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Abstract. Arctic sea ice has declined rapidly over recent decades. Models predict that the Arctic will be nearly 8 

ice-free by mid-century, but the spread in predictions of sea ice extent is currently large. The reasons for this 9 

spread are poorly understood, partly due to a lack of observations with which the processes by which Arctic 10 

atmospheric and oceanic forcing affect sea ice state can be examined. In this study, a method of estimating fluxes 11 

of top melt, top conduction, basal conduction and ocean heat flux from Arctic ice mass balance buoy elevation 12 

and temperature data is presented. The derived fluxes are used to evaluate modelled fluxes from the coupled 13 

climate model HadGEM2-ES in two densely sampled regions of the Arctic, the North Pole and Beaufort Sea. The 14 

evaluation shows the model to overestimate the magnitude of summer top melting fluxes, and winter conductive 15 

fluxes, results which are physically consistent with an independent sea ice and surface energy evaluation of the 16 

same model. 17 

 18 

1. Introduction 19 

The climate of the Arctic Ocean region is characterised by the presence of a semi-permanent sea ice cover that 20 

acts to reflect solar energy in summer and insulate ocean heat in winter. Arctic sea ice has changed rapidly over 21 

the past 30 years, with a decline in extent of 0.84 x 106 km2 per decade observed during the month of September 22 

according to the HadISST1.2 dataset (Rayner et al., 2003), and evidence of concurrently declining ice volume 23 

(e.g. Rothrock et al., 2008, Lindsay and Schweiger, 2015). Model projections from CMIP5 suggest that the Arctic 24 

Ocean is likely to become nearly ice-free in September by mid-century (Massonnet et al, 2012), an event that 25 

would have serious implications for the climate (through decreased surface albedo and decreased insulation 26 

between the ocean and atmosphere) and for geopolitics. However, these model projections vary greatly in their 27 

simulation of the mean state of Arctic sea ice in the present day, as well as the speed of sea ice decline.  28 

Evaluation of model simulations using metrics based on sea ice extent (e.g. Stroeve et al, 2012; Wang and 29 

Overland, 2012) is known to be an imperfect method of assessing projections (Notz, 2015). This is partly because 30 

of the very high inter-annual variability of sea ice extent (Swart et al, 2015), but also because it does not address 31 

the accuracy of the many variables influencing sea ice extent, in which compensating errors may be present. A 32 

more fundamental measure of the sea ice state is the sea ice volume, evaluated in CMIP5 by Stroeve et al, 2014 33 

and Shu et al., 2015. However, there remain many variables influencing sea ice volume, and hence this metric is 34 

equally susceptible to the problem of compensating errors (although the effect of internal variability on sea ice 35 

https://doi.org/10.5194/gmd-2019-113
Preprint. Discussion started: 19 August 2019
c© Author(s) 2019. CC BY 4.0 License.



2 

 

volume is now quite well-understood, e.g. Olonscheck and Notz, 2018). Clearly, a logical next step would be to 1 

evaluate the primary driver of sea ice volume, i.e. sea ice mass balance. However, although detailed studies of 2 

processes driving Arctic sea ice volume have been undertaken (e.g. Lei et al, 2018), in general these are on too 3 

small a scale to directly evaluate model processes.  4 

Many of the processes driving sea ice volume are, to first-order, well understood; sea ice volume is the area 5 

integral of sea ice thickness, which is driven by the surface and basal mass budget, and hence energy budget. The 6 

surface energy budget is driven partly by variables external to the sea ice, such as fluxes of downwelling shortwave 7 

(SW) and longwave (LW) radiation, and air temperature. However it is also influenced by properties of the sea 8 

ice state, such as surface temperature, albedo and the top conductive flux. Similarly, the basal energy budget is 9 

driven partly by one particular external variable (the ocean heat flux), but also by a property of the sea ice (the 10 

basal conductive flux). In turn, these properties of the ice surface and base are determined in the main by ice 11 

thermodynamics, which is strongly influenced by ice thickness; the surface albedo is also affected by the ice 12 

thickness directly. This closed causal chain (Figure 1) gives rise to the thickness-growth feedback, whereby 13 

thinner ice grows more quickly in winter, and the surface albedo feedback, whereby thinner ice melts more quickly 14 

in summer.  15 

Sea ice state is determined by the response of the feedback loops to the external variables (downwelling radiation, 16 

air temperature, ocean heat flux), which are in turn influenced by the sea ice state over longer timescales. It is 17 

difficult to evaluate the simulation of these processes in coupled models due to a lack of large-scale observational 18 

datasets. CMIP5 surface radiative fluxes were evaluated by Boeke and Taylor (2018), but the evaluation was 19 

unable to separate out flux variability directly caused by sea ice variability. West et al (2019, in discussion) 20 

proposed a framework by which external drivers of sea ice mass balance could be separated from feedbacks of 21 

the sea ice state given available observations, but the applicability of this framework is limited by observational 22 

uncertainty. Hence there remain significant shortcomings in ability to evaluate modelled sea ice processes. In this 23 

study, a method is presented of evaluating sea ice mass balance, and sea ice thermodynamics, using data from 24 

Arctic ice mass balance buoys, devices that measure ice surface and base elevation and internal ice temperatures.  25 

An observational dataset of sea ice vertical energy fluxes is created by estimating monthly mean fluxes of top 26 

melt, top conduction, basal conduction and ocean heat flux for the entire IMB network. The extent to which this 27 

dataset is representative of wider regions is investigated by comparing the ice thickness distribution sampled by 28 

the buoys to that measured by submarine sonar. Evaluation of the coupled model HadGEM2-ES (part of the 29 

CMIP5 ensemble), is then carried out using this dataset. This is done by restricting model data to the densely 30 

sampled regions of the North Pole and Beaufort Sea, transforming modelled fluxes to be over ice only, and 31 

comparing the distribution of model fluxes obtained for each region and month to that measured from the IMB 32 

network. By combining this evaluation with a previous evaluation of the sea ice state and surface radiation in the 33 

same model (West et al., 2019, in discussion), a detailed picture of the sea ice simulation emerges, with drivers of 34 

model biases easily identifiable. 35 

The study is structured as follows. In section 2, the IMB data, and the process by which vertical energy fluxes are 36 

calculated from the data, are described. In section 3, the resulting dataset is presented, and seasonal and spatial 37 
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variability is discussed. In section 4, the data is used to evaluate HadGEM2-ES, and the results are interpreted in 1 

the context of West et al (2019). In section 5, the representiveness of the IMB fluxes is discussed. In section 6, 2 

conclusions are presented. 3 

 4 

2. Calculating monthly-mean energy fluxes from the IMBs 5 

 6 

The ice mass balance buoy (IMB; Perovich and Richter-Menge, 2006) is a system of instruments frozen into a sea 7 

ice floe, allowing the simultaneous measurement of surface and base elevation, internal ice temperature (usually 8 

at 10cm resolution), and position; many also measure surface air pressure and temperature. An IMB provides, by 9 

design, measurements of sea ice thickness, and of surface and basal mass balance, via the measurements of surface 10 

and base elevation. Fluxes of conduction can also be estimated from the ice temperature data (e.g. Perovich and 11 

