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Abstract 16 
 17 
General circulation model (GCM) evaluation using ground-based observations is complicated by 18 
inconsistencies in hydrometeor and phase definitions. Here we describe (GO)2-SIM, a forward-simulator 19 
designed for objective hydrometeor phase evaluation, and assess its performance over the North Slope of 20 
Alaska using a one-year GCM simulation. For uncertainty quantification, 18 empirical relationships are 21 
used to convert model grid-average hydrometeor (liquid and ice, cloud and precipitation) water contents to 22 
zenith polarimetric micropulse lidar and Ka-band Doppler radar measurements producing an ensemble of 23 
576 forward-simulation realizations. Sensor limitations are represented in forward space to objectively 24 
remove from consideration model grid cells with undetectable hydrometeor mixing ratios, some of which 25 
may correspond to numerical noise.  26 
 27 
Phase classification in forward space is complicated by the inability of sensors to measure ice and liquid 28 
signals distinctly. However, signatures exist in lidar-radar space such that thresholds on observables can be 29 
objectively estimated and related to hydrometeor phase. The proposed phase classification technique leads 30 
to misclassification in fewer than 8% of hydrometeor-containing grid cells. Such misclassifications arise 31 
because, while the radar is capable of detecting mixed-phase conditions, it can mistake water- for ice-32 
dominated layers. However, applying the same classification algorithm to forward-simulated and observed 33 
fields should generate hydrometeor phase statistics with similar uncertainty. Alternatively, choosing to 34 
disregard how sensors define hydrometeor phase leads to frequency of occurrence discrepancies of up to 35 
40%. So, while hydrometeor phase maps determined in forward space are very different from model 36 
“reality” they capture the information sensors can provide and thereby enable objective model evaluation.  37 
 38 
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1 Introduction 49 
 50 

The effect of supercooled water on the Earth's top-of-atmosphere energy budget is a subject of 51 
increasing interest owing to its wide variability across climate models and its potential impact on predicted 52 
equilibrium climate sensitivity (Tan et al., 2016; McCoy et al., 2016; Frey et al., 2017). Some general 53 
circulation models (GCMs) now prognose number concentrations and mass mixing ratios for both cloud 54 
and precipitation hydrometeors of both liquid and ice phase, which enables them to shift towards more 55 
realistic microphysical process-based phase prediction (e.g., Gettelman and Morrison, 2015; Gettelman et 56 
al., 2015). While more complete and physically sound, these models still contain multiple scheme choices 57 
and tuning parameters, creating a need for increasingly thorough evaluation and adjustment (e.g., Tan and 58 
Storelvmo, 2016; English et al., 2014).  59 
 60 
Active remote sensing observations remain an indirect approach to evaluate models because they measure 61 
hydrometeor properties different from those produced by microphysical schemes. For each hydrometeor 62 
species within a grid cell models prognose geophysical quantities such as mass and number concentration, 63 
whereas active remote sensors measure power backscattered from all hydrometeors species present within 64 
their observation volumes. Defining which hydrometeors have an impact is a fundamental question that 65 
needs to be addressed by the modeling, as well as observational, communities. In numerical models it is not 66 
uncommon to find very small hydrometeor mixing ratio amounts as demonstrated below. They may 67 
possibly be unphysical, effectively numerical noise, and the decision of which hydrometeor amounts are 68 
physically meaningful is somewhat arbitrary. Considering sensor capabilities is one path to objectively 69 
assessing hydrometeor populations within models. On such a path it is possible to evaluate those simulated 70 
hydrometeor populations that lead to signals detectable by sensors, leaving unassessed those not detected. 71 
Sensor detection capabilities are both platform- and sensor-specific. Space-borne lidars can adequately 72 
detect liquid clouds globally but their signals cannot penetrate thick liquid layers, limiting their use to a 73 
subset of single-layer systems or upper-level cloud decks (Hogan et al., 2004). Space-borne radar 74 
observations, while able to penetrate multi-layer cloud systems, are of coarser vertical resolution and of 75 
limited value near the surface owing to ground interference and low sensitivity (e.g., Huang et al., 2012b; 76 
Battaglia and Delanoë, 2013; Huang et al., 2012a). A perspective from the surface can therefore be more 77 
appropriate for the study of low-level cloud systems (e.g., de Boer et al., 2009; Dong and Mace, 2003; 78 
Klein et al., 2009; Intrieri et al., 2002).  79 
 80 
Fortunately, both sensor sampling and hydrometeor scattering properties can be emulated through the use 81 
of forward-simulators. Forward-simulators convert model output to quantities observed by sensors and 82 
enable a fairer comparison between model output and observations; discrepancies can then be more readily 83 
attributed to dynamical and microphysical differences rather than methodological bias. For example, the 84 
CFMIP (Cloud Feedback Model Intercomparison Project) Observation Simulator Package (COSP) is 85 
composed of a number of satellite-oriented forward-simulators (Bodas-Salcedo et al., 2011), including a 86 
lidar backscattering forward-simulator that has been used to evaluate the representation of upper-level 87 
supercooled water layers in GCMs (e.g., Chepfer et al., 2008; Kay et al., 2016). Also, Zhang et al. (2017) 88 
present a first attempt at a ground-based radar reflectivity simulator tailored for GCM evaluation. 89 
 90 
Here we propose to exploit the complementarity of ground-based vertically pointing polarimetric lidar and 91 
Doppler radar measurements, which have been shown uniquely capable of documenting water phase in 92 
shallow and multi-layered cloud conditions near the surface where supercooled water layers frequently 93 
form. More specifically, we present a GCM-oriented ground-based observation forward-simulator [(GO)2-94 
SIM] framework designed for objective hydrometeor phase evaluation (Fig. 1). GCM output variables (Sec. 95 
2) are converted to observables in three steps: 1) hydrometeor backscattered power estimation (Sec. 3), 2) 96 
consideration for sensor capabilities (Sec. 4) and, 3) estimation of specialized observables (Sec. 5).  These 97 
forward-simulated fields, similar to observed fields, are used as inputs to a multi-sensor water phase 98 



 3 

 99 
Figure 1. (GO)2-SIM framework. (GO)2-SIM emulates two types of remote sensors: Ka-band Doppler 100 
radars (dark gray shading) and 532 nm polarimetric lidars (light gray shading). It then tunes and applies a 101 
common phase-classification algorithm (white boxes) to both observed (upper section) and forward-102 
simulated (bottom section) fields. Follow-on work will describe how observation can be post-processed and 103 
resampled to reduce the scale gap before model evaluation can be  performed. 104 
 105 
 106 
classifier (Sec. 6). The performance of (GO)2-SIM is evaluated over the North Slope of Alaska using output 107 
from a one-year simulation of the current development version of the NASA Goddard Institute for Space 108 
Studies GCM, hereafter referred to by its generic name, ModelE. Limitations and uncertainty are discussed 109 
in Sec. 6.3 and Sec. 7 respectively. 110 
 111 
2 GCM Outputs Required as Inputs to the Forward-Simulator  112 
 113 

To demonstrate how atmospheric model variables are converted to observables we performed a one-114 
year global simulation using the current development version of the ModelE GCM. Outputs from a column 115 
over the North Slope of Alaska (column centered at latitude 71.00 and longitude -156.25) are input to 116 
(GO)2-SIM. The most relevant changes from a recent version of ModelE (Schmidt et al. 2014) are 117 
implementation of the Bretherton and Park (2009) moist turbulence scheme and the Gettelman and 118 
Morrison (2015) microphysics scheme for stratiform cloud. The implementation of a two-moment 119 
microphysics scheme with prognostic precipitation species makes this ModelE version more suitable for 120 
the forward simulations presented here than previous versions. Here ModelE is configured with a 2.0° by 121 
2.5° latitude-longitude grid with 62 vertical layers. The vertical grid varies with height from 10 hPa layer 122 
thickness over the bottom 100 hPa of the atmosphere, coarsening to about 50 hPa thickness in the mid- 123 
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 124 

 125 
Figure 2. Sample time series of ModelE outputs: a1-4) mixing ratios, b2-4) mass weighted fall speed 126 
(positive values indicate downward motion) and c1-4) effective radii for cloud droplets (1; blue boxes), 127 
cloud ice particles (2; black boxes), precipitating liquid drops (3; green boxes) and precipitating ice 128 
particles (4; red boxes).  Also indicated are the locations of the 0 C and  -40 C isotherms (horizontal 129 
black lines).  130 
 131 
 132 
troposphere, and refining again to about 10 hPa thickness near the tropopause. For the current study, model 133 
top is at 0.1 hPa, though we limit our analysis to pressures greater than 150 hPa. Dynamics (large scale 134 
advection) is computed on a 225-s time step and column physics on a 30-min time step. High time-135 
resolution outputs (every column physics time step) are used as input to (GO)2-SIM. ModelE relies on two 136 
separate schemes to prognose the occurrence of stratiform and convective clouds. The current study focuses 137 
on stratiform clouds because their properties are more thoroughly diagnosed in this model version; when 138 
performing future model evaluation, the contribution from convective clouds will also be considered. 139 
 140 
An example of eight days of this simulation is displayed in Fig. 2. From a purely numerical modelling 141 
standpoint, the simplest approach to defining hydrometeors is to consider any nonzero hydrometeor mixing 142 
ratio as physically meaningful. Using this approach, we find that 43.5 % of the 981,120 grid cells simulated 143 
in the one-year ModelE run contain hydrometeors, with 2.4 % of them being pure liquid, 37.8 % pure ice 144 
and 59.8 % mixed in phase (Table 1a). However, these statistics are impacted by a number of simulated 145 
small hydrometeor mixing ratio amounts that may or may not result from numerical noise (e.g., Fig. 2a; 146 
blue-green colors). The forward-simulator framework will be used to create phase statistics of only those 147 
hydrometeors present in amounts that can create signal detectable by sensors hence removing the need for 148 
arbitrary filtering.  149 
 150 
(GO)2-SIM forward-simulator inputs are, at model native resolution, mean grid box temperature and 151 
pressure as well as hydrometeor mixing ratios, area fractions (used to estimate in-cloud values), mass 152 
weighted fall speeds and effective radii for four hydrometeor species: cloud liquid water, cloud ice, 153 
precipitating liquid water and precipitating ice. In its current setup, (GO)2-SIM can accommodate any 154 
model that produces these output variables 155 
 156 
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3 Hydrometeor Backscattered Power Simulator  157 
 158 
Reaching a common objective hydrometeor definition between numerical model output and active sensors 159 
starts by addressing the fact that they are based on different hydrometeor properties (i.e., moments). 160 
Backscattering amounts, observed by sensors, depend on both sensor frequency and on hydrometeors 161 
properties and amounts. Hydrometeor properties that impact backscattering include size, phase, 162 
composition, geometrical shape, orientation and bulk density. Were plausible representations for these 163 
hydrometeor properties available as part of the model formulation, fundamental radiative scattering transfer 164 
calculations would be the most accurate way to transform model hydrometeor properties to observables. 165 
However, in most GCMs such detailed hydrometeor information is highly simplified (e.g., fixed particle 166 
size distribution shapes) or not explicitly represented (e.g., orientation and realistic geometrical shape), 167 
complicating the process of performing direct radiative scattering transfer calculations. Chepfer et al. 168 
(2008) proposed an approach by which lidar backscattered power can be forward-simulated using model 169 
output hydrometeor effective radius. Their approach, based on Mie theory, relies on the assumption that 170 
cloud particles (both liquid and ice) are spherical and requires additional assumptions about hydrometeor 171 
size distributions and scattering efficiencies. Similarly, the COSP (Bodas-Salcedo et al., 2011) and ARM 172 
Cloud Radar Simulator for GCMs (Zhang et al., 2017) packages both use QuickBeam for the estimation of 173 
radar backscattered power (i.e., radar reflectivity; Haynes et al., 2007). QuickBeam computes radar 174 
reflectivity using Mie theory again under the assumption that all hydrometeor species are spherical and by 175 
making additional assumptions about the shape of hydrometeor size distributions as well as mass-size and 176 
diameter-density relationships. While some of these assumptions may be consistent with the assumptions in 177 
model cloud microphysical parameterizations, some are not adequately realistic (e.g., spherical ice) or 178 
complete for accurate backscattering estimation and it is typically very difficult to establish the sensitivity 179 
of results to all such assumptions. 180 

