐸𝑉(𝑣)
𝑛𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠
𝑣=1 = ∑ ∑ 𝑡𝑒,𝑣𝑄𝑒

⊥𝑑𝑒𝑣∈𝑉𝐸(𝑒)
𝑛𝐸𝑑𝑔𝑒𝑠
𝑒=1 = ∑ 𝑄𝑒

⊥𝑑𝑒 − 𝑄𝑒
⊥𝑑𝑒

𝑛𝐸𝑑𝑔𝑒𝑠
𝑒=1 = 0  

Therefore, the relative vorticity is conserved during temporal integration. 
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Taking the partial derivative of the absolute vorticity with time yields 

𝜕𝜉𝑎

𝜕𝑡
=

𝜕𝜉

𝜕𝑡
+

𝜕𝑓

𝜕𝑡
  

The Coriolis parameter is independent of time, 
𝜕𝑓

𝜕𝑡
= 0; thus 

∑ 𝐴𝑣
𝜕𝜉𝑎

𝜕𝑡

𝑛𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠
𝑣=1 = 0  

5 Numerical Tests 5 

To test the square conservation schemes using TRiSK, a new TRiSK-based shallow water dynamic core is developed, which 

is named TRiSK-based Multiple-Conservation dynamical cORE (TMCORE). The spatial discrete operators are the same as 

those introduced by Ringler et al. (2010), the evolution variable 𝑢𝑒 is replaced by 𝑈𝑒, as we described above, and the temporal 

integration scheme is selected from RK or CRKNRK, both of which are in 4th-order precision. 

We expected that the square conservation scheme will work on arbitrarily structured C-grids with a different initial field and 10 

mesh of a different resolution. In this section, we test the new scheme by using standard shallow water test cases 2, 5 and 6 

(SWTC2, SWTC5, SWTC6) with two different meshes, as presented by Williamson (1992). The first mesh has 2562 Voronoi 

cells (x1.2562), with an approximate resolution of 480 km, and the second mesh contains 40962 Voronoi cells (x1.40962), 

with an approximate resolution of 120 km. The corresponding integral time steps to x1.2562 and x1.40962 are 900 s and 360 

s. Here, the midpoint scheme is selected as the method for interpolating the potential vorticity from vertices to edges for all 15 

tests. 

In all of the test cases, we expect the complete energy conservation scheme (NRK) is able to conserve total mass, total absolute 

vorticity and total energy in round-off error, meanwhile, it would be even better if NRK can bring us less simulation error. 

Note, total energy is not merely conserved in time truncation error anymore, we need the change ratio of total energy to be 

limited in at least 10−14 magnitude. 20 

5.1 Error measure methods 

Global invariants error measure: 

𝐼(𝑋𝑛) =
𝑆(𝑋𝑖

𝑛)−𝑆(𝑋𝑖
0)

𝑆(𝑋𝑖
𝑛0)

  

where 𝑋𝑖
𝑛 is the variable at the 𝑛th time point on the ith cell and 𝑋𝑖

0 is the variable at the initial time. The 𝐼 function is the 

change ratio of the invariants. 25 

The total mass error measure: 

𝑋𝑖
𝑛 = ℎ𝑖

𝑛  

𝑀𝑎𝑠𝑠 𝐶ℎ𝑎𝑛𝑔𝑒 𝑅𝑎𝑡𝑖𝑜 = 𝐼(ℎ𝑛)  

The total energy error measure: 
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𝑋𝑖
𝑛 = 𝜖𝑖

𝑛  

𝐸𝑛𝑒𝑟𝑔𝑦 𝐶ℎ𝑎𝑛𝑔𝑒 𝑅𝑎𝑡𝑖𝑜 = 𝐼(𝜖𝑛)  

Measuring the fluid thickness error by 𝐿2 and 𝐿∞ error norms is expressed as 

𝐿2 =
{𝑆[(𝑓𝑚(𝑖)−𝑓𝑅(𝑖))

2
]}

1
2

[𝑆(𝑓𝑅(𝑖)
2)]

1
2

  

𝐿∞ =
max|𝑓𝑚(𝑖)−𝑓𝑅(𝑖)|

max|𝑓𝑅(𝑖)|
  5 

where 𝑖 denotes the index of each cell; 𝑓𝑚(𝑖) and 𝑓𝑅(𝑖), respectively, are the model solution and reference solution at the ith 

cell on the mesh; and the 𝑆 function is the area-weighted accumulation of an arbitrary variable 𝑋. 