Elder, 2002), although uncertainty is considerable due to lack of knowledge of ice salinity. In particular, the 12 

thermodynamics and basal elevation measurements can be combined to estimate ocean heat flux (Lei et al., 2014).  13 

Data from the 104 IMBs deployed by the Cold Regions Research and Engineering Laboratory (CRREL) are stored 14 

in a series of comma-delimited CSV files at http://imb.erdc.dren.mil/buoysum.htm. The buoys were deployed 15 

between 1993-2017; spatial coverage is mainly in the North Pole and Beaufort Sea regions (Figure 2). The buoys 16 

are identified by the year of deployment followed by a letter, for example ‘2012L’. All buoys report time series 17 

of ice base elevation, snow/ice surface elevation, latitude, longitude, as well as a collection of ice temperature 18 

time series taken at a number of vertical positions above, within and below the ice. In general, temperature profiles 19 

are reported at very high temporal resolution, hourly or bi-hourly, and tend to be noisy, with much high-frequency 20 

variability. From 2006 onwards, elevation data are reported at similarly high resolution, but before 2006 are 21 

reported much less frequently, with intervals of a week or more between measurements. 22 

As most analysis of the data depends on the ability to perform arithmetic operations on different series, it was 23 

necessary to produce data series at consistent points in time for each buoy. To this end, modified elevation data 24 

series were produced at times coincident with the temperature measurements, using either interpolation (where 25 

there were fewer than 3 measurements in the 2-day period centred on the time in question) or a binomially-26 

weighted mean (where there were 3 or more measurements in this period). This regularisation process is illustrated 27 

in Figure 3. 28 

The set of elevation measurements provided also varies between buoys. The earlier buoys tend to produce data of 29 

surface and base elevation only. From these, it is usually possible to deduce snow-ice interface elevation, as by 30 

design the snow-ice interface is always at position z=0 at the time of deployment. The process is illustrated in 31 

Figure 4: iterating through the times of observation ntt ,...,1 , the interface elevation ( ) mtz 01int = by 32 

construction. At time it , if ( ) ( )isfci tztz ≤−1int , we set ( ) ( )1intint −= ii tztz ; but if ( ) ( )isfci tztz >−1int  we set 33 

( ) ( )isfci tztz =int . In this way, the interface elevation changes only when top melting of ice is detected, i.e. when 34 

the surface elevation is judged to fall below the interface elevation estimated for the previous time of observation. 35 
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This method would fail in the presence of ice flooding and snow-ice formation (e.g. as documented by Provost et 1 

al, 2017), but there are no clear signs of such events taking place in any of the IMB records examined in this study. 2 

In addition some later buoys do not report surface elevation directly, but report snow-ice interface elevation and 3 

snow depth, which must be summed to obtain the surface elevation. Hence full regular time series of surface 4 

elevation, snow thickness, interface elevation, ice thickness and base elevation can be obtained for most buoys. 5 

Processing the temperature data is also necessary. Instances of temperature data that are obviously wrong occur 6 

very frequently, usually characterised by sudden step changes in the temperature measurements at single, or 7 

multiple layers, that are inconsistent with simultaneous measurements in other layers, often to physically 8 

unrealistic values. In most cases, wrong values occurred in large groups that were difficult to identify with 9 

automatic data processing, and therefore had to be identified by inspection and removed. 10 

For the early buoys, the depths at which temperature measurements are taken are clearly labelled, tending to begin 11 

at 60cm or 70cm above the surface, occurring at resolutions of 5cm above the surface and 10cm below. For later 12 

buoys, however, the measurement depths are not labelled. It was inferred that for all such buoys, the measurements 13 

began at 60cm above the ice surface, descending at a resolution of 10cm. A curious effect occurs with the long-14 

lived buoy 2006C, in which the position of the thermistor string appears to materially change a year after 15 

deployment, as the elevation data becomes abruptly dislocated from the temperature contours normally associated 16 

with the presence of sea ice and snow. The change occurred soon after the buoy had reported an exceptionally 17 

high basal melting flux during the summer of 2007, as reported by Perovich et al (2008). In this case, the instance 18 

of the change was estimated, and all temperature data after this point translated downwards by 70cm. 19 

With the processed temperature and elevation data, monthly mean fluxes of top melt, top conduction, basal 20 

conduction and ocean heat flux were produced in the following way. 21 

Top melting of ice and/or snow. This flux, commonly reported by models, represents the total energy gain by sea 22 

ice (snow) in a grid cell over the course of a month associated with melting of ice (snow) at the upper surface. It 23 

is estimated from the IMBs using the surface elevation series. A change between two adjacent daily data points 24 

in surface elevation is judged due to top melting if and only if the change is negative. The energy gain associated 25 

with the melting is calculated using ice density of 917 kgm-2, snow density of 330kgm-2 and latent heat of melting 26 

of 3.34 x 105 Jkg-1, the standard values used by the sea ice model CICE (Hunke et al, 2013). The daily top melt 27 

estimates are then averaged to obtain monthly mean top melt. 28 

Top conductive flux. This flux is defined as the conduction from the snow/ice surface into the ice interior. Its 29 

calculation from the IMB data is made difficult by large step changes in temperature gradient associated with the 30 

snow-ice interface, which is usually located within 50cm of the upper surface. To calculate top conductive flux, 31 

adjusted temperature profiles were calculated for each point in time, in which for each point z above the snow-ice 32 

interface, the adjusted temperature can be written as 33 

( ) int1 TTTadj µµ −+=  34 
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where intT is snow-ice interface temperature, and snowice kk=µ where icek  and snowk are ice and snow 1 

conductivity respectively; their calculation is described below. A linear fit was then taken through a layer 0-50cm 2 

below the snow surface, and multiplied by icek to produce estimates of instantaneous top conductive flux. These 3 

were then averaged to obtain monthly means. 4 

Basal conductive flux. This flux is defined as the conduction from the ice base into the ice interior. As it is a vital 5 

component of the energy balance at the ice base it has frequently been estimated from individual buoys in ocean 6 

heat flux calculations. Typically, temperature gradients at the ice base are small due to higher salinities here (e.g. 7 

Schwarzacher, 1959), with correspondingly higher heat capacities and lower conductivities; hence previous 8 

studies have commonly used a reference layer of a fixed thickness above which the basal conduction is estimated. 9 

