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Abstract. A 10-year reanalysis of the PacIOOS Hawaiian Island Ocean Forecast System was produced using an incremen-

tal strong constraint 4D-Variational data assimilation with the Regional Ocean Modeling System (ROMS v3.6). Observations

were assimilated from a range of sources: satellite-derived sea surface temperature (SST), salinity (SSS), and height anoma-

lies (SSHA); depth profiles of temperature and salinity from Argo floats, autonomous SeaGliders, shipboard conductivity-

temperature-depth (CTDs); and surface velocity measurements from high frequency radar (HFR). The performance of the5

state-estimate is examined against a forecast showing an improved representation of the observations, especially the realization

of HFR surface currents. EOFs of the increments made during the assimilation to the initial conditions and atmospheric forcing

components are computed, revealing the variables that are influential in producing the state-estimate solution and the spatial

structure the increments form.

1 Introduction10

The Pacific Integrated Ocean Observing System (PacIOOS, 2018) has produced daily forecasts of the ocean state surrounding

the Hawaiian Islands since 2009. To facilitate the forecasts a data assimilation procedure is used to incorporate recent obser-

vational data into the model to produce the optimal initial state from which to forecast. A number of modelling studies have

been performed with older versions of this model to examine various features of the modeling framework, such as the state

estimation (Matthews et al., 2012), nested models (Janeković et al., 2013) and the vorticity budget (Souza et al., 2015). In this15

work, we perform an extended reanalysis from 2007 to 2017 in order to produce a consistent data set for further studies of the

dynamics around Hawai‘i.

The PacIOOS forecast system uses the time-dependent Incremental Strong constraint 4-dimensional Variational Data Assimila-

tion (I4D-Var) scheme (Courtier et al., 1994; Moore et al., 2004) within the Regional Ocean Modeling System (ROMS) (Moore

et al., 2011c; Powell et al., 2008; Matthews et al., 2012) to best reduce the residuals between the model and observations, while20

maintaining a physically consistent solution. The class of methods known as 4D-Var are state-estimation techniques that create

a quadratic cost function to be minimized over a defined time window, utilizing observations at the time they occur in a physi-

cally consistent manner to adjust the initial state, boundary conditions, and atmospheric forcing to represent the measurements.

The I4D-Var scheme is used in operational centers around the world and solves for increments to the model state, boundary
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conditions, and atmospheric forcing using the model physics as a constraint. The combination of I4D-Var within ROMS has

been used in previous studies of various regions (Powell et al., 2008; Broquet et al., 2009; Zhang et al., 2010; Matthews et al.,

2012; Souza et al., 2015). The details of the model and the observations used within this study are provided in Section 2.

Our model domain covers the Hawaiian Island Archipelago (Figure 1), a dynamically active region for both the ocean and at-

mosphere. The North Equatorial Current (NEC), flowing from the east, splits upon encountering the island of Hawai‘i, with the5

bulk transport traveling around the south of the island and continuing west, while the North Hawaiian Ridge Current (NHRC)

follows the ridge of the other islands in the chain to the north. In the atmosphere, there are persistent trade winds from the

northeast that, combined with steep mountainous terrain on the islands, cause wind wakes in lee of the peaks, particularly on

the islands of Hawai‘i and Maui. This introduces strong temperature gradients, increases the seasonal variability (Sasaki and

Klein, 2012), and drives currents such as the Hawaiian Lee Countercurrent (HLCC) (Smith and Grubišić, 1993; Xie et al.,10

2001; Chavanne et al., 2002).

There are two main objectives to this study: to assess the skill and performance of the state-estimation model, and to analyze the

increments made to the initial, boundary and atmospheric forcing terms. For the first objective, we compare the state-estimate

solution with a free-running forecast over the decadal time period and examine how the performance changes over time, utiliz-

ing observations derived from satellites and it situ measurements. In addition, PacIOOS operates seven high-frequency radar15

stations sites across the Hawaiian Islands. The first station was constructed in 2010, with the remaining six becoming oper-

ational over the period from 2011-2015. These instruments produce high resolution (both spatially and temporally) surface

current velocities in the vicinity of the islands of O‘ahu and Hawai‘i. The use of HFR observations within a state-estimation

scheme has been shown to produce a significantly improved representation of surface currents (Souza et al., 2015; Kerry et al.,

2016). The impact of the radar stations will be a key focus point. The performance assessment is achieved through the statistics20

produced by the state-estimation in Section 3, followed by a comparison with observations in Section 4. The forecast skill, a

measure of the accuracy for a forecast system is computed with reference to a persistence assumption (Section 5).