𝑆(𝑋) =
∑ 𝑋(𝑖)𝐴(𝑖)𝑁
𝑖=1

∑ 𝐴(𝑖)𝑁
𝑖=1

  

where 𝐴(𝑖) is the area of the 𝑖th cell. 

The reference solution should be an analytical solution or, when an analytical solution is not available, a high-resolution 10 

solution from the model with sufficient accuracy. 

In the following context, CRK4 NRK4 represents the CRKNRK with 4th-order precision and RK4 represents the original 

Runge-Kutta scheme with 4th-order precision. 

The differences of the error norms between CRK4NRK4 and RK4 schemes by using the different ratios of 𝐿2 (L2DR) and 𝐿∞ 

(LInfDR) is expressed as: 15 

𝐿2𝐷𝑅 =
𝐿2𝐶𝑅𝐾4−𝐿2𝑅𝐾4

𝐿2𝑅𝐾4
  

𝐿𝐼𝑛𝑓𝐷𝑅 =
𝐿∞𝐶𝑅𝐾4−𝐿∞𝑅𝐾4

𝐿∞𝑅𝐾4
  

where 𝐿2𝐶𝑅𝐾4 and 𝐿2𝑅𝐾4  are the 𝐿2 error norms of CRK4NRK4 and RK4, respectively, which is similar for 𝐿∞𝐶𝑅𝐾4 and 𝐿∞𝑅𝐾4
. 

CRK4NRK4 has better performance than RK4 when the different ratios are negative; otherwise, CRK4NRK4 has worse 

performance than RK4. 20 

5.2 Global Steady State Nonlinear Zonal Geostrophic Flow (SWTC2) 

For the Global Steady State Nonlinear Zonal Geostrophic Flow test case, the initial velocity field has the following form 

𝑢 = 𝑢0 cos 𝜃  

𝑣 = 0  

The geopotential height field is 25 

𝑔ℎ = 𝑔ℎ0 − (𝑎Ω𝑢0 +
𝑢0
2

2
) sin2 𝜃  
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Here, we set 𝛺 = 7.292 × 10−5 𝑠−1, 𝑔 = 9.80616𝑚 𝑠2⁄ , 𝑎 = 6.37122 × 106 𝑚, 𝑔ℎ0 = 2.94 × 104𝑚2 𝑠2⁄  and 𝑢0 =

2𝜋𝑎 (12 𝑑𝑎𝑦𝑠)⁄ , where ℎ is fluid thickness, 𝜃 denotes latitude. In this test case, the exact solution is the initial state, and any 

difference between the numerical solution and the initial state is the simulation error. 

In SWTC2, the true solution of 
𝜕𝑢

𝜕𝑡
,
𝜕𝑣

𝜕𝑡
,
𝜕𝜙

𝜕𝑡
 is always zero; therefore, this test case can only represent the precision of spatial 

discrete operators but not the precision of temporal integration. This simulation is integrated for 10 years, but the shape of 5 

geostrophic flow breaks after 7 years. Therefore, we choose the simulation results from the 1st to the 7th year to compare the 

error norms of CRK4NRK4 and RK4. 

 

Figure 2. Geopotential height error norms of SWTC2. (a) 𝐋𝟐 error norm; (b) 𝐋∞ error norm. The results of RK4 and CRK4NRK4 are 

represented by blue and red lines, respectively. The model mesh is x1.2562. 10 

 

(𝑎) (𝑏) 
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Figure 3. The variation of integral invariants as a function of time of SWTC2. (a) Total mass change ratio; (b) total absolute vorticity; (c) 

total energy change ratio; (d) total potential enstrophy change ratio. The results of RK4 are represented by blue lines; the results of 

CRK4NRK4 are represented by red lines. The model mesh is x1.2562. 