In this study we use the approach of Lei et al. (2014), and calculate the basal conduction by taking temperature 10 

gradients across a layer 40cm-70cm above the ice base. As above, the instantaneous values were averaged to a 11 

monthly mean. 12 

Ocean heat flux. This flux is defined as the diffusive heat flux arriving at the ice base from the ocean beneath. In 13 

theory, it can be calculated as the residual of the basal conductive flux and the latent heat of melting/freezing at 14 

the ice base. However, using the basal conductive flux as defined above it is necessary also to take into account 15 

the sensible heat uptake of the intervening layer (the ‘buffer zone’), 0-40cm above the ice base, illustrated in 16 

Figure 5. The ocean heat flux can then be written as 17 

latsenscondbotocn FFFF −−=  18 

as in Lei et al (2014). 19 

The basal conductive flux condbotF  is defined as above. Monthly mean sensF , the sensible heat flux in the 0-40cm 20 

layer, is calculated as the average of daily heat uptake rates obtained by taking linear fits through all temperature 21 

points within 1 day of a given time instant for all vertical points in this layer, summing these (weighted according 22 

to layer thickness), and multiplying by ice density and heat capacity, defined below. Finally, monthly mean latent 23 

heat of melting at the ice base, latF , is calculated from the base elevation time series, by multiplying daily 24 

differences in elevation by specific latent heat of fusion. 25 

The calculation of thermodynamic parameters is now described. Ice conductivity is defined after Maykut and 26 

Untersteiner (1971) as 27 

T

S
kk freshice

β
+=  28 

where S and T are ice salinity and temperature respectively, 
11

03.2
−−= KWmk fresh , the conductivity of fresh 29 

ice, and 
113.0 −= Wmβ  is an empirically determined constant representing the effect of brine pockets on 30 
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conductivity. For the calculation of the top conductive flux, a practical salinity of 1.0 is used, while the temperature 1 

used is that of the snow-ice interface. For the calculation of the basal conductive flux, a practical salinity of 4.0 is 2 

used, multiplied by the mean value of T1 , where the average is taken over the time period in question and the 3 

layer 40-70cm above the ice base. 4 

Specific heat capacity is defined after Ono (1967) as 5 

 6 

 7 

where 
112106 −−= KJkgc fresh is the specific heat capacity of fresh ice, 

151034.3 −×= Jkgq fresh  the 8 

specific latent heat of fusion of fresh ice, and K054.0=µ the ratio between water salinity and freezing 9 

temperature. In calculating sensible heat uptake at the ice base, again a practical salinity of 4.0 is used, multiplied 10 

by the mean value of 
2

1 T , where the average is taken over the time period in question and the layer 0-40cm 11 

above the ice base. 12 

Ice salinity must also be taken into account when calculating latent heat of freezing and melting. The energy 13 

required to melt a given volume of sea ice at temperature T, from Bitz and Lipscomb (1999) is 14 

( ) ( ) 







++−=

T

S
qTTcTSq freshm

µ
ρρ 1, 0 .  15 

At the lower surface of the ice, q is calculated by setting CT °−= 8.1  and 0.4=S as above. At the upper 16 

surface of the ice, T is usually extremely close to 0°C when melting is taking place, meaning that a choice of S 17 

that is both consistent and physically realistic in all cases is difficult to make. Instead, it is assumed that the ice at 18 

the upper surface is fresh, and freshqq =  is used. 19 

The monthly heat fluxes calculated above are subject to two principal sources of uncertainty: measurement 20 

uncertainty, and uncertainty in the value of S. To estimate the former, we use elevation and temperature 21 

measurement uncertainties as described by Perovich and Elder (2002). To estimate the latter, we use an uncertainty 22 

of ±1.0 in calculating top conductive fluxes, and an uncertainty of ±4.0 in calculating basal conductive flux, and 23 

sensible and latent heat uptake at the ice base. The two uncertainties are added together and combined with the 24 

flux central estimates, as defined above, to produce a range of possible monthly mean fluxes for each data point. 25 

Examination of the monthly mean energy fluxes reveals several ways in which unrealistic estimates might be 26 

produced. In a small minority of cases, the temperature at the top (bottom) ice surface is inconsistent with the 27 

assumption of a salinity range of ±1 (±4), resulting in the observed temperature being above the assumed melting 28 

point, and the measured flux being unrealistically large, or in a few cases undefined. Clearly, a more 29 

2
T

Sq
cc

fresh

freshice

µ
+=
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comprehensive analysis would allow the selection of varying salinity ranges depending on the information 1 

available from each buoy. As this is outside the scope of this study, the fluxes affected by this problem were 2 

removed from the dataset. 3 

A second problem relates to the formation of false bottoms under sea ice, as documented by Notz (2003), in which 4 

meltwater refreezes upon meeting cold seawater at a temperature below its own melting point. This process visibly 5 

occurs during the period of operation of some buoys (for example 2015A, demonstrated in Figure 6), associated 6 

with sudden step changes in base elevation. These result in very large negative monthly mean ocean heat fluxes 7 

being calculated during the month of formation, and correspondingly large positive fluxes during the month of 8 

dissipation. These fluxes are physically unrealistic, as the large changes in elevation usually represent the freezing 9 

and melting of only a very thin layer of ice, with liquid seawater remaining in between this layer and the main 10 

body of the ice column. Hence it was necessary to inspect each buoy individually for possible false bottom 11 

formation, and remove all affected ocean heat fluxes from the dataset. 12 

Unrealistic positive values of top melting occur quite frequently during the winter months, due to decrease of 13 

surface elevation likely associated with wind drifting of snow, although these are usually an order of magnitude 14 

lower than those observed during the summer months. As a simple way of removing these fluxes, top melt fluxes 15 

for all months during which monthly mean surface temperature was measured at -5°C or lower were set to zero. 16 

It is noted that during the late spring, this could result in valid top melt fluxes being ignored in the case of rapid 17 

rises in temperature during the latter stages of a month. 18 

Unrealistically high negative values of basal conductive flux are also derived during months when the ice was 19 

quite thin, and the layer 40cm-70cm above the ice base was correspondingly close to the top surface of the ice. In 20 

order to account for this situation, basal conductive fluxes (and oceanic heat fluxes) for all months during which 21 

monthly mean ice thickness was 1m or lower were removed from the dataset. 22 

 23 

3. Deriving monthly-mean flux distributions from the IMBs 24 

Throughout the description of the IMB-estimated fluxes here, and the model evaluation below, the convention 25 

used is that positive numbers denote downwards fluxes, and vice versa. The distributions of monthly mean fluxes 26 

of top melting, top conduction, basal conduction and ocean heat flux are summarised in Table 1. The IMBs provide 27 