Section 6 focuses on the second objective of the paper, to examine the increments to the initial state and atmospheric forcing

to determine how the model is adjusted. By evaluating the Empirical Orthogonal Functions (EOFs) of these increments we

determine the spatial patterns in the variability. Since physical modes are not always independent (Simmons et al., 1983), the25

interpretation of EOF modes must be undertaken with some caution. As such the resulting modes will not necessarily represent

a physical phenomenon, but will highlight the variable spatial patterns made over time by the I4D-Var algorithm.

2 Numerical Model and Data Assimilation System

2.1 Model Configuration

The Regional Ocean Modeling System (ROMS) version 3.6 is used to simulate the physical ocean around the Hawaiian Islands.30

ROMS is a free surface, hydrostatic, primitive equation model using a stretched coordinate system in the vertical to follow the

underwater terrain. In order to allow varying time steps for the barotropic and baroclinic components, ROMS utilizes a split-

explicit time stepping scheme (for more details on ROMS, see Shchepetkin and McWilliams (1998, 2003, 2005)).
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The Hawaiian Island domain covers 164◦W to 153◦W longitude and 17◦N to 23◦N latitude, with bathymetry provided by the

Hawaiian Mapping Research Group (HMRG, 2017), shown in Figure 1. The grid has 4km horizontal resolution with 32 vertical

s-levels, configured to provide a higher resolution in the more variable upper regions. The configuration model, including the

method for assimilating surface HFRs and the associated vertical stretching scheme, is identical to the one first presented in

Souza et al. (2015).5

Tidal forcing is produced using the OSU Tidal Prediction Software (OTPS) (Egbert et al., 1994), which is based on the

Laplace tidal equations from TOPEX/Poseidon Global Inverse Solution (TPXO). Tidal constituents included in this simulation

are the eight main harmonics; M2, S2, N2, K2, K1, O1, P1, Q1, as well as two long period and one non-linear constituent; Mf,

Mm and M4. To avoid any long term drifting of the tidal phases related to constituents we do not consider, the tidal harmonics10

are updated each year to define the phases in terms of the start of that year.

Lateral boundary conditions are taken from the HYbrid Coordinate Ocean Model (HYCOM) (Chassignet et al., 2007) and are

applied daily. Within ROMs, we apply the boundary differently for each variable; Chapman (Chapman, 1985) conditions are

applied to the free surface, Flather (Flather, 1976) conditions for transferring momentum from 2D barotropic energy out of

the domain, while the 3D momentum and tracers variables are clamped to match HYCOM. A sponge layer of 12 grid cells15

(48km) linearly relaxes the viscosity by a factor of four and diffusivity by a factor of two close to the boundary to account for

imbalances between HYCOM and ROMS.

From 2007-2009, atmospheric forcing fields (excluding the wind), are provided by the National Center for Environmental

Prediction (NCEP) reanalysis fields (Kistler et al., 2001). For the wind forcing, a combination of two different forcings is uti-20

lized: i) a 1/2◦ resolution CORA/NCEP wind product (Milliff et al., 2004) that combines QuikScat measurements with NCEP

wind fields; and, (ii) The CORA/NCEP winds blended with the results from a 1/12◦ resolution PSU/NCAR mesoscale model

(MM5; Yang et al. (2008a)) of the Hawaiian islands (Van Nguyen et al., 2010). The MM5 model was forced at its boundaries

with the global NCEP fields; hence, it is a consistent dynamical downscaling of the global fields. The MM5 model domain

is smaller than the ocean grid domain, extending only to 160.5◦W in the lee. Therefore, for (ii), we must blend the modeled25

and CORA/NCEP winds to generate a consistent field for the entire region with 1/12◦ winds where available and 1/2◦ winds

everywhere else.

To blend the two, we convert the MM5 winds to anomalies by subtracting a 30 day mean centered about the record of inter-

est. We compute the mean for the same period from the CORA/NCEP winds. The difference between the two means provides30

a bias estimate. The bias is removed from the MM5 anomalies and the CORA/NCEP mean is added. Within a 1◦ box around

the boundary of the MM5 data, we taper the anomalies to zero with a cosine filter to avoid abrupt changes to the field. This step

ensures that the mean of the CORA/NCEP field is preserved while its structure and variability is greatly enhanced by the MM5.
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From July 2009, atmospheric forcing is provided locally by a high-resolution Weather Regional Forecast (WRF) model

(WRF-ARW, 2017). WRF supplies information about surface air pressure, surface air temperature, long- and short-wave radi-

ation, relative humidity, rain fall rate, and 10m wind speeds. The ocean model is forced using this data every six hours, taken

from the atmospheric model with 6km resolution across the entire domain.