Figure 2 measures the 𝐿2 and 𝐿∞ error norms of geopotential height. In the first 4 years, the CRK4NRK4 and RK4 exhibit 5 

similar results, but in the last 3 years, the shape of geopotential flow tends to break. The error norms increase sharply after 6 

years, and the differences between CRK4NRK4 and RK4 become more evident. Both the 𝐿2  and 𝐿∞  error norms of 

CRK4NRK4 are evidently smaller than RK4, and the collapse of geopotential flow is delayed approximately 1 month when 

using CRK4NRK4. 

Figure 3 presents the variation of invariants as a function of time. The oscillations of total mass and total absolute vorticity are 10 

strictly conserved.The change ratio of total mass is limited in 10−15 magnitude, and total absolute vorticity is oscillating 

around 10−20  magnitude, which means these two invariants are strictly conserved. The total energy of RK4 decreased 

approximately 0.5% in the final year, but CRK4NRK4 maintains strict energy conservation (in 10−15 magnitude). Although 

the geopotential flow has been broken, CRK4NRK4 prevents an increasing rate of total potential enstrophy. 

 15 

(𝑎) (𝑏) 

(𝑐) (𝑑) 
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5.3 Zonal Flow Over an Isolated Mountain (SWTC5) 

SWTC5 is the 5th test case described by Williamson 1992; the wind and height fields are similar to SWTC2, but ℎ0 =

5960 𝑚, 𝑢0 = 20 𝑚/𝑠 and mountain height is determined according to the following equation: 

ℎ𝑠 = ℎ𝑠0 (1 −
𝑟

𝑅
)  

where ℎ𝑠0 = 2000 𝑚;  𝑅 =
𝜋

9
; 𝑟 = √𝑚𝑖𝑛[𝑅2, (𝜆 − 𝜆𝑐)

2 + (𝜃 − 𝜃𝑐)
2]; and 𝜆𝑐 and 𝜃𝑐 are the center longitude and latitude of 5 

the mountain, respectively. Here, we set 𝜆𝑐 =
3𝜋

2
 and 𝜃𝑐 =

𝜋

6
. As the analytical solution is not available, the reference solution 

is provided by a T511 idealized global spectral atmospheric model from GFDL, where 8 × 1012 𝑚4/𝑠 is selected as the 

coefficient for the ∇4 dissipation, and the test case is integrated for 50 days. 

 

Figure 4. Fluid thickness error norms of different SWTC5 ratios. (a) 𝐋𝟐 error norm difference ratio; (b) 𝐋∞ error norm difference ratio. 10 
The model mesh is x1.40962. 

(𝑎) (𝑏) 
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Figure 5. Integral invariants of SWTC5. (a) Total mass change ratio; (b) total absolute vorticity; (c) total energy change ratio; (d) total 

potential enstrophy change ratio. The results of RK4 and CRK4NRK4 are represented by blue and red lines, respectively. The model mesh 

is x1.40962. 

Figure 4 presents the different ratios of error norms. In the first 35 days, the 𝐿2  and 𝐿∞  error norms of CRK4NRK4 are 5 

considerably smaller than those of RK4. Compared with RK4, the 𝐿2 error norm of CRK4NRK4 decreases by approximately 

2.5% at the minimum point of L2DR, and the L∞ error norm also decreases by approximately 3% at the minimum point of 

LInfDR. The error norms increase very quickly after 35 days; therefore, the differences between error norm ratios for 

CRK4NRK4 and RK4 tend to be similar, along with time. 

Figure 5 presents the variation of the invariants as a function of time. The total mass and total absolute vorticity are completely 10 

conserved for both CRK4NRK4 and RK4. CRK4NRK4 is able to maintain strict energy conservation (in 10−15 magnitude) 

from the beginning to the end, but the total energy of RK4 is dissipative. The CSCS exhibits no influence on the total potential 

enstrophy. 