490 monthly mean values of top melt in total, ranging from 31 values in March and August to 57 in May. The 28 

seasonal cycle reaches its maximum in July, when top melting of 28.6 ± 16.7 Wm-2 is observed. Strong top melting 29 

is also evident in June (16.1 ± 10.1 Wm-2), but top melting tends to be considerably lower in August (7.8 ± 6.4 30 

Wm-2). Values for the rest of the year are zero or near-zero. Throughout the year, standard deviation of the 31 

distributions is of a similar order of magnitude to the mean, showing a high degree of spatial and inter-annual 32 

variability. 33 

Top conductive flux, a component of the surface energy balance, is the means by which the ice loses energy to 34 

the atmosphere in the presence of atmospheric cooling during the Arctic winter. It depends strongly upon 35 
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atmospheric conditions, but also upon ice and snow thickness, as thinner ice and snow can support stronger 1 

temperature gradients and conduct energy upwards more quickly. For the top conductive fluxes, the IMBs provide 2 

501 estimates in total, ranging from 30 in August to 59 in May. Mean top conductive fluxes are strongly negative 3 

from October-March, reaching a minimum value of -22.3 ± 13.2 Wm-2 in December. However, values are weakly 4 

positive in June and July, reflecting warming of the ice interior. 5 

The basal conductive flux acts to remove energy from the ice base in winter, allowing ice growth, and to a lesser 6 

extent during late spring and early summer while the ice is warming, attenuating ice melt. For the basal conductive 7 

fluxes the IMBs provide 473 estimates, ranging from 27 in August to 54 in May. The basal conductive flux 8 

displays a seasonal cycle less amplified than, and displaced slightly later relative to, that of the top conductive 9 

flux, with lowest values occurring from November-April and a minimum of -13.6 ± 6.4 Wm-2 occurring in 10 

February. The damped response relative to the top conductive flux occurs due to the thermal inertia of sea ice, 11 

and the principal thermodynamic forcing occurring at the top surface.  12 

Lastly, for the ocean heat fluxes the IMBs provide 436 estimates, ranging from 26 in August to 48 in May. The 13 

highest values are seen in August, with a mean and spread of 25.1 ± 28.7 Wm-2. The distribution is also strongly 14 

positively skewed in this month, with a small number of exceptionally high values, notably 143 Wm-2 being 15 

estimated in August 2007 for buoy 2006C in the Beaufort Sea, as part of a summer of extreme ice melt documented 16 

by Perovich et al. (2008). In the winter, mean values of ocean heat flux are near-zero. There is frequent occurrence 17 

of small negative estimates in the distributions in the winter. These are likely to be spurious and reflect errors in 18 

assumptions made about the salinity and density at the base of the ice, as for most such values, the uncertainty 19 

intervals encompass 0 Wm-2. 20 

Two regions of the Arctic are relatively densely sampled by the IMBs: the Beaufort Sea and the North Pole (Figure 21 

2). In order to demonstrate that the IMBs are able to capture some regional variability, and especially to aid with 22 

model evaluation in Section 4 below, monthly mean fluxes derived from buoy tracks entirely within these regions 23 

were sorted into separate datasets, characteristics of which are now described separately. 24 

Top melting fluxes are shown in Figure 7a separately for the Beaufort Sea and the North Pole regions. In June, 25 

the top melting fluxes measured in the North Pole region range from 1-32 Wm-2, with a mean of 11 ± 7 Wm-2, 26 

while those measured in the Beaufort Sea range from 4-48 Wm-2 with a mean of 22 ± 11 Wm-2. The lower 27 

distribution in the North Pole region is consistent with the observed later onset of surface melting here (Markus 28 

et al., 2009) associated with the higher latitude. In July, measured fluxes range from 2-48 Wm-2 in the North Pole 29 

region, with a mean of 22 ± 12 Wm-2, and 11-70 Wm-2 in the Beaufort Sea region, with a mean of 40 ± 16 Wm-2. 30 

Measured fluxes of top melting are much lower in August in both regions. 31 

For the top conductive flux (Figure 7b), winter variability is somewhat higher over the Beaufort Sea region than 32 

in the North Pole region. In December, North Pole fluxes range from -45 to -9 Wm-2 with a mean of -20 ± 10 Wm-33 

2, while those in the Beaufort Sea region range from -57 to -8 Wm-2 with a mean of -28 ± 14 Wm-2. Some notable 34 

differences between the distributions occur in the 'shoulder seasons', particularly in May and September, with 35 

higher values (indicating ice warming) occurring in the Beaufort Sea region. For example, in May, values in the 36 

https://doi.org/10.5194/gmd-2019-113
Preprint. Discussion started: 19 August 2019
c© Author(s) 2019. CC BY 4.0 License.



9 

 

North Pole region range from -8 to 5 Wm-2 with a mean of -2 ± 3 Wm-2, while values in the Beaufort Sea region 1 

range from -2 to 15 Wm-2 with a mean of 2 ± 4 Wm-2. These differences indicate earlier onset of warming in the 2 

Beaufort Sea and earlier onset of cooling in the North Pole region, consistent with an earlier onset of surface melt 3 

in the Beaufort Sea. 4 

Less spatial variability is evident for the basal conductive flux (Figure 7c). For example, in December, North Pole 5 

fluxes range from -20 to 0 Wm-2 with a mean of -12 ± 5 Wm-2, while Beaufort Sea fluxes range from -22 to -2 6 

Wm-2 with a mean of -12 ± 6 Wm-2. Hence the thermal inertia of ice appears to have some damping effect on the 7 

larger variability of thermal forcing evident in the Beaufort Sea region from the top conductive flux. The faster 8 

warming and slower cooling of ice evident in the shoulder seasons in the Beaufort Sea region for the top 9 

conductive flux is also not evident for the basal conductive flux. In the month of May, for example, basal 10 

conductive flux values range from -13 to 0 Wm-2 in the North Pole region with a mean of -7 ± 3 Wm-2, compared 11 

to a range of -8 to -3 Wm-2 and a mean of -5 ± 1 Wm-2 in the Beaufort Sea region. 12 

For the ocean heat flux (Figure 7d), in the summer very high values tend to be more common in the Beaufort Sea 13 

region than in the North Pole region. For example, in August North Pole region values range from 3 to 64 Wm-2 14 

with a mean of 19 ± 16 Wm-2, while the Beaufort Sea region values range from 7 - 143 Wm-2 with a mean of 41 15 

