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Abstract. Climate simulations with more accurate process-level representation at finer resolutions (< 100 km) is a pressing 

need in order to provide more detailed actionable information to policy-makers regarding extreme events in a changing 

climate. Computational limitation is a major obstacle for building, and running high-resolution (HR, here 0.25o average grid 15 

spacing at the equator) models (HRM). A more affordable path to HRM is to use a global regionally refined model (RRM), 

which only simulates a portion of the globe at HR while the remaining is at low-resolution (LR, 1o). In this study, we 

compare the Energy Exascale Earth System Model (E3SM) atmosphere model version 1 (EAMv1) RRM with the HR mesh 

over the contiguous United States (CONUS) to its corresponding globally uniform LR and HR configurations, as well as to 

observations and reanalysis data. The RRM has a significantly reduced computational cost (roughly proportional to the HR 20 

mesh size) relative to the globally uniform HRM. Over the CONUS, we evaluate the simulation of important dynamical and 

physical quantities as well as various precipitation measures. Differences between the RRM and HRM over the HR region 

are predominantly small, demonstrating that the RRM reproduces the precipitation metrics of the HRM over the CONUS. 

Further analysis based on RRM simulations with the LR vs. HR model parameters reveals that RRM performance is greatly 

influenced by the different parameter choices used in the LR and HR EAMv1. This is a result of the poor scale-aware 25 

behaviour of physical parameterizations, especially for variables influencing sub-grid scale physical processes. RRM can 

serve as a useful framework to test physics schemes across a range of scales, leading to improved consistency in future 

E3SM versions. Applying nudging-to-observations techniques within the RRM framework also demonstrates significant 

advantages over a free-running configuration for use as a testbed, and as such represents an efficient and more robust physics 

testbed capability. Our results provide additional confirmatory evidence that the RRM is an efficient and effective testbed for 30 

HRM development. 
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1 Introduction 

A key goal of the United States (US) Department of Energy (DOE) Energy Exascale Earth System Model (E3SM) project 

(formally known as the Accelerated Climate Modeling for Energy (ACME)) is to develop a high-resolution (HR, 0.25o or 

finer in the horizontal) fully-coupled Earth system model for climate simulation and prediction (Bader et al., 2014). Testing 

new physical parameterizations and tuning loosely constrained parameters within existing parameterizations are important 5 

steps of model development. However, the computational cost of running a globally uniform HR model (HRM) is high. For 

example, a one-year 0.25o HR E3SM Atmosphere Model Version 1 (EAMv1) simulation requires 0.6 million core-hours on 

675 "Knights Landing" (KNL, Intel Xeon Phi Processor 7250) nodes of the Cori supercomputer at the National Energy 

Research Scientific Computing Center (NERSC). A regionally refined model (RRM) capability (Ringler et al., 2008; 

Zarzycki and Jablonowski, 2014; Roesler et al., 2018), which only simulates a fraction of the globe at HR, is adopted by 10 

EAMv1 to reduce the computational cost of HR simulations and to examine the parameterization sensitivity to HR scales. 

The RRM simulation cost is usually dominated by the computational cost of the HR region, and thus the total model cost is 

roughly proportional to the size of the region with finer resolution, referred to as a “mesh” (typically chosen to be about 10% 

of the globe, making the cost about 10% of a uniform HRM simulation). In the ongoing E3SM phase II project, the RRM 

configuration is planned as a central tool to achieve the E3SMv2 science goal of understanding the relative impacts of global 15 

forcing versus regional influences of human activities on flood and drought in North America. RRM will be routinely used 

over North America to address DOE’s goal to understand the Earth system changes affecting US energy-sector decisions. It 

will be also applied as a physics testbed to improve the scale-awareness of parameterizations in upcoming versions of 

E3SMv2 and v3 as well as an important strategy to perform larger ensemble of HR simulations. RRM is also a vital 

capability for progress towards an eventual global cloud-resolving model with 3 km horizontal grid spacing targeting 20 

E3SMv4 and beyond. 

 

The RRM approach has been established and validated with other models over many regions of interest. For instance, 

Zarzycki et al. (2014) showed the effectiveness of an RRM with aquaplanet experiments using the Community Atmosphere 

Model (CAM). Zarzycki and Jablonowski (2014, 2015) demonstrated improved skill in simulating tropical cyclones in CAM 25 

with a refined mesh over the North Atlantic. Rhoades et al. (2016) and Wu et al. (2017) depicted that the variable-resolution 

(VR) Community Earth System Model (CESM) was able to accurately capture the climatology and seasonality of important 

variables over mountain regions. Huang and Ullrich (2017) reproduced the geographic patterns of historical precipitation 

climatology over the western US with the VR-CESM. Gettelman et al. (2018) performed comprehensive tests of a VR 

dynamical core in CESM2 and showed that VR grids were feasible alternative to conventional nesting for regional climate 30 

research. Roesler et al. (2018) found that refining the grid over the contiguous United States (CONUS) did not exert a 

noticeable influence on the global circulation in the EAM version 0 (EAMv0, which is almost identical to CAM5.3 except 
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for some minor tunings and bug fixes). These earlier studies have demonstrated that RRM can be used as an effective tool to 

study important climate features over regions of interest with high resolution. 

 

Compared to EAMv0, EAMv1 (Rasch et al., 2019) includes significant changes to its physics, substantially increased 

vertical resolution, retuning, and bug fixes (Zhang et al., 2018). All these changes cause the model to behave very differently 5 

from EAMv0, especially in terms of regional clouds and precipitation characteristics (Xie et al., 2018). Given these 

substantial model changes and the critical role that RRM will play in future E3SM scientific applications, this paper 

documents further scientific analysis of RRM behaviour with EAMv1. We contrast simulations between the RRM and the 

globally uniform HR EAMv1 over the RRM region, with the goal to provide more insights into the EAMv1 RRM capability 

to the user community. This study emphasizes hydrology-related simulation skill over North America: a key element of the 10 

E3SM Water Cycle science driver. We investigate whether RRM reproduces the same performance as HRM of these fields 

enabling it to be used as an effective physics testbed for understanding physical processes and improving their 

representations in EAMv1 and in future versions. In addition, EAMv1 physical parameterizations (and in particular the cloud 

parameterizations) are not inherently scale-aware and hence require retuning when increasing model horizontal or vertical 

resolution. Unfortunately, this leads to two different parameter settings for EAMv1 high- and low-resolution models. It is 15 

key to determine how the two different parameter settings influence RRM performance, since most earlier studies just used 

the established low-resolution model parameters over the RRM domain, which may not yield optimal RRM results due to 

scale-aware shortcomings of the existing physical schemes. 

 

This study centres mainly on “proof-of-concept” examples. More in-depth analysis of RRM behaviour will be reported in 20 

separate studies when RRM is more routinely used in E3SM phase II and by general users. In many EAMv1 application 

scenarios, it is expected that the RRM will be more feasible and practical than the HRM. This could include evaluation 

against regional measurements, uncertainty quantification studies that typically demand a large ensemble size (Qian et al., 

2016, 2018), and users with limited computational resource. Findings from this study regarding the strengths and weaknesses 

of the EAMv1 RRM configuration should provide valuable guidance for future RRM applications in the HR E3SM 25 

development and broad community use of the E3SM RRM. 