 181 
To avoid having to make ad hoc assumptions about hydrometeor shapes, orientations, and 182 

compositions, which are properties that also remain poorly documented in nature, (GO)2-SIM employs 183 
empirical relationships to convert model output to observables. These empirical relationships based on 184 
observations, direct or retrieved with their own sets of underlying assumptions, are expected to capture at 185 
least part of the natural variability in hydrometeor properties. Additionally empirical relationships are 186 
computationally less expensive to implement than direct radiative scattering calculations, thus enabling the 187 
estimation of an ensemble of backscattering calculations using a range of assumptions in an effort to 188 
quantify part of the backscattering uncertainty (see Sec. 7). The empirical relationships proposed require 189 
few model inputs, potentially enhancing consistency in applying (GO)2-SIM to models with differing 190 
microphysics scheme assumptions and complexity. Section 6 will show that, while the empirical 191 
relationships employed in (GO)2-SIM may not be as exact as direct radiative scattering calculations, they 192 
produce backscattering estimates of sufficient accuracy for hydrometeor phase classification, which is the 193 
main purpose of (GO)2-SIM at this time. 194 

 195 

3.1 Lidar Backscattered Power Simulator 196 
 197 

At a lidar wavelength of 532 nm, backscattered power is proportional to total particle cross section per 198 
unit volume. Owing to their high number concentrations, despite their small size, cloud particles 199 
backscatter this type of radiation the most.   200 
 201 
We adopt the Hu et al. (2007b) representation of liquid cloud extinction derived from CALIPSO and 202 
CERES-MODIS observations and retrievals of liquid water content and effective radius (Table 2, Eq. 1). 203 
For cloud ice water content, a number of empirical relationships with lidar extinction have been proposed 204 
for various geophysical locations and ice cloud types using a variety of assumptions. Four of these 205 
empirical relationships are implemented in (GO)2-SIM (Table 2, Eqns. 2-5 and references therein) and used  206 
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Table 1. a) Hydrometeor phase frequency of occurrence obtained a) from ModelE mixing ratios outside of 207 
the forward-simulator framework, b) and c) from the forward simulation ensemble created using different 208 
backscattered power assumptions. The median and interquartile range (IQR) capture the statistical behavior 209 
of the ensemble. Results using thresholds b) objectively determined for each forward ensemble member, c) 210 
modified from those in Shupe (2007). Percentage values are relative either to the total number of simulated 211 
hydrometeor-containing grid cells (426,603) or those grid cells with detectable hydrometeor amounts 212 
(333,927). Note that the total number of simulated grid cells analyzed is 981,120.  213 
 214 

a)  Determined using ModelE Output Hydrometeor Mixing Ratios 

 Grid cells 

containing  

only liquid phase  

Grid cells containing  

mixed phase 

Grid cells 

containing  

only ice phase 

Simulated hydrometer-

containing grid cells 

Frequency of 

Occurrence (%) 
2.4   59.8   37.8   43.5   

 b) Determined Using Flexible Objective Thresholds 

from Model Output Mixing-Ratios 

 Grid cells   

classified as  

liquid phase 

Grid cells   

classified as  

mixed phase 

Grid cells   

classified as  

ice phase 

Grid cells containing 

detectable hydrometeors 

 Median  
½ 

IQR 
Median  

½ 

IQR 
Median  

½ 

IQR 
Median  

½ 

IQR 

Frequency of 

Occurrence (%) 
11.3 ± 0.6 19.2 ± 1.8 68.8 ± 3.1 78.3 ± 1.8 

False Positive (%) 0.5 ± 0.0 1.1 ± 0.3 0.0 ± 0.0 1.7 ± 0.3 

False Negative (%) 0.2 ± 0.0 See questionable row 1.5 ± 0.2 1.7 ± 0.3 

Questionable (%) 1.4 ± 0.0    3.8 ± 0.9 5.2 ± 0.9 

Total Error (%)          6.9 ± 1.1 

c) Determined Using Fixed Empirical Thresholds 

Modified from Shupe (2007) 

 Grid cells   

classified as  

liquid phase 

Grid cells   

classified as  

mixed phase 

Grid cells   

classified as  

ice phase 

Grid cells containing 

detectable hydrometeors 

 

 
Median  

½ 

IQR 
Median  

½ 

IQR 
Median  

½ 

IQR 
Median  

½ 

IQR 

Frequency of 

Occurrence (%) 
12.5 ± 0.4 13.1 ± 2.4 71.5 ± 3.7 78.2 ± 1.8 

False Positive (%) 0.5 ± 0.0 0.3 ± 0.0 0.1 ± 0.0 0.9 ± 0.0 

False Negative (%) 0.1 ± 0.0 See questionable row 0.7 ± 0.0 0.9 ± 0.0 

Questionable (%) 1.4 ± 0.0    5.3 ± 1.1 6.7 ± 1.1 

Total Error (%)          7.6 ± 1.1 

 215 
to generate an ensemble of forward-simulations. Using these empirical relationships, a given water content 216 
can be mapped to a range of lidar extinction values (Fig. 3a). This spread depends both on the choice of 217 
empirical relationships and on the variability of the atmospheric conditions that affect them (i.e., 218 
atmospheric temperature and hydrometeor effective radius variability). Fig. 3a also illustrates the 219 
fundamental idea that lidar extinction increases with increasing water content and that for a given water 220 
content cloud droplets generally lead to higher lidar extinction than cloud ice particles.   221 
 222 
Lidar co-polar backscattered power (𝛽copol,species [m−1sr−1]) generated by each hydrometeor species is 223 

related to lidar extinction (𝜎copol,species [m-1]) through the lidar ratio (Sspecies [sr]): 224 

 225 
𝛽copol,cl =  (1 𝑆cl) 𝜎copol,cl⁄ .                                                                                                                           (6) 226 

𝛽copol,ci =  (1 𝑆ci) 𝜎copol,ci⁄ .                                                                                                                          (7) 227 
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While constant values are used for the lidar ratios of liquid and ice clouds in this version of the forward-228 
simulator, we acknowledge that in reality they depend on particle size. O'Connor et al. (2004) suggest that a 229 
liquid cloud lidar ratio (Scl) of 18.6 sr is valid for cloud liquid droplets smaller than 25 μm, which 230 
encompasses the median diameter expected in the stratiform clouds simulated here. Kuehn et al. (2016) 231 
observed layer-averaged lidar ratios in ice clouds (Sci) ranging from 15.1 to 36.3 sr. Sensitivity tests 232 
indicate that adjusting the ice cloud lidar ratio to either of these extreme values in the forward-simulator 233 
increases the number of detectable hydrometeors by no more than 0.6 %, changes the hydrometeor phase 234 
frequency of occurrence statistics by less than 0.4% and causes less than a 0.1% change in phase-235 
classification errors (not shown). Given these results, the ice cloud lidar ratio is set to the constant value of 236 
25.7 sr, which corresponds to the mean value observed by Kuehn et al. (2016). 237 
 238 
It is important to consider that lidars do not measure cloud droplet backscattering independently of cloud 239 
ice particle backscattering. Rather they measure total co-polar backscattered power (𝛽copol,total) which the 240 

sum of the contribution from both cloud phases. 241 
 242 

3.2 Radar Backscattered Power Simulator 243 
 244 

At the cloud-radar wavelength of 8.56 mm (Ka-band), backscattered power is approximately related to 245 
the sixth power of the particle diameter, and inversely proportional to the forth power of the wavelength. 246 
Hereafter radar backscattered power will be referred to as “radar reflectivity” as commonly done in 247 
literature.   248 

 249 
(GO)2-SIM relies on water content-based empirical relationships to estimate cloud liquid water (cl), cloud 250 
ice (ci), precipitating liquid water (pl) and precipitating ice (pi) radar reflectivity. Different relationships are 251 
used for each species to account for the fact that hydrometeor mass and size both affect radar reflectivity. A 252 
number of empirical relationships link hydrometeor water content to co-polar radar reflectivity. Thirteen of 253 
these empirical relationships are implemented in (GO)2-SIM (Table 2, Eqns. 8-20 and references therein) 254 
and used to generate an ensemble of forward-simulations. Figure 3b illustrates the fact that for all these 255 
empirical relationships increasing water content leads to increasing radar reflectivity. As already 256 
mentioned, radar reflectivity is approximately related to the sixth power of the particle size, which explains 257 
why, for the same water content, precipitating hydrometeors are associated with greater reflectivity than 258 
cloud hydrometeors.  259 
 260 
In reality, radars cannot isolate energy backscattered by individual hydrometeor species. Rather they 261 
measure total co-polar reflectivity (𝑍copol,total [mm6 m−3]) which is the sum of the contributions from all 262 

of the hydrometeor species.     263 

 264 
Figure 3.  Relationship between water content in the form of cloud liquid (blue), precipitating liquid 265 
(green), cloud ice (black) and precipitating ice (red) and a) Lidar extinction, and b) Radar co-polar 266 
reflectivity. Spread emerges from using multiple differing empirical relationships (listed in Table 2) and 267 
from variability in the one-year ModelE output (including the effects of varying temperature and effective 268 
radii).   269 

a) b)
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Table 2. Empirical relationships used to convert hydrometeor water content (WC [g m-2]) to lidar 270 
extinction (  [m-1]) and radar reflectivity (Z [mm6 m−3]). 271 
 272 

Type Eq. # Relationships for lidar extinction References 

Cloud liq. 