5

Prior to the experiment, a six-year non-assimilative model was run using the same initial state, boundary conditions, and

atmospheric forcing. The variability of the model is used to produce an estimate of the background error covariances used

within I4D-Var, as well as the mean sea surface height to use with sea level anomaly observations.

The cost function of the I4D-Var method penalizes for the increments made to the initial conditions, the boundary conditions10

and the forcing; and for the deviations of the model state from the observations. A detailed derivation of the cost function can

be found in Kerry et al. (2016); Penenko (2009); Weaver et al. (2003); Stammer et al. (2002); Talagrand and Courtier (1987). To

formulate the solution, we must provide estimates of the uncertainty matrices in both the model and observations. The model

uncertainty matrix, P, is estimated using the variability of the six-year run described above, while the observation uncertainty

matrix, R, is assumed to be diagonal, (i.e. observations are independent). The implementation of I4D-Var in ROMS is covered15

extensively in (Moore et al., 2011c, a, b).

2.2 Experiment Setup

The reanalysis covers a period of 10 years, from July 2007 to July 2017. The period of assimilation for the I4D-Var cycles is

four days, which corresponds to the limit of the linearity assumption within the domain (Matthews et al., 2011). The atmo-20

spheric forcing is adjusted every six hours, while the boundaries are every 12h. An analysis of these adjustments is performed

in Section 6.

During each I4D-var cycle, a minimization procedure is applied. The non-linear model is first integrated forward to estimate

the background state (the first outer loop). Then the tangent-linear and adjoint models are integrated in multiple inner loops to25

minimise the cost function (J). After the last inner loop the non-linear model is updated (see Figure 1 of Moore et al. (2011c)).

Prior methodological experiments yielded that for our setting a sufficient reduction in J (and an acceptable computational cost)

can be achieved using a single outer loop with 13 inner loops (Souza et al., 2015).

Four and eight day forecasts are performed from the end of each cycle using the assimilated state as initial conditions, and30

the short-range (1-4 days) and mid-range (5-8 days) forecasts are evaluated for skill.
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2.3 Observations

Observational data used within this study include satellite measurements of the ocean surface of temperature, height, and

salinity, in situ depth profiles of temperature and salinity, and surface HFR velocities from High Frequency Radar. Observations

within one Rossby radius (∼80 km) of the domain’s boundary are neglected. It should be emphasized that no observations

were withheld from the assimilation for the purpose of validation. The I4D-Var method seeks to represent the observations by5

exploiting the linearized model dynamics. Therefor, all available observations are used to constrain this representation.

2.3.1 Satellite Derived Measurements

Sea Surface Temperature (SST) observations are available from two sources at different time periods: initially we used the

Global Ocean Data Assimilation Experiment High Resolution Sea Surface Temperature (GHRSST) Level 4 OSTIA Global

Foundation Sea Surface Temperature Analysis (Naval Oceanographic Office, 2005), referred to as OSTIA for this work. The10

data are distributed by the Physical Oceanography Distributed Active Archive Center (PO.DAAC), using optimal interpola-

tion to combine data from the Advanced Very High Resolution Radiometer (AVHRR),the Advanced Along Track Scanning

Radiometer (AATSR), the Spinning Enhanced Visible and Infrared Imager (SEVIRI), the Advanced Microwave Scanning

Radiometer-EOS (AMSRE), the Tropical Rainfall Measuring Mission Microwave Imager (TMI), and in situ data. This distri-

bution provides a highly smoothed daily gridded global dataset at the surface at a 6km spatial resolution, accurate between15

0.2− 0.5◦C in the domain.

Beginning in April 2008, we switched to using the GHRSST Level 4 K10_SST Global 1 meter Sea Surface Temperature Anal-

ysis data set (Naval Oceanographic Office, 2008), produced by the Naval Oceanographic Office, and referred to as NAVO for

this work. Also distributed by PO.DAAC, this product combines, in a weighted average, data from AVHRR, AMSRE and the

Geostationary Operational Environmental Satellite (GOES) Imager. This distribution provides a daily gridded global dataset at20

1 meter depth at a 10km spatial resolution, accurate to 0.4◦C in the domain.

