Reply to referee #1

I thank anonymous referee #1 for his/her comments which have improved the manuscript. New
manuscript text is italicized in the replies.

Comment: The abstract and first paragraph end with ellipses (!), there are abundant grammatical
errors and typos, oftentimes the language used is casual (e.g., “I will just list rapidly the most
important ones’’) and numerous statements are strikingly vague (e.g., “the tool can be used in 0D
and 1D mode, with schemes coming from different models and with different time-advance

methods to produce different kind of plots”; “it led to problems maybe specific to our environment
or source code”).

Response: The manuscript has been corrected by a native writer of English.

Comment: The content of the paper encompasses atmospheric modelling techniques and
technicalities of Python-Fortran interfacing. None of these two subjects are covered in sufficient
detail in my opinion (perhaps focusing on just one of those would be a path forward)? Noteworthy,
already the title of the paper implies description of improvements to a particular microphysical
scheme. These improvements, described in section 3.1, are presented as purely textual description
with vague statements, e.g. ,,the graupel growth mode choice was updated. It is now more
continuous and, hence, less time-step dependent”. Such approach does not match GMD’s standards
aimed at clarity with respect to model formulation and versioning. The author does explicitly state
that the “purpose of the paper is not to give an extended review of all the modifications”, yet in my
opinion the way the model development is documented in the paper goes against GMD policies.

Response: The goal of the paper is to present the 0D tool. The ICE microphysical scheme and the
modifications that have been applied on it are only there to illustrate the PPPY behaviours. To make
it more clear, I suppressed the name of the scheme from the title, the abstract is somewhat rewritten
and the improvements to the ICE scheme have been moved to an appendix to suppress them from
the manuscript body.

Moreover, some details have been added in the section 2.1.2, in addition to the ctypesForFortran
details in section 2.1.1 (in response to your comment below), to improve the OD presentation.

Comment: The Python-Fortran interfacing subject, covered in section 2, is presented with similar
level of vagueness. The key components of the presented software included in the 11k LOC
ctypesForFortran.py file are not discussed at all. Overall, I expect that independent use of the
presented PPPY package, would not be easier than obtaining analogous functionality “from scratch”
using a general-purpose Python package providing abstractions for interfacing compiled code (e.g.,
CFFI which has numerous documented examples depicting its usage with Fortran code and NumPy
arrays).

Response: I do not consider that ctypesForFortran is the key component of the software because
PPPY users can use ctypesForFortran, f2py, directly ctypes or another tool such as CFFI. However,
I included a short description of the main features ctypesForFortran includes:

The PPPY user is free to use whichever Python-Fortran interfacing method he chooses
(among the two aforementioned or other ones). The ctypesForFortran way intends to help
the interfacing of Fortran functions and subroutines on a Linux system. It handles memory
allocations and array memory order. Internally ctypesForFortran uses the Python ctypes
module (which normally handles the C shared libraries) to interact with the library without

adding a C or Fortran layer. It deals with Boolean, strings, integers and floats (32- and 64-
bits) but does not support structures. The array and string arguments must be explicitly
defined (no ;" “.." or “*" are allowed in the interfaces) and no argument can be
optional. If this is not the case, a wrapper must be written in Fortran meeting these
requirements and calling for the original subroutine.

In addition, to be more concrete, I included an annexe to give an example of PPPY usage.

When we encountered problems with f2py, we found easier to bypass these problems by writing the
ctypesForFortran module that we can control. Maybe it exists a universal interfacing tool which is
suitable in all circumstances but a rapid test shows that CFFI also brings problems concerning
boolean scalars with some compilers (the binary representation of a Boolean scalar with Fortran is
different depending on the compiler, eg. intel vs gfortran). I expect that this problem can be solved
with a Fortran 2003 compatible compiler using “bind(c)” but this was not an option when we wrote
ctypesForFortran.

Comment: Although, in principle, I would be reluctant to call something “too basic”, reading the
manuscript I felt puzzled with regard to the intended audience of the paper. I feel confident that
GMD readers do not require repeated verbose explanations on what numerical diffusion is and why
it vanishes for integer Courant numbers. The same concerns such statements as: ,,Python was
chosen because it allows to make plots ...”, “the computational time can be large when very small
time steps are used” or “One process must take into account that a given specie can be consumed or

produced, in the same time, by another process”.
Response:
* For the verbose explanations on numerical diffusion: Sect. 3.2 have been rewritten

* For the python choice: I’'m sure many readers know that Python can make plots but what is
important is that a single language can produce a plot and interact with a compiled code. In
the revised manuscript, two sentences have been merge to be more concise and to not appear
to be too basic:

The tool consists of a Python package which drives the simulations and performs the
comparison: initialization, the calling of the Fortran routines (using the original source
code of the parametrization), the saving of the results (in HDF5 files using the h5py
module) and the plotting of the results (through the matplotlib module).

* The remark about the computational time that can be large despite of being in a 0D mode is
suppressed.

* For the interaction between processes, this can appear to be too basic but it is important to
mention it because 1) this interaction is not taken into account in a number of microphysical
schemes (except by preventing negative values for the hydrometeors) and this induces an
uncertainty on the results, and 2) this is the reason why the splitting was introduced in the
ICE scheme. I slightly reordered the sentences to exhibit more the relation between the
interactions and the splitting:

The modifications listed above aim at suppressing the time-step dependency present inside
each of the microphysical processes. These modifications were sufficient to suppress or, at
least, limit the dependency until time steps around 10 s (not shown). For greater time steps,
each process must take into account that a given species can be consumed or produced, at
the same time, by another process and that, therefore, this affects its efficiency. To address
this issue, some kind of splitting was needed to reduce the effective time step used in the
microphysical scheme.

Comment: Below, [am listing some more specific comments that perhaps can be helpful for the
author, and that support my opinion outlined above:

* avoid frequent use of the word "tool" (over 40 occurrences including all but one sentences

of the abstract)
* avoid ellipses
* do not use programming notation such as “1.E-5" in the text
* time step vs. time-step, etc - please be consistent
* ensure the use of the words “statistical” and “physical” is justified for all its occurrences
* please do not call something “classical” without reason

b 1Y

» following phrases have certainly better alternatives: “home made”, “some behaviors of a

29 ¢¢ 29 Gey 29 <¢

scheme”, “object made from a class”, “intensity of the OD simulations”, “more the content is
important, more the fall is rapid”, “weak content”, “leads to do approximately the same

29 ¢¢

computation”, “content is artificially put higher”
* capitalise Python
* use vector graphics for figures

* ensure consistency in bibliographic entries: abbreviated (with dots or without) and non-
abbreviated journal names

Response: I did my best to take into account your remarks. Some of them need a specific reply:
* 1.E-5 was an error, this is corrected in the text
* The manuscript has been corrected by an English native writer

* The graphics are outputs from PPPY, they are png files

Reply to referee #2

I thank Andrew Barrett for his comments which have improved the manuscript. New manuscript
text is italicized in the replies.

Comment 1: As a potential future user of this tool, I would appreciate a greater and clearer
introduction of how the tool works. The language is still quite technical in places and certain terms
(e.g. “objects”, “libraries” and “decorators”) are likely not well understood by future readers. While
I acknowledge that there is extra information in the documentation of the tool, I suggest adding
some more description to the paper. In particular I would like to see some more advice regarding the
interfacing of the fortran code to the python tool. The current description sounds rather ad-hoc and
I’m not clear how I would replicate this method.

Response: I modified Sec. 2.1 to be more didactic:

Two kinds of objects exist: those which represent a parametrization, and those representing
the comparison. A standard object (an abstract class) is provided in order to define a
parametrization (the PPPY box in Fig. 4). This abstract class already contains everything
needed to perform the time advance and the saving of results but must be complemented (by
inheritance) to incorporate the actual call to the different parametrization codes (Paraml
and Param?2 boxes of the figure). Finally, each parametrization can be used with different
configurations. To achieve this, different instances (Paraml.1, Param?2.1 and Param?2.2
boxes) are created, one for each of the configurations (e.g. time-step length, options specific
to the parametrization).

For the comparison, the provided class (PPPYComp in the figure) can be used directly or
can be complemented (by inheritance, UserComp box in the figure) to add new diagnostics
(e.g. new plot kind, computation of a derived variable to plot). An instance of the class is
created for each comparison to perform (Comp box). A comparison is defined by the list of
the parametrizations to use, the simulation length and the initial state. This comparison
instance drives the parametrization instances to carry out the simulations and to plot the
resullt.

Moreover, an appendix is added to describe with more details the test example which is provided
with PPPY. I think it is a good entry point to understand how the tool works before going through
the other examples which are more interesting but also more complicated.

Comment 2: There is no description in the paper as to how this tool was used to identify and fix the
causes of the time step dependence. The findings themselves are listed on page 9. Some additional
description of how this tool enabled these model parameterization errors to be found and fixed is
needed. This is the main benefit of this new tool, so it would be useful to see how it should be used.

Response: Please see comment #7

Comment 3: This paper is not the place to discuss in detail the merits of different (and in this case
rather simple) sedimentation schemes, therefore I suggest shortening this section to allow for the
above expansions.

Response: I reduced the sedimentation section.

Comment 4: The figures in this paper (which, I think, are produced by the PPPY tool itself) are
missing units on all axes. Additionally, Figure 3 does not make clear which parameterization

scheme is shown in which panel. There two failings need to be fixed. Ideally, not just in the paper,
but also in the code of the tool itself (for future users benefit).

Response: The unit on the time and altitude axis were indeed missing, I added them. And, I moved
the unit of the plotted variable from the title to the y-axis (the PPPY user can already define the title
and the x/y labels). In addition, I changed the title of the different panels of Figure 3.