5.4 Rossby-Haurwitz Wave (SWTC6) 

The classical 4 zonal wavenumber Rossby-Haurwitz wave was selected as the third test case. The initial condition follows 15 

Williamson (1992). The initial state is the analytical solution of the nonlinear barotropic vorticity equation on the sphere but 

not the analytical solution of the shallow water equations. The reference field is provided by a T511 idealized global spectral 

(𝑎) (𝑏) 

(𝑐) (𝑑) 
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atmospheric model from GFDL. To limit the noise of the spectral model, we use 5 × 1012 m4/s as the coefficient for the ∇4 

dissipation. As presented by Williamson, 1992, the phase speed of the Rossby-Haurwitz wave is calculated as follows: 

𝑐 =
𝑅(𝑅+3)𝜔−2Ω

(𝑅+1)(𝑅+2)
  

where 𝑅 = 4 is the zonal wavenumber of the Rossby-Haurwitz wave; 𝜔 = 7.848 × 10−6𝑠−1; and Ω = 7.292 × 10−5 𝑠−1 is 

the rotation rate of the earth; therefore, the 4 zonal wavenumber period of the Rossby-Haurwitz wave is approximately 29.52 5 

days. We integrate the test case over one period (33 days). 

 

 

Figure 6. The fluid thickness error norms of different SWTC6 ratios. (a) L2  error norm difference ratio; (b) L∞  error norm 

difference ratio. The model mesh is x1.40962. 10 

 

(𝑎) (𝑏) 
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Figure 7. Integral invariants of SWTC6. (a) Total mass change ratio; (b) total absolute vorticity; (c) total energy change ratio; (d) 

total potential enstrophy change ratio. The results of RK4 and CRK4NRK4 are represented by blue and red lines, respectively. 

The model mesh is x1.40962. 

 5 

In both simulations of CRK4NRK4 and RK4, the Rossby-Haurwitz wave begins to distort at the 25th day and then collapse a 

few days later. 

Figure 6 presents the error norm difference ratios. CRK4NRK4 has a smaller 𝐿2 error norm than RK4 in the first 20 days. With 

growth of the 𝐿2 error norm, the difference between CRK4NRK4 and RK4 trends toward zero. At the 4th day, the 𝐿2 error 

norm of CRK4NRK4 is more than 0.11% less than that of RK4. CRK4NRK4 also has a smaller 𝐿∞ error norm a majority of 10 

the time. At the 6th day, the 𝐿∞ error norm of CRK4NRK4 is more than 0.08% less than that of RK4. 

Figure 7 presents the variation of invariants as a function of time. The total mass and total absolute vorticity are strictly 

conserved for both CRK4NRK4 and RK4. As expected, CRK4NRK4 maintains strict energy conservation (in 10−15 

magnitude), and RK4 cannot conserve the total energy during integration. With the Rossby-Haurwitz wave collapse, the total 

energy of RK4 rapidly dissipates after 25 days. There is no influence of CRK4NRK4 to potential enstrophy in this case. 15 

(𝑎) (𝑏) 

(𝑐) (𝑑) 
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The red lines and blue lines in Figure 3c, Figure 5, Figure 7c are exactly the results of two kinds of energy conservation scheme, 

the blue lines present the property of conserving energy in time truncation error, and the red lines show conserving energy in 

round-off error, it’s clear to see differences. As we mentioned above, conserving total energy in time truncation error leads to 

slightly energy dissipative, but the dissipate accumulates during integration, total energy may become zero after a long-term 

simulation, which is unreasonable for a pure dynamic core without any energy sink and source. On the other hand, complete 5 

energy conservation scheme maintains strictly energy conservation in entire integration period, even though it is not able to 

prevent the collapse of SWTC2, the collapse time is delayed, meanwhile, the simulation errors in SWTC5 and SWTC6 are 

reduced even if in a short-term simulation. 

6 Summary 

In this paper, we extend the CSCS to arbitrarily structured C-grids with shallow water equations, and we estimate the 10 

performance of the CSCS by using standard shallow water test cases.  

There are two prerequisites for constructing CSCS, the anti-symmetrical spatial discrete operator and the square conservative 

temporal integration scheme. It is difficult to directly construct an anti-symmetrical spatial discrete operator on quasi-uniform 

grids; therefore, we take advantage of the instantaneous energy conservation property of the spatial discrete operators, as 

described by Ringler et al. (2010), to obtain the anti-symmetrical operator. After the IAP transformation, the units of evolution 15 

variables are unified, and the evolution variable 𝑢𝑒 is replaced with 𝑈𝑒 = √𝜙𝑒𝑢𝑒. According to the derivative rule (19), the 

temporal trend of 𝑈𝑒 is expressed as a combination of the temporal trends of 𝑢𝑒 and 𝜙𝑖, and we demonstrate that the spatial 

discrete operator of 𝑈𝑒 is an anti-symmetrical operator. Then, we integrate the model with the square conservative temporal 

integration scheme CRK4NRK4, and the complete square conservation property is achieved. 