Sea Surface Height (SSH) observations are derived using sea level anomaly data from the Archiving, Validation and Interpre-

tation of Satellite Oceanographic data (AVISO) delayed time along track information. The data comes from multiple altimeter

satellites measuring the anomaly with respect to a twenty-year mean SSH, homogenized against one of the missions to ensure

consistency. Each track has approximately 7km spatial resolution and will usually make multiple passes through our domain25

each day. To convert from sea level anomaly to sea surface height we add the mean SSH field taken from the six-year model

run described above, to which we add the barotropic tidal prediction from TPXO. The accuracy of the swaths depend on the

source satellite and ranges from 5− 7 cm. We use the AVISO product that has been fully filtered and quality controlled until

May 2016. At the time of the experiment, the delayed time data were unavailable beyond May 2016, so the near real-time data

were used.30

Sea Surface Salinity (SSS) data are taken from Aquarius missions daily L3 gridded data set (NASA Aquarius project, 2015)

distributed by PO.DAAC. The satellite uses a combination of radiometers and scatterometers to estimate the surface salinity,

5



mapped to a coarse 1◦ resolution. Errors for this product are around 0.2 ppt. Data for this product are available from August

2011 until June 2015.

2.3.2 In Situ Measurements

Depth profiles of temperature and salinity are obtained from threes sources: the Hawai‘i Ocean Time-Series (HOT) shipboard

Conductivity Temperature Depth (CTD) casts, the global network of Argo floats, and autonomous SeaGliders operated by the5

University of Hawai‘i.

The HOT project conducts monthly cruises to the deep water station A Long-term Oligotrophic Habitat Assessment (ALOHA)

(located at 23◦ 45’N, 158◦ 00’W, see Figure 1) in order to develop continuous data sets of physical and biochemical ocean

parameters. CTD stations of temperature and salinity are concentrated in the region around the station; although some are also

established along the ship route.10

HOT also conducts regular SeaGlider missions departing from station ALOHA. In addition, PacIOOS conducts occasional

SeaGlider surveys in areas close to the south coast of O‘ahu. The buoyancy driven autonomous underwater vehicles take pro-

files and transects at depth of temperature and salinity.

Observations from the global Argo float network are available from the Argo array Network (USGODAE, 2016). The free-

drifting floats profile temperature and salinity during ascension and descension every 10 days of depths down to 2000m (Oka15

and Ando, 2004). Argo measurements tend to occur in the model domain at a rate of about 1-2 profiles per day.

Representational errors for HOT CTDs, Argo Floats, and SeaGliders are defined by the variance of observational data from all

available sources across our domain sorted into depth bins. These profiles resemble a typical temperature/salinity profile, with

a peak temperature error of 0.8 K, and peak salinity error of 0.15 ppt occurring in the mixed layer at a depth around 100m.

20

2.3.3 High Frequency Radar Measurements

HFR measurements of surface currents are available from PacIOOS at seven sites around the Hawaiian islands: five around

the south-west of O‘ahu and two on the east coast of the Hawai‘i. Data are available from the first site in October, 2010 with

the other sites coming online at various times, the most recent being October, 2015. The range for the HFRs on O‘ahu extend

approximately 150km from the coast, while the two Hawai‘i sites are focused on currents around the Northeast of the island25

and have a shorter range. At the range limits, HFR data are less reliable due to the higher noise level of the returns. Figure 2

shows the percentage availability of data in the region. HFR measurements from any return location that it missing more than

20% of its data over the 4-day assimilation period are ignored. Both spatially and temporally, the resolution for all sites is sig-

nificantly higher than the model resolution. The HFR data are low-pass filtered at 3 hours to remove the high frequency signals

that may not be resolved by the model (atmospheric forcing fields are every 3 hours). We then provide the spatial field of data30

every 3 hours. The associated error is calculated individually for each spatial point as the accuracy of the measurements is de-

termined by the levels of interference, which increases with range. For each observation point we calculate the power spectral
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density and calculate the noise as per Zanife et al. (2003), with a minimum of 7 cm/s. At the extreme, errors may reach 17 cm/s.

The number of observations for each four day cycle from all sources are shown in Figure 3. Sea surface temperature mea-

surements from both OSTIA and NAVO are consistently the most available observation source, and by the end of the time

period HFR is supplying a similar quantity. In situ measurements, which include both temperature and salinity for each of the5

instruments, provide a smaller amount of data by an order of magnitude.

3 Assimilation Statistics

In this section we examine the state estimate to quantify the performance during our time period.