Comment 5: There seems to be inconsistent model forcing used for the different schemes (or
inconsistent physics regarding condensation in the different schemes). Comparing figures 1, 2 and 3
— the water vapor content (black line) for the shortest time step (1s) converges on a value of around
8 g/kg after 180 seconds, whereas for the other schemes in figure 2 and 3, the water vapor
converges on 6 g/kg. What is the reason for this difference? Can it be corrected? I understand that
the microphysics schemes will give different results for the hydrometeor concentrations, but the
simple balance between temperature, water vapor and condensed water should be more or less the
same for all schemes. At the moment it is difficult to compare results between the different figures/
microphysics schemes.

Response: In the ICE scheme, condensation is apart from the other microphysical processes. I first
checked the time-step dependency in the condensation part. If condensation is activated (with one
call to the subroutine by time step), it tends to hide somewhat the time-step dependency by making
the different simulations to converge towards an equilibrium point. In particular with the ICE
scheme with the same setup as used in the manuscript, the adjustment would suppress the cloud ice,
and thus the time-step dependency of all the processes involving this specie will not be seen.
Several setups would then be necessary to explore all the microphysical processes. But, indeed,
with the adjustment, the vapour content of ICE with the same setup converges towards 6g/kg.

Mixing-ratio of hydrometeors Temperature
Schemes (line styles) Parameters (colors) — dt=1.05
0.012 H — (t=1.05 — \/apOF H 282+ at=10.0s 1
------- dt=10.0s s Cloud droplets = = = dt=60.0s
= = = dt=60.0s Rain
Cloud ice
— SNOW
0.010 ‘~ Graupel I 280 L_:,,
2N e 5 e
-~
H A z ’
z . H .
0.008f: s, 1 2781 ’
. B - 3 ’
o 4 !
3 - v H 'l
2 0.006 276 | : v
£ I
.
z : ’
0.004 | = 2741)
£ '
.
= : '
0.002 [272k 'l
F o
.
\ !
0.000 € L ! " " 270 ! I ! 1 ! ! ! !
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
Time (s) Time (s)

lllustration 1: Same as Fig. 1 of the manuscript but with the adjustment activated

For the LIMA scheme, adjustment is active, it would be easy to deactivate it. But, for the WRF
schemes, the condensation process is embedded inside the microphysical parametrizations.

For the current study, | must deactivate the adjustment in ICE to fully explore all the microphysical
processes. Because the goal is not to compare the results between schemes but to compare, for each
scheme, the simulations for different time steps, I think it is not very important if the setup and/or
the active processes differ. In a next study I hope to be able to compare the different schemes; in
this next study it will be necessary to pay attention to the setup and to the active processes.

I made several modifications in the text to exhibit more this difference between the ICE scheme and
the others:

* (excluding the saturation adjustment and the sedimentation)

* In the simulations performed with this scheme (Fig. 2), the setup is the same as for the ICE
scheme but the saturation adjustment is active.

» The WRF simulations are performed using the saturation adjustment included inside each
scheme.

Comment 6: page 5, figure 3. It is impossible to tell from figure 3 and the caption, which of the
subpanels relate to which microphysics scheme. This should at minimum be added to the caption,
and preferable to the figure panels too. The label “Schemes (line styles)” in the top left of each
figure could easily be replaced by (e.g.) the scheme name/abbreviation for each panel. The
comparison of different microphysics schemes in figure 3 is initiated with a rather unrealistic setup
(approximate relative humidity is 165%). In full (3D/4D) model simulations, such supersaturation
would never occur, and the microphysics schemes should not be expected to treat such situations
fully realistically. Nevertheless, I find the differences between the schemes very interesting — I
would be particularly interested to see how these same schemes performed in more realistic setups
(e.g. with significantly reduced supersaturation at t=0 and/or when a constant cooling rate is
applied)

Response: See comment #4 for the labels.

The setup used in the paper was chosen to allow for a maximum of microphysical processes to be
active during a single simulation even if it is not fully realistic. Changing the setup by reducing the
vapour content at t=0 (to use 4g/kg instead of 10g/kg) reduces the number of existing species for the
ICE scheme (and hence the number of active processes) but does not suppress the time-step
dependency. I think the figures with this new setup are less illustrative, I prefer keeping the old ones
in the manuscript but you will find the new ones below:

0.008 ‘ M|X|ng-rat|q of hy‘drom‘eteor‘s ‘ 274.0 ‘ TemperaFure ‘ ‘ ‘
Schemes (line styles) Parameters (colors) m— t=1.0s
— t=1.05 w— \apor |} mun 3:=éggs
| o dt=10.0s s Cloud droplets || L el
0.007 = = = dt=60.0s Rain 273.5
Cloud ice
— SNOW
0.006 | Graupel 273.0+
0.005 | 2725}
2 0.004 e v 272.0} I
o ammm=—
"4 - - L .- -
-
0.003} 2715} PR
L4
& b4 * ‘N
0.002 f L *s 271.0} .
. * L4 \‘ 'O
S 2% N
N o A3
0.001 b 2705} '0
2 -
2 I TR A RO TR RRRCAREERERNER LA
0000 > WINNNRENRL] 1 I L L e L L 2700 | | | | | | | |
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
Time (s) Time (s)

Hllustration 2: Same as Fig. 1 of the manuscript but with a drier setup

Temperature

(d)

Mixing-ratio of hydrometeors
0.008 : : g T ¥ T . T 274.0 : .
Schemes (line styles) Parameters (colors) = LIMA3 scheme with dt=1.0s
| |MA3 scheme with dt=1.0s — \/apor i LIMA3 scheme with dt=10.0s
0.007 || 11+ LUMA3 scheme with dt=10.0s s Cloud droplets 27351 = = = LIMA3 scheme with dt=60.0s
' = = = LIMA3 scheme with dt=60.0s Rain '
Cloud ice
— SNOW
0.006 | Graupel 273.0 1
0.005 8 27251 g
-
_@0.004 - 1 w720l g“l”I'“I””“'“I"'I””“”II”I”I'”””“"“'”‘”””””““””m.'-”
- LI . & ___---—
E . ---.-_____ K/ “—-
= -
H -
0.003 . 2715} = .- g
: .
z 4
.] 4
& 4
0.002 . 1 2710} : . R
A s 4
N H .
= 4
N ‘\ z ’
0.001 S 1 2705 . 1
. E ¢
. S
L4
0.000 S . = 270.0 . ! L L L L L !
0 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
Time (s) Time (s)
lllustration 3: Same as Fig. 2 of the manuscript but with a drier setup
0.008 Eta‘ (Ferrier) 0.008 M|Ibrandt—Y§u Double Moment 0.008 Morrison 2—n"10ment
Schemes (line styles) Parameters (colors) Schemes (line styles) Parameters (colors) Schemes (line styles) Parameters (colors)
— =105 — Vapor — =105 — Vapor — =105 — Vapor
0.007|| e dt=10.0s Cloud droplets 0.007| e t=10.0s Cloud droplets 0.007| e t=10.0s Cloud droplets
== = dt=60.0s Rain - - = dt=60.05 Rain - - = dt=60.0s Rain
Cloud ice Cloud ice Cloud ice
— Snow — Snow —— Snow
B.006 Graupel 0008 Graupel 9006 - Graupel
Hail
0.005 0.005 0.005 -
- - =
2 o0.004f ., £ 0.004p o 2 0.004pa.
) N . o g b, o =, " .l
o o Seammmm T
0.003 0.003 0.003
0.002 0.002
0.001 |
! s L LY : = 0.000
20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 0o 20 40 60 80 100 120 140 160 180
(a) Time (s) (b) Time (s) (c) Time (s)
6,008 SBM o568 Thompson G668 WSM6
Schemes (line styles) Parameters (colors) Schemes (line styles) Parameters (colors) Schemes (line styles) Parameters (colors)
—dt=1.05 — Vapor — =105 — Vapor — =105 — Vapor
0.007 1 e dt=10.0s Cloud droplets 0.007H e dt=10.0s Cloud droplets | 0.007H e dt=10.0s Cloud droplets
=== dt=60.05 Rain === dt=60.05 Rain === dt=60.05 Rain
Cloud ice Cloud ice Cloud ice
— Snow — Snow — Snow
0.006 Graupel 0.006+ Graupel 4.006 - Graupel
0.005 0.005 0.005 |-
o - @
20004p .. £20004p . 2 0.004p .
o %, TNy o T ey o “, TN ma ol
2 - = g I SRRt g 3 -
0.003 0.003 0.003 |
o002l Lt 0.002 f— = = 0.002}
|5 o% 5 o
[F 40 " D
0.001 0.001 "X 0.001 g S m =gz = = == = 7 7
0.000 0.000 e - = 0.000 v - e
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180
Time (s) (e) Time (s) (f) Time (s)

lllustration 4: Same as Fig. 3 of the manuscript but with a drier setup

I added a sentence in the manuscript to inform about the unrealistic setup:

The setup is not fully realistic (with an important supersaturation) but allows simulations to
involve all the species and, hence, virtually all the microphysical processes. It was checked

(not shown) that the time-step dependency still exists when using more realistic initial

values.

Comment 7: page 8, bullet points lines 9-28. These are all very interesting findings, but how did
the PPPY tool help you to discover these factors as being important. It would be good to show the
benefits of the tool you developed in achieving these findings. Was it simply a trial-and-error

process, or is there some aspect of PPPY that enables these errors to be determined more quickly?

Response: Unfortunately, I didn’t find a better way than using a trial and error process (by enabling
or not the different microphysical processes).

The simulations have been carried out several times activating and deactivating the
different microphysical processes. To do this, the processes have been called individually by
the PPPY software (when they are written in separate subroutines) or activated through
switches or, at worst, (un-)commented in the source code. This trial-and-error process
makes it possible to identify the processes that led to the oscillations and to the time-step
dependency, and allowed the checking of each correction individually from the others.

Comment 8: page 8, line 27-29 please clarify what you mean by “the conversion rate of graupel
into hail is now computed from the wet growth rate of graupel and not from the total content of
graupel”. How large is this difference and why does it make such a difference?