An important finding is the equivalency between the energy conservative operator and anti-symmetrical operator for both the 20 

continuous system and discrete system. In most of previous study, anti-symmetrical operators were constructed on uniform 

grids, especially longitude–latitude grids, and the equation’s advection term was in the advection-flux form. We extend the 

square conservation theory to a more general situation. The anti-symmetrical spatial discrete operator is constructed on quasi-

uniform grids, and the equation is in the vector-invariant form. 

The CSCS is able to maintain three integral invariants, including total mass, total absolute vorticity and total energy, in all the 25 

test cases, and the error norms decrease in varying degrees. The square conservation scheme improves the stability in SWTC2, 

and the error norms of CRK4NRK4 are evidently less than RK4 after 4 years of simulation. For RK4, the total energy dissipates 

very quickly after the geostrophic flow collapse, but CRK4NRK4 maintains complete energy conservation for the entire period, 

and the increasing rate of the total potential enstrophy is also limited by the square conservation scheme. In both SWTC5 and 

SWTC6, CRK4NRK4 not only maintains strict conservation for three integral invariants but also leads to less error norms than 30 

RK4. 
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Appendix A 

In this appendix, we attempt to demonstrate that the spatial discrete operator 𝐿 is energy conservative. Our objective is to prove 

that the following equation is able to be satisfied by 𝐿, 

(𝑈,
𝜕𝑈

𝜕𝑡
)
𝑒
= +(𝜙,

𝜕𝜙

𝜕𝑡
)
𝑖
= 0  

Consider the inner product on edge 5 

(𝑈,
𝜕𝑈

𝜕𝑡
)
𝑒
= ∑ 𝑈𝑒

𝜕𝑈𝑒

𝜕𝑡
𝐴𝑒

𝑛𝐸𝑑𝑔𝑒𝑠
𝑒=1   

Substituting (19) into above formula 

(𝑈,
𝜕𝑈

𝜕𝑡
)
𝑒
= ∑ 𝑈𝑒 (𝐶𝑒

∂𝑢𝑒

∂t
+

𝑢𝑒

2𝐶𝑒ℎ𝑒

∂𝜙𝑒

∂t
) 𝐴𝑒

𝑛𝐸𝑑𝑔𝑒𝑠
𝑒=1   

Where 𝐶𝑒 = √𝜙𝑒 is the phase speed of external-gravity wave on edges 𝑒.  

According to Eq. (52) in Ringler et al. (2010), 10 

(𝑈,
𝜕𝑈

𝜕𝑡
)
𝑒
= ∑ (𝜙𝑒𝑢𝑒

∂𝑢𝑒

∂t
+

𝑢𝑒
2

4
∑

∂𝜙𝑖

∂t𝑖∈𝐶𝐸(𝑒) ) 𝐴𝑒
𝑛𝐸𝑑𝑔𝑒𝑠
𝑒=1   

According to Eq. (63) and (A.8) in Ringler et al. (2010), 

(𝑈,
𝜕𝑈

𝜕𝑡
)
𝑒
= ∑ 𝜙𝑒𝑢𝑒

∂𝑢𝑒

∂t
𝐴𝑒

𝑛𝐸𝑑𝑔𝑒𝑠
𝑒=1 +∑ 𝐾𝑖

∂𝜙𝑖

∂t
𝐴𝑖

𝑛𝐶𝑒𝑙𝑙𝑠
𝑖=1   

Substituting (4) into above formula 

(𝑈,
𝜕𝑈

𝜕𝑡
)
𝑒
= ∑ 𝜙𝑒𝑢𝑒𝐴𝑒 (𝑄𝑒

⊥ +
1

𝑑𝑒
∑ 𝑛𝑒,𝑖𝐸𝑖𝑖∈𝐶𝐸(𝑒) )