± 48 Wm-2. It is likely that these are related to the lower ice fractions, and greater solar heating of the mixed layer, 16 

in the Beaufort Sea region. 17 

 18 

4. Evaluating modelled sea ice using the IMB-derived fluxes 19 

4.1 Evaluating vertical energy fluxes in HadGEM2-ES with the IMBs 20 

In this section, the distributions of energy fluxes estimated from the IMB data are compared to equivalent fluxes 21 

simulated by the coupled climate model HadGEM2-ES. This model, developed from the earlier model HadGEM1, 22 

is based on the HadGEM2-AO coupled atmosphere-ocean system, but employs additional components to simulate 23 

terrestrial and oceanic ecosystems, and tropospheric chemistry (Collins et al., 2011). The sea ice component is 24 

very similar to that used by HadGEM1 (McLaren et al., 2006), employing a sub-gridscale thickness distribution 25 

with 5 categories (Thorndike et al., 1975), elastic-viscous-plastic rheology (Hunke and Dukowicz, 1997), and a 26 

zero-layer thermodynamics scheme, described in the appendix to Semtner (1979), in which sea ice has no heat 27 

capacity and conduction does not vary with height within the ice. The atmosphere and ocean components contain 28 

a number of improvements relative to HadGEM1 (Martin et al., 2011). 29 

The Arctic sea ice and surface radiation simulation of the historical ensemble of HadGEM2-ES was evaluated by 30 

West et al (2018). A number of likely model biases were identified; a low bias in September sea ice extent, a low 31 

bias in annual mean ice thickness and a high bias in ice thickness seasonal cycle amplitude, and a tendancy to 32 

model overly high surface net downwelling shortwave (SW) flux in summer and overly low surface net 33 

downwelling longwave (LW) flux in winter. To perform the evaluation of the ice energy budget in the present 34 

study, the model period 1980-1999 is used, chosen to match the period used in West et al (2018). 35 
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For each month, grid cells lying inside the North Pole and Beaufort Sea regions are separately identified, and 1 

monthly mean top melt flux, top conductive flux, basal conductive flux and ocean heat flux are collected into 2 

distributions. Means and standard deviations of these distributions are then compared to those of the IMB fluxes, 3 

with model fluxes weighted by grid cell area when calculating these statistics. Before aggregation the fluxes, 4 

produced by the model as gridbox means, are divided by ice area to produce means over ice only, for greater 5 

consistency with the IMB fluxes. Owing to the zero-layer thermodynamics scheme, sea ice conduction is constant 6 

with depth, and hence top and basal conductive fluxes are always equal in the model. 7 

For both regions, top melt fluxes simulated by HadGEM2-ES tend to be much higher than those measured by the 8 

IMBs (Figure 8a,b). For example, the modelled mean top melt flux of 72.5 ± 8.2 Wm-2 in the Beaufort Sea region 9 

in June is much higher than the IMB mean of 24.5 ± 9.4 Wm-2; in the North Pole region in June, the modelled 10 

mean top melt flux of 56.6 ± 14.0 Wm-2 is much higher than the IMB mean of 11.2 ± 6.9 Wm-2. The phase of the 11 

annual cycle in top melt is shifted slightly earlier, with the effect that, in both regions, the modelled June and July 12 

means are very similar while the IMB estimates show a distinct maximum in July. However, the greater top melt 13 

in the Beaufort Sea region relative to the North Pole region is captured by the model. 14 

The annual cycle of top conductive flux is broadly captured by HadGEM2-ES (Figure 8c,d), with strongly 15 

negative values modelled in the autumn, winter and spring and weakly positive values in the summer. However, 16 

from September-May modelled means are more strongly negative than observed means: for example, in the North 17 

Pole region in December a modelled mean of -31.0 ± 7.6 Wm-2 is higher in magnitude than the IMB mean of -18 

20.4 ± 10.3 Wm-2. The higher magnitude of conductive fluxes in winter in the Beaufort Sea region relative to the 19 

North Pole region is captured by the model; however, the higher values of fluxes in May and September in the 20 

Beaufort Sea region relative to the North Pole region are not captured.  21 

Modelled values of basal conductive flux at each model gridbox, as noted above, are identical to those of top 22 

conductive flux. Consequently HadGEM2-ES overestimates the magnitude of basal conductive flux in autumn 23 

and winter more severely than it does top conductive flux (Figure 8e,f). The overestimation is most severe during 24 

the autumn; in the Beaufort Sea region in October a mean modelled flux of -28.1 ± 11.1 Wm-2 is much higher in 25 

magnitude than the mean observed flux of -3.2 ± 5.2 Wm-2. As the basal conductive flux in the freezing season is 26 

the principal driver of ice growth, this suggests that HadGEM2-ES is likely to model significantly stronger ice 27 

growth during these months than was measured at the IMB sites. 28 

For the ocean heat flux, the model produces a similar seasonal cycle to that estimated from the IMB data, with 29 

very small values in the winter and a wide range of positive values in the summer. For the North Pole region, the 30 

distribution means are very similar in August but the observed spread far wider, with a modelled mean of 23.5 ± 31 

10.0 Wm-2 comparing to an observed mean of 18.8 ± 16.0 Wm-2; however, modelled values are larger than 32 

observed earlier in the summer, with evidence of a phase offset between model and observations. The larger spread 33 

in the IMB estimates is consistent with a comparison of observed point values to modelled means over grid cells. 34 

For the Beaufort Sea region, the modelled mean of 26.6 ± 12.0 Wm-2 is much lower than the IMB-estimated value 35 

of 42.4 ± 44.1 Wm-2. It is possible that the discrepancy here is caused by the observed rapid retreat of summer sea 36 

ice in the Beaufort Sea in the past 15 years, with accompanying direct solar heating of the ocean mixed layer, and 37 
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the increased occurrence of exceptionally high values of ocean heat flux. These effects are not represented in the 1 

HadGEM2-ES simulation in the 1980-1999 period. 2 

4.2 Links to sea ice and surface radiation simulation of HadGEM2-ES 3 

A top melting bias of ~40 Wm-2 is estimated for the month of June in both the North Pole and Beaufort Sea 4 

regions. This is consistent with the finding of West et al (2018) that June surface net shortwave (SW) radiation in 5 

the model was biased high relative to a variety of satellite and reanalysis datasets, by around 20 Wm-2 over the 6 

Arctic Ocean on average. Relative to CERES-EBAF measurements from 2000-2013 (Loeb et al., 2009), 7 

HadGEM2-ES overestimates June net SW in the North Pole and Beaufort Sea regions by 30 and 9 Wm-2 8 

respectively. Owing to the recent trend to earlier onset of surface melt over the past 30 years (e.g. Markus et al., 9 

2009), and attendant likely decrease in surface albedo, these biases are likely to be underestimated. Hence it is 10 

likely that a major part of the model bias in top melting can be explained by a model bias in net SW. In West et 11 

al (2018) it was shown that a tendency for surface melt onset to occur too early in HadGEM2-ES, reducing the 12 

surface albedo, was likely to be principally responsible for this. 13 

The severe overestimation in magnitude of basal conductive fluxes during the early part of the melt season can be 14 

partly explained by the zero-layer thermodynamics scheme of HadGEM2-ES; the thermal inertia effect seen in 15 

the IMBs, whereby the basal conductive flux drops much more slowly in autumn than the top conductive flux, 16 

does not occur in the model. However, as the top conductive fluxes also tend to be considerably higher in the 17 

model than in the IMB estimates, the thermal inertia effect is likely to be only partially responsible. In West et al 18 

