The authors would like to thank the reviewer for their insightful comments. A point by point
response to the reviewer’s comments, along with changes made to the manuscript as a result, are
included below.

R1. The advantage of basing forward calculations on empirical relationships, as opposed to
fundamental radiative transfer and scattering theory, is not well established in the
manuscript. One justification for the approach in the paper is that using empirical
relationships means that one does not need to make assumptions about scatterers (e.g., a
spherical assumption), but this simply exchanges a known assumption with an assumption
(or set of assumptions) hidden in the empirical relationships. And most of these empirical
relationships are actually retrievals, just inverted! If we’re going to do forward calculations
based on retrievals, we might as well just use the retrievals on the observations and cast all
the quantities in terms of geophysical variables, which are easier to interpret. This approach
seems like a big step back compared to performing fundamental radiative transfer/scattering
calculations on the model fields, which yields an independent forward calculation of the
observational fields. Furthermore, the assumptions in the empirical relationships may not
be consistent with the assumptions in the model cloud microphysical parameterization (e.g.,
the assumed distributions). Consistent forward calculations of model variables should use
assumptions consistent with the cloud-physics scheme in the model.

Al. In response to this comment by the reviewer we now elaborate within the manuscript on the
reasoning behind our approach:

“Hydrometeor properties that impact backscattering include size, phase, composition, geometrical
shape, orientation and bulk density. Were plausible representations for these hydrometeor
properties available as part of the model formulation, fundamental radiative scattering transfer
calculations would be the most accurate way to transform model hydrometeor properties to
observables. However, in most GCMs such detailed hydrometeor information is highly simplified
(e.g., fixed particle size distribution shapes) or not explicitly represented (e.g., orientation and
realistic geometrical shape), complicating the process of performing direct radiative scattering
transfer calculations. Chepfer et al. (2008) proposed an approach by which lidar backscattered
power can be forward-simulated using model output hydrometeor effective radius. Their approach,
based on Mie theory, relies on the assumption that cloud particles (both liquid and ice) are spherical
and requires additional assumptions about hydrometeor size distributions and scattering
efficiencies. Similarly, the COSP (Bodas-Salcedo et al., 2011) and ARM Cloud Radar Simulator
for GCMs (Zhang et al., 2017) packages both use QuickBeam for the estimation of radar
backscattered power (i.e., radar reflectivity; Haynes et al., 2007). QuickBeam computes radar
reflectivity using Mie theory again under the assumption that all hydrometeor species are spherical
and by making additional assumptions about the shape of hydrometeor size distributions as well
as mass-size and diameter-density relationships. While some of these assumptions may be
consistent with the assumptions in model cloud microphysical parameterizations, some are not
adequately realistic (e.g., spherical ice) or complete for accurate backscattering estimation and it
is typically very difficult to establish the sensitivity of results to all such assumptions.

To avoid having to make ad hoc assumptions about hydrometeor shapes, orientations, and
compositions, which are properties that also remain poorly documented in nature, (GO)>-SIM



employs empirical relationships to convert model output to observables. These empirical
relationships based on observations, direct or retrieved with their own sets of underlying
assumptions, are expected to capture at least part of the natural variability in hydrometeor
properties. Additionally empirical relationships are computationally less expensive to implement
than direct radiative scattering calculations, thus enabling the estimation of an ensemble of
backscattering calculations using a range of assumptions in an effort to quantify part of the
backscattering uncertainty (see Sec. 7). The empirical relationships proposed require few model
inputs, potentially enhancing consistency in applying (GO)?>-SIM to models with differing
microphysics scheme assumptions and complexity. Section 6 will show that, while the empirical
relationships employed in (GO)?-SIM may not be as exact as direct radiative scattering
calculations, they produce backscattering estimates of sufficient accuracy for hydrometeor phase
classification, which is the main purpose of (GO)?-SIM at this time.”

R2. The manuscript advocates a phase determination that is solely in forward-calculation
space and fairly well articulates the reason for this. However, this approach does not take
advantage of knowing the actual hydrometeor fields, and therefore this discards a great deal
of potentially useful information. Is there any way the approach in the manuscript can take
some advantage of the fields in hydrometeor (model) space?

A2. As articulated in the manuscript our goal is “[...] development of a phase classification
algorithm that can be applied to observables, forward-simulated and real.” This explains why we
avoided developing a hydrometeor-phase classifier dependent on model output quantities that are
not accessible via observations. Rather, we take advantage of the fields in model space by using
them to 1) evaluate the ability of Doppler velocity and Doppler spectral width observations to be
used for hydrometeor phase classification (a concept which was developed empirically and was
not formally evaluated) and to 2) select optimum classification thresholds to minimize false
detection in model space.