Response: In the scheme the graupel is produced by the snow collecting liquid water, then the
graupel growths by collecting other species (and with vapour deposition). If the graupel collects
liquid species (rain or cloud), then there are two possibilities: the graupel is able to freeze the liquid
content collected (this is called the dry growth mode) or not and a thin liquid film appears at the
surface graupel (this is called the wet growth mode). The choice is made with the help of a heat
budget.

the graupel growths mainly by collecting other species. When this collection implies liquid
species (rain and/or cloud), there are two possibilities (called growth mode) depending on a
heat balance: the graupel is able to freeze the entire collected liquid collected (dry mode) or
a thin liquid film appears at the graupel surface (wet mode). In the original version of the
ICE scheme there was confusion between the maximum content of liquid water than can be
frozen (which must be used in the heat balance) and the content of liquid and ice water that
can be collected in wet growth mode (which must be used to compute the graupel tendency).
The correction made the mode choice more continuous. And because, ultimately, the graupel
growth mode has an impact on the collection efficiency of icy species (snow and cloud ice)
with the graupel, this choice can lead to significant differences in the collection rates.
Hence, the scheme including the correction is less time-step dependent;

If hail is activated, the wet growth mode contributes to the formation of hail. A conversion rate from
graupel to hail is computed based on the collection rates and on the heat budget used to choose the
growth mode. Then there are two ways of using this conversion rate:

» the old one: the conversion rate is applied to the entire graupel content. A given percentage
of the graupel is then transformed into hail. For a same simulation length, depending on the
number of time steps used, this conversion is made a different number of times. To simplify
the reasoning, if the conversion rate is constant and equal to 0.5, the percentage of graupel
converted into hail after 10s is 50% with one time step of 10s and 75% with two time steps
of 5s.

* the proposed one: the conversion rate is only applied to the tendency of the graupel. The
graupel already present at the beginning of the time step remains graupel and only the
collected mass (in wet mode) can be converted into hail. This modification reduces the
amount of hail produced and suppresses the time-step dependency.

The proposed version must still be validated but it is better than the old one because the time-step
dependency is suppressed and because the old version had a tendency to produce small amount of
hail under nearly all precipitating cold clouds (and this is no longer the case with the new version).

several modifications have been carried out on the processes involving the hail category as
a prognostic field: the processes dealing with hail are now completely symmetric with those
dealing with the graupel category (to ensure consistency even if this did not produce time-

step dependency). A conversion fraction is computed from the heat balance used to choose
the graupel growth mode. In the original version of the scheme, this fraction was applied on
the total content of graupel; this induced a conversion tendency directly linked to the
number of times the rate is applied (hence to the time step for a given simulation length). On
the contrary, in the new version, the conversion fraction is applied on the wet growth rate,
this way, no time-step dependency is produced. This was the main reason for the time-step
dependency on the hail category.

Comment 9: Figures 11, 12 & 13. please make clear that the x-axis is timestep length (dt) — it could
also be interpreted as timestep number (i.e. as a time-height plot)

Response: Thank you for the suggestion, it is done.
Comment: Technical/language corrections:

- page 2, line 9-10. please provide mode details about what differences were seen in the Meso-NH
model when the time step was changed?

- page 3, line 9. what is a “tool package”. Where can the reader find it?

- page 3, line 13. “makes possible” — “makes it possible”

- page 4, line 1 correct to “consists of a python package written to ...”

- page 4, line 5 delete “which is the required”

- page 6, line 3 “needed to use the parameterization” — “needed by the parameterization”
- page 6, line 6 “that not exist” — “that do not exist”

-page 7, line 4 “to plug other” — “to plug in other”

- page 7, line 5 “one have to define” — “one has to define”

- page 8, line 2 “dependency on the simulation” — “dependency of the simulation”

- page 8, line 11 please quantify what you mean by “small time steps”- page 8, line 18 it is not clear
to me what you mean by “graupel growth mode”, please give more details

- page 8, line 23 “has melt into rain” — ‘“has melted into rain”

- page 8, line 25 “insure” — “ensure”

-page 9, line 10 & 11. please use standard scientific notation (e.g. 1.0x10 -5)
- page 9, line 11. please quantify the “substantial additional cost”

- page 9, line 16 “unique” — “single”

- repeated grammatical error (e.g. page 12, line 9; page 12, line 31; page 13, line 1, page 13, line 7):
“Longer is the time step, more this part is important” — “The longer the time step is, the more
important this part is”

- page 12, line 31. What is the “it” in “it reaches around 11%?

- page 13, line 5 “mean content is weaker” — “mean content is less”

- page 13, line 20 “by consequences” — “‘as a consequence”

- page 13, line 24 “this induces” — “this means”

- page 13, line 25 “larger to one” — “larger than one”

- page 14, line 3 “None of both schemes” — “Neither of these two schemes”
- page 14, line 9 “weaker” — “less”

- page 14, line 28 “whatever is the time step” — “whatever the time step is”

- page 14, line 32 “hypothesis done” — “hypothesis”

-page 15, line 2 “certainly reduce” — “certainly reduced”

- page 15, line 10 “This scheme allows to make fall the bigger drops quicker” — “This scheme
allows the bigger drops to fall more quickly”

Response: Thank you for the numerous corrections you have suggested. In addition, the paper have
been reviewed by a native writer of English. Some of your remarks need a reply, they are below:

page 2, line 9-10. please provide mode details about what differences were seen in the
Meso-NH model when the time step was changed?

o The test simulations have been done several years ago and are no more available. A
rerun of those simulations would be necessary to give extended details on the
differences.

page 3, line 9. what is a “tool package”. Where can the reader find it?
© A documentation is provided with the software (see the code availability section).

page 8, line 11 please quantify what you mean by “small time steps”- page 8, line 18 it is not
clear to me what you mean by “graupel growth mode”, please give more details

o small time steps: replaced by simulations using the small time steps (shown in Fig. 7)
o graupel mode: please see comment #8

page 9, line 10 & 11. please use standard scientific notation (e.g. 1.0x10 -5)

o It was an error, the values are 0.01 and 0.05

page 9, line 11. please quantify the “substantial additional cost”

o The iterations needed for the 0.05g kg™ threshold induce an cost increase of about 5%,
and for the 0.01g kg™ threshold an additional 20% can be expected (this last figure is an
estimation because no sensitivity test have been performed on the whole domain).

page 12, line 31. What is the “it” in “it reaches around 11%"?

o sentence reformulated: For the 60s time step, 11% of the total water reached the ground.

10

15

20

Development of “Physical Parametrizations with PYthon” (PPPY,
version 1.1), and its usage to reduce the time-step dependency in the
ICE-a microphysical scheme

Sébastien Riette!
ICNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France

Correspondence: Sébastien RIETTE (sebastien.riette @meteo.fr)

Abstract.
To help develop and compare physical parametrizations such as those found in a numerical weather or climate model, a

new tool was developed. The-This tool provides a framework with which to plug external parametrizations, run them in an

offline mode (using one of the two time-advance methods available), save the results and plot diagnostics. With-the-help-of
thisteel-The software can be used in an 0D and a 1D mode with schemes originating from various models. As for now.
microphysical schemes from the Meso-NH model, the AROME (Applications of Research to Operations at Meso-scale) model

and the Weather Research and Forecasting model have been successfully plugged. As an application, PPPY is used in this
paper to suppress the origin of the time-step dependency of the microphysical scheme used in the Météo-France small scale

operational numerical weather modelwas-identified—TFhe-sources-of-dependeneyied-insome-process-formulations-and

the origin of the dependency and to check the efficiency of the introduced corrections.

Copyright statement.

1 Introduction

A weather or climate numerical model contains several parametrizations (e.g. turbulence, convection . ..) thatinteract-together
and-which interact not only together but with the dynamical core. When a parametrization is being developed or debugged, these
interactions can hide and/or amplify a tested modification. When the goal is to compare two parametrizations hosted by different
models, theses-these interactions distort the comparison as the other model components can be very different (dynamical core,
discretization and other parametrizations). To circumvent these effects, one can reduce the interactions by unplugging other
parametrizations (ideal cases, aqua-planet experiments) ;-or by reducing the problem size (2D vertical simulations, single

column model)—._

10

15

20

25

30

35

The choice of the comparison strategy depends on the intended goal: a full 3D-model is able to represent all the interactions
whereas simplified models represent only a subset of these interactions. However;-even-Even the single column model however

(one of the simplest eonfigurationconfigurations) is not always sufficient te-separate-for separating the impact of the different

parametrizations (see, for example, point 8 of ? conclusion). Henee;-a-A simpler framework could therefore be useful; this can
be toy-models-a toy model in which only one parametrization is plugged.

An example of a toy model used to compare microphysical schemes is given by ? with-using the Kinematic Driver (KiD)
model. This is also the approach taken here to develop the-PPPY—toolin—which-wePPPY in which one can plug existing
parametrizations from different models, deal with the simulations, compare the outputs and plot the results. The tool described
here has some common points with the KiD model but is able to deal with any parametrization (not only microphysics),

integrates the graphical part and is very flexible by-through the use of the python-Python language to control the execution flow

(for example running and comparing hundreds of different configurations is not an issue ;extending-the-tool-by-incorporating

diagnostiesshould-be-simple;——and incorporating new diagnostics is simple). The KiD model, for its part, allows advection
and, hence, lies between the-tool-deseribed-here-PPPY and a Single Column Model.