(cl) 
1 𝜎copol,cl =

WCcl(3 2⁄ )

Re  𝜌liq
  with  𝜌liq =  1 Hu et al. (2007b) 

Cloud ice 

(ci) 

2 𝜎copol,ci = (
WCci

119
)

1/1.22

 Heymsfield et al. (2005) 

3 
𝜎copol,ci = (

WCci

𝑎3
)

1/𝑏3
with  

𝑎3 = 89 + 0.6204𝑇 and 𝑏3 = 1.02 − 0.0281𝑇 
Heymsfield et al. (2005) 

4 𝜎copol,ci = (
WCci

527
)

1/1.32

 Heymsfield et al. (2014) 

5 
𝜎copol,ci = (

WCci

𝑎2
)

1/𝑏2
 with 

𝑎2 = 0.00532 ∗ (𝑇 + 90)2.55 and  

𝑏2 = 1.31𝑒(0.0047𝑇) 

Heymsfield et al. (2014) 

Type Eq. # Relationships for radar reflectivity  References 

Cloud liq. 

(cl) 

8 𝑍copol,cl = 0.048 WCcl
2.00

 Atlas (1954) 

9 𝑍copol,cl = 0.03 WCcl
1.31

 Sauvageot and Omar (1987) 

10 𝑍copol,cl = 0.031 WCcl
1.56

 Fox and Illingworth (1997) 

Cloud ice 

(ci) 

11a 𝑍copol,ci = 10
(

log10(WCci )+1.70+0.0233 𝑇

0.072
10⁄ )

 R. J. Hogan et al. (2006) 

12 𝑍copol,ci = (
WCci 

 0.064
)

1

0.58

 Atlas et al. (1995) 

13 𝑍copol,ci = (
𝑊𝐶ci 

 0.097
)

1

0.59

 Liu and Illingworth (2000) 

14 𝑍copol,ci = (
WCci 

 0.037
)

1

0.696

 Sassen (1987) 

Precip. liq 

(pl) 

15 𝑍copol,pl[mm6 m−3] = (
WCpl 

 0.0034
)

7

4

 Hagen and Yuter (2003) 

16 𝑍copol,pl[mm6 m−3] = (
WCpl 

 0.0039
)

1

0.55

 Battan (1973) 

17 𝑍copol,pl = (
WCpl 

 0.00098
)

1

0.7

 
Sekhon and Srivastava 

(1971) 

Precip. ice 

(pi) 

11b 
𝑍copol,pi = 10

(
log10(WCpi )+1.70+0.0233 𝑇

0.072
10⁄ )

 
R. J. Hogan et al. (2006) 

18 Zcopol,pi = (
WCpi 

 0.0218
)

1

0.79

 Liao and Sassen (1994) 

19 Zcopol,pi = (
WCpi 

 0.04915
)

1

0.90

 Sato et al. (1981) 

20 Zcopol,pi = (
WCpi 

 0.05751
)

1

0.736

 Kikuchi et al. (1982) 
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4 Sensor Capability Simulator 273 
 274 

In the previous section, total backscattered power resulting from all modeled hydrometeor species 275 
(without any filtering) is estimated. In order to objectively assess model hydrometeor properties, they must 276 
be converted to quantities that are comparable to observations, necessitating incorporation of sensor 277 
detection limitations, including attenuation and finite sensitivity. Fortunately, lidar and radar sensors are 278 
often relatively well-characterized so that sensor detection capabilities can be quantified and replicated in 279 
forward-simulators for an objective model-to-observation comparison.  280 
 281 

4.1 Lidar Detection Capability 282 
 283 

Following the work of Chepfer et al. (2008), the (GO)2-SIM lidar forward-simulator takes into 284 
consideration that lidar power is attenuated by clouds. Attenuation is related to cloud optical depth (𝜏), 285 
which is a function of total cloud extinction (𝜎copol,total  [m−1]) that includes the effect of cloud liquid 286 

water and cloud ice via: 287 
 288 

𝜏 = ∫ 𝜎copol,totaldh ,
𝑧

𝑧0
                                                                                                                                  (21) 289 

 290 
Lidar attenuation is exponential and two-way as it affects the lidar power on its way out and back: 291 
 292 
𝛽copol,total,att = 𝛽copol,total  𝑒

−2𝜂𝜏.                                                                                                                (22) 293 

  294 
Note that in some instances multiple scattering occurs before the lidar signal returns to the sensor, thus 295 
amplifying the returned signal. In theory, the multiple scattering coefficient (𝜂) varies from 0 to 1. Sensors 296 
with large fields of view, such as satellite-based lidars, are more likely to be impacted by multiple 297 
scattering than others (Winker, 2003). In the current study, for which a ground-based lidar is simulated, a 298 
multiple scattering coefficient of unity is used. A sensitivity test in which this coefficient was varied from 299 
0.7, such as that implemented in the CALIPSO satellite lidar simulator of Chepfer et al. (2008), to 0.3,  300 
representing an extreme case, indicated that multiple scattering had a negligible impact (less than 1%) on 301 
the number of hydrometeors detected, the hydrometeor phase frequency of occurrence statistics, and in 302 
phase classification error (not shown). 303 
 304 
In the current simulator we assume that only cloud segments with optical depth smaller than three can be 305 
penetrated, other clouds being opaque (Cesana and Chepfer, 2013) such that total co-polar backscattered 306 
power detected (𝛽copol,total,detect) is: 307 

 308 
𝛽copol,total,detect = 𝛽copol,total,att     where 𝜏 ≤ 3;  309 

𝛽copol,total,detect = undetected       where 𝜏 > 3.                                                                                       (23) 310 

 311 
For the sample ModelE output shown in Fig. 2, Fig. 4a illustrates results from the lidar forward-simulator 312 
for one forward-ensemble member (i.e., using a single set of lidar backscattered power empirical 313 
relationships specifically eqns. (1) and (4)). Figure 4a1 shows lidar total co-polar backscattered power 314 
without consideration of sensor limitations, such as attenuation, which are included in Fig. 4a2. Lidar 315 
attenuation prevents the tops of deep systems containing supercooled water layers from being observed 316 
(e.g., magenta boxes on 08/10 and 08/13). For the one-year sample the forward-simulated lidar system 317 
detects only 35.5% of simulated hydrometeor-containing grid cells. In Sec. 6 we will determine which 318 
hydrometeors (liquid water or ice) are responsible for the detected signals. 319 

 320 
 321 
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 322 
Figure 4. Example outputs from the (GO)2-SIM backscattered power modules (1), sensor capability 323 
modules (2) and specialized-observables modules (3-4) for a) lidars and b) radars obtained using one set of 324 
empirical backscattered power relationships. This figure highlights sensor limitations ranging from 325 
attenuation (magenta boxes) to sensitivity loss with range (red boxes). Also indicated are the locations of 326 
the 0 C and  -40 C isotherms (black lines). Note that positive velocities indicate downward motion. 327 
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4.2 Radar Detection Capability 328 
  329 

Millimeter-wavelength radars are also affected by signal attenuation. Radar signal attenuation depends 330 
both on the transmitted wavelength and on the mass and phase of the hydrometeors. Liquid phase 331 
hydrometeors attenuate radar signals at all millimeter radar wavelengths, even leading to total signal loss in 332 
heavy rain conditions. In contrast, water vapor attenuation is less important at relatively longer wavelengths 333 
(e.g., 8.56 mm; the wavelength simulated here) but can be important near wavelengths of 3.19 mm (the 334 
CloudSat operating wavelength; (Bodas-Salcedo et al., 2011)). 335 

 336 
At 8.56 mm (Ka-band) total co-polar attenuated reflectivity (𝑍copol,total,att [dBZ]) is given by: 337 

 338 

𝑍copol,total,att = 𝑍copol,total − 2 ∫ [𝑎 (WCpl + WCcl)]dh,
𝑧

𝑧=0
                                                    (24) 339 

 340 
where attenuation is controlled by the wavelength-dependent attenuation coefficient a ([dB km-1 (g m-3)-1]) 341 
which we take to be 0.6 at Ka-band (Ellis and Vivekanandan, 2011), by the water contents of cloud liquid 342 
(WCcl [g m−3]) and precipitating liquid (WCcl [g m−3] ), and by the thickness of the liquid layer. 343 
 344 
In addition to attenuation, radars suffer from having a finite sensitivity that decreases with distance. Given 345 
this, the total co-polar reflectivity detectable (Zcopol,total,detect  [dB𝑍]) is 346 
 347 
𝑍copol,total,detect = 𝑍copol,total,att  where 𝑍copol,total,att ≥  𝑍min,                                           348 

𝑍copol,total,detect  = Undetected   where 𝑍copol,total,att <  𝑍min,                                                              (25a) 349 

 350 
where the radar minimum detectable signal (Zmin [dB𝑍]) is a function of height (h [km]) and can be 351 
expressed as 352 
 353 
𝑍min = 𝑍sensitivity at 1 km  + 20 log10 ℎ .                                                                                                   (25b) 354 

 355 
A value of 𝑍sensitivity at 1 km = -41 dBZ is selected to reflect the sensitivity of the Ka-band ARM Zenith 356 

Radar (KAZR) currently installed at the Atmospheric Radiation Measurement (ARM) North Slope of 357 
Alaska observatory. This value has been determined by monitoring two years of observations and it reflects 358 
the minimum signal observed at a height of 1 km. The minimum detectable signal used in the simulator 359 
should reflect the sensitivity of the sensor used to produce the observational benchmark to be compared to 360 
the forward-simulator output.  361 
 362 
For the sample ModelE output shown in Fig. 2, Figure 4b illustrates results from the radar forward-363 
simulator for one forward-ensemble member (i.e., using a single set of radar reflectivity empirical 364 
relationships specifically eqns. (9), (11a), (15) and (11b)). Figure 4b1 shows radar total co-polar reflectivity 365 
without consideration of sensor limitations, while Fig. 4b2 includes the effects of attenuation and the range-366 
dependent minimum detectable signal. Sensor limitations make it such that heavy rain producing systems 367 
cannot be penetrated (e.g., magenta box on 08/08 and 08/10) and the tops of deep systems cannot be 368 
observed (e.g., red box on 08/15). For the one-year sample the forward-simulated radar system could detect 369 
only 69.9 % of the simulated hydrometeor-containing grid cells. In Sec. 6 we will determine the phase of 370 
the hydrometeors responsible for the detected signals. 371 
 372 
4.3 Lidar-Radar Complementarity  373 
 374 