3.1 Cost Function Reduction10

I4D-Var minimizes the residuals between the model and observations over each 4-day cycle. We calculate the percentage

reduction between the initial and final cost function for each cycle to assess how the assimilation performs over time. Addi-

tionally, the I4D-Var algorithm reports the individual contributions by the state variables considered by the data assimation to

the total cost function. Hence we can examine the cost function in detail for those observation types that are most critical for

its reduction. However, it should be noted that for this decomposition we do not distinguish between observation sources.15

Figure 4 shows the time series of the total reduction and the percentage reduction in the cost function for each of the variables

we observe: sea surface height, temperature, salinity and HFR. A value of 0 means the final cost function is the same as the

initial and no reduction has occurred. The plot is split into two distinct time periods, before and after the HFR observations in

order to assess changes in the relative contributions of each variable to the overall reduction.20

The total cost function of all data (Figure 4A) is – on average – halved for each cycle, with an improvement from 49% of the

original value to 55% when HFR observations are available. Looking at the breakdown in Figure 4B-E, we see that the final

cost function associated with the other observed variables: sea surface height, temperature, and salinity, is reduced by a smaller

percentage than before HFR was included. Given that the structure of the cost function is determined by the type and number

of observations, this change in contribution to the cost function reduction can be expected when adding a large number of HFR25

measurements to the data assimilation.

Salinity measurements tend to contribute the least improvement ,ranging from 34% (pre-HFR) to 16% (post-HFR). Salinity

data are least numerous (Figure 3) and SSS fields taken from Aquarius are subject to high noise levels (0.2 ppt) and coarse

spatial resolution. The mid-2014 drop in cost function reduction for salinity data coincides with the loss of two SeaGliders.

After the cessation of SeaGlider missions salinity data were only available through Aquarius (until mid 2015) and sporadic30

Argo profiles.
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The cost function associated with HFR measurements is reduced by 60% of the initial value, meaning the model is closer to

the HFR observations after the assimilation.

3.2 Optimality

Another measure of the performance is the theoretical minimum value of the cost function (Jmin). For a linear system and5

assuming that the error matrices P and R have been determined correctly, Jmin is a chi-squared variable whose degrees of

freedom are given by the number of assimilated observations (Nobs) (Bennett, 2002). The expected value of Jmin is then given

by:

< Jmin >=
Nobs

2
, (1)

Using above equation, an optimality value (γ) can be defined:10

γ =
2 · Jmin

Nobs
, (2)

which should reach a value of 1 with a standard deviation of
√

2/Nobs.

This optimality value provides a simple representation of how consistently the error matrices (P and R) are specified, since the

error covariances normalize the cost function. Figure 5 shows a time-series of the calculated optimality value for the model run,

in addition to a timeline of the availability of certain observations for reference. Over the full time period the mean optimality15

is 0.95. However, there are large significant deviations over the course of the time period. In the pre-HFR period the optimality

is low, suggesting that the error bounds on observations are too wide. Since SST is the dominant source of observations before

HFR, the prescribed errors associated with SST may be too large.

Post-HFR, the optimality value increases, suggesting the errors in this period are underestimated. A large optimality value

arises when the cost function is large (i.e. large differences between the model and observations). There were two anomalous20

cycles in 2011, the first coincides with the introduction of a second radar site. From 2012 onwards the optimality value is

generally good, if highly variable. The increase in optimality given the available observations points to an underestimation of

HFR errors, or at the least a persistent difference between the model and HFR observations.
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3.3 Error Consistency

The consistency of the assimilation can be assessed by comparing the error matrices P and R specified a priori with the

observation and background error covariances determined a posteriori (Desroziers et al., 2005). Using the difference between

the observation j (yj) and the modeled background value (xb) mapped to the observation location by the operatorHj :

dobj = yj −Hj(x
b), (3)5

and the difference between xb and analysis value (xa) mapped to the observation location:

dabj =Hj(x
a)−Hj(x

b), (4)

one can compute the expected a posteriori background error:

(̃σb
i )

2

=
1

pi

pi∑
j=1

(Hj(x
a)−Hj(x

b))(yj −Hj(x
b)), (5)

where i refers to the observation type and pi is the number of observations of that type.10

Similarly, using the difference between the the observation j and the modeled analysis value (xa) mapped to the observation:

doaj = yj −Hj(x
a), (6)

the expected a posteriori observation error can be calculated:

(̃σb
i )

2

=
1

pi

pi∑
j=1

(yj −Hj(x
a))(yj −Hj(x

b)). (7)15

For a detailed description of above dignostics the reader is referred to Desroziers et al. (2005, 2009). If the variances in P

and R are correctly specified a priori, they will be consistent with the a posteriori errors defined above. Figure 6 shows both

the a priori and a posteriori errors for the remotely sensed data. The observation a priori values are calculated as the mean

error of the observations in each cycle, while the background a priori values are defined as the variability of a free running

non-linear model. If the a posteriori errors are typically larger then the a priori, it implies the initial errors in P and R are20

underestimated. Conversely, if they are smaller the initial errors are likely overestimated.