A-difference-was-observed-Development motivation came from the observation of a difference on 3D simulations with the
Meso-NH model (?) when the time step was changed. Beeause-the-The impact of the time step was-the-mostimportanton-being
greatest for rain accumulation and alse-when prognostic hail was activated, the microphysical scheme (?, hereafter referenced
as ICE) was suspected to be the first-respensibleprime reason. To assess this dependency, simulations in a 0D mode, using
only the microphysical core processes (excluding the saturation adjustment and the sedimentation), are performed using the
PPP¥+toolPPPY. To test all the processes, an initial state involving all the hydrometeors was chosen. Hattial-The initial mixing
ratios were quite impertantlarge (10 gkg ™! for vapor, no hail and 1 gkg~?! for the other hydrometeors) and hail was activated

(even if the illustrations here were made with simulations without hail to simplify the plots); the initial temperature was set to

270 K. The setup is not fully realistic (with an important supersaturation) but allows simulations to involve all the species and,
hence, virtually all the microphysical processes. It was checked (not shown) that the time-step dependency still exists when

When several hydrometeors are mixed in a model cell without exchange with the exterior, the microphysical processes tend
to—an—equilibrium-state—And,—thistowards a state of equilibrium, This final state must not depend on the time step used.
Mereoverln addition, when two (or more) simulations run-running with different time steps are compared, they should have the
same results for common output times. In Fig. 1, we can see that the final state depends on the time step used (between 1 s and
60 s) for water vapor, rain and temperature. Furthermore;-the-The chaotic appearance of this plot is furthermore, a signature of
the time-step dependency. Without this drawback, all curves of a same color normaty-woutd-would normally follow the same
time evolution. For example, after 60 s of simulation (which-eorresponds-corresponding to the order of magnitude of the time-
step length used in the Météo-France small scale operational numerical weather model, AROME (Application of Research
to Operations at Mesoscale, ?), which share the same physical package with the Meso-NH model), a-great uncertainty exists
on the hydrometeors presence; depending on the time step used, rain, graupel and snow ean-exist-may (with very significant

content) or aetmay not exist.

10

15

20

25

In the COnsortium for Small-scale MOdeling (COSMO) model, ? also observed a time-step dependency on rain and hail
accumulations that-they-traced back mainly to the interaction between the dynamics and the physics of the model, and, to a
lesser extent, to some microphysical processes. The example shown in this paper demonstrates that a significant part of the
time-step dependency can also be explained by the microphysical scheme itself.

The time-step dependency of the microphysical scheme is not specific to the ICE parametrization. The dependency is also

observed (Fig—2)-with the Liquid Ice Multiple Aerosols (LIMA) scheme (?) (a quasi two-moment microphysical scheme in

development in the Meso-NH and AROME models). And;-sueh-In the simulations performed with this scheme (Fig. 2), the

setup is the same as for the ICE scheme but the saturation adjustment is active. Such a dependency was also observed in the
Integrated Forecasting System (IFS) model (?), and wererelated to the formulation of the warm-rain processes. Moreover, some

microphysical schemes of the Weather Research and Forecasting (WRF) Model (version 3.9.1.1) have been plugged in-the-teol
and also exhibit time-step dependency, as shown in Fig, 3 for the Eta (Ferrier) scheme (?, panel a), the Milbrandt—Yau Double
Moment scheme (??, panel b), the Morrison 2-moment scheme (?, panel c), the Hebrew University of Jerusalem Spectral Bin
Microphysical (HUJI SBM) scheme (?, panel d), the Thompson scheme (?, panel e) and the WRF Single—-moment 6—class
(WSM) scheme (2, panel f). Fhese-example The WRF simulations are performed using the saturation adjustment included
inside each scheme. These examples also show how the PPPY¥-tool-PPPY can be useful te-exhibit-semefor the exhibiting of
some of the behaviors of a scheme (such as time-step dependency, oscillations -water-conservation;——and water conservation)
independently of the other model components.

Section 2 describes the technical choices and provides an overview of what can be done with the toolsoftware. Some exam-

ples of usage are given in Sect. 3 before the conclusion.

2 Functionalities and technical aspect

A-documentationis-avatlablein-thetoolpackageDocumentation is provided with the software (see the code availability section).

To complement this documentation, this section gives some details on how to add a parametrizationand-deseribes-the-, how the

software works as well as describing the functionalities related to the parametrizations and te-the comparisons.

2.1 Technical aspects

of a Python package which drives

the simulations and performs the comparison: initialization, the calling of the Fortran routines -saving-of-the-results;plotting

Temperature

Mixing-ratio of hydrometeors
Schemes (line styles) Parameters (colors) m— dt=1.0s
0.012 { dt=1.0s Vapor H 282 revn de=10.0s
i dt=10.0s Cloud droplets = = = dt=60.0s
= m = dt=60.0s Rain
Cloud ice
0.010 ———— t 280} .
raupel
0.008 | DT g 278} :
- -~ ~
- ~v.
o . N-N-N_N_N_N R P —
~ h4 -
2 0.006 | g 276 | . g
- -
- - s
L4
.
0.004 + E 274+ 2 |
-~ 1, o
~ o
$‘ \(:
0.002 g 272 0‘{\ E
>
.
o
NG ar
0000 PR T S O W 270 L L L L L I I
0 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
Time (s) Time (s)

Figure 1. Time evolution of the mixing ratio of the different hydrometeors (in kg/kg, left panel) and of the temperature (in K, right panel).

The simulations were performed using time steps between 1 s and 60 s.

Mixing-ratio of hydrometeors Temperature
Schemes (line styles) Parameters (colors) = LIMA3 scheme with dt=1.0s
0.012 | s LIMA3 scheme with dt=1.0s — \/apOT H 282 | LIMA3 scheme with dt=10.0s |
nin LIMA3 scheme with dt=10.0s Cloud droplets = = = LIMA3 scheme with dt=60.0s
= = = ||MA3 scheme with dt=60.0s Rain
Cloud ice
0.010 j " Snow H 280} .
~ Graupel 1,
E~ ~ "
EREERN N v
H R : AR
0.008 = AR 1 278} ¢) oo ,
z ., z ~
T :: ~~-__ _E l' ~~.---------
E ___ Bl)i — v _E ’
Gy, i - 4 i
2 0.006 L,, 276} : R
’\ H .
: 4
) H .
0.004 1 274}:) .
: ’
: .
H .
0.002 E 272F ,' g
E ¢
V]
’
OOOO L 270 ! ! ! ! L L ! !
160 180 0 20 40 60 80 100 120 140 160 180
Time (s)

Figure 2. Same as Fig. 1 but using the LIMA scheme.

Eta (Ferrier) Milbrandt-Yau Double Moment Morrison 2-moment

Schemes (line styles) Parameters (colors) Schemes (line styles) Parameters (colors) Schemes (line styles) Parameters (colors)
0.012 4 — t=1.05 — \/apOT H 0.012 H — 1,05 — vapor H 0.012 dt=1.0s — Vapor
........ dt=10.0s = Cloud droplets s dt=100s e Cloud droplets e dt=100s s Cloud droplets
=== dt=60.0s Rain === dt=60.0s Rain === dt=60.0s Rain
Cloud ice Cloud ice Cloud ice
0.010 — SOW H 0.010 — SOW H 0.010 p — SNOW
™ Graupel S, Graupel Graupel
- = Hail 2
B Ny : H
0.008 |z N 4 0.008 |% — 0.008 |%
- 3 S _ z -
[i -
o -~ o o B
2 “ = < z e
2 0.006 EE———— L 2 0.006 © 0.006 [~ T
0.004 1 0.004 | 3 ! 0.004
% 5
& = 2
S 5 - =
0.002 | N 1 0.002f /. Rmsa 1 0.002 [eatmma
- Yol iy -yp=" S
-~ e Se
-~ ™
. ., -
M (O | . . T Doy (R San anan N T SWme, ! "t taa New
0.000 0.000 - L a 0.000 -
[20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 80 100 120 140 160 180
(a) Time (s) (b) Time (s) (C) Time (s)
SBM Thompson WSM6
Schemes (line styles) Parameters (colors) Schemes (line styles) Parameters (colors) Schemes (line styles) Parameters (colors)
0.012 H — d=1.05 — \/APOT H 0.012 H — dt=1.05 —\aPOF H 0.012 dt=1.0s — \apoT
-------- dt=10.0s = Cloud droplets s dt=100s == Cloud droplets s dt=100s == Cloud droplets
=== dt=60.0s Rain === dt=60.05 Rain === dt=60.0s Rain
Cloud ice Cloud ice Cloud ice
0.010p . — SnOW H 0.010 — SNOW H 0.010p — STOW
N T Graupel ™ Graupel N Graupel
LI B
“, - = - &
" == . . 2,
0.008 % i q 0.008 | = ~ q 0.008 |z
2 ~ z e Z
1 S - -
o ~ o o
i O & Y
2 0.006 g 2 0.006 a
0.004 0.004 0.004
0.002 0.002 [0.002 | \ ==
= e
y - > %
s ™ Sea,
” e i A o A o ™ ~ -
0.000 . : n e e TS 0.000 2 . 0.000 n P e S = e
0 20 40 60 80 100 120 140 160 180 0 60 80 100 120 140 160 180 60 80 100 120 140 160 180
(d) Time (s) (e) Time (s) (f) Time (s)

Figure 3. Same as left panel of Fig. 1 but using some schemes of the WRF model identified in the panel titles (see text for complete

references).

code of the parametrization), the saving of the results (in HDFS5 files (using the h5py modulewhich-is-the-required) and the
lotting of the results (through the matplotlib module).
The-general-design-of-the toolis-asfollow(see-Two kinds of objects exist: those which represent a parametrization, and those

representing the comparison. A standard object (an abstract class) is provided in order to define a parametrization (the PPPY
box in Fig. 4):

{madefrom-the-provided PPPY-elass). This abstract class already contains everything needed to perform the time advance and
the saving of results but must be complemented (by inheritance) to incorporate the actual call to the different parametrization
codes (Param1 and Param?2 boxes of the figure). Finally, each parametrization can be used with different configurations. To

achieve this, different instances (Paraml.1,

which-performs-the-comparison—Param?2.]1 and Param?2.2 boxes) are created, one for each of the configurations (e.g. time-ste
length, options specific to the parametrization).

10

15

R —
PPPY Paraml _. || Param1.1

Param. call Instantiation Conf:
I dtl, optionsl
0SS
o2 I
o

|
| .
% Pa ramz Instantiation J Egr:’famz) 1

Param. call
dt2, options2

Param?2.2
Conf:

I dt3, options3
—_— = =
PPPYCom , UserCom - Com
p Inherltanc% Extra diag/p|0pt Instantiation Conf: p
duration, init.