Figures 4a2 and 4b2 highlight the complementarity of lidar and radar sensors. Despite sensor 375 
limitations, 532 nm lidar measurements can be used to characterize hydrometeors near the surface and infer 376 
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the location of a lowermost liquid layer if one exists. In contrast, 8.56 mm radars have the ability to 377 
penetrate cloud layers and light precipitation, allowing them to determine cloud boundary locations (e.g, 378 
Kollias et al., 2016). For the one-year sample ModelE output the combination of both sensors enables 379 
detection of 73.0 % of the hydrometeor-containing grid cells. Real observations can be used to objectively 380 
evaluate these detectable hydrometeor populations while nothing can be said about those that are not 381 
detectable. Note that a number of undetectable grid cells only contain trace amounts of hydrometeors, 382 
which could be the result of numerical noise. As such the approach of considering sensor detection 383 
limitations helps objectively remove numerical noise from consideration and allows model and 384 
observations to converge towards a common hydrometeor definition for a fair comparison.  385 
 386 
5 Forward Simulation of Specialized Observables  387 
 388 

In the previous section total co-polar backscattered powers are used to determine which simulated 389 
hydrometeors are present in sufficient amounts to be detectable by sensors hence removing numerical noise 390 
from consideration. However, determining the phase of the detectable hydrometeor populations can be 391 
achieved with much greater accuracy by using additional observables. 392 

 393 
Backscattered power alone provides a sense of hydrometeor number concentration (from lidar) and 394 
hydrometeor size (from radar), but it does not contain information about hydrometeor shape nor does it 395 
provide any hint on the number of coexisting hydrometeor species, both of which are relevant for phase 396 
determination. However, such information is available from lidar depolarization ratios and radar Doppler 397 
spectral widths. 398 

 399 

5.1  Lidar Depolarization Ratio Simulator 400 
 401 

So far we have described how hydrometeors of all types and phases affect co-polar radiation. It is 402 
important to note that radiation also has a cross-polar component which is only affected by nonspherical 403 
particles. Ice particles, which tend to be nonspherical, are expected to affect this component while we 404 
assume that cloud droplets, which tend to be spherical, do not. Taking the ratio of cross-polar to co-polar 405 
backscattering thus provides information about the dominance of ice particles in a hydrometeor population. 406 
This ratio is referred to as the linear depolarization ratio (𝛿detect) and it can be estimated where 407 
hydrometeors are detected by the lidar. 408 
 409 

𝛿detect =  
𝛽crosspol,ci,detect+𝛽crosspol,cl,detect

𝛽copol,total,detect
.                                                                                                                           410 

(26a) 411 
 412 
According to an analysis of CALIPSO observations by Cesana and Chepfer (2013), cloud ice particle 413 
cross-polar backscattering  (𝛽crosspol,ci,detect [m−1sr−1]) and cloud liquid droplet cross-polar 414 

backscattering (𝛽crosspol,cl,detect [m−1sr−1]) can be approximated using the following relationships: 415 

 416 
 𝛽crosspol,ci,detect = 0.29 (𝛽copol,ci,detect + 𝛽crosspol,ci,detect),                                                                 (26b) 417 

  418 
 𝛽crosspol,cl,detect =  1.39 (𝛽copol,cl,detect + 𝛽crosspol,cl,detect) 419 

                                     +1.76 10−2  (𝛽copol,cl,detect + 𝛽crosspol,cl,detect)  ≈ 0.                                             (26c) 420 

                                                                                                      421 
For reasons mentioned in Sec. 4.1, multiple scattering is considered negligible in the current study such that 422 
cloud-liquid droplet cross-polar backscattering is assumed to be zero under all conditions.  423 
  424 
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5.2  Radar Doppler Moment Simulator 425 
 426 

Specialty Doppler radars have the capability to provide information about the movement of 427 
hydrometeors in the radar observation volume. This information comes in the form of the radar Doppler 428 
spectrum, which describes how backscattered power is distributed as a function of hydrometeor velocity 429 
(Kollias et al., 2011). The zeroth moment of the Doppler spectral distribution (the spectral integral) is radar 430 
reflectivity, the first moment (the spectral mean) is mean Doppler velocity (VD) and the second moment 431 
(the spectral spread) is Doppler spectral width (SW). Rich information is provided by the velocity spread 432 
(i.e., SW) of the hydrometeor population including information regarding the number of coexisting species, 433 
turbulence intensity and spread of the hydrometeor particle size distributions. Typically, the effects of 434 
turbulence and hydrometeor size variations on the velocity spread for a single species are much smaller 435 
than the effect of mixed-phase conditions. As such, Doppler spectral width is a useful parameter for 436 
hydrometeor phase identification. 437 
 438 
Forward-simulations of Doppler quantities have been performed for cloud models using bin microphysics 439 
(e.g., Tatarevic and Kollias, 2015) but not, to our knowledge, for GCMs using 2-moment microphysics 440 
schemes. Co-polar mean Doppler velocity and co-polar Doppler spectral width are subject to the same 441 
detection limitations as radar reflectivity. In fact, just like radar reflectivity, these observables are strongly 442 
influenced by large hydrometeors; that is, they are reflectivity-weighted velocity averages.  443 
 444 
Our approach begins by quantifying the contribution of each species present (Pspecies), which is determined 445 
by the species detected co-polar reflectivity (𝑍copol,species,detect [mm6 m−3]) relative to the total detected 446 

co-polar reflectivity (𝑍copol,total,detect [mm6 m−3]): 447 

 448 

𝑃species =  
𝑍copol,species,detect

𝑍copol,total,detect
,                                                                                                                      (27a) 449 

 450 
together with 451 
  452 

𝑍copol,species,detect = 𝑍copol,species − 2 ∫ [𝑎 (WCpl + WCcl)]dh      where 𝑍copol,total,att ≥  𝑍min.
𝑧

𝑧=0
     (27b) 453 

 454 
In Eqns. 27a-b the subscript “species” represents cl, ci, pl, or pi. The attenuation coefficient (a), minimum 455 
detectable signal (Zmin) and water contents (WC) are as in Eq. 24. Total mean Doppler velocity detected 456 
(VDcopol,detect [m s−1]) is the reflectivity-weighted sum of the mass-weighted fall velocity of each 457 
hydrometeor species (Vspecies[m s−1]):  458 
 459 

VDcopol,detect =  ∑ PspeciesVspecies

species=cl,pl,ci,pi

,                                                                                                  (28) 460 

 461 
where the mass-weighted fall velocity of each hydrometeor species (Vspecies[m s−1]) is a model output. 462 
Total Doppler spectral width (SWcopol,detect [m s−1]) is more complex and can be estimated following a 463 
statistical method similar to that described by Everitt and Hand (1981). It takes into consideration the 464 
properties of each individual hydrometeor species through their respective fall speed (Vspeies [m s−1]) and 465 
spectral width (SWspecies [m s−1]) in relation to the properties of the hydrometeor population as a whole 466 
through the total mean Doppler velocity detected (VDcopol,detect) estimated in Eq. 28: 467 

 468 

SWcopol,detect =  ∑ Pspecies (SWspecies
2 + (Vspecies − VDcopol,detect)

2
)

species=cl,pl,ci,pi

,                               (29) 469 
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where the spectral widths of individual species (SWspecies) are assigned climatological values. These 470 
climatological values are SWcl = 0.10 m s−1, SWci = 0.05 m s−1, SWpi = 0.15 m s−1 and SWpl =471 

2.00 m s−1 (Kalesse et al., 2016). 472 
 473 
For the sample ModelE output shown in Fig. 2, Figs. 4b3 and 4b4 respectively show examples of forward 474 
simulated mean Doppler velocity and Doppler spectral width estimate using one set of empirical radar 475 
reflectivity relationship. 476 
 477 
6 Water Phase Classifier Algorithm 478 
 479 

From a purely numerical modeling perspective the simplest approach to defining the phase of a 480 
hydrometeor population contained in grid cells is to consider that any nonzero hydrometeor mixing ratio 481 
species contributes to the phase of the population. Using this approach, in the one-year sample, we find that 482 
the detectable hydrometeor-containing grid cells are 2.4 % pure liquid, 19.4 % pure ice and 78.2 % mixed 483 
phase (Note how these water phase statistics differ by up to 18.4 % from Sec. 2 where all grid cells, 484 
potentially including numerical noise, were considered). But determining hydrometeor phase in 485 
observational space is not as straightforward. It is complicated by the fact that sensors do not record ice- 486 
and liquid-hydrometeor returns separately but rather record total backscattering from all hydrometeors. 487 
Retrieval algorithms are typically applied to the observed total backscattering to determine the phase of 488 
hydrometeor populations. However, phase classification algorithms have limitations that require each 489 
hydrometeor species to be present not only in nonzero amounts but in amounts sufficient to produce a 490 
phase signal. Thus, hydrometeor phase statistics obtained from a numerical model in the absence of a 491 
forward simulator are not necessarily comparable with equivalent statistics retrieved from observables, 492 
especially in instances where one hydrometeor species dominates the grid cell and other species are present 493 
in trace amounts. A common hydrometeor phase definition must be established to objectively evaluate the 494 
phase of simulated hydrometeor populations using observations, which requires the development of a phase 495 
classification algorithm that can be applied to observables both forward-simulated and real.  496 
 497 
The scientific literature contains a number of phase classification algorithms with different levels of 498 
complexity. Hogan et al. (2003) used regions of high lidar backscattered power as an indicator for the 499 
presence of liquid droplets. Lidar backscattered power combined with lidar linear depolarization ratio has 500 
been used to avoid some of the misclassifications encountered when using backscattered power alone (e.g., 501 
Yoshida et al., 2010; Hu et al., 2007a; Hu et al., 2009; Hu et al., 2010; Sassen, 1991). Hogan and O’Connor 502 
(2004) proposed using lidar backscattered power in combination with radar reflectivity. While the 503 
combination of radar and lidar backscattered powers is useful for the identification of mixed-phase 504 
conditions, their combined extent remains limited to single layer clouds or to lower cloud decks because of 505 
lidar signal attenuation. Shupe (2007) proposed a technique in which radar Doppler velocity information is 506 
used as an alternative to lidar backscattering information (for ranges beyond that of lidar total attenuation) 507 
to infer the presence of supercooled water in multi-layer systems. Figure 5 displays cartoons of Doppler 508 
spectra that have the same total co-polar radar reflectivity but different total mean Doppler velocities (VD) 509 
and Doppler spectral widths (SW) resulting from different hydrometeor species and combinations, thus 510 
highlighting the added value of Doppler information. The contribution of each species to the total co-polar 511 
reflectivity is indicated as a percentage in the top right of each subpanel. These scenarios show that VD 512 
tends to be relatively small for pure liquid cloud (Fig. 5a6), pure ice cloud (Fig. 5a2), and even mixed-phase 513 
non-precipitating cloud (Fig. 5a3,a5,b3) and only tends to increase when precipitation is present in cloud 514 
(Fig. 5 a4,b3,b4,b5) or below cloud (Fig. 5a1,b2), making VD a seemingly robust indicator for precipitation 515 
occurrence but not for phase identification. These scenarios also show that SW tends to be relatively small 516 
in single-phase clouds without precipitation (Fig. 5a2,a6), pure precipitating ice (Fig. 5a1) and multi-species 517 
clouds with a dominant hydrometeor species (Fig. 5a3,a5). On the other hand, SW tends to be large when  518 
 519 
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 520 
 521 