𝑛𝐸𝑑𝑔𝑒𝑠
𝑒=1 + ∑ 𝐾𝑖

∂𝜙𝑖

∂t
𝐴𝑖

𝑛𝐶𝑒𝑙𝑙𝑠
𝑖=1   15 

According to section 3.7.2 in Ringler et al. (2010), 

∑ 𝜙𝑒𝑢𝑒𝐴𝑒𝑄𝑒
⊥𝑛𝐸𝑑𝑔𝑒𝑠

𝑒=1 = 0  

Since 𝐴𝑒 = 𝑙𝑒𝑑𝑒  

(𝑈,
𝜕𝑈

𝜕𝑡
)
𝑒
= ∑ 𝜙𝑒𝑢𝑒𝑙𝑒 ∑ 𝑛𝑒,𝑖𝐸𝑖𝑖∈𝐶𝐸(𝑒)

𝑛𝐸𝑑𝑔𝑒𝑠
𝑒=1 +∑ 𝐾𝑖

∂𝜙𝑖

∂t
𝐴𝑖

𝑛𝐶𝑒𝑙𝑙𝑠
𝑖=1   

where 𝐸𝑖 = 𝐾𝑖 + 𝜙𝑖.  20 

According to (A.4) in Ringler et al. (2010), 

(𝑈,
𝜕𝑈

𝜕𝑡
)
𝑒
= ∑ 𝐸𝑖

𝑛𝐶𝑒𝑙𝑙𝑠
𝑖=1 ∑ 𝑛𝑒,𝑖𝜙𝑒𝑢𝑒𝑙𝑒𝑒∈𝐸𝐶(𝑖) + ∑ 𝐾𝑖

∂𝜙𝑖

∂t
𝐴𝑖

𝑛𝐶𝑒𝑙𝑙𝑠
𝑖=1   

According to (5), 

−𝐴𝑖
𝜕𝜙𝑖

𝜕𝑡
= ∑ 𝑛𝑒,𝑖𝑙𝑒𝜙𝑒𝑢𝑒𝑒∈𝐸𝐶(𝑖)   

Therefore, 25 

(𝑈,
𝜕𝑈

𝜕𝑡
)
𝑒
= −∑ 𝐸𝑖

𝜕𝜙𝑖

𝜕𝑡
𝐴𝑖

𝑛𝐶𝑒𝑙𝑙𝑠
𝑖=1 + ∑ 𝐾𝑖

∂𝜙𝑖

∂t
𝐴𝑖

𝑛𝐶𝑒𝑙𝑙𝑠
𝑖=1   

Consider the inner product on cell 

(𝜙,
𝜕𝜙

𝜕𝑡
)
𝑖
= ∑ 𝜙𝑖

𝜕𝜙𝑖

𝜕𝑡
𝐴𝑖

𝑛𝐶𝑒𝑙𝑙𝑠
𝑖=1   
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Thus, 

(𝑈,
∂𝑈

∂t
)
𝑒
+ (𝜙,

∂𝜙

∂t
)
𝑖
= −∑ 𝐸𝑖

𝜕𝜙𝑖

𝜕𝑡
𝐴𝑖

𝑛𝐶𝑒𝑙𝑙𝑠
𝑖=1 +∑ 𝐾𝑖

∂𝜙𝑖

∂t
𝐴𝑖

𝑛𝐶𝑒𝑙𝑙𝑠
𝑖=1 + ∑ 𝜙𝑖

𝜕𝜙𝑖

𝜕𝑡
𝐴𝑖

𝑛𝐶𝑒𝑙𝑙𝑠
𝑖=1 = 0  

 

Code availability. Idealized Global Spectral Atmospheric Models (GFDL): https://www.gfdl.noaa.gov/idealized-spectral-

models-quickstart/ (last access: 3 May 2019). TMCORE is available at https://github.com/TMCORE-Project/TMCORE (last 5 

access: 3 May 2019). The digital object identifier for Idealized Global Spectral Atmospheric Models (GFDL) with standard 

shallow water test cases is http://doi.org/10.5281/zenodo.3249878. The digital object identifier for TMCORE v1.0 is 

http://doi.org/10.5281/zenodo.3241647. 
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