Figure 4. Tool organisation diagram. The 6 top boxes represent the parametrization objects while the 3 lower boxes are the comparison

objects.

For the comparison, the provided class (PPPYComp in the figure) can be used directly or can be complemented (b

inheritance, UserComp box in the figure) to add new diagnostics (e.g. new_plot kind, computation of a derived variable to
plot). An instance of the class is created for each comparison to perform (Comp box). A comparison is defined by the list of
the parametrizations to use, the simulation length and the initial state. This comparison instance drives the parametrization
instances to carry out the simulations and to plot the result.

These different objects are described in the following subsections. In addition, in the provided package, the examples
directory contains, among other items, a test example which is commented on in Appendix A so as to illustrate the different
steps described in the current section.

2.1.1 The low level part of the parametrization: source code and compilation

The meost-trieky-trickiest part comes from the interfacing between pythen-Python and the parametrization. This part is quite
technical but is-important as the main difficulty in using this-tee+-PPPY with a new parametrization lies in this interfacing task.

If the parametrization was written using pythenPython (like the box-Lagrangian scheme used in Sect. 3.2) the interfacing
would be straightforward but numerical weather and climate models often use Fortran and a teet-module is needed to do-the

interfacing-perform the interfacing with Python. There are several ways in which to accomplish this task; this paper is-rot-the

place-to-do-ar-review-of the-different-ways-buthere-does not set out to review these ways but, here, are listed the two that-were
used at some stages-of-point in the development process. Fhis-two-ways-are-stitb-usable-These two ways can still be used even
if the examples provided with the teol-package use only the second one. Both methods aim at building a library (a collection of
w&%&&@&%&l@gﬁ%&%mm The f2py utlhty can be used; it helps

to build a shared library suitable to be imported and used from

10

15

20

25

30

use (in particular the built library depends on the exact Python version and the argument order is not always preserved). The
a module (named

second one is h

ctypesForFortran) provided with PPPY which acts directly on a shared library built from the Fortran source code. Foreach

each Fortran subroutine or function to employ.

The PPPY user is free to use whichever Python-Fortran interfacing method he chooses (among the two aforementioned or
other ones). The ctypesForFortran way intends to help the interfacing of Fortran functions and subroutines on a Linux system.
It handles memory allocations and array memory order. Internally ctypesForFortran uses the Python ctypes module (which
normally handles the C shared libraries) to interact with the library without adding a C or Fortran layer. It deals with Boolean,
strings, integers and floats (32- and 64-bits) but does not support structures. The array and string arguments must be explicitly.
defined (no “:7, .. or "7 are allowed in the interfaces) and no argument can be optional. If this is not the case, a wrapper
must be written in Fortran meeting these requirements and calling for the original subroutine.

For the potential C-written parametrizations, the-interfacing-must-direetly—use-interfacing can directly employ the ctypes

module.

Beeause-the-compilation-ean-be-The compilation being a complex process (that can involve scripts that modify, on the fly,

source codes), it could be difficult to isolate and compile, outside of the box, the source code needed for a given parametrization.

To reduce the-this difficulty, the different-provided-examples-various examples provided with PPPY (in the example directo

follow this procedure:

— Modification of the model compilation script and/or Makefile file to include the option to build a position-independent

code, suitable for dynamic linking (“-fPIC” option),
— Normal compilation of the model,

— Use of the different-various object codes and/or static libraries built during the normal compilation step to build a shared

library with the different entry points needed to-use-by the parametrization.

At this stage the remaining difficulty is to identify the different routines that must be called upon to perform the parametriza-

tion initialization and execution.

10

15

20

25

30

2.1.2 The high level part of the parametrization: the PPPY pythonPython object

Once the compilation part is completed, a pythonr-Python object must be created in order to manipulate the compiled library. An
abstract class (PPPY) is provided for this purpose and must be used, by inheritance, to build a class specific to the parametriza-

tion te-use—employed.

The abstract class has

placeholders for the requested standardized methods that-and these must be implemented. In-these-methods;new-variables

Following the order of the execution flow, the first method to adapt is that of initialization. In this method, all the available
options of the scheme are defined and consistency checks can be achieved. Among these options is the time step one (mandatory);
the others being specific to the scheme.

The following method concerns the setup. Here, the computations that need to be done once by simulation are performed.
For example, it could be constant definitions, pre-calculation of lookup tables or files fetching.

The initial state provided at the beginning of a simulation is common to all the parametrizations involved in the comparison.
This state contains all the variables that must be monitored by the scheme although it is common for a given scheme to need
additional prognostic variables. The build_init_state method is the place in which to define and initialize these variables and to
add them to the initial state of the simulation. The output of this step is the first state saved in the output file.

orKelvin—The-execute method is in charge of calling the actual code of the parametrization, making use of the compiled
library. It might be necessary to surround this call with conversions. Indeed, the same quantities must be monitored by al-the
sehemes-every scheme even if, internally, each scheme uses its own set of variables—Cenverstons-to-and-from-these-quantities
are-done-around-the parametrization-ealt; physical conversion (for example changing the temperature variable from potential
temperature to true temperature) may therefore be needed. Moreover, modifications in memory representation may also be
required (all variables are 64-bit in the Python script but can be converted into 32-bit for instance).

This class is then instantiated by providing the required options (time step. options specific to the parametrization).

10

15

20

25

30

2.1.3 Comparison pythen-Python object

The parametrizations, which are instances created from the PPPY class (as stated above), are intended to be used by a pythen
objeetPython object in order to perform a comparison. This comparison object (instantiated from the PPPYComp class, to get
the Comp object of Fig. 4) is characterized by the list of parametrizations to use, the simulation length and the initial state of
the simulations. Fhe-objeetisresponsible-to-run-the-The comparison object is then responsible for the running of the different
parametrizations (isolated from each other), to-compute-diagnosties<(that-the computing of diagnostics (which can be added
by creating a custom comparison class by inheritance) and to-plot-theresults(plotsfor the plotting of the results (plot methods

can also be added).

2.2 Tool functionalities

The-tool-allows-tecompare-PPPY allows the comparison of several parametrizations. The different parametrizations can differ

by-from the underlying code or can differentiate themselves by the choice of the parameters controlling the scheme. The
tool-also-enables-the-comparison between two identical parametrizations using different time steps or different time-advance

methods is also possible. Two time-advance methods exist:
“step-by-step” like a true simulation, the output is computed from the output of the previous time step (Fig. 5).

‘““one-step” the output (at all output times) is computed by a direct integration from the initial state (Fig. 6).

The toolswvas-developed-development was conducted in such a way as to allow the comparison of any parametrizations, ane
not only microphysical schemes. The set of variables fellewed-by-the-toel-monitored is not limited to predefined ones; the user

can add any variable of any dimensions. Moreover the-toel-PPPY is able to use schemes from different models (interfacing
with AROME, Meso-NH and WRF has been done).

Currently-two-Two plot kinds are available-but-othercurrently available but others can be written by extending the tool. Fhe
already-existing-plot-methods-Plot methods already in existance can draw results for 0D and 1D simulations (the problem size
can be reduced -slicing- for plotting :-this-aHows-to-run-the-allowing the running of the simulations once on a variety of initial
conditions and ptet-the-the plotting of the results for only one point or profile). The y-axis is used to represent the variable
intensity of the variables in the OD simulations or the different points ef-in the 1D simulations. The two plot kinds differ in
the x-axis whieh-is-used to represent the time (with different plots superimposed for the different schemes, like-such as in
the examples of Sect. 3.1) or the different schemes (with different plots superimposed for the different output times, tike-in
some-examples-as in Fig. 11 to 13 of Sect. 3.2). In this context, the different schemes can be different parametrizations and/or
a-same-parametrization-the same parametrization but using different options (constants, configuration options or time-step-a
time-step choice); this allows te-perform-the performance of sensitivity tests to one parameter. The figures that-which illustrate

the examples shown in this paper have been directly produced by the toolsoftware.

10

15

State(t=0) dt State(t=1*dt) dt State(t=2*dt) |———>] State(t=n*dt)

Figure 5. Time advance for a step-by-step simulation.

dt

State(t=1*dt)

2*dt

State(t=2*dt)

State(t=0)

State(t=n*dt)

Figure 6. Time advance for a one-step simulation.

3 Application to microphysical parametrizations

The ICE microphysical scheme is divided in-into three parts: a statistical adjustment to the saturation (to balance cloud water
and ice with the vapor, according to the temperature), the core microphysical processes (collections, riming, vapor deposition,
evaporation, . ..) and the sedimentation. Each of these three parts ean-may contain sources of time-step dependency.

The adjustment to saturation modifies the temperature and hence modifies also the saturation point and then the cloud
content. This feedback could be a source of time-step dependency but it was checked (not shown) that the saturation adjustment

used reaches an equilibrium very quickly; the impact of a second iteration can hardly-be-seen-—However;-the-barely be detected.
The cloud ice fraction (which-is-the ice content divided by the total -ice and liquid- content) is-funetion-of-depends on the
temperature (for temperatare-temperatures above 0 °C, the cloud is liquid, for temperatare-temperatures under -20 °C, the
cloud is icy and the cloud ice fraction is linearly interpolated between these two points) and ;-then;-a consumption of one of
these two species in the core microphysical processes implies a consumption of the other speeie-species during the following
saturation adjustment (to keep the cloud ice fraction consistent with the temperature). This mechanism leads to a time-step
dependency.

In this section, two examples of the tool usage are shown. The first one deals with the time-step dependency due to the
processes of the microphysical scheme (without adjustment and without sedimentation) s-ard-in a 0D mode; the second one is
a comparison of several sedimentation schemes, in a 1D mode.

3.1 Time-step dependency in the microphysical scheme

The final goal was to suppress the time-step dependency or-of the simulations shown in Fig. 1. To achieve this result, a new

set of simulations was performed using much smaller time steps (between 0.001 s and 1 s) —Fhe-idea-was-in order to look for a

10

10

15

20

25

30

35

convergence between the simulations when the time step decreases. In Fig. 7, the final values are mueh-far more consistent but

some oscillations are still visible on the time evolutions and values between 40 s and 60 s of integration are still very uncertain.