 

Additionally, we provide detailed information on how to utilize the RRM capability with nudging for process-level 

understanding of model deficiencies. Similar to the hindcast approach (Phillips et al., 2004; Ma et al., 2015) used in climate 

model evaluation, the nudging approach is able to maintain the large-scale dynamical state close to an observed state, and 30 

hence provides a better assessment of atmospheric physics performance. This nudged approach is particularly useful for 

those processes that are related to fast physics. Xie et al. (2012) and Ma et al. (2014) demonstrated a strong correspondence 

between short (a few days) and long (seasonal to annual) timescale systematic errors in climate models for fields related to 

fast physics, such as clouds and precipitation. 
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This paper is organized as follows. Section 2 provides an overview of the RRM EAMv1 and summarizes the setup of 

simulations and the observational datasets used for model evaluation. Results are shown in Section 3, including model 

climatologies over the CONUS domain where our RRM has its fine-resolution mesh, the analysis of quantities related to 

hydrological cycle, and an in-depth analysis of precipitation characteristics – the large-scale/convective partitioning, the 5 

intensity distribution, and the summertime diurnal cycle. Section 4 describes an example of running the nudged RRM. 

Section 5 provides a summary of this work and prospects for future studies. 

2 Methodology 

2.1 Model overview and experiment design 

The E3SM project aims to build a global HR fully-coupled Earth system model for climate simulation and prediction on 10 

current and next-generation supercomputing facilities (Bader et al., 2014). Since all the simulations analysed here are 

atmosphere-only ones, we only provide information about the atmosphere model. Details about the coupled E3SM model 

can be found in (Golaz et al., 2019). EAMv1 originated from CAM5.3 (Neale et al., 2012), but has undergone substantial 

development. An overview of EAMv1 is given by Rasch et al. (2019). More details on the simulated cloud and precipitation 

characteristics and overview of the low- and high-resolution model tunings are provided in Xie et al. (2018). EAMv1 uses 15 

the spectral element dynamical core (Taylor and Fournier, 2010; Dennis et al., 2012) on a cubed-sphere computation grid 

with an explicit Runge-Kutta time integration scheme. This dynamical core has sustained scalability with increasing number 

of elements and processors (Fournier et al., 2004). Major changes in EAMv1 compared to its earlier version include 

substantially increased vertical resolution (72 vs. 30 vertical layers), a higher (~0.1 hPa compared to 2 hPa) model top, and 

improved physical parameterizations including the Cloud Layers Unified By Binormals (CLUBB) scheme (Golaz et al., 20 

2002; Bogenschutz et al., 2013), updated cloud microphysics (MG2) (Gettelman and Morrison, 2015), predicted aerosols 

(the Modal Aerosol Module (MAM4)) (Liu et al., 2016), and a linearized ozone chemistry (Linoz2) (Hsu and Prather, 2009). 

Impacts of the new cloud physics and the increase in vertical resolution on EAMv1 simulated climate are documented in Xie 

et al. (2018) and Qian et al. (2018). In the present paper, we focus on the EAMv1 regionally refined testbed capability over 

the CONUS domain. 25 

 

The CONUS regionally refined grids consist of LR and HR regions and a transition area between them (see Fig. 1a). The HR 

grid is located in the CONUS area. We created the regionally refined grid with the offline software tool, Spherical 

Quadrilateral Grid Generator (SQuadGen, https://github.com/ClimateGlobalChange/squadgen). The effective resolutions for 

the LR and HR regions are 1o and 0.25o, respectively. Because of the horizontal resolution differences in the LRM, the 30 

HRM, and the RRM, the topography is represented differently in these configurations. We used a new tensor hyperviscosity 

formulation (Guba et al., 2014) to eliminate numerical noise and oscillations. Additional details about the CONUS RRM as 
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well as the topography data are reported in Roesler et al. (2018). It is worth mentioning that the RRM grids have also being 

generated and tested over the Tropical Western Pacific (TWP) and the Eastern North Atlantic (ENA). 

 

In the present study, we mainly analyse the atmosphere-only simulations (see Table 1 and A1) forced by observed present-

day climatologies of aerosol emissions, greenhouse gases, sea surface temperatures (SSTs) and sea ice concentrations. The 5 

simulations use an interactive E3SM land model on the same grids as the atmosphere. We run the EAMv1 with globally-

uniform LR and HR grids as well as the CONUS RRM grid. All simulations are performed with the 72 vertical layers. Since 

the EAMv1 parameterizations are not scale-aware, both dynamical and physical parameters are adjusted to optimize the 

model performance at different resolutions (Xie et al., 2018). This leads to different parameter settings for the EAMv1 LRM 

and HRM. As shown in Table A1 of Xie et al. (2018), the differences are mainly in parameters that control convection and 10 

cloud microphysics. Thus, differences between LRM and HRM analysed in the following sections arise from different 

horizontal resolutions and parameter settings, as well as the different physics time steps. The LRM and HRM physics time 

steps are 30 minutes and 15 minutes, respectively. The dynamics use 3 layers of substepping. For the LRM (HRM), the 

Lagrangian vertical discretization timestep is 15 minutes (2.5 minutes), the horizontal discretization timestep is 5 minutes 

(75 seconds), and the explicit numerical diffusion timestep is 100 seconds (18.75 seconds). The RRM uses the same 15 

dynamics time steps over the LR and HR domains. For the purpose of mimicking the HRM behaviours, we opt to use the 

same dynamical and physical parameters and time step for the RRM control simulation as in the HRM. Besides the RRM 

control case, we also perform an RRM test (RRM_LR) with the LRM dynamical and physical parameters. Comparing these 

two RRM results, we are able to explore the impact of different parameter settings on the RRM performance, which is not 

possible for conventional RRM studies with only the LR parameters. 20 

 

Current climate models commonly suffer from systematic biases in simulating climate mean states of clouds and 

precipitation associated with flaws in physical parameterizations (e.g., Klein et al., 2013; Ma et al., 2014). However, 

compensating errors from nonlinear feedback mechanisms also contribute to climate mean biases, making it a challenge to 

pin the errors to specific parameterizations. The numerical weather prediction technique (Phillips et al., 2004), also known as 25 

the transpose-AMIP (Williamson, 2013) or hindcast (Ma et al., 2015) approach, has been increasingly used in climate 

models, including EAMv1, to understand and reduce model errors associated with fast atmospheric physical processes. 

Similar to the hindcast method, the EAMv1 RRM can be run in a nudging configuration to diagnose parameterization-related 

errors and helping to guide development in HR E3SM. More guidance on using the nudged RRM approach will be discussed 

in Section 4. 30 

 

To demonstrate the nudging capability, we perform an RRM simulation nudged to the European Centre for Medium-range 

Weather Forecasting Interim (ERAI) analysis fields of horizontal velocities (U and V) (Dee et al., 2011) with a 6-hour 

relaxation time scale. The nudged simulation uses the prescribed weekly, 1o spatial resolution SSTs and sea ice from the 
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National Oceanic and Atmospheric Administration Optimum Interpolation analysis data (Reynolds et al., 2002). In addition, 

we conduct a LR atmosphere-only simulation with time-evolving forcings (i.e., AMIP-style) to compare with the nudging 

simulation. Output from the Cloud Feedback Model Intercomparison Project Observation Simulator Package (COSP) 

(Bodas-Salcedo et al., 2011) is used to compare with cloud observations from satellites (Zhang et al., 2019). All free-running 

simulations are run for a period of 5 years. The first year is considered as spin-up, thus we study the results from the last 4 5 

years. The nudging run simulates year 2011, whereas the AMIP results are extracted for year 2011 from a long simulation 

starting from 1870 (Golaz et al., 2019). Model output is stored as monthly and hourly averages. 