Figure 5. Cartoon examples of radar Doppler spectra from different hydrometeors combinations: 522 
precipitating ice (red), cloud ice (black), precipitating water (green) and cloud water (blue). The 523 
contribution of each hydrometeor species to the total co-polar reflectivity is indicated in the top right of 524 
each subpanel. Each radar Doppler spectrum has been normalized to have the same total co-polar radar 525 
reflectivity which highlights that different hydrometeor combinations generate unique mean Doppler 526 
velocity (VD) and Doppler spectral width (SW) signatures. As discussed in Sec. 6, low spectral width 527 
signatures are assumed to be associated with ice conditions (column a) while high spectral width signatures 528 
are assumed to associated with liquid/mixed-phase conditions (column b). Hydrometeor combinations that 529 
respect these assumptions are marked with  -marks. Exceptions to these rules (X-marks) are responsible 530 
for (GO)2-SIM phase misclassifications above the level of lidar extinction. This list is not exhaustive. 531 
 532 
 533 
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liquid precipitation is present (Fig. 5b1,b2,b5) and in mixed-phase clouds without a dominant species (Fig.  534 
5b3,b4,b5). These scenarios suggest that large spectral widths are useful indicators for the presence of 535 
supercooled rain and mixed-phase conditions. Scenarios where this interpretation of spectrum width is 536 
incorrect will be discussed in Sec. 6.3. 537 
 538 
Regardless of which observation they are based-on, the aforementioned phase classification schemes all 539 
rely on assumption that hydrometeor phases when projected on observational space (e.g., lidar 540 
backscattered power against lidar depolarization ratio) create well-defined patterns that can be separated 541 
using thresholds.  542 
 543 
6.1 Observational Thresholds for Hydrometeor Phase Identification 544 
 545 

While the thresholds used for the radar reflectivity, lidar backscattered power, and lidar 546 
depolarization ratio are generally accepted by the remote sensing community, the same cannot be said 547 
about the radar Doppler velocity and Doppler spectral width thresholds suggested by Shupe (2007). 548 
Because simulated mixing ratios of liquid and ice hydrometeors are known in the (GO)2-SIM framework, 549 
the use and choice of all such thresholds for phase classification can be evaluated using joint frequency of 550 
occurrence histograms of hydrometeor mixing ratios for a single species and forward-simulated observable 551 
values (resulting from all hydrometeor types; Fig. 6). This exercise is repeated for each forward-simulation 552 
of the ensemble in order to provide a measure of uncertainty and ensure that the choice of empirical 553 
relationship does not affect our conclusions.  554 
 555 
As one example, the joint frequency of occurrence histogram of lidar total co-polar backscattered power 556 
(𝛽copol,total,detect) and cloud liquid mixing ratio is plotted with the objective of isolating cloud ice particles 557 

from cloud water droplets (Fig. 6a1, black contour lines). Two distinct clusters are evident in the joint 558 
histogram in Fig. 6a1: 1) 𝛽copol,total,detect between 10-6.7 m-1sr-1  and 10-5.1 m-1sr-1  for cloud liquid water 559 

mixing ratios between 10-10.6 kg kg-1 and 10-8.8 kg kg-1 which we conclude result primarily from cloud ice 560 
particle contributions, and 2) 𝛽copol,total,detect between 10-4.6 m-1sr-1  and 10-3.8 m-1sr-1  for cloud liquid water 561 

mixing ratios between 10-6.4 kg kg-1 and 10-4.3 kg kg-1 which we conclude result primarily from cloud liquid 562 
droplet contributions. Therefore, a threshold for best distinguishing these two distinct populations should 563 
lie somewhere between 10-5.1 m-1sr-1 and 10-4.6 m-1sr-1. 564 
 565 
To objectively determine an appropriate threshold to separate different hydrometeor populations, we start 566 
by normalizing the joint histogram of mixing ratio values for fixed ranges of observable values of interest. 567 
This normalization is done by assigning a value of 1 to the frequency of occurrence of the most frequently 568 
occurring mixing ratio value per observable range. It is then possible to evaluate the change of this most 569 
frequently occurring mixing ratio as a function of observable value. The observable value that intersects the 570 
largest change in most frequently occurring mixing ratio is then set as the threshold value.  571 
 572 
In the example presented in Fig. 6a1, the darkest grey shading is indicative of the most frequency occurring 573 
cloud liquid mixing ratio for each lidar backscattered power range. The dotted black line in Fig. 6a1 574 
connects these most frequently occurring mixing ratio values. A curved arrow points to the largest change 575 
in most frequently occurring mixing ratio as a function of 𝛽copol,total,detect. A red dashed line at 10-4.9 m-1sr-576 
1 indicates the lidar backscatter value that intersects this largest change in mixing ratio and represents an 577 
objective threshold value for this example forward-simulation. As mentioned earlier, this threshold is 578 
expected to change with the choice of empirical relationships used in the forward simulator. For the 576 579 
forward-simulator realizations of this version of ModelE outputs, the interquartile range of 𝛽copol,total,detect 580 

threshold values ranged from 10-5 m-1sr-1 to 10-4.85 m-1sr-1 (red shaded vertical column). 581 
 582 



 17 

 583 
Figure 6. Example of joint frequency of occurrence histograms (contours) and normalized subsets from the 584 
joint histograms (grey shading) for one (GO)2-SIM forward-realization: a1) 𝛽copol,total,detect, a2) 𝛿detect, b1) 585 

SWcopol,detect, and b2) 𝑍copol,total,detect. These are used for the determination of objective water phase 586 

classifier thresholds (vertical colored dashed lines) that are set at the observational value with the largest 587 
change (see curved arrows) in most frequently occurring mixing ratio. These thresholds are not fixed but 588 
rather re-estimated for each forward-ensemble member. The widths of the color shaded vertical columns 589 
represent the interquartile range spreads generated from 576 different forward-realizations. 590 
 591 
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The different panels in Fig. 6 show that similar observational patterns occur in the water mixing ratio 592 
versus lidar or radar observable histograms such that objective thresholds for hydrometeor phase 593 
classification can be determined for all of them. The second threshold determined is for the detected lidar 594 
linear depolarization (𝛿detect), once again with the goal of separating returns dominated by cloud droplets 595 
versus cloud ice particles (Fig. 6a2). If we first identify the model grid cells with backscattered power above 596 
the lidar detectability threshold of 10-6 m-1sr-1, the threshold to distinguish between ice particles and liquid 597 
droplets is 0.36 (cyan dashed line). In the 576 forward realizations from this version of ModelE this 598 
threshold is stable at 0.36. Note that this threshold is not allowed to fall below 0.05 m s-1. 599 
 600 
The third threshold determined is the radar detected co-polar spectral width (SWcopol,detect) value that 601 
separates ice dominated from liquid/mixed-phase dominated returns (Fig. 6b1). We isolate the model grid 602 
cells with sub-zero temperatures and look for the most appropriate SWcopol,detect threshold between 0.2 m s-1  603 
and 0.5 m s-1  to isolate the ice population. For the example forward-simulation we find a threshold of 0.31 604 
m s-1 (green dashed line), and over all forward-realizations this threshold ranges from 0.24 m s-1 to 0.31 m 605 
s-1 (green shaded vertical column).  606 
 607 
The last threshold determined is the radar total co-polar reflectivity detected (Zcopol,total,detect) value that 608 
separates liquid from mixed-phase dominated returns (Fig. 6b2). If we isolate the model grid cells with sub-609 
zero temperatures, spectral widths within the liquid/mixed-phase range, and with mean Doppler velocities 610 
smaller than 1 m s-1, the threshold to distinguish between liquid and mixed-phase is objectively set to -23 611 
dBZ (orange dashed line). This threshold ranges from -23.5 dBZ to -21.0 dBZ over the 576 forward 612 
realizations obtained from this version of ModelE outputs (orange shaded vertical column).  613 
 614 
The objectively determined thresholds, based on model output mixing ratios, optimize the performance of 615 
the hydrometeor phase classification algorithm and are expected to generate the best (by minimizing false 616 
detection) hydrometeor phase classifications. Results using these objective flexible thresholds are 617 
compared in Sec. 6.4 to results using the fixed empirical thresholds of Shupe (2007).  618 
 619 
6.2 Hydrometeor Phase Map Generation 620 
 621 

Hydrometeor phase maps are produced for each forward realization by applying the objectively 622 
determined flexible thresholds or fixed empirical thresholds modified from Shupe (2007) as illustrated in 623 
Fig. 7.  624 
 625 
Thresholds are applied in sequence. Where the lidar signal is detected it is used for initial classification of 626 
liquid-dominated grid cells (Fig. 7.1, red box) and final classification of ice-dominated grid cells (Fig. 7.1, 627 
cyan box). Grid cells initially classified as containing liquid drops by the lidar are subsequently reclassified 628 
as either liquid dominated  (Fig. 7.2, orange box) or mixed-phase (Fig. 7.2, outside of orange box) by the 629 
radar which is more sensitive to the larger ice particles. Because studies suggest that supercooled water 630 
layers extend to the tops of shallow clouds, if liquid containing grid cells were identified within 750 m of 631 
cloud top, the radar is used to determine if there are other liquid or mixed-phase hydrometeor populations 632 
from the range of lidar attenuation to cloud top (Fig.7.2; and just as in Shupe (2007)). Hydrometeor-633 
containing grid cells either not detected by the lidar or whose initial phase classification is inconclusive 634 
(Fig. 7.1, inconclusive region) are subsequently classified using their radar moments. If radar spectral width 635 
is above the threshold grid cells are finally classified as liquid (Fig.7.3, orange box) or mixed-phase (Fig. 636 
7.3, outside the orange box) depending on their other radar moments. If radar spectral width is below the 637 
threshold grid cells are finally classified as ice phase (Fig. 7.4). As a final step detected hydrometeors in 638 
grid cells at temperatures above 0 C are reclassified to liquid phase while those at temperatures below -40 639 
C are reclassified to the ice phase. 640 
 641 
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 642 