It was necessary to use very small time steps in order to obtain numerical oscillations smaller than the physical variations.

this-did-netproduce-time-step-dependeney)-and-simulations have been carried out several times activating and deactivating the
different microphysical processes. To do this, the eonversion @ i s ; 5

others.

or-at-leasttimit-The purpose of this paper is not to detail the modifications that were needed to suppress the time-step
dependencyuntil-tim rot-show i o i itti v

11

processes have been called individually by
the PPPY software (when they are written in separate subroutines) or activated through switches or, at worst, (un-)commented
in the source code. This trial-and-error process makes it possible to identify the processes that led to the oscillations and to the
time-step dependeney-on-the-hail-category)—dependency, and allowed the checking of each correction individually from the

Mixing-ratio of hydrometeors Temperature

T T
m—— Jt=0.001s

Schemes (line styles) Parameters (colors)

0.012 H dt=0.001s Vapor H 282+ e dt=0.01s |
i de=0.01s Cloud droplets = == dt=01s
=== dt=0.1s Rain wrer d=10s
=1 w1 dt=1.0s Cloud ice

0.010 ———— t 280} .

\ raupel
0.008 | i . 278} 1
(o)}
~ ¥
2 0.006 E 276 E
0.004 | 1 2741 :
- -.'."L.

0.002 | 1 272} 1

0.000 g M 270

0 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
Time (s) Time (s)

Figure 7. Same as Fig. 1 but using smaller time steps between 0.001 s and 1 s.

5 With the revised version of the microphysical scheme, the different simulations shown in Fig. 7 and Fig. 1 are now perfectly

indistinguishable in Fig. 9 and Fig. 8 (the curves are superimposed at every common output timestime).

10 The OD toel-was—veryusefulto-identify—and—eerrect-simulations were very useful for the identifying and correcting of
the processes involved in the time-step dependency of the ICE microphysical scheme. It would have-been-—certainky-certainly

have been possible to achieve the same result with another method erteel-but-this-methed-but this one was convenient (0D
simulations are very rapid and a unique-single tool performs the simulations, compares the outputs and plots the comparison)

and allowed te-completely—isolate—the-the complete isolation of the processes of interest from the other parts of the model
15 (dynamie-dynamics with transport, other physical parametrizations, sedimentation and adjustment).

12

Mixing-ratio of hydrometeors Temperature

Schemes (line styles) Parameters (colors) m— dt=1.0s
0.012 H dt=1.0s Vapor H 282 frinen de=10.0s |
i dt=10.0s Cloud droplets = = = dt=60.0s
= = = dt=60.0s Rain
Cloud ice
0.010 ———— t 280} .
raupel
0.008 - 278 R
(o)}
kY ¥
2 0.006 E 276 + E
0.004 8 274} ” -
.
*
’
.
.
0.002 | e 272+ . E
R4
K4
.
.
X4
0000 — L 270 L L L L L L L L
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
Time (s) Time (s)
Figure 8. Same as Fig. 1 but using the new version of the microphysical scheme.
Mixing-ratio of hydrometeors Temperature
Schemes (line styles) Parameters (colors) m— dt=0.001s
0.012 | dt=0.001s Vapor . 282} fren dt=0.01s
v dt=0.01s Cloud droplets === dt=0.1s
== dt=0.1s Rain mrer d=10s
=m0 dt=1.0s Cloud ice
0.010 — H 280} 1
raupel
0.008 | - 278+ E
o
~ ¥
2 0.006 | 1 276 1
0.004 | B 274+ =
0.002 - B 272+ g
@ﬁ;
0.000 — 270 I . ! !
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
Time (s) Time (s)

Figure 9. Same as Fig. 7 but using the new version of the microphysical scheme (all four curves are superimposed).

13

10

15

20

25

30

3.2 Sedimentation schemes

A similar time-step sensitivity test is done regarding the sedimentation scheme used in the model (all other parametrizations,
including the microphysical processes, were turned off). Two schemes are available: the operational one (?) (BSB2010 here-
after), which is a statistical scheme and the other ene-which is an Eulerian scheme. In order to remain stable, the Eulerian
scheme uses a time-splitting technique with an upstream differencing scheme. The internal time step' used for this computa-
tion is determined from the Courant-Friedrichs-Lewy (CFL) stability criterion based on a maximum fall velocity of 40 ms~! if
hail is allowed or 10 ms~! otherwise (then, the same internal time step is used for all the species). A-part-Part of the difficulty

ss-is the accurate resolution of the sedimentation process which
comes from the hypothesis that the terminal fall speed is directly linked to the mean content (more-the-contentis-important;

for these schemes

more-thefall-israpidthe more important the content, the more rapid the fall).
A vertical profile was initialized with a rain mixing-ratio of 0.1 gkg~! in one cell at 1400 m above ground level; grid levels

were 10 m thick. In order to build a reference solution independent from the time step, a box-Lagrangian scheme (based on ?)
is used with the one-step time-advance method (see Sect. 2.2 for a description of the time-advance method). Because the model
schemes use a particle size distribution, the first reference simulation we can build is by-dividing-through the dividing of the
total content into bins and apply-the-the application of the sedimentation on each bin (as for ?). The reference time evolution
is then shown in the upper panel of Fig. 10 (this reference is computed using only 25 bins to allow the reader to identify the
trajectories of each bin; when more bins are used the time evolution gets smoother). The bigger drops reach the ground after
around 200 s whereas the smaller ones haven’t-have yet to reach the ground after 1500 s. After 400 s of simulation (dashed
vertical line on the plot), one third of the rain is expected to be on the ground and the remaining part spread in the column.
Hewever-the-model-schemes-The model schemes however compute the mass-weighted bulk terminal fall velocity and apply
this velocity to the entire content. With this hypothesis, the awaited time evolution is giver-provided by the lower panel of Fig.
10. In this case, all the rain content is expected to follow the same trajectory and to be near the ground after 400 s of simulation.
The first reference simulation has a more physical-realistic behavior and is able to reproduce the size-sorting effect but this
result cannot be reached by the one-moment schemes used in this study. Then;-the-The bulk simulation is taken as the reference
simulation with which to compare the model schemes over 400 s long simulations. According to the initial mixing-ratio, to the
parameters used in the sedimentation scheme and to the hypothesis of a mass-weighted bulk terminal fall velocity, the rain is
expected to fall with a 3.3 ms™! speed, leading to a fall of 1320 m during a 400 s period. It should be noted that with a grid
spacing of 10 m, the unit value for the CFL number is reached with a time step of around 3 s.

The top panel of Fig. 11 shows the resulting profile for different time steps (for time steps between 0.1 s to 60 s in steps
of 0.1 s) using the BSB2010 scheme (this is a-not a time evolution, all profiles are the result of a 400 s long integration). The
time-step dependency is ebvious-evident and it must be noted that for time steps longer than 30 s a part of the water has reached
the ground. i i

Ithe term “internal time step” is reserved, in this paper, for the time step used internally in the scheme to perform the time splitting. It is different from the

(external) time step used for the scheme integration

14

10

15

20

25

30

The longer the time step ;—more-the-bottom-of-the-precipitation-envelope

The BSB2010 scheme behaves differently regarding the CFL number —The-artifact-with varying upward and downward
diffusions and a singularity point for the unit value, The artifacts seen in the figure iHustrates-illustrate the shortcoming of the
scheme but eannot-be-so-impeortant-can not be as large in a true model simulation. In a real case with advection, non-constant

grid spacing and microphysical sources and sinks, it-is-net-pessible-to-keep-the-CELnumber-constant-and-equal-to-one-during

the-entire faltthe CFL value is not constant and each column of the model is a mixture of these different behaviors.

15

10

15

20

25

30

35

For the Eulerian scheme (lower panel of Fig. 11), the time-splitting technique used with a very small internal time step of
0.25 s (value obtained considering a maximum fall speed of 40 ms~1) leads to de-approximately the same computation what-
ever is-the time step of the simulation --greater than this value. Fherefore-there-is-There is therefore no time-step dependency
in the result. However;-the-The very small internal time step induces however, as for the BSB2010 scheme with small values
of the CFL number, an upward diffusion and a reduced fall speed. Moreover—theEulerian-sechemeThe Eulerian scheme, in

AARARAASAARIIAIIRIRAANA

addition, has an increased numerical cost due to the very small internal time step used.
Nene-of-both-Neither of these two schemes is correct; both diffuse the precipitation and have a-too-smah-too small a fall
speed. MoreoverAdditionally, the BSB2010 scheme exhibits a time-step dependency whereas the Eulerian scheme is costly.

A compromise can be found by opti-

mizing the Eulerian scheme in order to obtain a scheme without time-step dependency and with a reasonable cost. The-idea-is

to-netuse-a-fixed-value for-the-internal-time-step-—In the optimized version, at each iteration in the time splitting, the maximum
time of 1ntegrat10n is computed from the maximum CFL number on each column and for each speete—ff—heﬂﬂ{egfaﬁetﬂ&deﬂe

species instead of using a constant (in space and time) value.
The result is shown in Fig. 12 for different values of maximum CFL number allowed. The-top-panel-is-ebtained-with-With

a maximum CFL number of one —Thei(/tvo\pvggggl)%tb/e time-step dependency is quite largebeeause—fefﬂﬁegef%mmbef&

m%%%ﬁﬂmm%&%%ﬁ%ﬁ%&%{%%%panel in the middleis
obtained-with-a-maximum-CEEnumber-vatue-of-0-1-—The-), the resulting figure is almost identical to the one-obtained-in-Fig.