Figure 6A shows that sea surface height errors are consistent, while sea surface temperature, Figure 6B suggests the a priori

errors are overestimated. The a priori observation errors for NAVO SST observations are defined with a minimum error of
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0.4 K, but the a posteriori are more typically around 0.25 K. The a priori background errors also also appear overestimated.

Sea surface salinity observation errors (fig. 6C) are slightly underestimated but generally consistent, as are the background

errors. The HFR observation errors (fig. 6D) also appear to be underestimated, with most a priori errors close to the minimum

value of 7 cm/s. The a posteriori errors suggest a typical value of around 12−15 cm/s would be more appropriate. The a priori

background errors are reasonably consistent with the a posteriori, if anything they are slightly overestimated.5

This error consistency analysis supports the conclusions in Section 3.2 that the SST observation errors are overestimated and

HFR values are underestimated. It is worth noting that these diagnostics are only estimates used to characterize the errors and

are not the true posterior error.

4 Comparison with Observations

Because I4D-Var relies on the model physics to represent observations through time, it should provide better forecasts. Time-10

invariant methods (3D-Var, Optimal Interpolation) that perturb the state at single times may better reduce the time-fixed cost

function, but can add non-physical structures that generate noisy forecasts.

In this section, we examine the state estimate solution by comparing the model to observations. For reference, the observations

are also compared against the forecast starting from the same time as each state-estimate cycle. The initial and boundary as

well as atmospheric and tidal forcings are initially the same for both runs; however, the initial and boundary conditions and15

atmospheric forcing are altered as part of the state estimate solution.

For comparing fields we use the Root Mean Squared Anomaly (RMSA) and the Anomaly Correlation Coefficient (ACC),

defined as:

RMSA(x,y) =

√√√√ 1

N

N∑
i=1

((xi− x̄)− (yi− ȳ))
2 (8)

and ACC(x,y) =

∑N
i=1(xi− x̄)(yi− ȳ)√∑N

i=1(xi− x̄)2
∑

(yi− ȳ)2
, (9)20

where N is the number of observations and x are the model values at the same location and time as the observations y. The

RMSA provides a measure of the residual between the model and observations, while the ACC determines the strength of the

relationship between the two. We can calculate values for a single spatial point throughout time, or for all spatial points at a sin-

gle time; however, we require there must be at least 20 observation values available to get a representative statistic. The gridded

satellite products are ideally suited to this analysis, while the depth profiles from in situ measurements are binned into 50 m25

depth layers to ensure a minimum number of values. Here it must be noted that our validation is limited to data that have been

employed for the assimilation. The I4D-Var scheme uses the linearized model dynamics to produce the covariance between

the model and the observations. This allows the model to optimally represent the observations in time and space rather than

replicate them. As such, the desire is to use every available observation to constrain this representation. Unlike time-invariant
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statistical methods, we do not withold any observations because they are sampling the dynamical sub-spaces of a system of

unknown dimension. Since the observations covary in space and time, some particular observations may not have a significant

impact on the cost function and their representation may suffer. We seek to identify these results.

4.1 Remotely Sensed Observations5

Figure 7 shows the RMSA between the observations and the models for each source of remotely observed data. The state-

estimate solution reduces the RMSA compared with the forecast by 1.58 cm (17%), 0.07 K (24%), 0.01 ppt (3%) and 8.39 cm/s

(37%) for sea surface height, sea surface temperature, sea surface salinity and HFR respectively. In Figure 7A the RMSA of the

state-estimate solution is close to the typical observational error of 7 cm, while in Figure 7B we see the RMSA is comfortably

less than the 0.4 K representative error. Sea surface salinity is only marginally improved by the state-estimate solution, but is10

slightly over the prescribed observational error of 0.2 ppt. The RMSA of the currents associated with HFR observations, shown

in Figure 7D, is improved greatly by the state-estimation; however, the mean value of 14 cm is around double the typical error

prescribed a priori of 7 cm. As shown in the previous sections, this error was underestimated.