2.2 Evaluation datasets 

Skilful depictions of the large-scale circulation and sub-grid scale physics are essential for more realistic model simulations 

of the atmospheric hydrological cycle. We choose evaluation variables to cover both aspects. Evaluation datasets are 10 

summarized in Table 2. Meteorological fields, such as geopotential height, surface pressure, winds, temperature, relative 

humidity, and precipitable water are from the ERAI reanalysis product (Dee et al., 2011). Seasonal precipitation climatology 

estimations are based on the Global Precipitation Climatology Project (GPCP) (Huffman et al., 2009). Daily precipitation 

observations are taken from the GPCP one-degree daily (1DD) data (Huffman et al., 2001). Hourly precipitation is compared 

with the dataset collected by the Next-Generation Radar (NEXRAD) network (NOAA, 2013) and developed under the 15 

Climate Science for a Sustainable Energy Future (CSSEF) project (Zhang et al., 2005, 2011; Giangrande et al., 2014). 

Simulated cloud amount is verified against International Satellite Cloud Climatology Project (ISCCP) data (Rossow and 

Schiffer, 1991). In order to compare with the cloud diagnostics from COSP, we also use the satellite data products generated 

especially for model evaluation from ISCCP (Pincus et al., 2012; Zhang et al., 2012), Moderate Resolution Imaging 

Spectroradiometer (MODIS) (Pincus et al., 2012), and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 20 

(CALIPSO) (Chepfer et al., 2010). Top-of-atmosphere cloud radiative effects are evaluated with the Clouds and the Earth’s 

Radiant Energy System—Energy Balanced and Filled (CERES-EBAF v2.8) dataset (Loeb et al., 2012). 

3 Results 

In this section, we will focus on the results of June-July-August (JJA) and December-January-February (DJF), the two more 

extreme seasons at the CONUS in a year when some long-standing systematic model errors are present. 25 

3.1 Overall model performance 

Taylor diagrams (Taylor, 2001) offer a concise way to summarize model performance and compare different model results. 

Here we employ Taylor diagrams to demonstrate the performance of a selection of important variables (Gleckler et al., 

2016). Figure 2 shows the JJA and DJF model climatology of selected thermodynamic-related variables (numbered) over the 

CONUS domain (i.e., the blue box in Fig. 1b) of the RRM grids. Green dots denote LRM results, whereas red dots HRM 30 
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results, and blue dots RRM results with the HRM parameters. The model results are illustrated relative to the verification 

data (marked by the reference point (1, 0)) described in Section 2.2. To make consistent comparisons between different 

model resolutions, model results are conservatively interpolated (with the “conserve” method of the Earth System Modeling 

Framework (ESMF, https://www.earthsystemcog.org/projects/esmf/) regridding software) to the coarser verification data 

grids before calculating the Taylor statistics. The radial axis shows the geographic variability (i.e., standard deviation (STD)) 5 

in the model climatology normalized by that in the observations. The angular axis indicates the spatial correlation (i.e., 

Pearson correlation coefficient (r)) between the simulations and the observations. By design, the distance to the reference 

point (1, 0) represents the centred root-mean-square (RMS) difference between the simulated and observed patterns 

normalized by the STD of the observations. The closer distance to the (1, 0) point, the better the model performance. We 

should note that the primary purpose of our analysis is to show how well the RRM, as an analogue to the HRM, reproduces 10 

the HRM results. The observations and the LRM results provide quantitative references to examine the RRM-HRM 

similarity and also identify poorly simulated behaviours as targets of HRM development. 

 

Relative to the evaluation datasets (Fig. 2ab), the thermodynamic variables are generally well-simulated by EAMv1 with all 

three model configurations. All correlation coefficients are greater than 0.85 (mostly > 0.95). Normalized STDs lie close to 15 

the 1.0 dashed curve, especially in JJA. The model generally represents these large-scale circulation related quantities better 

with finer resolution settings, as the red dots (HRM) are usually closer to the (1, 0) point (representing evaluation data) than 

the corresponding green dots (LRM). Nevertheless, there are a few exceptions, for example, 2-meter air temperature (T2m or 

TREFHT) in JJA (see Fig. 2a), which is likely associated with cloud and thus surface radiation changes (Van Weverberg et 

al., 2018) along with feedbacks (surface energy partitioning shifting towards more sensible heat flux) from the land surface 20 

model. 

 

More importantly, when using the HRM as the reference point (Fig. 2cd), blue dots (RRM) are located closer to (1, 0) than 

the green dots (LRM), indicating that the RRM mimics the HRM behaviours quite well. Additionally, we plot the RRM_LR 

results (purple dots) on Fig. 2cd to illustrate the potential impact of poor scale awareness, which is a common problem for 25 

current climate models, on conventional RRM applications. Lacking the tuned HRM parameters, previous RRM studies 

often heavily rely on LRM parameters and cannot quantify the likely performance deterioration due to the parameter-

resolution mismatch. Here we take advantage of having both LR and HR tuned parameters to show the parameter influence 

on RRM performance. As expected, RRM_LR is generally less-satisfactory than RRM in matching the HRM behaviours 

(Fig. 2cd), but the extent varies for different quantities. For instance, the 200-hPa zonal wind (U200) is relatively insensitive 30 

to parameter changes in RRM configurations in both seasons. These results reflect the large-scale nature of upper 

troposphere wind fields. In contrast to U200, RRM total precipitable water (TMQ) shows greater sensitivity to parameter 

settings, since it is more closely related to sub-grid scale physical processes. These results suggest that RRM generally does 

well in representing large-scale thermo-dynamical behaviours of HRM, but some quantities are sensitive to the choice of 
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LRM or HRM parameter settings. A re-tuning may be needed for the refined region to optimize performance when model 

physical parameterizations are scale-sensitive. Specifically, for EAMv1, using the HRM parameter setting is recommended 

when one utilizes the RRM capability. 

 

Compared to thermodynamics variables in Fig. 2, the cloud and precipitation variables in Fig. 3 are more sensitive to sub-5 

grid scale parameterizations (e.g., convection, cloud microphysics, and radiation). Similar to Bacmeister et al. (2014), the 

variables in Fig. 3 are more poorly simulated than those in Fig. 2 in all configurations: they have weaker (0.5-0.9) correlation 

coefficients, and are further from the (1, 0) point in both seasons (Fig. 3ab). These results are consistent with the idea that 

improving the simulation of these variables requires both better resolved large-scale circulations and improved 

representation of physical processes by better physical parameterizations. Figure 3cd demonstrates this idea quantitatively: 10 

the LRM-HRM differences become smaller for all variables after refining the CONUS grids (green to purple); the 

differences are further reduced by changing the parameters to match the HRM values (purple to blue). Nevertheless, our 

findings are similar: when increasing the resolution, model performance is generally better in DJF (Fig. 3b) and remains the 

same or slightly degraded in JJA (Fig. 3a); the RRM results follow those of the HRM closer than do the LRM in both 

seasons (Fig. 3cd). In addition, all variables except total precipitation (PRECT) are more sensitive to the resolution change in 15 

winter than in summer (greater LRM-HRM separation in Fig. 3b than in Fig. 3a). For example, the variance of 500-hPa 

vertical velocity (OMEGA500) is almost independent of resolution in summer but about 50% larger in the HRM 

configuration than in the LRM in winter, suggesting stronger wintertime circulation and finer scale of resolved dynamics 

with the HRM configuration. 