11for-which-the-small-internal- time step-induced-asmall-CFEnumber. The lower panel is for a larger maximum CFL number

(0.8). For small time steps inducing a CFL number inferior to this maximum value, a time-step dependency can be seen —Fer

but for large time-step values, the computation leads to the same results whatever is-the time step beeausein-this-easethe

~is. In contrast with the original

16

10

15

20

25

30

versiono , this last case is less
diffusive and are-is able to reproduce a peak value (in the bottom of the precipitation envelope). The resulting fall speed is still
reduced (after the 400 s integration duration, all the water content should be near the ground according to the hypothesisdone)
but slightly better than those produced by the other versions of the Eulerian scheme.

In order to test further the impact of the algorithm on the sedimentation results, the box-Lagrangian scheme (used previously
to build the reference results) is used in a simulation mode (using the step-by-step time-advance method). Fep-The top panel

of Fig. 13 shows the resulting profiles after the 400 s long simulation using the bulk approach. The result is noisy, time-step

dependent and there is still no rain on the ground. The noise could be-eertaintyreduee-certainly be reduced by imposing a speed
continuity between the different layers of the model (following the idea of ? for example)but-thissimulation-demenstrates-that

The box- Lagranglan %MWW%WWW At each time step, the content is divided
in-bins;then-into bins, each bin falls using the box-Lagrangian scheme —At-and, at the end of the time step, the total content
at each model layer is computed and used by the following iteration. The simulations are done using 500 bins (lower panel
of Fig. 13). This scheme allows te-makefall-the bigger drops guickerto fall more quickly. While this approach reduces the
noise, some time-step-time-step dependency remains and the scheme is still not able to make fall-the-precipitation-quiek-the
precipitation fall quickly enough to reproduce the reference simulation (and-thisseheme-this scheme also does not fulfill the
requirement of a mass-weighted bulk terminal fall velocity used to build the reference). Nevertheless—t-It should be noted
nevertheless that this result is quite similar to the result obtained with the new version of the Eulerian scheme (lower panel of

Fig. 12).

On one hand, the algorithm choice eould-may well be important because this-cheiee-the selection modifies the effective fall

speed and the relative position of precipitation on ground with respect to the cloud which generated it, through the horizontal
advection. But-or-On the other hand, none of the schemes tested in this study is-are able to reproduce the reference simulation
—Moreoverdue to the diffusion appearing during the fall which leads in turn to a reduced speed. Additionally, with the mixing
induced by the dynamic and the turbulence, and with the interaction with the other microphysical processes, this choice has
little impact on the resulting simulation of a real 3D case (not shown). It is believed that no scheme could perform drastically

better with the one-moment hypothesis.

17

10

1400 [T ; T T T T T] 0.0050

12001 ! | 0.0045

. 0.0040

E 1000}] 0.0035

L 800} . 0.0030

_43 600 | | 0.0025
)

< 400l | 0.0020

. 0.0015

200 . - 0.0010

S > ' ‘ 0.0001

0 600 800 1000 1200 1400

1400 T i T T T T T] 0.0050

1200 :] 0.0045

. . 0.0040

£ 1000 | 1 0.0035

L 800 ! . 0.0030

_E 600 | | 0.0025

= | | 0.0020

400 : 0.0015

200 |] 0.0010

I | 1 1 1 1 1 00001

0 200 400 600 800 1000 1200 1400
Time (s)

Figure 10. Time evolution of the vertical profile of rain mixing-ratio (the color scale represents the mixing-ratio in gkg™') for a bin box-

Lagrangian scheme (upper panel) and a bulk box-Lagrangian scheme (lower panel).

Tnthefuturesthis-As from the conclusions of ?, one can expect better behavior from two-moment schemes. This study could

be extended in the future to the two-moment sedimentation scheme used by LIMA.

This section illustrated how PPPY can be used to compare and exhibit the main behaviors of different 1D sedimentation
schemes written in Fortran and Python using different time-advance methods.

4 Conclusions

In this paper, a new tool-software designed to allow the comparison of Physical Parametrizations with PYthon (PPPY) inde-

pendently of all other model components was described technically and functionally. Its ability to use EORTRAN-compiled

Fortran-compiled library from different models, as well as python-based-parametrizationsPython based parametrizations, has
been shown and used through two examples. The-tool-It has been successfully used (in a 0D mode) to identify the sources of

the time-step dependency which was present in the microphysical scheme in use in the AROME and Meso-NH models. Some

18

1400 0.0050
1200 0.0045
_ 0.0040
é 1000 0.0035
% 800 0.0030
% 600 0.0025
2 200 0.0020
0.0015
200 0.0010
0.0001
1400 0.0050
1200 0.0045
—_ 0.0040
é 1000 0.0035
% 800 0.0030
_.a 600 | i 0.0025
]
= 0.0020
< n .
400 0.0015
200 - 1 0.0010
L ' L L . 0.0001

10 20 30 40 50 60
Time-step length (s)

Figure 11. Vertical profile of the rain mixing-ratio (the color scale represents the mixing-ratio in g kg™') after a 400 s long integration for
different time steps (the time step varies between 0.1 s and 60 s with a 0.1 s step leading to 600 different simulations, abscissa) for the

BSB2010 scheme (upper panel) and the Eulerian scheme as available in the operational source code (lower panel).

solutions have been proposed to correct the scheme and have been tested with the-took—Thens-the-it. The sedimentation schemes

have then been plugged and compared (in a 1D mode) to a reference box-Lagrangian scheme. These two examples have shown

that it would be beneficial to use this kind of tool systematically when developing a parametrization in order to perform simple

tests providing a first validation step (mass conservation, time-step dependency, absence of oscillations), before geing-through
5 undergoing more complex validation stages (1D model, full simulations).

In addition to the ICE scheme, the LIMA microphysical scheme and some of the WRF microphysical schemes have been
pluggedinto-the-teol—Then;it- It could now be used to compare microphysical schemes originally hosted by different models
(AROME, Meso-NH and WRF). In order to compare themthese, it will be necessary to work on the initialization of the different
schemes to instire-ensure that the results can aetualty-in fact be compared. Moreoverln addition, it will be necessary to define

10 asuitable time step for each scheme to-compare-for comparisons because of the time-step dependency present in the different

19

1400 | ' ' ' ' ' i 0.0050
1200 | 0.0045
—_ 0.0040
g 1000 0.0035
% 800 0.0030
_.a 600 0.0025
E 0.0020
< o
400 0.0015
200 0.0010
0.0001
1400 0.0050
1200 0.0045
— 0.0040
§, 1000 0.0035
% 800 0.0030
__.::,’ 600 0.0025
= 0.0020
<
400 0.0015
200 0.0010
0.0001
1400 0.0050
1200 0.0045
— 0.0040
g 1000 0.0035
% 800 0.0030
_..::,’ 600 0.0025
= 0.0020
<
400 0.0015
200 0.0010
' ' ' ' ' 0.0001

10 20 30 40 50 60
Time-step length (s)

Figure 12. Same as Fig. 11 but for the modified version of the Eulerian scheme using different maximum values for the CFL number (1.0,

0.1 and 0.8 from top to bottom). The color scale represents the mixing-ratio in gkg ™ *.

schemes (a way to suppress it would be to select, for each scheme, the greater time step which allows the convergence towards

the solution given by smaller time steps).

20

1400 ' ' ‘ ’ '] 0.0050
1200 | 0.0045
_ 0.0040
é 1000 0.0035
% 800 0.0030
% 600 0.0025
2 o0l 0.0020
0.0015
200 - 0.0010
0.0001
1400 | ' ' '] 0.0050
1200l | 0.0045
—_ 0.0040
é 1000 0.0035
% 800 0.0030
_.a 600 i 0.0025
]
£ e ———————— 0.0020
400 0.0015
200 - 1 0.0010
L ' L L . 0.0001

10 20 30 40 50 60
Time-step length (s)

Figure 13. Same as Fig. 11 but for the box-Lagrangian scheme using the bulk approach (upper panel) and an hybrid approach (lower panel).

The color scale represents the mixing-ratio in g kg ™.

The-toolPPPY is not limited to microphysical schemes and, in the future, it could also be used to compare other parametriza-

tions tike-such as mass flux or turbulence schemes.

Code availability. PPPY is freely available under CeCILL-C license agreement (a French equivalent to the L-GPL license; http://www.cecill.info/licences/
C_Vl-en.txt). PPPY vl1.1 can be downloaded at https://doi.org/10.5281/zenodo.3490380.

21

10

15

20

25

30

Appendix A: Simple example

Several examples of PPPY usage are provided with the software. Among them, a special example is intended to show how the
different Python objects interact with each other and with the Fortran code; this is the test example which can be found in the
examples/test directory of PPPY. This example is used in this appendix to illustrate the different steps needed to perform

Al Compilation

Let’s assume that the following code is put inside a file named param.F 90 and represents a model parametrization that we
want to use with PPPY:

SUBROUTINE PARAMI (X, Y)
IMPLICIT NONE

REAL (KIND=8), INTENT (IN), DIMENSION(:, :) :: X
REAL (KIND=8), INTENT (OUT), DIMENSION(:, :) :: Y
Y=X+1

END SUBROUTINE PARAMI

It is suggested that the compilation procedure of the model be employed. One must therefore ensure that the normal
compilation of the model builds a position-independent code, suitable for dynamic linking (-fPTC option). If not, the Makefile
or the compilation script of the model must be updated to include such an option.

To use ctypesForFortran, a wrapper must be written to hide certain characteristics. The exposed dummy arguments:

— must not be of assumed shape or assumed rank (including string length) type;
— must not be optional;
— of Boolean type must be one-byte long,

In the test example, a wrapper (written in a file named param_py .F90) is needed to hide the assumed shape characteristic:

SUBROUTINE PARAM1_PY (X, Y, Il1l, I2)
IMPLICIT NONE
INTERFACE
SUBROUTINE PARAMI (X, Y)
REAL (KIND=8), DIMENSION(:,:), INTENT (IN) :: X
REAL (KIND=8), DIMENSION(:,:), INTENT(OUT) :: Y
END SUBROUTINE PARAMI

22

10

15

20

25

30

END INTERFACE

INTEGER (KIND=8), INTENT (IN) :: I1, I2
REAL (KIND=8), INTENT (IN), DIMENSION(I1, I2) :: X
REAL (KIND=8), INTENT (OUT), DIMENSION(I1, I2) :: Y

CALL PARAMI (X, Y)
END SUBROUTINE PARAMI_PY

When it is possible, it is suggested that this wrapper be included in the source code of the model in order to benefit from
the Makefile or compilation script. If this proves impossible, the wrapper must be compiled outside the model environment but
one must use the same compilation options for the wrapper as those used for the model.