The ACC is also improved by the state-estimate for all variables, as shown in Figure 8. For sea surface height, temperature15

and salinity the improvement is small due to a significant agreement in the forecast with gains of 0.03, 0.02, and 0.01 respec-

tively. The improvement in HFR is much more significant, with an average correlation improvement from 0.35 to 0.68. As

shown in Figure 8D the free-running forecast model can diverge from the observations enough to become negatively correlated

over a cycle, while the state-estimate solution is consistently positively correlated.

Figure 9 shows the spatial RMSA between the forecast and analyses model solutions and the observations for both sources of20

sea surface temperature observations: OSTIA and NAVO. In both cases there is a clear reduction in the RMSA, with the largest

source of error in the areas leeward of the islands, most notably the island of Hawai‘i. This is due to higher heat flux variability

from a reduction in cloud cover (Yang et al., 2008b; Matthews et al., 2012). Even in this peak area, the state-estimate solu-

tion is around the observational error of representativeness of 0.4 K, meaning the model is performing well with regards to SST.

25

Both RMSA and ACC between the experiments and HFR observations are shown in Figure 10 for the island of O‘ahu. The

RMSA of the free-running forecast is reasonably uniform across the region covered by the HFR, around 20− 25 cm/s with

some varying values around the extent of the radar coverage. The inclusion of HFR observations in the state-estimate solution

leads to significantly reduced values of 12− 15 cm/s, a reduction of almost half. The ACC is also significantly improved from

a weak correlation to a consistently strong positive one.30

As discussed in Souza et al. (2015), there are several reasons the model can differ from surface current observations: the dis-

cretization of the model, imperfect stratification, differing barotropic-to-baroclinic tide conversion at Kaena ridge, or mixing

parameters that do not capture the real baroclinic mixing. This may lead to a different location of the currents in the model

from those observed by the HFR; however, the model does a good job reducing these errors (Janeković and Powell, 2012). The
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HFRs located on the island of Hawai‘i have a smaller coverage region, but the level of improvement from the forecast to the

state-estimate solution is consistent with the O‘ahu results shown here.

4.2 Subsurface Observations

The in situ observation sources: Argo floats, Seagliders and HOT CTDs also show an improvement in the state estimate over5

the forecast. The subsurface temperature RMSA values are reduced by an average of 0.03 K and salinity by 0.01 ppt. The av-

erage RMSA is within the representative errors for both variables, 0.8 K and 0.15 ppt, respectively. However, there are several

occasions when the RMSA value for a cycle exceeds that limit when there are very few in situ observations available.

Figure 11 shows the RMSA and ACC profiles for temperature and salinity respectively for each source of subsurface obser-10

vation. For all three sources, the greatest RMSA between the models and observations is along the thermocline where minor

differences in thermocline depth leads to temperature differences. The state-estimate improves the RMSA in this region by

10− 15 %. The thermocline location is also the source of lowest correlation between the observations and the model, which is

improved by the state-estimate by ∼ 5 %. There is a high RMSA for SeaGliders at the base of their profiles (close to 1000 m).

In this instance the state-estimate does not result in an improvement of the forecast. Many of the Glider missions operated in15

the shallow waters off the south coast of O‘ahu where processes are at much finer scale than can be resolved at 4 km resolution.

As such, the observational representation errors were higher.

For subsurface salinity (fig. 11, lower panel), the improvements made by the state-estimate solution occur almost exclusively

above 500 m for Argo floats and HOT CTDs. As with temperature the largest improvement is at the top of the thermocline.20

There are some low ACC values lower down in the profile between both models and the observations, but both the forecast and

state-estimate perform equally at this depth. SeaGliders produce the biggest improvement in subsurface salinity model perfor-

mance, with the state-estimate solution up to 20 % better than the forecast for both RMSA and ACC. The peak improvement

is at the top of the thermocline, but there are improvements throughout the profile.

25

5 Forecast Skill

In this section we quantify the model skill by using a skill score, evaluated as the improvement against a reference field

(Murphy, 1988). For the reference, we take the model value at the spatial location of each observation at the time of initialization

for each 8-day cycle and assume persistence of this value throughout the 8-day cycle (persistence assumption). The skill score

(SS) for the state estimate analysis and forecast are then defined using the ratios of RMSAs with respect to the observations:30
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SSa = 1− RMSA(xa,y)

RMSA(x0,y)
, (10)

SSf = 1− RMSA(xf ,y)

RMSA(x0,y)
, (11)

where the superscripts a, f , and 0 refer to the analysis, free-running forecast and persistence, respectively; and y indicates

the observations. Under this measure, a SS of 1 represents a perfect fit between the model and observations, while a value of

zero indicates where the model and persistence values perform exactly the same. If the model is better than persistence, then5

the skill score will lie in the range 0< SS< 1 and the degree of improvement over persistence is determined by how close to

1 the score is. Conversely, a negative SS means the model is further from the observations than persistence.