 643 
Figure 7. Collective illustration of hydrometeor phase classification thresholds and phase classification 644 
sequence. Fixed empirical thresholds modified from Shupe (2007) are displayed as grey lines. The 645 
objectively determined flexible thresholds are displayed using dashed colored lines and colored shading as 646 
in Fig. 6. Note that positive velocities indicate downward motion. 647 
  648 
 649 
Figure 8 shows an example of (GO)2-SIM water phase classification for one forward-ensemble member 650 
using objectively determined thresholds. During the first day of this example simulation, ModelE produced 651 
what appears to be a thick cirrus. The simulator classified this cirrus as mostly ice phase (blue). The 652 
following day of 08/09, ModelE generated enough hydrometeors to attenuate both the forward-simulated 653 
lidar and radar signals. The algorithm identified these hydrometeors as liquid phase (yellow). For the 654 
following few days (08/11-08/14) deep hydrometeor systems extending from the surface to about 8 km 655 
were produced. According to (GO)2-SIM they were mostly made up of ice-phase particles (blue) with two 656 
to three shallow mixed-phase layers at 2 km, 4 km and 7 km. Finally, on 08/14 hydrometeor systems appear 657 
to become shallower (2-km altitudes) and liquid topped (yellow). For the entire one-year simulation, of the 658 
333,927 detectable hydrometeor-containing grid cells, the phase classifier applied to our example forward-659 
simulation ensemble member identified 12.2 % pure-liquid, 68.7 % pure-ice and 19.1 % mixed-phase 660 
conditions. Hydrometeor phase statistics estimated using this objective definition of hydrometeor phase 661 
differ by up to 60 % from those discussed at the beginning of this section that were simply based on model 662 
output nonzero mixing ratios. This indicates that a large number of grid cells containing detectable 663 
hydrometeor populations were dominated by one species and that the amounts of the other species were too 664 
small to create a phase classification signal. This highlights the need to create a framework that both 665 
objectively identifies grid cells containing detectable hydrometeors populations and determines the phase 666 
of the hydrometeors dominating them using a phase classification technique consistent with observations. 667 
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 668 
 669 

Figure 8. Example output from (GO)2-SIM phase-classification algorithms (using objectively determined 670 
thresholds and one set of empirical relationships in the forward-simulator). The locations of ice-phase 671 
hydrometeors (blue), liquid-phase hydrometeors (yellow) and mixed-phase hydrometeors (green) are 672 
illustrated. After evaluation against the original ModelE output mixing-ratios, we found that some mixed-673 
phase hydrometeors were misclassified as ice phase (red) and some ice-phase hydrometeors were 674 
misclassified as mixed phase (magenta). Also indicated are the locations of the 0 C and  -40 C isotherms 675 
(black lines). 676 
 677 
 678 
6.3 Phase Classification Algorithm Limitations 679 
 680 

Hydrometeor-phase classification evaluation is facilitated in the context of forward-simulators 681 
because inputs (i.e., model-defined hydrometeor phase) are known. Model mixing-ratios are used to check 682 
for incorrect hydrometeor phase classifications over the entire forward-realization ensemble (Table 1b).  683 

 684 
Without any ambiguity, it is possible to identify false-positive phase classifications (Table 1b). A false-685 
positive phase classification occurs when a grid cell containing 0 kg kg-1 of ice particles (liquid drops) is 686 
wrongly classified as ice or mixed phase (liquid or mixed phase). In this study a negligible number (0.5 %) 687 
of hydrometeor-containing model grid cells are wrongly classified as containing liquid. Similarly, a 688 
negligible number (~0.0 %) of hydrometeor-containing model grid cells are wrongly classified as 689 
containing ice particles, whereas 1.1 % of pure liquid- or ice-containing model grid cells are wrongly 690 
classified as mixed-phase. Using model mixing ratios, it is possible to determine the appropriate phase of 691 
these false-positive classifications (“False negative” row in Table 1b). An additional 1.5 % of all 692 
hydrometeor-containing model grid cells should be classified as ice phase while a negligible number (0.2 693 
%) of liquid water is missed.  694 
 695 
Quantifying the number of mixed-phase false negatives (i.e., the number of grid cells that should have 696 
been, but were not, classified as mixed-phase) is not as straightforward because it requires us to define 697 
mixed-phase conditions in model space. For a rough estimate of mixed-phase false negatives we check if  698 
model grid cells classified as containing a single phase contained large amounts of hydrometeors of other 699 
phase types, with large amount being defined here as a mixing-ratio greater than 10-5 kg kg-1. This mixing-700 
ratio amount was chosen because it is associated with noticeable changes in observables, as seen in Fig. 6. 701 
Using this mixed-phase definition, we find that 1.4 % of liquid-only classified grid cells contained large 702 
amounts of ice particles and 3.8 % of ice-only classified grid cells contained large amounts of liquid 703 
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(“Questionable” row in Table 1b). Everything considered, only 6.9 % of model grid cells with detectable 704 
hydrometeor populations were misclassified according to their phase. 705 
 706 
For completeness we examined the circumstances associated with the most frequent phase-classification 707 
errors.  Most of these errors occurred above the altitude at which the lidar beam was completely attenuated, 708 
where only radar spectral widths are used to separate liquid/mixed-phase hydrometeors from ice-phase 709 
hydrometeors.  710 
 711 
The first set of phase-classifier errors was a scarcity of pure ice particles (1.5 % false-negative ice phase). 712 
In the current (GO)2-SIM implementation, ice particle populations are sometimes incorrectly classified as 713 
liquid/mixed-phase populations where cloud ice and precipitating ice hydrometeors coexist. This happens 714 
because mixtures of cloud and precipitating ice particles sometimes generate large Doppler spectral widths 715 
similar to those of mixed-phase clouds (Fig. 5b6). In this example simulation ModelE produced such 716 
mixtures close to the -40 C isotherm near the tops of deep cloud systems (e.g., Fig. 8, 08/15 around 8 km; 717 
magenta). 718 
 719 
In contrast, mixed-phase conditions were sometimes misclassified as pure ice (3.8 %; “Questionable” row 720 
in Table 1b). This occurred when large amounts of liquid drops coexisted with small amounts of ice 721 
particles that generated small spectral widths incorrectly associated with pure ice particles (Fig. 5a5). In this 722 
example simulation, ModelE produced such conditions just above the altitude of lidar beam extinction in 723 
cloud layers with ice falling into supercooled water layers (e.g., Fig. 8, 08/13 around 3 km; red).   724 
 725 
Other possible misclassification scenarios associated with spectral width retrievals are presented in Fig. 5 726 
and identified with the red X-marks. These other misclassification scenarios are not responsible for large 727 
misclassification errors here but could be in other simulations. As such, (GO)2-SIM errors should be 728 
quantified every time it is applied to a new region or numerical model. 729 
 730 
6.4 Sensitivity on the Choice of Threshold 731 
 732 

The performance of the objectively determined flexible phase-classification thresholds (illustrated 733 
using colored dashed lines and shading in Fig. 7) is examined against those empirically derived by Shupe 734 
(2007) with one exception (illustrated using grey lines in Fig. 7). The modification to Shupe (2007) is that 735 
radar reflectivity larger than 5 dBZ are not associated with the snow category since introducing this 736 
assumption was found to increase hydrometeor-phase misclassification (not shown). From Fig. 7 it is 737 
apparent that both sets of thresholds are very similar. We estimate that hydrometeor phase frequency of 738 
occurrence produced by both threshold sets are within 6.1 % of each other and that the fixed empirical 739 
thresholds modified from Shupe (2007) only produce phase misclassification in an additional 0.7 % of 740 
hydrometeor-containing grid cells (compare Table 1b to Table 1c). These results suggest that the use of 741 
lidar-radar threshold-based techniques for hydrometeor-phase classification depends little on the choice of 742 
thresholds. 743 

 744 
7  An Ensemble Approach for Uncertainty Quantification 745 
 746 

Owing to the limited information content in models with regard to detailed particle property 747 
information, all forward simulators must rely on a set of assumptions to estimate hydrometeor 748 
backscattered power. (GO)2-SIM performs an uncertainty assessment by performing an ensemble of 576 749 
forward simulations based on 18 different empirical relationships (relationships are listed in Table 2). 750 
While the relationships used do not cover the entire range of possible backscattering assumptions, they 751 
represent an attempt at uncertainty quantification and illustrate a framework for doing so. We express the 752 
spread generated by the different empirical relationships combinations using median values and 753 
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interquartile ranges (IQR; Table 1b,c). The fact that the largest interquartile range is 3.7 % suggests that the 754 
number of grid cells containing detectable hydrometeors as well as hydrometeor phase statistics estimated 755 
using the proposed lidar-radar algorithm are rather independent of backscattered power assumptions in the 756 
forward simulator. Nevertheless, we suggest using the full range of frequency of occurrences presented in 757 
Tables 1b,c for future model evaluation using observations and acknowledge that additional uncertainty is 758 
most likely present. 759 
 760 
8 Summary and Conclusions 761 
 762 