Often, a parametrization must be initialized by calling a specific subroutine (in particular to set up constant values). In this
example, this step is achieved by calling the following subroutine (which is also included in the param_py . F90 file and does
not need to be wrapped):

SUBROUTINE INIT (ICONF)

IMPLICIT NONE

INTEGER (KIND=8), INTENT (IN) :: ICONF
END SUBROUTINE INIT

In addition, the example includes a PARAMZ subroutine (copy of PARAMI except that 7 is X +.9) and an associated
PARAMZ2_PY subroutine.

It is then supposed that a normal model compilation produces the compiled version of all these subroutines. In the example,
the compilation is obtained (using gfortran) by the following command lines: gfortran -c¢ —fPIC param.F90 and

gfortran -c —-fPIC param_py.F90.

The last step of the compilation process is to build a shared library with PARAM1_PY, PARAM2_PY and TNTT as entry
points. This can be done through adding a compilation target in the model Makefile or compilation script, or by performing.
amanual build. In the example, the command line gfortran -shared -g -o param.so param py.o param.o
produces the param. so file.

A2 The parametrization from the Python point of view

To use the previously build shared library from Python using the ctypesForFortran module, the following code is needed:

import ctypesForFortran

IN = ctypesForFortran.IN

OUT = ctypesForFortran.OUT
INOUT = ctypesForFortran.INOUT

23

ctypesFF, handle = ctypesForFortran.ctypesForFortranFactory (’./param.so’)

@ctypesFF ()
def init (ICONF): #Name of the function must be the name of the actual fortran function
5 "init function"
return ([ICONF],
[(numpy.int64, None, IN), #INTEGER, INTENT (IN)
1y

None)
10
@ctypesFF ()
def paraml_py(x):
"Function that actually call the parameterisation"
return ([x, x.shape[0], x.shapelll]],
15 [(numpy.float64, x.shape, IN),

(numpy.float64, x.shape, OUT),
(numpy.int64, None, IN),
(numpy.int64, None, IN)

], None)

20 In this example, one of the Fortran subroutines is named TNTT (case insensitive). By default, it is supposed that the compiled
object’s name is the Fortran subroutine name (lowercase) with a trailing underscore (init_ in this example)). If this is not the
case (because of a different compiler behaviour or a Fortran module use), a different prefix and/or suffix can be set in argument
of the ctypesFF function of the example to obtain a decorator able to find and call the Fortran code.

The Python function must return three elements:

25 — the list of the values expected in input by the Fortran subroutine;
— the list of the dummy arguments of the Fortran subroutine;
— the type of the returned value for a Fortran function (None for a subroutine).

Each dummy aregument is described by a tuple: type of the arcument expressed as a numpy type, shape (or None for a scalar) of
the argument and input/output status. More examples are available inside the ctypesForFortran module source code. It should
30 Dbe noted that this part can be replaced by the use of other interfacing method such as f2py.

To use the parametrization with PPPY, a Python class must be written (see the pppy_paraml . py file of the example for
a complete implementation) by inheritance: class pppy_paraml (pppy.PPPY) :, The class contains a __call__ method

which calls the different methods in this order: setup, build_init_state, execute (which is called in a loop) and lastly finalize.

24

10

15

20

25

30

The methods that can or must be implemented to represent a parametrization are described below (only the execute method is
mandatory):

— __init__: This method can be implemented to deal with the possible parametrization options.

— setup: This method does the initialization part that cannot be done earlier (in the __init_ _ method) or needs to be
done again before each of the simulations. In the various provided examples, this is the place where the shared library.
is opened, where signatures of Fortran routines are defined and where the initialization of the Fortran modules are
performed.

— finalize: This method can be useful for cleaning the memory or disk after running a simulation.

— build_init_state: When performing a comparison, each of the parametrizations is called with the same initial state. This
method is the place at which to add state or diagnostic variables specific to the parametrization.

— execute: This method calls the parametrization to perform a time advance.

More details about these methods are given in the PPPY documentation.
A3 Comparison

The comparison is performed by the comp_test .py file.

Firstly, the parametrizations must be defined by choosing the time step (dt argument), the time-advance method (method)
the names (the name argument is used for the plot labels and the tag one for building file names) and the possible options (solib
and iconf here). For the example described here, this is done by the following lines:

param_1 = pppy_paraml (dt=60., #time step to use with this parametrization
method='step-by-step’, #like a true simulation
name="Param #1", #name to use for plots
tag="param_ 1", #tag to use for file names
solib=solib, #1lst pppy_paraml option: shared 1lib file name

iconf=iconf) #2nd pppy_paraml option: configuration

Several parametrizations can be defined by changing the time step, the time-advance method or the options, using the same
source code or not.

The comparison is defined and the simulations are performed by:

comp = PPPYComp (schemes=[param_1, param_2], #List of parametrizations to compare
output_dir=output_dir, #directory to store the results (hdf5 files)
duration=180., #duration of simulation

init_state=dict (x=numpy.array([0.])), #initial state

25

name="First test", #name to use in plots
tag="firstTest") #tag to use for file names

comp.run ()

A simple plot is obtained with:

plot = ('evol’, #time evolution
dict (var_names=[’'x"])) #of variable x
fig, plots = comp.plot_multi((l, 1), #only one plot
[plot])
plt.show ()

Appendix B: Main modifications needed to suppress the time-step dependency in the ICE scheme

The most important modifications that were needed to suppress the time-step dependency in the ICE scheme are listed above:

— heat budgets must be computed when the feedback on temperature can stop the process. For example, when the temperature
budgets explain a large part of the time-step dependency observed with the simulations using the small time steps (shown

- in the original version of ICE, the snow content rimed by cloud droplets (to produce graupel) was computed as an
adjustment; the process provided the mass of snow to convert into graupel and this mass was then divided by the time step.
The mass of transformed snow did not take into account the quantity of cloud water involved. These two characteristics
were at the origin of a time-step dependency. The process was modified using the ? approach based on the comparison
between the effective cloud droplets collection and the mass of water needed to transform low density snow into high
density graupel;

— the graupel growths mainly by collecting other species. When this collection implies liquid species (rain and/or cloud),
there are two possibilities (called growth mode) depending on a heat balance: the graupel is able to freeze the entire
collected liquid (dry mode) or a thin liquid film appears at the graupel surface (wet mode). In the original version of the
ICE scheme there was confusion between the maximum content of liquid water than can be frozen (which must be used
in the heat balance) and the content of liquid and ice water that can be collected in wet growth mode (which must be
used to compute the graupel tendency). The correction made the mode choice more continuous. And because, ultimately,
the graupel growth mode has an impact on the collection efficiency of icy species (snow and cloud ice) with the graupel,
this choice can lead to significant differences in the collection rates. Hence, the scheme including the correction is less
time-step dependent;

26

10

15

20

25

30

— the water shedding (cloud droplets becoming rain drops when collected and not frozen by the graupel) was activated
only with negative temperature whereas the process must be active as long as the graupel exists (when the graupel has
melted into rain, rain drops actually collect cloud droplets; the process must be continuous during graupel melting);

- several modifications have been carried out on the processes involving the hail category as a prognostic field: the
processes dealing with hail are now completely symmetric with those dealing with the graupel category (to ensure
consistency even if this did not produce time-step dependency). A conversion fraction is computed from the heat balance
used to choose the graupel growth mode. In the original version of the scheme, this fraction was applied on the total
content of graupel; this induced a conversion tendency directly linked to the number of times the rate is applied (hence to
the time step for a given simulation length). On the contrary, in the new version, the conversion fraction is applied on the
wet growth rate, this way, no time-step dependency is produced. This was the main reason for the time-step dependency
on the hail category.

The modifications listed above aim at suppressing the time-step dependency present inside each of the microphysical
processes. These modifications were sufficient to suppress or, at least, limit the dependency until time steps around 10 s
(not shown). For greater time steps, each process must take into account that a given species can be consumed or produced,
at the same time, by another process and that, therefore, this affects its efficiency. To address this issue, some kind of splitting
was needed to reduce the effective time step used in the microphysical scheme.

The modified scheme allows two splitting methods: a classical time-splitting method that uses a fixed sub-time-step and a
“mixing-ratio-splitting” method that computes, at each iteration, the sub-time-step to use in order not to have a single mixing
ratio change exceeding a given threshold. The second method has the advantage of adapting the number of iterations to the
intensity of the microphysical processes. When little happens, only one iteration is performed; on the contrary, when the
exchanges are intense, several iterations are performed.

.9 and Fi kg~!) was small and would induce

a substantial additional cost on a real simulation. This value was chosen to illustrate the scheme behavior but a value of
0.05 gkg™" seems to be more acceptable (empirical value obtained in comparing cost and time-step dependency in a 2D
simulation) for operations. The iterations needed for the 0.05 gkg ™" threshold induce a cost increase of about 5%. and for the
0.01 gkg™" threshold an additional 20% can be expected (this last figure is an estimation because no sensitivity test, regarding.
this threshold, has been performed on the whole domain used for operations).

To produce Fi . 8, the threshold used in the mixin

Competing interests. The author declares that he has no conflict of interest.

Acknowledgements. 1whieh-wish to thank B. Vi€ for having plugged the LIMA scheme into the-toolPPPY, and the trainee team which werk
worked on the WRF plugging: A. Riandet, L. Richecoeur and M.-L. Roussel. I also thank C. Lac and B. Vi¢ for their helpful comments on

the manuscript.

27