 20 

These overall Taylor statistics indicate that the RRM simulation with the HR parameters captures the HRM climatological 

statistics reasonably well, which provides the basis for potential applications of the RRM to effectively test physical 

parameterizations and simulate regional climate at high resolutions. In the following sections, we will further evaluate the 

similarity between the RRM and the HR EAMv1 simulations. We will examine some variables that are closely related to the 

atmospheric hydrologic cycle with a primary focus on detailed aspects of precipitation, which remains a significant 25 

challenge in current climate models and is a major focus application for E3SM. 

3.2 Regional geographic patterns 

In this section we study whether RRM can reproduce the regional geographic patterns of hydrologic variables simulated by 

HRM. 

3.2.1 Precipitation 30 

Figure 4 shows the geographic pattern of mean total (large-scale + convective) precipitation differences between LRM and 

GPCP1DD observations, and the differences among model configurations over the CONUS domain in JJA. The differences 
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between the LRM and evaluation data (i.e., panel a) are computed on the evaluation data grid, while those between models 

(i.e., panels b-d) are computed on the HRM grid. Dotted regions mark where the differences are statistically significant at a 

95% confidence level with the two-tailed Student’s t-test assuming that each year is an independent sample. EAMv1 global 

precipitation results are described by Xie et al. (2018). Compared to GPCP1DD observations, the LRM mostly overestimates 

(up to 3 mm/day) western US precipitation, and underestimates (up to 4 mm/day) eastern and central US precipitation (Fig. 5 

4a). As implied by the similar correlation coefficients of precipitation in Fig. 3a, the mean precipitation pattern exhibits 

rather uniform spatial changes (especially over land) among different model configurations (Fig. 4b-d). Over land, the HRM 

and RRM typically produce less precipitation than the LRM (partially due to the model tuning (not shown)) and the HRM 

rains the least. Differences between the RRM and the HRM are largely insignificant. In regions that pass the significance 

test, the differences are also relatively small, for instance, < 1 mm/day in the southern central US, and < 2 mm/day in the 10 

eastern US. 

 

Figure 5 shows the differences in precipitation climatology patterns for DJF. An obvious change from the JJA results in Fig. 

4 is the topographic signatures in differences between HRM and LRM (Fig. 5b), and RRM and LRM (Fig. 5c) over 

mountain regions in the western US, which are associated with better resolved topography in the RRM and HRM 15 

simulations. In addition, the signs of model differences (Fig. 5b-d) are less uniform in DJF than in JJA. Nevertheless, mean 

precipitation differences between the RRM and the HRM are also small (within ±2 mm/day), and not statistically significant 

over most grid cells. Overall, the RRM and HRM EAMv1 produce very similar mean precipitation geographic patterns in 

both seasons.  

 20 

Following the COSP evaluation method described by Zhang et al. (2019), cloud fields (not shown here) from the LRM, 

HRM, and RRM are compared with the observations from ISCCP, MODIS, and CALIPSO. In JJA, all model configurations 

generally underestimate total cloud amount relative to CALIPSO observations over the CONUS. High thick (optical depth > 

9.4) clouds lessen with enhanced horizontal resolution over the western central US, matching the precipitation change 

pattern over the same region in Fig. 4a. Low clouds along the western coast over the ocean increase noticeably in the RRM 25 

and HRM compared to the LRM. In DJF, greater reduction of cloud amount occurs at all levels at the western central US 

than in JJA with increased resolution. In both seasons, similar to precipitation, the RRM-HRM cloud differences are 

generally smaller than those for HRM-LRM. 

3.2.2 Precipitable water 

Figures 6 and 7 show the seasonal mean total precipitable water (TMQ) in JJA and DJF compared with the ERAI reanalysis 30 

data. The LRM underestimates the JJA TMQ over most places (see Fig. 6a) except the northwest US, and smaller areas of 

the eastern US and Mexico, where we observe significantly overestimated precipitation in Fig. 4a. As suggested by the 

improvement of precipitation with increasing resolution in Fig. 2, the LRM underestimation is generally improved in the 
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HRM (Fig. 6b) and the RRM (Fig. 6c). The mean RRM-HRM differences (Fig. 6d) are mostly positive (< 4 kg/m2). This is 

due to reduction in precipitation in RRM than in HRM outside of CONUS, where the RRM resolution is coarser than that of 

the HRM. 

 

In DJF, the LRM TMQ (Fig. 7a) resembles the patterns (overestimation over the western US and underestimation over the 5 

eastern US) of precipitation (Fig. 5a) against evaluation data. Such similarity implies that the precipitation biases in winter 

are directly related to flaws in precipitable water. The RRM and the HRM differ less (mostly statistically insignificant, see 

Fig. 7d) than their differences with the LRM (Fig. 7bc). 

3.2.3 Low-level circulation 

The low-level jet (LLJ) over the Great Plains of the US exerts significant impact on precipitation primarily in summer 10 

(Higgins et al., 1997; Pu and Dickinson, 2014). It is responsible for transporting about one-third of the moisture from the 

Gulf of Mexico to the central US (Helfand and Schubert, 1995). Based on reanalysis data, Higgins et al. (1997) reported 

connections between the Great Plains LLJ events and regional precipitation anomalies in summer, such as greater 

precipitation over the north central US and Great Plains and declined precipitation along the Gulf coast and east coast. Here, 

we examine the 850-hPa horizontal wind speed (Figs. 8 and 9, the difference vectors are shown by colours (magnitudes) and 15 

magenta streamlines (directions)) as an example of the low-level circulation. 

 

In summer, the LRM simulates stronger wind than the ERAI reanalysis over a large portion of CONUS, but weaker 

southerly LLJ at the central US (see Fig. 8a), which contributes to the low precipitation bias in the Great Plains and along the 

Gulf coast in Fig. 4a. Enhancing resolution significantly strengthens the LLJ (Fig. 8bc), consistent with results presented by 20 

Berg et al. (2015) for reanalyses with a range of resolutions, and reduces the differences compared to the ERAI reanalysis, 

since simulations at finer horizontal resolution can resolve the LLJ-related temperature and pressure gradients better than 

ones at coarser resolution. Contrarily, the overestimation of zonal wind strength over the northeastern US becomes slightly 

worse with finer resolution. The RRM-HRM (Fig. 8d) difference (mostly within ±0.8 m/s) is generally smaller than that in 

other panels, especially for the LLJ region over the south-central US. 25 

 

In winter, we find about twice greater wind differences than in summer (note the different colour scales in Figs. 8 and 9). 

However, the main features remain unchanged, for instance, the LRM also simulates too strong (mostly >1.0 m/s) zonal 

winds (Fig. 9a), and the RRM-HRM difference is relatively small (within ±2.0 m/s) and mostly insignificant (Fig. 9d). These 

results suggest that the RRM mimics the low-level circulation of the HRM, including the summertime LLJ. Together with 30 

the precipitable water results in the previous section, they imply similar water vapor transport patterns in the RRM and 

HRM. Therefore, the RRM is a useful tool to study the HR water transport over CONUS. 
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3.2.4 Surface air temperature 

Warm and dry model biases over the summertime central US have been studied for more than a decade (Klein et al., 2006), 

and are still deficient in the current generation of regional and global climate models (Cheruy et al., 2014; Mueller and 

Seneviratne, 2014; Lin et al., 2017; Ma et al., 2018; Morcrette et al., 2018). Land (soil moisture)-atmosphere coupling plays 

a key role in causing warm and dry biases (Mo and Juang, 2003; Klein et al., 2006; Lin et al., 2017; Ma et al., 2018; 5 

Van Weverberg et al., 2018), and the related precipitation biases. 