Ground-based active remote sensors offer a favorable perspective for the study of shallow and 763 
multi-layer mixed-phase clouds because ground-based sensors are able to collect high resolution 764 
observations close to the surface where supercooled water layers are expected to be found. In addition, 765 
ground-based sensors have the unique capability to collect Doppler velocity information that has the 766 
potential to help identify mixed-phase conditions even in multi-layer cloud systems.  767 
 768 
Because of differences in hydrometeor and phase definitions, among other things, observations remain 769 
incomplete benchmarks for general circulation model (GCM) evaluation. Here, a GCM-oriented ground-770 
based observation forward-simulator [(GO)2-SIM] framework for hydrometeor-phase evaluation is 771 
presented. This framework bridges the gap between observations and GCMs by mimicking observations 772 
and their limitations and producing hydrometeor-phase maps with comparable hydrometeor definitions and 773 
uncertainties. 774 
 775 
Here, results over the North Slope of Alaska extracted from a one-year global ModelE (current 776 
development version) simulation are used as an example. (GO)2-SIM uses as input native resolution GCM 777 
grid-average hydrometeor (cloud and precipitation, liquid and ice) area fractions, mixing ratios, mass-778 
weighted fall speeds and effective radii. These variables offer a balance between those most essential for 779 
forward simulation of observed hydrometeor backscattering and those likely to be available from a range of 780 
GCMs going forward, making (GO)2-SIM a portable tool for model evaluation. (GO)2-SIM outputs 781 
statistics from 576 forward-simulation ensemble members all based on a different combination of eighteen 782 
empirical relationships that relate simulated water content to hydrometeor backscattered power as would be 783 
observed by vertically pointing micropulse lidar and Ka-band radar; The interquartile range of these 784 
statistics being used as an uncertainty measure. 785 
 786 
(GO)2-SIM objectively determines which hydrometeor-containing model grid cells can be assessed based 787 
on sensor capabilities, bypassing the need to arbitrarily filter trace amounts of simulated hydrometeor 788 
mixing ratios that may be unphysical or just numerical noise. Limitations that affect sensor capabilities 789 
represented in (GO)2-SIM include attenuation and range dependent sensitivity. In this approach 78.3 % of 790 
simulated grid cells containing nonzero hydrometeor mixing ratios were detectable and can be evaluated 791 
using real observations, with the rest falling below the detection capability of the forward-simulated lidar 792 
and radar leaving them unevaluated. This shows that comparing all hydrometeors produced by models with 793 
those detected by sensors would lead to inconsistencies in the evaluation of quantities as simple as cloud 794 
and precipitation locations and fraction. 795 
 796 
While information can be gained from comparing the forward-simulated and observed fields, hydrometeor-797 
phase evaluation remains challenging owing to inconsistencies in hydrometeor-phase definitions. Models 798 
evolve ice and liquid water species separately such that their frequency of occurrence can easily be 799 
estimated. However, sensors record information from all hydrometeor species within a grid cell without 800 
distinction between signals originating from ice particles or liquid drops. The additional observables of 801 
lidar linear depolarization ratio and radar mean Doppler velocity and spectral width are forward simulated 802 
to retrieve hydrometeor phase. The results presented here strengthen the idea that hydrometeor-phase 803 
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characteristics lead to distinct signatures in lidar and radar observables, including the radar Doppler 804 
moments which have not been evaluated previously. Our analysis confirms that distinct patterns in 805 
observational space are related to hydrometeor phase and an objective technique to isolate liquid, mixed-806 
phase and ice conditions using simulated hydrometeor mixing ratios was presented. The thresholds 807 
produced by this technique are close to those previously estimated using real observations, further 808 
highlighting the robustness of thresholds for hydrometeor-phase classification. 809 
 810 
The algorithm led to hydrometeor phase misclassification in no more than 6.9 % of the hydrometeor-811 
containing grid cells. Its main limitations were confined above the altitude of lidar total attenuation where it 812 
sometimes failed to identify additional mixed-phase layers dominated by liquid water drops and with few 813 
ice particles. Using the same hydrometeor-phase definition for forward-simulated observables and real 814 
observations should produce hydrometeor-phase statistics with comparable uncertainties. Alternatively, 815 
disregarding how hydrometeor phase is observationally retrieved would lead to discrepancies in 816 
hydrometeor-phase frequency of occurrence up to 40 %, a difference attributable to methodological bias 817 
and not to model error. So, while not equivalent to model “reality” a forward-simulator framework offers 818 
the opportunity to compare simulated and observed hydrometeor-phase maps with similar limitations and 819 
uncertainties for a fair model evaluation. 820 
 821 
The next steps to GCM evaluation using ground-based observations include the creation of an artifact-free 822 
observational benchmark and addressing model and observation scale differences. While the (GO)2-SIM 823 
modules presented here capture sensor limitations related to backscattered power attenuations, they do not 824 
account for sensitivity inconsistencies, clutter and insect contamination, all of which affect the observations 825 
collected by the real sensors. Only thorough evaluation of observational datasets and application of 826 
masking algorithms to them can remediate these issues. Several approaches, from the subsampling of 827 
GCMs to the creation of CFADs, have been proposed to address the scale difference. A follow-up study 828 
will describe an approach by which vertical and temporal resampling of observations can help reduce the 829 
scale gap. Furthermore, it will be showed that, using simplified model evaluation targets based on three 830 
atmospheric regions separated by constant pressure levels, ground-based observations can be used for 831 
GCM hydrometeor-phase evaluation.  832 
 833 
(GO)2-SIM is a step towards creating a fair hydrometeor-phase comparison between GCM output and 834 
ground-based observations. Owing to its simplicity and robustness, (GO)2-SIM is expected to help assist in 835 
model evaluation and development for models such as ModelE, specifically with respect to hydrometeor 836 
phase in shallow cloud systems. 837 
 838 
Code Availability 839 
 840 

Results here are based on ModelE tag modelE3_2017-06-14, which is not a publicly released 841 
version of ModelE  but is available on the ModelE developer repository 842 
at https://simplex.giss.nasa.gov/cgi-bin/gitweb.cgi?p=modelE.git;a=tag;h=refs/tags/modelE3_2017-06-14. 843 
The (GO)2-SIM modules described in the current manuscript can be fully reproduced using the information 844 
provided. Interested parties are encouraged to contact the corresponding author for additional information 845 
on how to interface their numerical model with (GO)2-SIM. 846 
 847 
Acknowledgements 848 
 849 

K. Lamer and E. Clothiaux’s contributions to this research were funded by subcontract 300324 of 850 
the Pennsylvania State University with the Brookhaven National Laboratory in support to the ARM-ASR 851 
Radar Science group. The contributions of A. Fridlind, A. Ackerman, and M. Kelley were partially 852 
supported by the Office of Science (BER), U.S. Department of Energy, under agreement DE-SC0016237, 853 



 24 

the NASA Radiation Sciences Program, and the NASA Modeling, Analysis and Prediction Program. 854 
Resources supporting this work were provided by the NASA High-End Computing (HEC) Program 855 
through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. 856 
 857 
References 858 
 859 

Atlas, D.: The estimation of cloud parameters by radar, J. Meteorol., 11, 309-317, 1954. 860 

Atlas, D., Matrosov, S. Y., Heymsfield, A. J., Chou, M.-D., and Wolff, D. B.: Radar and radiation 861 
properties of ice clouds, J. Appl. Meteorol., 34, 2329-2345, 1995. 862 

Battaglia, A., and Delanoë, J.: Synergies and complementarities of CloudSat‐CALIPSO snow 863 
observations, J. Geophys. Res.: Atmos., 118, 721-731, 2013. 864 

Battan, L. J.: Radar observation of the atmosphere, University of Chicago, Chicago, Illinois, 1973. 865 

Bodas-Salcedo, A., Webb, M., Bony, S., Chepfer, H., Dufresne, J.-L., Klein, S., Zhang, Y., 866 
Marchand, R., Haynes, J., and Pincus, R.: COSP: Satellite simulation software for model assessment, Bull. 867 
Amer. Meteorol. Soc., 92, 1023-1043, 2011. 868 

Bretherton, C. S., and Park, S.: A new moist turbulence parameterization in the Community 869 
Atmosphere Model, J. Climate, 22, 3422-3448, 2009. 870 

Cesana, G., and Chepfer, H.: Evaluation of the cloud thermodynamic phase in a climate model 871 
using CALIPSO‐GOCCP, J. Geophys. Res.: Atmos., 118, 7922-7937, 2013. 872 

Chepfer, H., Bony, S., Winker, D., Chiriaco, M., Dufresne, J. L., and Sèze, G.: Use of CALIPSO 873 
lidar observations to evaluate the cloudiness simulated by a climate model, Geophys. Res. Lett., 35, 2008. 874 

de Boer, G., Eloranta, E. W., and Shupe, M. D.: Arctic mixed-phase stratiform cloud properties 875 
from multiple years of surface-based measurements at two high-latitude locations, J. Atmos. Sci., 66, 2874-876 
2887, 2009. 877 

Dong, X., and Mace, G. G.: Arctic stratus cloud properties and radiative forcing derived from 878 
ground-based data collected at Barrow, Alaska, J. climate, 16, 445-461, 2003. 879 

Ellis, S. M., and Vivekanandan, J.: Liquid water content estimates using simultaneous S and Ka 880 
band radar measurements, Radio Science, 46, 2011. 881 

 882 
English, J. M., Kay, J. E., Gettelman, A., Liu, X., Wang, Y., Zhang, Y., and Chepfer, H.: 883 

Contributions of clouds, surface albedos, and mixed-phase ice nucleation schemes to Arctic radiation biases 884 
in CAM5, J. Climate, 27, 5174-5197, 2014. 885 

Everitt, B., and Hand, D.: Mixtures of normal distributions, in: Finite Mixture Distributions, 886 
Springer, 25-57, 1981. 887 

 888 
Fox, N. I., and Illingworth, A. J.: The retrieval of stratocumulus cloud properties by ground-based 889 

cloud radar, J. Appl. Meteorol., 36, 485-492, 1997. 890 

Frey, W., Maroon, E., Pendergrass, A., and Kay, J.: Do Southern Ocean Cloud Feedbacks Matter 891 
for 21st Century Warming?, Geophys. Res. Lett., 2017. 892 



 25 

Gettelman, A., and Morrison, H.: Advanced two-moment bulk microphysics for global models. Part 893 
I: Off-line tests and comparison with other schemes, J. Climate, 28, 1268-1287, 2015. 894 

Gettelman, A., Morrison, H., Santos, S., Bogenschutz, P., and Caldwell, P.: Advanced two-moment 895 
bulk microphysics for global models. Part II: Global model solutions and aerosol–cloud interactions, J. 896 
Climate, 28, 1288-1307, 2015. 897 

Hagen, M., and Yuter, S. E.: Relations between radar reflectivity, liquid‐water content, and rainfall 898 
rate during the MAP SOP, Quart. J. Roy. Meteorol. Soc.al Society, 129, 477-493, 2003. 899 

Haynes, J., Luo, Z., Stephens, G., Marchand, R., and Bodas-Salcedo, A.: A multipurpose radar 900 
simulation package: QuickBeam, Bull. Amer. Meteorol. Soc., 88, 1723-1727, 2007. 901 

Heymsfield, A., Winker, D., Avery, M., Vaughan, M., Diskin, G., Deng, M., Mitev, V., and 902 
Matthey, R.: Relationships between ice water content and volume extinction coefficient from in situ 903 
observations for temperatures from 0 to− 86° C: Implications for spaceborne lidar retrievals, J. Appl. 904 
Meteorol. Climatol., 53, 479-505, 2014. 905 

Heymsfield, A. J., Winker, D., and van Zadelhoff, G. J.: Extinction‐ice water content‐effective 906 
radius algorithms for CALIPSO, Geophys. Res. Lett., 32, 2005. 907 

Hogan, R. J., Illingworth, A., O'connor, E., and Baptista, J.: Characteristics of mixed‐phase clouds. 908 
II: A climatology from ground‐based lidar, Quart. J. Roy. Meteorol. Soc.al Society, 129, 2117-2134, 2003. 909 

Hogan, R. J., Behera, M. D., O'Connor, E. J., and Illingworth, A. J.: Estimate of the global 910 
distribution of stratiform supercooled liquid water clouds using the LITE lidar, Geophys. Res. Lett., 31, 911 
2004. 912 

Hogan, R. J., and O’Connor, E.: Facilitating cloud radar and lidar algorithms: The Cloudnet 913 
Instrument Synergy/Target Categorization product, Cloudnet documentation, 2004. 914 

Hogan, R. J., Mittermaier, M. P., and Illingworth, A. J.: The retrieval of ice water content from 915 
radar reflectivity factor and temperature and its use in evaluating a mesoscale model, J. Appl. Meteorol. 916 
Climatol., 45, 301-317, 2006. 917 