(2018) two other model biases were identified as being likely to lead to a high bias in winter ice growth (analogous 19 

to the basal conductive flux bias): a negative bias in ice thickness during early winter, and a negative bias in 20 

downwelling longwave (LW) radiation throughout the season. It was estimated that these biases were likely to 21 

lead to surface flux biases of order ~10 Wm-2 throughout the freezing season. Hence these are also likely to explain 22 

a portion of the basal conductive flux bias noted above. 23 

The excessive modelled top melting and basal conductive fluxes identified would be likely to lead to too strong 24 

ice growth, and ice melting, in winter and summer respectively, and an associated amplification of the ice 25 

thickness seasonal cycle. Such an amplification was identified in HadGEM2-ES by comparing modelled ice 26 

thickness to the forced ice-ocean model PIOMAS, as well as to estimates from satellites and submarines. Hence 27 

there is a high level of consistency between the model biases inferred from the IMB estimates, and those inferred 28 

from the sea ice state and surface radiation evaluations in West et al (2018). The IMB evaluation, however, 29 

provides additional insight to the picture, by providing consistent evaluation of previously unknown processes 30 

such as top melting. In addition the IMB evaluation clearly identifies a role for the zero-layer thermodynamics 31 

scheme in driving a bias towards excess ice growth during the early winter in HadGEM2-ES. 32 

 33 

5. Representativeness of the IMB-estimated fluxes 34 
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The comparison of HadGEM2-ES modelled fluxes to those inferred from the IMB measurements reveals several 1 

potential model biases, notably the overestimation of top melt flux in June and July, and overestimation of the 2 

magnitude of basal conductive flux in the early freezing season. In this section the accuracy of this method of 3 

model bias estimation is discussed. 4 

The model flux distributions evaluated represent area-weighted means over the ice-covered fractions of grid cells, 5 

each of order 10-100 km in width, chosen to cover the North Pole and Beaufort Sea regions as defined in Section 6 

2. The ‘true model bias’ would represent the difference between this and the average flux over ice covered regions 7 

for each month in the 1980-1999 period. By contrast, the IMB-measured means are derived from a relatively small 8 

number of single point measurements from these regions (points that tend to move position during an individual 9 

month, with the general ice flow), most from a period somewhat later than 1980-1999. To assess the accuracy of 10 

the model biases inferred, a method of estimating the order of magnitude of the likely error in the IMB estimated 11 

mean fluxes is required.  12 

One source of error derives from the temporal offset in the IMB measurements relative to the model. To assess 13 

the impact of this, we compare the HadGEM2-ES vertical ice fluxes from the period 1980-1999 to those from the 14 

period 2000-2015, during which most of the IMB measurements were taken (as the historical experiments end in 15 

2005, the RCP8.5 experiment was used from 2006 onwards). Flux anomalies in the later period relative to the 16 

earlier period are mostly small (below 2 Wm-2 in magnitude) in both regions. However, there is a significant 17 

negative anomaly in July top melting, -6 Wm-2 and -9 Wm-2 in the North Pole and Beaufort Sea regions 18 

respectively. There is also a positive anomaly in September basal conductive flux (3 Wm-2 in both regions), and 19 

in the Beaufort Sea moderate basal conductive flux anomalies continue into the winter, being 5, 3, -4 and -2 Wm-20 

2 from October-January respectively. These anomalies are likely to reflect earlier melting and later freezing of ice 21 

in this region. They are small in size compared to the HadGEM2-ES model biases, but suggest that the temporal 22 

bias may cause model top melting bias in July, and Beaufort Sea basal conductive flux in autumn, to be slightly 23 

overstated. 24 

A potentially more serious source of error is sampling: bias would be introduced if the IMB measurements were 25 

systematically over- or under-sampling locations with higher than average flux in a particular month. The Arctic 26 

sea ice cover is highly heterogeneous, with ice conditions varying substantially over all scales. For most variables 27 

(for example snow thickness, ice salinity or ice albedo), it is difficult to assess whether the variability of the ice 28 

pack is sufficiently sampled by the IMB measurements, due either to a lack of reference datasets or to an inability 29 

to estimate these variables at the IMB locations. However, the degree to which the ice thickness distribution 30 

(which affects conductive fluxes in particular) is correctly sampled by the IMBs can be assessed. The effect of 31 

errors in the ice thickness distribution on the IMB-measured fluxes is estimated in Appendix A, and is shown to 32 

be small compared to the model biases identified. We note that the ice thickness distribution sampling bias is 33 

likely to be particularly strong (relative to other variables) due to the deliberate placing of IMBs in level multiyear 34 

ice, and due to the Lagrangian movement of the IMBs combined with the generally short lifetime of thin ice floes, 35 

which tend to grow quickly in winter and melt quickly in summer. It is proposed that given the effect of this bias 36 

is weak, it is likely that the effect of other, not deliberately introduced, biases is weaker still, and that the model 37 

biases identified in Section 4 are likely to be robust features. 38 
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 1 

6. Conclusions 2 

Around 500 estimates of monthly mean top melt, top conduction, basal conduction and ocean heat flux have been 3 

estimated from data measured by the Arctic IMB network, with the number of estimates available for each month 4 

ranging from 26 to 59. The distributions capture seasonal and spatial variation in the vertical fluxes analysed, and 5 

provide a valuable source of information on the internal energy balance of Arctic sea ice. Comparison of modelled 6 

fluxes to observed fluxes in the two densely sampled regions in the North Pole and Beaufort Sea reveals substantial 7 

model biases, notably to high top melt fluxes in summer and to high (negative) basal conductive fluxes in autumn 8 

and early winter. Biases in the IMB flux estimates due to inadequate sampling of thin and very thick ice types are 9 

likely to be small relative to the model biases identified. 10 

The flux biases are consistent with an evaluation of the sea ice simulation of HadGEM2-ES that identified an 11 

over-amplified seasonal cycle in ice thickness, with model ice growth and melt biased high in winter and summer 12 

respectively, as well as a high model bias in net SW radiation in June, a low bias in net LW radiation throughout 13 

the winter, and a low model bias in ice thickness in autumn and early winter. The IMB analysis confirms that the 14 

net SW bias is likely to cause overly strong ice thinning during summer via anomalously strong top melting of 15 

ice, and that the cold atmospheric conditions and low ice thickness of HadGEM2-ES are likely to be driving 16 

anomalously strong winter ice growth via the basal conductive flux. However, the IMB analysis also suggests that 17 

the zero-layer thermodynamic scheme of HadGEM2-ES plays a role in promoting this anomalously strong ice 18 

growth. 19 

The calculated IMB fluxes offer a potentially valuable tool for increasing understanding of sea ice simulations in 20 

coupled models, as they allow detailed examination of the links between atmospheric forcing of sea ice and the 21 

resulting sea ice state. This is particularly the case for the upcoming Phase 6 of the Coupled Model 22 