 

Figure 10 shows the mean JJA patterns of differences in T2m between the LRM and ERAI data and between three EAMv1 

model pairs over CONUS. Over the central US, the LRM simulation exhibits statistically significant positive temperature (up 

to 3 K) biases throughout the area (see Fig. 10a), corresponding to precipitation low bias (Fig. 4a) in this region. As implied 10 

from the Taylor diagram (Fig. 2), performance degrades further (by up to about 4 K) with enhanced resolution. This warm 

bias can be roughly attributed to two separate sources (Ma et al., 2018): the evaporative fraction (EF) contribution and the 

radiation contribution which is primarily caused by excessive absorbed solar radiation at the surface. EF is defined as the 

fraction of the combined latent and sensible heat fluxes that are in latent form. Models with too low EF tend to use the 

radiative input to heat the surface instead of evaporating water. The larger bias in the HRM is because the EF contribution is 15 

a few times larger with enhanced resolution, while the radiation contribution remains almost unchanged. The noisy and large 

differences in Fig. 10bc over western and central mountain regions are likely associated with topographic differences at 

different resolutions. Figure 10d shows that the RRM-HRM differences are small (< 2 K) and statistically not significant, but 

robustly positive over the west coast and negative elsewhere. 

 20 

Figure 11 shows the T2m results in DJF. The LRM (Fig. 11a) still suffers from warm bias over the central US, but it is less 

severe and much less widespread than in JJA. Over almost the entire eastern US, the LRM underestimates (by up to 4 K) 

T2m. The HRM (Fig. 11b) and RRM (Fig. 11c) simulations appear better than the LRM over the Great Plains, the north 

central US, and the southeastern US. The RRM-HRM differences in Fig. 11d are again the smallest among all panels and 

statistically insignificant except for the southwestern US. 25 

 

So far, we have demonstrated that the RRM capability reproduces the characteristics of hydrologic fields simulated in HRM. 

This proves that the RRM is a reliable testbed which can be used to effectively study and understand these model biases. 

Next, we will present further analysis on precipitation with RRM and compare it with HRM. Note that the hydrological cycle 

is a major focus of E3SM of which precipitation is the most important atmospheric variable. 30 
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3.3 Precipitation characteristics 

3.3.1 Partitioning between large-scale vs. convective precipitation 

Precipitation in climate models (e.g., EAMv1) consists of large-scale and convective components. Large-scale precipitation 

results from condensation due to resolved processes at the model grid resolution and is simulated by the microphysics 

scheme, while the convective precipitation results from unresolved sub-grid scale processes that are approximated by the 5 

deep convection parameterization. Poor partitioning between these two components manifests as errors in the vertical 

structure of latent heating which corrupts the dynamical response of the environment to convection. Accurately capturing the 

partitioning is challenging for climate models, which often overestimate the convective component (Lin et al., 2013; Yang et 

al., 2013). Thus, the partitioning between the large-scale and convective precipitation is an important evaluation metric for 

climate models. Although they can be clearly defined in the model, the two precipitation components are difficult to separate 10 

observationally in a manner comparable to the model. Thus, we only plot the model results for the ratio. 

 

Figures 12 and 13 display the mean ratio of large-scale to total precipitation from EAMv1 models in JJA and DJF, 

respectively. As expected, convection is a more important source of precipitation in summer and at lower latitudes. The ratio 

of the large-scale precipitation increases with resolution in Figs. 12 and 13 because more precipitation can be resolved with 15 

finer resolution grids and thus classified as large-scale precipitation. Similar convective precipitation changes with resolution 

are reported by Bacmeister et al. (2014) for CAM4 and CAM5. Consequently, compared to the LRM, large-scale 

precipitation in the HRM and RRM is more prevalent (especially in the north) during the summer months (see Fig. 12bc) and 

is even more dominant during the winter months (see Fig. 13bc). In both seasons, the RRM matches the HRM overall 

distributions of the precipitation partitioning including some regional details, for example, the contour lines along the Sierra 20 

Nevada mountains in California in DJF. 

3.3.2 Precipitation intensity distribution 

Besides the mean precipitation pattern and partitioning between its large-scale and convective components, it is crucial to 

accurately represent the precipitation intensity distribution in a changing climate, because evidence suggests that extreme 

events, such as severe storms and flooding, will intensify due to the direct impact of global warming on precipitation 25 

(Trenberth, 2011; Seeley and Romps, 2014; Walsh et al., 2014). Like many other global climate models (e.g., Dai, 2006; 

Stephens et al., 2010; Pendergrass and Hartmann, 2014), Terai et al. (2017) showed that EAMv0 suffers from deficiencies in 

precipitation intensity over the globe, overestimating the frequency of light to moderate rain compared to the GPCP1DD 

data. 

 30 

Figure 14 shows EAMv1 vs. GPCP1DD intensity functions over CONUS in JJA and DJF. Before aggregating the 

distribution, modelled precipitation rates are interpolated with the ESMF conservative regridding method to the same 1o x 1o 
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grids as GPCP1DD data. All datasets are averaged over daily intervals. The frequency is then counted in log-bins of 

precipitation rates on each grid. In this way, the frequency functions from datasets at different spatial and temporal 

resolutions become comparable. It is evident in Fig. 14 that EAMv1 still simulates excessive light precipitation (< 10 

mm/day) with all three configurations in both JJA and DJF. As implied by the mean behaviours in Figs. 12 and 13, 

convective precipitation accounts for a larger fraction of the total in JJA than in DJF across the whole spectrum (not shown 5 

in Fig. 14). Total precipitation from the RRM (blue dots) is closer to the HRM (red dots) than to the LRM (green dots) in 

most bins. These results suggest that we can use the RRM as a testbed to address issues of intensity statistics over CONUS in 

the HR configurations of future EAM versions. 

3.3.3 Diurnal cycle of summertime precipitation 

Representing the correct timing and location of these convection episodes is of critical importance for precipitation 10 

prediction and hydrologic research (IPCC, 2012). Doing so requires the ability to capture many different meteorological 

phenomena. For example, summertime mesoscale convective complexes (MCCs) or systems (MCSs) contribute a significant 

amount of the total precipitation and play an important role in extreme precipitation events over the central US (Maddox, 

1980; Carbone et al., 2002; Ashley et al., 2003; Tuttle and Davis, 2006), while disorganized convection strongly influences 

precipitation over the southeastern US (Dai et al., 1999; Bacmeister et al., 2014; Rickenbach et al., 2015). The diurnal cycle 15 

of precipitation is one important measure of a model’s ability to reproduce these phenomena. For example, Bacmeister et al. 

(2014) used the diurnal cycle of precipitation to diagnose deficiencies in capturing the observed phase of MCSs over the 

central US in CAM5 with both LR and HR configurations. 