Hu, Y., Vaughan, M., Liu, Z., Lin, B., Yang, P., Flittner, D., Hunt, B., Kuehn, R., Huang, J., and 918 
Wu, D.: The depolarization-attenuated backscatter relation: CALIPSO lidar measurements vs. theory, 919 
Optics Express, 15, 5327-5332, 2007a. 920 

Hu, Y., Vaughan, M., McClain, C., Behrenfeld, M., Maring, H., Anderson, D., Sun-Mack, S., 921 
Flittner, D., Huang, J., Wielicki, B., Minnis, P., Weimer, C., Trepte, C., and Kuehn, R.: Global statistics of 922 
liquid water content and effective number concentration  of water clouds over ocean derived from 923 
combined CALIPSO and MODIS  measurements, Atmos. Chem. Phys., 7, 3353--3359, 10.5194/acp-7-924 
3353-2007, 2007b. 925 

Hu, Y., Winker, D., Vaughan, M., Lin, B., Omar, A., Trepte, C., Flittner, D., Yang, P., Nasiri, S. L., 926 
and Baum, B.: CALIPSO/CALIOP cloud phase discrimination algorithm, J. Atmos. Ocean. Technol., 26, 927 
2293-2309, 2009. 928 

Hu, Y., Rodier, S., Xu, K. m., Sun, W., Huang, J., Lin, B., Zhai, P., and Josset, D.: Occurrence, 929 
liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS 930 
measurements, J. Geophys. Res.: Atmos., 115, 2010. 931 



 26 

Huang, Y., Siems, S. T., Manton, M. J., Hande, L. B., and Haynes, J. M.: The structure of low-932 
altitude clouds over the Southern Ocean as seen by CloudSat, J. Climate, 25, 2535-2546, 2012a. 933 

Huang, Y., Siems, S. T., Manton, M. J., Protat, A., and Delanoë, J.: A study on the low‐altitude 934 
clouds over the Southern Ocean using the DARDAR‐MASK, J. Geophys. Res.: Atmos., 117, 2012b. 935 

Intrieri, J., Shupe, M., Uttal, T., and McCarty, B.: An annual cycle of Arctic cloud characteristics 936 
observed by radar and lidar at SHEBA, J. Geophys. Res.: Oceans, 107, 2002. 937 

Kalesse, H., Szyrmer, W., Kneifel, S., Kollias, P., and Luke, E.: Fingerprints of a riming event on 938 
cloud radar Doppler spectra: observations and modeling, Atmos. Chem. Phys., 16, 2997-3012, 2016. 939 

Kay, J. E., Bourdages, L., Miller, N. B., Morrison, A., Yettella, V., Chepfer, H., and Eaton, B.: 940 
Evaluating and improving cloud phase in the Community Atmosphere Model version 5 using spaceborne 941 
lidar observations, J. Geophys. Res.: Atmos., 121, 4162-4176, 2016. 942 

Kikuchi, K., Tsuboya, S., Sato, N., Asuma, Y., Takeda, T., and Fujiyoshi, Y.: Observation of 943 
wintertime clouds and precipitation in the Arctic Canada (POLEX-North), J. Meteorol. Soc. Japan. Ser. II, 944 
60, 1215-1226, 1982. 945 

Klein, S. A., McCoy, R. B., Morrison, H., Ackerman, A. S., Avramov, A., Boer, G. d., Chen, M., 946 
Cole, J. N., Del Genio, A. D., and Falk, M.: Intercomparison of model simulations of mixed‐phase clouds 947 
observed during the ARM Mixed‐Phase Arctic Cloud Experiment. I: Single‐layer cloud, Quart. J. Roy. 948 
Meteorol. Soc., 135, 979-1002, 2009. 949 

Kollias, P., Miller, M. A., Luke, E. P., Johnson, K. L., Clothiaux, E. E., Moran, K. P., Widener, K. 950 
B., and Albrecht, B. A.: The Atmospheric Radiation Measurement Program cloud profiling radars: Second-951 
generation sampling strategies, processing, and cloud data products, J. Atmos. Ocean. Technol., 24, 1199-952 
1214, 2007. 953 

Kollias, P., Rémillard, J., Luke, E., and Szyrmer, W.: Cloud radar Doppler spectra in drizzling 954 
stratiform clouds: 1. Forward modeling and remote sensing applications, J. Geophys. Res.: Atmos., 116, 955 
2011. 956 

Kollias, P., Clothiaux, E. E., Ackerman, T. P., Albrecht, B. A., Widener, K. B., Moran, K. P., Luke, 957 
E. P., Johnson, K. L., Bharadwaj, N., and Mead, J. B.: Development and applications of ARM millimeter-958 
wavelength cloud radars, Meteorological Monographs, 57, 17.11-17.19, 2016. 959 

Kuehn, R., Holz, R., Eloranta, E., Vaughan, M., and Hair, J.: Developing a Climatology of Cirrus 960 
Lidar Ratios Using Univeristy of Wisconsin HSRL Observations, EPJ Web of Conferences, 2016, 16009,  961 

Liao, L., and Sassen, K.: Investigation of relationships between Ka-band radar reflectivity and ice 962 
and liquid water contents, Atmospheric Res., 34, 231-248, 1994. 963 

Liu, C.-L., and Illingworth, A. J.: Toward more accurate retrievals of ice water content from radar 964 
measurements of clouds, J. Appl. Meteorol., 39, 1130-1146, 2000. 965 

McCoy, D. T., Tan, I., Hartmann, D. L., Zelinka, M. D., and Storelvmo, T.: On the relationships 966 
among cloud cover, mixed‐phase partitioning, and planetary albedo in GCMs, J. Advances in Modeling 967 
Earth Systems, 8, 650-668, 2016. 968 



 27 

O'Connor, E. J., Illingworth, A. J., and Hogan, R. J.: A technique for autocalibration of cloud lidar, 969 
J. Atmos. Ocean. Technol., 21, 777-786, 2004. 970 

Rémillard, J., and Tselioudis, G.: Cloud regime variability over the Azores and its application to 971 
climate model evaluation, J. Climate, 28, 9707-9720, 2015. 972 

Sassen, K.: Ice cloud content from radar reflectivity, J. climate and Appl. Meteorol., 26, 1050-1053, 973 
1987. 974 

Sassen, K.: The polarization lidar technique for cloud research: A review and current assessment, 975 
Bull. Amer. Meteorol. Soc., 72, 1848-1866, 1991. 976 

Sato, N., Kikuchi, K., Barnard, S. C., and Hogan, A. W.: Some characteristic properties of ice 977 
crystal precipitation in the summer season at South Pole Station, Antarctica, J. Meteorol. Soc. Japan. Ser. 978 
II, 59, 772-780, 1981. 979 

Sauvageot, H., and Omar, J.: Radar reflectivity of cumulus clouds, J. Atmos. Ocean. Technol., 4, 980 
264-272, 1987. 981 

Schmidt, G. A., Kelley, M., Nazarenko, L., Ruedy, R., Russell, G. L., Aleinov, I., Bauer, M., Bauer, 982 
S. E., Bhat, M. K., and Bleck, R.: Configuration and assessment of the GISS ModelE2 contributions to the 983 
CMIP5 archive, J. Adv. Model. Earth Syst., 6, 141-184, 2014. 984 

Sekhon, R. S., and Srivastava, R.: Doppler radar observations of drop-size distributions in a 985 
thunderstorm, J. Atmos. Sci., 28, 983-994, 1971. 986 

Shupe, M. D.: A ground‐based multisensor cloud phase classifier, Geophys. Res. Lett., 34, 2007. 987 

Tan, I., and Storelvmo, T.: Sensitivity study on the influence of cloud microphysical parameters on 988 
mixed-phase cloud thermodynamic phase partitioning in CAM5, J. Atmos. Sci., 73, 709-728, 2016. 989 

Tan, I., Storelvmo, T., and Zelinka, M. D.: Observational constraints on mixed-phase clouds imply 990 
higher climate sensitivity, Science, 352, 224-227, 2016. 991 

            Tatarevic, A., and Kollias, P.: User’s Guide to Cloud Resolving Model Radar Simulator (CR-SIM), 992 
McGill University Clouds Research Group, Document available at http://radarscience.weebly.com/radar-993 
simulators.html. 2015. 994 

  Winker, D. M.: Accounting for multiple scattering in retrievals from space lidar. Proceedings 995 
Volume 5059, 12th International Workshop on Lidar Multiple Scattering 996 
Experiments; https://doi.org/10.1117/12.512352, 2003 997 
 998 

Yoshida, R., Okamoto, H., Hagihara, Y., and Ishimoto, H.: Global analysis of cloud phase and ice 999 
crystal orientation from Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) 1000 
data using attenuated backscattering and depolarization ratio, J. Geophys. Res.: Atmos., 115, 2010. 1001 

Zhang, Y., Xie, S., Klein, S. A., Marchand, R., Kollias, P., Clothiaux, E. E., Lin, W., Johnson, K., 1002 
Swales, D., and Bodas-Salcedo, A.: The ARM Cloud Radar Simulator for Global Climate Models: A New 1003 
Tool for Bridging Field Data and Climate Models, Bull. Amer. Meteorol. Soc., 2017. 1004 
 1005 
 1006 
 1007 

https://doi.org/10.1117/12.512352

	Abstract
	1 Introduction
	2 GCM Outputs Required as Inputs to the Forward-Simulator
	3 Hydrometeor Backscattered Power Simulator
	3.1 Lidar Backscattered Power Simulator
	3.2 Radar Backscattered Power Simulator
	4.1 Lidar Detection Capability
	4.2 Radar Detection Capability

	5 Forward Simulation of Specialized Observables
	In the previous section total co-polar backscattered powers are used to determine which simulated hydrometeors are present in sufficient amounts to be detectable by sensors hence removing numerical noise from consideration. However, determining the ph...
	Backscattered power alone provides a sense of hydrometeor number concentration (from lidar) and hydrometeor size (from radar), but it does not contain information about hydrometeor shape nor does it provide any hint on the number of coexisting hydrome...
	5.1  Lidar Depolarization Ratio Simulator
	5.2  Radar Doppler Moment Simulator

	6 Water Phase Classifier Algorithm
	6.1 Observational Thresholds for Hydrometeor Phase Identification
	6.3 Phase Classification Algorithm Limitations
	6.4 Sensitivity on the Choice of Threshold

	7  An Ensemble Approach for Uncertainty Quantification
	8 Summary and Conclusions
	Code Availability
	Results here are based on ModelE tag modelE3_2017-06-14, which is not a publicly released version of ModelE  but is available on the ModelE developer repository at https://simplex.giss.nasa.gov/cgi-bin/gitweb.cgi?p=modelE.git;a=tag;h=refs/tags/modelE3...
	Acknowledgements
	References