Intercomparison Project (CMIP6), for which diagnostics of ice energy and mass fluxes, such as top melting and 23 

conduction, have been requested for all sea ice models participating in this experiment (Notz et al., 2016). 24 

Understanding of the processes leading to biases in a given sea ice state enables better understanding of modelled 25 

sea ice spread in the present day and in the future, and may therefore also allow better understanding of future 26 

projections in sea ice state. 27 

By far the greatest source of uncertainty in estimating the IMB fluxes derives from lack of knowledge of ice 28 

salinity at the measurement sites, and therefore the thermodynamic properties of conductivity and heat capacity. 29 

A method of measuring salinity at the IMB sites would greatly reduce the uncertainty in the IMB estimates, 30 

particularly for ocean heat flux, enhancing the usefulness of this dataset as a tool for model evaluation. 31 

 32 

Appendix A: The ice thickness sampling bias and its effect on flux distributions 33 
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An analysis of the distribution of monthly mean ice thicknesses sampled by the IMBs finds that most lie in the 1 

range 1.4 – 3.6 m. However, analysis of submarine measurements of ice thickness in the Central and Western 2 

Arctic from 1981-2000, as collated by Rothrock et al. (2008), shows a substantial proportion of ice to be of 3 

thickness outside these bounds. In order to estimate the effect of this sampling bias, we use the following simple 4 

model. The thickness distribution is discretised, in a similar manner to HadGEM2-ES, by separating ice into five 5 

thickness categories, with minimum thickness bounds at 0 m, 0.6 m, 1.4 m, 2.4 m and 3.6 m. Given a mean flux 6 

rm

IMBF ,
 for month m and region r that is estimated from the IMBs by averaging all fluxes for that month and region, 7 

the total observational error can be characterised as 8 

rm

actual

rm

IMBerr FFF
,, −=    (A1) 9 

where 
rm

actualF
,

 is the actual value of that flux, averaged over the region and month in question, for the period 1993-10 

2015. The mean flux can be further split into thickness categories by setting 11 

( )∑ •= −

i

rm

total

rm

i

irm

catIMB

rm

IMB NNFF ,,,,,
 (A3) 12 

where the 
irm

catIMBF
,,

−  are the average IMB flux over month m, region r and category i, 
rm

iN
,

is the total number of 13 

IMB fluxes in month m, region r and category i, and 
rm

totalN
,

 is the total number of IMB fluxes in month m and 14 

region r. 15 

Similarly the actual flux values can be written as  16 

∑ •= −

i

rm

i

irm

catactual

rm

actual aFF ,,,,
  (A4) 17 

where 
rm

ia
,

 is the average fraction of ice in month m and region r that is in category i (expressed as a proportion 18 

of average fraction of ice in the region).  19 

It can be seen that 
rm

total

rm

i NN
,,

 acts as an IMB-based estimate of 
rm

ia
,

, and that the error in 
rm

IMBF ,
 due to the 20 

ice thickness sampling bias is exactly that due to the error in this estimate. Hence we can characterise the sampling 21 

error by expressing errF in terms of systematic and sampling errors in the following way: 22 
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where sampleerrF _  captures the flux error due to ice thickness sampling; systematicerrF _ describes the error due to 2 

inaccuracy in the IMBs estimating F for each particular category, effectively capturing the remaining 3 

observational error that is beyond the scope of the current analysis. 4 

To estimate sampleerrF _ , we first need estimates of 
rm

ia
,

, the real-world proportion of ice in a given thickness 5 

category for each region and month, for which as discussed above we use submarine measurements collated by 6 

Rothrock (2008) that capture small-scale variation in sea ice thickness. Ice thickness measurements in each 7 

category are collected for each month and region, and used to generate an estimate of 
rm

ia
,

. In practice, 8 

measurements are abundant during spring and autumn, but sparse during summer and non-existent during winter. 9 

To alleviate this problem, we interpolate 
rm

ia
,

 using a 5-month binomial mean, weighted by number of 10 

measurements, in order to produce a smooth seasonal cycle, motivated by the observation that maximum and 11 

minimum ice thickness values often occur during spring and autumn respectively. The resulting seasonal cycles 12 

of 
rm

ia
,

 are shown in Figure A1. 13 

Secondly, estimates of ( )irm

catactual

irm

catIMB FF ,,,,

2

1
−− + , representative average fluxes for each thickness category, are 14 

required. To calculate representative fluxes of conduction, we combine a simple model of the relationship between 15 

conductive fluxes and ice and snow thickness with the IMB measurements of conduction. The surface flux 16 

sfcatmossfc BTFF += is approximated by linearising the dependence on surface temperature sfcT , referenced to 17 

0°C. The surface flux is set equal to the top conductive flux condtopF , and a constant rate of change of conductive 18 

flux from the top to the basal surface of the ice is assumed, such that ( )
( )

ice

botsfc

condbotcondtop
R

TT
FF

−
=+

2

1
, 19 

where condbotF  represents basal conductive flux, botT  ice base temperature, and snowsnowiceiceice khkhR +=20 

is the thermal insulance of the ice-snow column, iceh and snowh  being ice and snow thickness, and icek and snowk21 

ice and snow conductivity respectively. Eliminating sfcT  from the above equations gives  22 
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where ( )heatice

topHS

ice RR α+=− 1  and 

condbotcondtop

condbotcondtop
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FF

FF

+

−
=α  .  1 

Equation (A6) can be combined with the IMB estimates of conductive fluxes, and snow and ice thickness to 2 

produce, for each monthly mean IMB measurement, an associated value of atmosF , a measure of the atmospheric 3 

forcing on the ice that is independent of small-scale variations in ice thickness. Hence for each month and region 4 

a distribution in atmosF  can be produced; mean values of this can be fed back into the simple model to produce 5 

an average conductive flux that would be expected for each ice thickness category. The average conductive flux 6 

is then multiplied by ( ) rm

i

rm

total

rm

i aNN
,,, − , as estimated above, and summed over categories to produce the flux 7 

error 
rm

errF
,

. 8 

The resulting flux bias is below 1 Wm-2 in magnitude year-round in the North Pole region. It is slightly larger in 9 

the Beaufort Sea in winter time, achieving values of -1.5 Wm-2 to -1 Wm-2 from November-February. The values 10 

are small compared to the model-observation differences identified in Section 4, and so we conclude that the ice 11 

thickness sampling bias does not seriously affect ability to evaluate modelled conductive fluxes. 12 