 

Figure 15 illustrates the mean diurnal phase and magnitude patterns of maximum precipitation in JJA from the NEXRAD 20 

data and the EAMv1 simulations. The mean diurnal maximum is determined from the first harmonic of the Fourier series 

constructed from the hourly precipitation time series in each grid box. The phase (local time) of the maximum is indicated by 

colours, while the magnitude the saturation of the colour. The NEXRAD data (Fig. 15a) shows the distinct nocturnal 

(19:00—04:00 LT) peak over the central US. This nocturnal peak has been attributed to the eastward propagation of MCSs 

originating at the front range of Rocky Mountains in the afternoon (Riley et al., 1987; Dai et al., 1999; Carbone et al., 2002; 25 

Jiang et al., 2006; Dirmeyer et al., 2012). Unfortunately, no model configuration is successful at capturing this night time 

maximum. The RRM and HRM diurnal phases are similar and show modest improvement over the LRM in the sense that 

they have weaker amplitudes (lighter colours in panels c and d than in panel b) of incorrect diurnal cycles. The similarity 

between RRM and HRM indicates that RRM simulations will be valuable for understanding and addressing this important 

model bias. 30 

 

To evaluate the known eastward propagation feature of the convection in this area, we average the JJA precipitation over 

four sub-regions: mountains, high plains, middle plains, and low plains, outlined by solid square boxes on Fig. 15a. Figure 
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16 shows the mean composite diurnal cycle in these sub-regions. We first calculate simple mean diurnal cycle from the 

hourly time series for each grid box. The first and second diurnal harmonics of the mean diurnal cycle — obtained using Fast 

Fourier Transform — are retained and adjusted to local time to generate the composite diurnal cycle. The composite lines 

plotted in Fig. 16 are averages of the composite diurnal cycle on each grid box within the sub-regions. In the NEXRAD 

measurements (Fig. 16a), there is a clear propagating pattern: the maximum emerges over the mountains (black) in the 5 

afternoon at 15:00, moves eastward and intensifies across the Great Plains, and reaches the middle (blue) and the low (green) 

plains in the night at 20:00 and 00:00, respectively. The three EAMv1 simulations (Fig. 16b-d) do not reproduce the 

convection propagation and miss the nocturnal precipitation peak. Although the HRM and the RRM show better skill than 

the LRM from the mountains to the high plains, these convective events are not strong enough (smaller magnitudes 

compared to observations) to sustain propagation further east. 10 

 

The late afternoon rainfall peak over the southeast US is associated with disorganized convection (Bacmeister et al., 2014), a 

different mechanism than that over the central US. The red dashed lines in Fig. 16 denote the results for the southeast US. 

The diurnal cycle over the southeast US is generally well-simulated by the LRM, HRM, and RRM (panels b-d), but the time 

of peak precipitation is a few hours early, consistent with the experience of other models (Dai et al., 1999; Stratton and 15 

Stirling, 2012; Bechtold et al., 2014). More physically based improvements are needed to find a solution to the summertime 

diurnal cycle issue for precipitation over the CONUS, and the RRM provides an efficient testbed for parameterization 

testing. Previous studies (e.g., Bechtold et al., 2004; Stratton and Stirling, 2012; Bechtold et al., 2014) provide possible 

solutions for this issue of simulating the diurnal cycle of convective precipitation over land by modifying convective trigger 

procedures, entrainment, and convective closures. Our recent study (Xie et al., 2019) shows substantial improvement in the 20 

precipitation diurnal cycle in the LRM by employing a new convective trigger with a dynamic constraint on the convection 

onset, and with the capability of detecting moist instability above the boundary layer. We will apply the RRM testbed to 

extend the new convective trigger to the HRM and report the results in a future paper. This bias in the diurnal cycle of 

convection is significantly improved in convection-permitting (horizontal grid spacing < 2-4 km) simulations (Prein et al., 

2015). The E3SM project is making progress in developing its convection-permitting version (E3SMv4), for which the RRM 25 

testbed will be heavily relied on. 

4 Nudging capability for RRM 

Nudging is an effective technique to create quasi-deterministic model realizations of observations for a specific time period. 

There is increasing use of nudging in climate model development and evaluation of physical parameterizations (e.g., Jeuken 

et al., 1996; Ghan et al., 2001; Kooperman et al., 2012; Zhang et al., 2014). Since nudging simulations constrain the model 30 

states closer to observed meteorological conditions, they facilitate evaluation of modelled physics during specific 

meteorological episodes. Therefore, nudging can help advance process-level understanding of physical phenomena, and 
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ultimately improve physical parameterizations. This is similar to the hindcast approach (Phillips et al., 2004; Ma et al., 2015) 

that has been widely used for climate model evaluation. EAMv1 has a built-in nudging capability as part of its physics 

module. When running the nudged RRM, one has various choices available such as nudging variables, locations, and time 

scales. In this section, we will provide an example of the value of EAMv1 RRM nudging simulations. 

 5 

The EAMv1 nudging capability in the physics module allows relaxation of model state variables (U, V, T, and specific 

humidity, or a subset thereof) towards analysis/reanalysis data. The nudging strength is determined by a fractional nudging 

coefficient between zero and one, which can be a spatial constant or a spatial variable specified by a Heaviside window 

function. Following previous findings by Zhang et al. (2014) and Ma et al. (2015), we opt to only nudge horizontal velocities 

for better cloud and aerosol properties with a 6-hour relaxation time scale (see Eq. 1 of Zhang et al. 2014). The nudging 10 

coefficient map is shown in Fig. 17. The corresponding nudging parameter settings are documented in Table 3. This non-US 

nudging setting creates a smooth transition from the strongest nudging (red) over coarser grid points to the weakest nudging 

(blue) over finer grid points. Running in this mode builds a pseudo-regional model framework in a global model. It gives the 

simulation more freedom over part of the HR region and reduces the nudging noise due to inconsistency between the model 

and analysis data over the free-running region for better evaluation of physics over this region. 15 

 

As an example of the nudging results, we create the Hovmöller diagrams (Fig. 18) of hourly mean total precipitation, 

meridionally averaged over 35oN—45oN, 93oW—115oW (the magenta box in Fig. 17) during the period of the DOE 

Atmospheric Radiation Measurement (ARM) Facility’s Midlatitude Continental Convective Clouds Experiment (MC3E, 

April 22 – June 6, 2011) (Jensen et al., 2016). The main science goal of the MC3E campaign is to improve the understanding 20 

of midlatitude continental convective cloud systems and their interactions with environment (Xie et al., 2014). Many cloud 

and precipitation events are observed and clearly shown from the NEXRAD panel (Fig. 18a), such as convective events on 

April 25 and around May 23, and widespread stratiform rain on May 10. As expected, the AMIP simulation (Fig. 18b) 

struggles to capture the statistics of these high-frequency weather systems. The RRM nudging simulation (Fig. 18c) 

reproduces the timing and location of most events because nudging the horizontal velocities outside of the analysed area 25 

provides more realistic boundary conditions of the large-scale circulation in the free-running domain. There are still some 

deficiencies in the nudged simulation, for example the incorrect number and propagating speed of convective events, 

particularly after May 15. The nudged RRM has cleanly separated these remaining (model-deficiency based) problems from 

issues related to the large-scale circulation. This demonstrates that the nudged RRM is an effective testbed for isolating and 

fixing parameterization problems at resolutions we cannot afford to run globally. 30 



16 
 

5 Summary and discussion 

We have presented an overview of the climatological results comparing initial atmosphere-only simulations from globally 

uniform low-resolution (LR, 1o), high-resolution (HR, 0.25o), and regionally refined model (RRM, 1o to 0.25o) over the 

contiguous US (CONUS) with the atmosphere model version 1 (EAMv1) using the Energy Exascale Earth System Model 

(E3SM). Our analysis has established that the RRM can generally mimic HRM climate behaviour over the finely resolved 5 

portion (CONUS) for both well-simulated larger-scale thermodynamics fields and less-satisfactory smaller-scale physical 

variables. 