This reasoning is expressed in the following modified manuscript excerpts:

“While the thresholds used for the radar reflectivity, lidar backscattered power, and lidar
depolarization ratio are generally accepted by the remote sensing community, the same cannot be
said about the radar Doppler velocity and Doppler spectral width thresholds suggested by Shupe
(2007). Because simulated mixing ratios of liquid and ice hydrometeors are known in the (GO)?-
SIM framework, the use and choice of all such thresholds for phase classification can be evaluated
using joint frequency of occurrence histograms of hydrometeor mixing ratios for a single species
and forward-simulated observable values (resulting from all hydrometeor types; Fig. 6).”

“The objectively determined thresholds, based on model output mixing ratios, optimize the
performance of the hydrometeor phase classification algorithm and are expected to generate the
best (by minimizing false detection) hydrometeor phase classifications. Results using these
objective flexible thresholds are compared in Sec. 6.4 to results using the fixed empirical
thresholds of Shupe (2007).”

“The performance of the objectively determined flexible phase-classification thresholds
(illustrated using colored dashed lines and shading in Fig. 7) is examined against those empirically



derived by Shupe (2007) with one exception (illustrated using grey lines in Fig. 7). The
modification to Shupe (2007) is that radar reflectivity larger than 5 dBZ are not associated with
the snow category since introducing this assumption was found to increase hydrometeor-phase
misclassification (not shown). From Fig. 7 it is apparent that both sets of thresholds are very
similar. We estimate that hydrometeor phase frequency of occurrence produced by both threshold
sets are within 6.1 % of each other and that the fixed empirical thresholds modified from Shupe
(2007) only produce phase misclassification in an additional 0.7 % of hydrometeor-containing grid
cells (compare Table 1b to Table 1c). These results suggest that the use of lidar-radar threshold-
based techniques for hydrometeor-phase classification depends little on the choice of thresholds.”

R3. Constructing an ensemble of forward calculations based on different empirical
relationships is a good idea, but it is a stretch to portray it as quantifying uncertainty. The
authors have no way to know to what extent the results from these calculations actually map
to the PDF of possible outcomes. It is useful but is not statistically defensible to call it UQ.
The authors should much more carefully word this claim.

A3. The authors agree with the reviewer that the 576 forward-simulations performed do not cover
the entire range of possible scattering assumptions. The following manuscript changes reflect this
reality:

“Additionally empirical relationships are computationally less expensive to implement than direct
radiative scattering calculations, thus enabling the estimation of an ensemble of backscattering
calculations using a range of assumptions in an effort to quantify part of the backscattering
uncertainty (see Sec. 7).”

“(GO)?-SIM performs an uncertainty assessment by performing an ensemble of 576 forward
simulations based on 18 different empirical relationships (relationships are listed in Table 2).
While the relationships used do not cover the entire range of possible backscattering assumptions,
they represent an attempt at uncertainty quantification and illustrate a framework for doing so. [...]
Nevertheless, we suggest using the full range of frequency of occurrences presented in Tables 1b,c
for future model evaluation using observations and acknowledge that additional uncertainty is
most likely present.”

R4. The calculations are based on 30-minute instantaneous model hydrometeor fields. The
article is focused on the actual forward calculations of the microphysical fields, but
comparison of forward-model calculations and observations necessarily includes
assumptions of spatial and temporal scale. Would the authors please discuss with a bit more
detail on how the forward calculations (30-minute instantaneous calculations of lidar and
radar fields) would be compared to observations? If nothing else, this would provide some
guidance for readers using their forward simulator.

A4. We now elaborate more on this topic and provide an updated flow chart:

“A follow-up study will describe an approach by which vertical and temporal resampling of
observations can help reduce the scale gap. Furthermore, it will be showed that, using simplified



model evaluation targets based on three atmospheric regions separated by constant pressure levels,
ground-based observations can be used for GCM hydrometeor-phase evaluation.”
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Figure 1. (GO)>-SIM framework. (GO)?>-SIM emulates two types of remote sensors: Ka-band
Doppler radars (dark gray shading) and 532 nm polarimetric lidars (light gray shading). It then
tunes and applies a common phase-classification algorithm (white boxes) to both observed (upper
section) and forward-simulated (bottom section) fields. Follow-on work will describe how
observation can be post-processed and resampled to reduce the scale gap before model evaluation

can be performed.