A less strong, but still discernible, relationship exists between top melt flux and ice thickness, due to ice albedo 13 

tending to be lower for thinner ice. However, this effect is likely to be associated with a significant difference in 14 

albedo only for the thinnest category of ice, and then only in the absence of snow (e.g. Ebert et al., 1995). To 15 

estimate this effect, we use an average albedo of 0.55 for bare ice in the top four thickness categories, and 0.35 in 16 

the lowest category, based on observed values reviewed and collated by Pirazzini (2008). We assume that ice is 17 

snow-covered 80% of the time from October-May (with a corresponding albedo of 0.85), 50% of the time in June 18 

and September, and 20% of the time in July and August. Finally, we calculate mean values of downwelling SW 19 

radiation for the North Pole and Beaufort Sea region from CERES-EBAF from 2000-2013, and multiply these by 20 

the albedo differences implied by the anomaly of ice fraction in category 1. With this method, a maximum flux 21 

bias of -3 Wm-2 is estimated for the North Pole region, in July, and of -2 Wm-2 for the Beaufort Sea region, also 22 

in July. Again, this anomaly is small compared to the model-observation differences seen in Section 4, and it is 23 

concluded that the sampling bias similarly does not affect ability to evaluate modelled top melting.  24 

An estimate of the influence of the sampling bias on ocean heat flux estimates is more difficult, due to a less clear 25 

relationship between ice thickness and the ocean heat flux, and the frequent presence of rapid changes in ice 26 

thickness during the months in which ocean heat flux is highest (July and August). It is likely that very small ice 27 

thicknesses are associated with elevated ocean heat flux in the summer months due to greater solar penetration 28 

through ice. However, the ice thickness sampling bias is at its least severe during the summer months, as thinner 29 

ice is sampled by the IMBs simply through the melting of originally thicker floes on which the IMBs were placed. 30 

In addition, thinning ice which induces a particularly high ocean heat flux is likely to melt out quickly, and 31 

contribute a correspondingly small fraction to the ice thickness distribution.  32 
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We examined the sensitivity of the average ocean heat fluxes to this issue by assuming ocean heat fluxes in 1 

category 1 to be systematically larger than those in the remaining categories (as diagnosed from the IMBs) by a 2 

factor λ. With λ=3, August ocean heat fluxes in the Beaufort Sea region are on average 80Wm-2 greater in 3 

category 1 than in thicker ice categories; it is unlikely that the solar penetration effect could be associated with 4 

larger flux differences than this. The largest average flux bias associated with this effect is then -6.3 Wm-2, also 5 

seen in August in the Beaufort Sea region. Hence this could be taken as a reasonable upper bound for the effect 6 

of the sampling bias on ocean heat fluxes. It is smaller in magnitude than the model ocean heat flux biases 7 

diagnosed, although the difference is less than those for the top melt and conductive fluxes. 8 

 9 
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 Top melt flux Top conductive flux Basal conductive flux Ocean heat flux 

 Mean Std. 

dev. 

Mean Std. 

dev. 

Mean Std. 

dev. 

Mean Std. 

dev. 

January 0.0 0.0 -19.2 10.3 -13.2 5/9 -0.6 9.0 

February 0.0 0.0 -20.0 10.8 -13.6 6.4 -2.2 8.1 

March 0.0 0.0 -14.6 7.3 -12.7 4.4 -0.9 8.7 

April 0.0 0.0 -5.9 4.4 -9.8 3.3 -0.0 4.9 

May 1.3 3.2 0.4 4.0 -6.0 2.2 2.2 4.8 

June 16.1 10.1 4.8 3.1 -2.0 1.6 11.0 12.7 

July 28.6 16.7 4.4 2.8 0.2 1.3 24.0 24.0 

August 7.8 6.4 -1.3 4.9 0.9 0.8 25.1 28.7 

September 1.0 1.6 -8.1 7.9 0.4 2.1 11.0 13.5 

October 0.0 0.0 -17.2 11.6 -1.9 4.1 3.3 8.8 

November 0.0 0.0 -20.8 12.1 -8.5 10.3 3.8 13.4 

December 0.0 0.0 -22.3 13.2 -12.4 8.0 -1.0 7.8 

Table 1. Mean and standard deviations of fluxes measured from the IMB data in Wm-2 in each month of 1 

the year. For each flux, the convention is that downwards=positive. 2 

 3 
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 1 

Figure 1. Schematic demonstrating the causal links between ice thickness and extent, and energy and 2 

mass balance at the top and basal surfaces of the sea ice.  3 
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 1 

Figure 2. The tracks of Arctic ice mass balance buoys from 1993-2015, with months of coverage indicated 2 

by the coloured shading. The North Pole and Beaufort Sea regions used in the analysis are shown by the 3 

thin black lines. 4 

 5 
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 1 

Figure 3. Illustration of the regularisation process using four selected IMB data series. (Left) raw data; 2 

(right) temperature regularised time series. 3 
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 1 

Figure 4. Two examples of estimating snow-ice interface from a regularised snow surface data series. The 2 

interface remains at a constant level unless the surface falls below this level, in which case the interface falls 3 

with the surface. 4 

5 
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 1 

Figure 5. Illustrating the calculation of basal conductive flux and ocean heat flux as described in Section 2 

2, after Lei et al (2014), with the use of a ‘buffer zone’ in the lowest 40cm of the ice above which the 3 

conduction is measured.  4 
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 1 

 2 

Figure 6. Measurements from the buoy 2015A, with a likely ‘false bottom’ being measured from early April 3 

to late May, characterised by sudden step changes in estimated base elevation. 4 

  5 

https://doi.org/10.5194/gmd-2019-113
Preprint. Discussion started: 19 August 2019
c© Author(s) 2019. CC BY 4.0 License.



28 

 

 1 

Figure 7. Fluxes of (a) top melting, (b) top conductive flux, (c) basal conductive flux and (d) ocean heat flux, 2 

estimated from the IMB data, shown for North Pole (blue) and Beaufort Sea (red) regions. Mean and 3 

uncertainty are indicated for each data point. For all fluxes, the convention is that downwards=positive.  4 
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 1 

Figure 8. Comparing distributions of (a,b) top melt, (c,d) top conductive flux, (e,f) basal conductive flux 2 

and (g,h) ocean heat flux from HadGEM2-ES (red) to those estimated from the IMB data (black), for the 3 

North Pole (left) and Beaufort Sea (right) regions. 4 
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 1 

 2 

Figure A1. Ice fraction in the 5 thickness categories defined in Appendix A, estimated from submarine data 3 

compiled by Rothrock et al. (2008) for the North Pole (solid lines) and Beaufort Sea (broken lines) regions. 4 
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