 

Similar to other models (Dai, 2006; Bacmeister et al., 2014), the EAMv1 HRM suffers from deficiencies in convection, 

clouds, and moist physics (Xie et al., 2018). To verify that the RRM is a suitable alternative framework to the HRM to 10 

address these deficiencies, we examine the seasonal mean geographic patterns of precipitation, vertically-integrated 

precipitable water, low-level circulation, and surface temperature for JJA and DJF. Given its key importance in the 

atmospheric hydrologic cycle, we conduct in-depth analysis on precipitation, including fractions of the large-scale 

precipitation and daily intensity functions, and the JJA diurnal cycle. Overall, the RRM is similar to the HRM for many finer 

scale features, and including reproducing longstanding climate model biases, such as lack of summertime nocturnal 15 

precipitation peaks and the warm bias in surface air temperature. 

 

Poor scale awareness of EAMv1 physical parameterizations necessitates retuning the model when increasing resolution. 

Different from previous RRM work using primarily the LR model (LRM) parameters, we make use of both LRM and HRM 

parameters and illustrate the significant impact of HR vs. LR parameters on RRM performance due to poor scale awareness, 20 

particularly for variables that are closely related to sub-grid scale physical processes. The high sensitivity of EAMv1 to 

model resolution suggests the need to develop better scale-aware physical parameterizations or convection-permitting 

simulations in the future. This study demonstrates how RRM can be used as a useful testbed to evaluate potentially improved 

schemes across different spatial scales.  

 25 

To help users better utilize the E3SM RRM capability, we provide detailed guidance on running the RRM in the nudging 

mode so that deficiencies in model physical parameterizations can be better isolated. By relaxing the horizontal velocities 

over coarser resolution grids to analysis data, we create more realistic boundary conditions to the free-running higher 

resolution area. Such a pseudo-regional model framework within a global model displays great advantages in capturing 

observed convective episodes over the AMIP configuration, and hence allows us to calibrate simulated physical processes 30 

against observations under different meteorological conditions. With more realistic large-scale circulation conditions, the 

nudged RRM can be used as a physics testbed for regional process-level studies and aid in the development of future HR 

EAM versions. 
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(a) 

  
 
(b) 

  5 
Figure 1: The CONUS regionally refined grid in (a) a global orthographic projection and (b) a cylindrical equidistant projection 
zoomed in over the high-resolution (HR) portion. The effective resolutions for the low-resolution (LR) and the HR regions are 1o 
and 0.25o, respectively. The two regions are connected with a transient area. The blue box (latitude range: 22oN–50oN, longitude 
range: 64oW–126oW) in panel (b) represents the analysed area for CONUS. 
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Figure 2: Taylor diagrams for three different model climatologies (color-coded: green – LRM, red – HRM, blue – RRM, and 
purple – RRM_LR) in JJA (left column) and DJF (right column). Results are from the CONUS domain (the blue box in Fig. 1b). 
For panels (a) and (b), verification data are used as the reference point (1, 0), and statistics are calculated on the coarser 
verification grids. For panels (c) and (d), the HRM is the reference, and statistics are calculated on the HRM grids. The numbers 5 
represent: 1 – 500-hPa geopotential height (Z500), 2 – surface pressure (PS), 3 – 200-hPa zonal wind (U200), 4 – 850-hPa zonal 
wind (U850), 5 – 500-hPa temperature (T500), 6 – 2-meter air temperature (TREFHT or T2m), and 7 – total precipitable water 
(TMQ). 
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Figure 3: Same as Fig. 2, but the numbers represent: 1 – 500-hPa vertical velocity (OMEGA500), 2 – total precipitation (PRECT), 
3 – vertically-integrated total cloud fraction (CLDTOT), 4 – longwave cloud forcing (LWCF), and 5 – shortwave cloud forcing 
(SWCF). 

 5 
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Figure 4: Mean differences of total precipitation (unit: mm/day) in JJA for (a) LRM minus GPCP1DD data, (b) HRM minus 
LRM, (c) RRM minus LRM, (d) RRM minus HRM, and (e) GPCP1DD. The differences between the LRM and evaluation data 
(i.e., panel a) are computed on the evaluation grid, while those between models (i.e., panels b-d) on the HRM grid. Dotted areas 
denote where the differences are statistically significant at the 95% confidence level with the two-tailed Student’s t-test. 5 
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Figure 5: Same as Fig. 4, but for DJF. 
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Figure 6: Same as Fig. 4, but for total precipitable water (TMQ, unit: kg/m2) in JJA. 
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Figure 7: Same as Fig. 6, but for DJF. 
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Figure 8: Same as Fig. 4, but for 850-hPa wind speed (unit: m/s) in JJA. The vectors are shown by colours (magnitudes) and 
magenta streamlines (directions). Grid boxes where surface pressure is less than 850 hPa are shaded in gray on the difference 
plots. 
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Figure 9: Same as Fig. 8, but for DJF. Note that the colour scale is different from that in Fig. 8. 
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Figure 10: Same as Fig. 4, but for 2-meter air temperature (T2m, unit: K) in JJA. 
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Figure 11: Same as Fig. 10, but for DJF. 

 

 

 5 
Figure 12: Mean ratio of large-scale to total precipitation in JJA for (a) LRM, (b) HRM, and (c) RRM. 
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Figure 13: Same as Fig. 12, but for DJF. 

 

 
Figure 14: Daily mean precipitation frequency (unit: dF/dlog(P)) functions of total precipitation for the GPCP1DD observation 5 
(black), and model simulations: LRM (green), HRM (red), and RRM (blue) in (a) JJA and (b) DJF. Before deriving the 
distribution, precipitation rates (unit: mm/day) are interpolated to 1o x 1o grids and averaged over daily intervals. 
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Figure 15: Mean diurnal phase (local time, unit: hours) and magnitude (unit: mm/day) of the maximum precipitation in JJA 
calculated from the first harmonic for (a) NEXRAD observations, (b) LRM, (c) HRM, and (d) RRM. The phase is indicated by 
colours, while the magnitude the saturation of the colour. In panel (a), the solid boxes denote 4 central US regions from west to 
east: mountains (37oN-40oN, 105oW-108oW), high plains (37oN-40oN, 101oW-104oW), middle plains (37oN-40oN, 97oW-100oW), and 5 
low plains (37oN-40oN, 93oW-96oW). The dashed box marks the southeast (31oN-34oN, 82oW-90oW) regions. 
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Figure 16: Mean JJA composite precipitation diurnal cycle from the NEXRAD and model simulations for the sub-regions (denoted 
in Fig. 15): mountains (black lines), high plains (purple lines), middle plains (blue lines), low plains (green lines), and southeast 
(red dashed lines). Panels represent for (a) NEXRAD, (b) LRM, (c) HRM, and (d) RRM. We first calculate simple mean diurnal 
cycle from the hourly time series for each grid box. The first and second diurnal harmonics of the mean diurnal cycle — obtained 5 
using Fast Fourier Transform — are retained and adjusted to local time to generate the composite diurnal cycle. The composite 
lines plotted here are averages of the composite diurnal cycle on each grid box within the sub-regions. 

 

 
Figure 17: Nudging coefficient map zoom-in over North America. A coefficient of 0 represents that no nudging is applied. The 10 
magenta box marks the area of the Hovmöller plots in Fig. 18. 
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Figure 18: Hovmöller plots of hourly mean total precipitation (unit: mm/day) over 35oN—45oN, 93oW—115oW during April 22 – 
June 6, 2011 for (a) NEXRAD observations, (b) AMIP LRM, and (c) nudging RRM. 
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Table 1: List of EAMv1 simulation configurations, speed, and costs. The speed and cost are for the NERSC Cori-KNL machine.  

Simulation Configuration Effective angular 
resolution 

Number of 
elements 

Speed 
(SYPD) 

Number of 
nodes 

Cost (core-
hours/year) 

Low-resolution model 
(LRM) Default 1o 5400 6 81 22,000 

High-resolution model 
(HRM) Default 0.25o 86400 2 675 551,000 

Regionally refined 
model (RRM) HRM default 1o to 0.25o 9905 1.7 88 84,000 

RRM_LR LRM default 1o to 0.25o 9905 1.9 88 75,000 
LRM AMIP Default 1o 5400 6 81 22,000 

RRM non-US nudging HRM default 1o to 0.25o 9905 1.7 88 84,000 
 
Table 2: Summary list of observational and reanalysis-based evaluation datasets for model performance. 

Variable Data 
source Period Reference Web links 

Z500, PS, U200, 
U850, T500 
T2m, TMQ, 

RH500, 
OMEGA500 

ERA-
Interim 
reanalysis 

1989—2005 (Dee et al., 2011)  http://apps.ecmwf.int 

CLDTOT ISCCP 1983—2001 (Rossow and 
Schiffer, 1991)  https://isccp.giss.nasa.gov/products/browsed2.html 

PRECT GPCP 1979—2009 (Huffman et al., 
2009)  https://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html 

PRECT GPCP1DD 1997—2013 (Huffman et al., 
2001)  ftp://meso.gsfc.nasa.gov/pub/1dd-v1.2 

PRECT NEXRAD 2009—2013 
(NOAA, 2013; 
Giangrande et al., 
2014)  

https://data.nodc.noaa.gov/cgi-
bin/iso?id=gov.noaa.ncdc:C00345 

LWCF, SWCF CERES-
EBAF 2000—2013 (Loeb et al., 2012)  https://ceres.larc.nasa.gov/products.php?product=EBAF-

TOA 
FISCCP1_COSP ISCCP 1983—2008 (Pincus et al., 2012)  http://climserv.ipsl.polytechnique.fr/cfmip-obs 

CLMODIS MODIS 2002—2010 (Pincus et al., 2012; 
Zhang et al., 2012)  http://climserv.ipsl.polytechnique.fr/cfmip-obs 

CLDTOT_CAL, 
CLDHGH_CAL, 
CLDMED_CAL, 
CLDLOW_CAL 

CALIPSO 2006—2010 (Chepfer et al., 2010)  http://climserv.ipsl.polytechnique.fr/cfmip-obs 

 

  5 
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Table 3: Nudging parameter settings for the non-US nudging simulation. 

Nudging parameter Value 
Nudge_Model .true. 
Nudge_Path Path to analysis/reanalysis data 

Nudge_File_Template 'interim_se_%y%m%d00_%y%m%d18_TQUV-%s.nc' 
Nudge_Times_Per_Day 4 
Model_Times_Per_Day 96 

Nudge_Uprof 2 
Nudge_Ucoef 1.00 
Nudge_Vprof 2 
Nudge_Vcoef 1.00 
Nudge_Tprof 0 
Nudge_Tcoef 0.00 
Nudge_Qprof 0 
Nudge_Qcoef 0.00 
Nudge_PSprof 0 
Nudge_PScoef 0.00 

Nudge_Beg_Year 2011 
Nudge_Beg_Month 1 
Nudge_Beg_Day 1 
Nudge_End_Year 2011 

Nudge_End_Month 12 
Nudge_End_Day 31 
Nudge_Hwin_lo 1.0 
Nudge_Hwin_hi 0.0 

Nudge_Hwin_lat0 38.0 
Nudge_Hwin_latWidth 34.0 
Nudge_Hwin_latDelta 3.8 

Nudge_Hwin_lon0 254.0 
Nudge_Hwin_lonWidth 44.0 
Nudge_Hwin_lonDelta 3.8 

Nudge_Vwin_lo 0.0 
Nudge_Vwin_hi 1.0 

Nudge_Vwin_Hindex 73.0 
Nudge_Vwin_Hdelta 0.1 
Nudge_Vwin_Lindex 0.0 
Nudge_Vwin_Ldelta 0.1 
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Table 4: Acronym list. 

ACME Accelerated Climate Modeling for Energy 
AMIP Atmospheric Model Intercomparison Project 
ARM Atmospheric Radiation Measurement 
CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 
CAM Community Atmosphere Model 
CERES-EBAF Clouds and the Earth’s Radiant Energy System—Energy Balanced and Filled 
CESM Community Earth System Model 
CLUBB Cloud Layers Unified By Binormals 
CONUS Contiguous United States 
COSP Cloud Feedback Model Intercomparison Project Observation Simulator Package 
CSSEF Climate Science for a Sustainable Energy Future 
DJF December-January-February 
DOE Department of Energy 
E3SM Energy Exascale Earth System Model 
EAM E3SM Atmosphere Model 
EF Evaporative Fraction 
ENA Eastern North Atlantic 
ERAI European Centre for Medium-rang Weather Forecasting Interim 
ESMF Earth System Modeling Framework 
GPCP Global Precipitation Climatology Project 
GPCP1DD GPCP one-degree daily 
HR High-resolution 
HRM High-resolution Model 
ISCCP International Satellite Cloud Climatology Project 
JJA June-July-August 
KNL Knights Landing 
Linoz Linearized ozone chemistry 
LLJ Low-Level Jet 
LR Low-resolution 
LRM Low-resolution Model 
MAM Modal Aerosol Module 
MCC Mesoscale Convective Complex 
MC3E Midlatitude Continental Convective Clouds Experiment 
MCS Mesoscale Convective System 
MODIS Moderate Resolution Imaging Spectroradiometer 
NERSC National Energy Research Scientific Computing Center 
NEXRAD Next-Generation Radar 
OMEGA500 500-hPa Vertical Velocity 
PRECT Total Precipitation 
RMS Root-Mean-Square 
RRM Regionally Refined Model 
STD Standard Deviation 
SST Sea Surface Temperature 
TMQ Total Precipitable Water 
TREFHT Reference Height Temperature 
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TWP Tropical Western Pacific 
U200 200-hPa Zonal Wind 
US United States 
VR Variable-resolution 
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Appendix A 

Table A1: EAMv1 simulation setup details. *Used non-default parameter values in Table A2. 

Simulation Code hash Grid Compset 
Low-resolution model (LRM) 7a17edbe5 ne30_ne30 FC5AV1C-04P2 
High-resolution model (HRM) 66793a1d3 ne120_ne120 FC5AV1C-H01A 

Regionally refined model (RRM) 7a17edbe5 conusx4v1_conusx4v1 FC5AV1C-04P2* 
RRM_LR 7a17edbe5 conusx4v1_conusx4v1 FC5AV1C-04P2 

LRM AMIP dd18fc56e ne30_oECv3 F20TRC5-CMIP6 
RRM non-US nudging 7a17edbe5 conusx4v1_conusx4v1 FC5AV1C-04P2* 

 
Table A2: Non-default parameter values. 

Parameter Value 
cldfrc_dp1 0.03 
clubb_c14 1.75 
clubb_c8 4.73 

rsplit 2 
se_nsplit 6 

cld_macmic_num_steps 3 
zmconv_alfa 0.2 

zmconv_c0_lnd 0.0035 
zmconv_c0_ocn 0.0043 
zmconv_dmpdz -0.2e-3 

zmconv_ke 5.0e-6 
 5 