For this verification we wish to examine the effect of forecast length on the skill. Starting with the same initial conditions as

each state estimate cycle we produce an eight day forecast, the length of two state estimate cycles. The RMSA is calculated

every 3 hours for each 8-day forecast, the corresponding state-estimate cycles, and the persistence field from the start of the10

forecast.

Figure 12 shows the mean SS over all cycles for remotely sensed observations. For SSH, SST and HFR, the skill for both the

state-estimation and free-running forecast is positive throughout, indicating that both models are successful over persistence

in representing those variables. SSS however is close to zero and slightly negative meaning the models provide no better

information than persistence. SST values are consistently the highest, with a reduction in skill versus persistence for both15

models once per day. This is expected as initial conditions are used for persistence values and the diurnal cycle will move

ocean temperatures close to this persistence value once per day. The state-estimate skill for HFR has a consistent value of 0.5

regardless of the forecast day, while the skill of the free-running forecast decreases within the first 12 hours and is closer to 0.2

for the rest of the forecast period. This decrease in skill is driven by the fact that the radials are dominated by the semi-diurnal

baroclinic and barotropic tides.20

6 Analysis of Increments

During each I4D-Var 4-day window, the initial model field, as well as time-varying boundary and surface forcings are adjusted

to minimize the residuals. The initial condition increments form a single record for each cycle, while the boundary and surface

forcings are perturbed every time they are applied to the model. The perturbations applied to the boundary exhibit only a minor

influence on the model (not shown), due to the mean advection speed (≈ 20 cm s−1) and sponge layer dampening near the25

boundaries. We focus our analysis on the increments of the initial conditions and the surface forcing.

Because we are analyzing the increments (rather than the state) to the initial conditions and forcing fields, the mean increment

should be zero (unless there is a bias in the model), and we are looking to examine the variability. Over the entire reanalysis

period, the mean bias between the model and observations for the different types are: temperature (-0.0048 K), salinity (0.0049

ppt), SSH (-7 mm), and HFR (0.06 cm s−1). A consistent pattern or principal component may suggest a repeated correction to30
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account for missing or mis-represented physics in the model.

Over the 10 year reanalysis, there are 917 analysis cycles with sixteen surface forcing adjustments (four per day) per cycle.

We calculated the Empirical Orthogonal Functions (EOFs) (Hannachi, 2004) of the increments applied to the forcing and the

initial conditions to analyze the dominant spatial patterns of the adjustments.

For each cycle, the initial perturbation of the primary model prognostic variables are examined: sea surface height, temperature,5

salinity, east-west velocity and north-south velocity. With the exception of sea surface height, each variable is averaged over

the upper 100 m to cover the mixed layer depth in the domain (Matthews et al., 2012). The increments for salinity and sea

surface height as a percentage of the initial conditions are insignificant (< 1%), while temperature increments (2− 10%) and

the two velocity fields (10− 20%) are significant enough to analyze.

10

The assimilation was configured to optimize the surface forcing increments every 6 hours (to avoid over-adjustment). The

time of day potentially impacts forcing variables, particularly surface heat flux, so we calculate EOFs on the increments for

each of the four distinct times of day they occur (00, 06, 12, 18 UTC). Due to the size of the model grid, the number of records

and the computational resources available the EOF calculation is limited to a 4-year period, approximately 1500 records. Sev-

eral different periods were examined with no significant differences in the structure of the modes or their percentage variance15

explained. The time of day does impact the percentage variance explained by each mode, most notably for surface heat flux

where the effect of diurnal solar heating occurs. However, the overall locations and magnitudes of the peaks/troughs as well as

the temporal evolution of PCs do not exhibit significant differences for each time of day, so we present one of the modes for

each considered variable.

The four key surface forcing terms are: surface heat flux, surface salinity flux, east-west wind stress, and north-south wind20

stress. Of these, increments in surface salinity flux are quite small compared to their initial value, while increments in surface

heat flux (10− 15% of initial value) and the wind stresses (15− 20% of initial value) are significant.

For surface heat flux and near surface temperature, we observe that the EOF1 modes represent 63% and 20.8% of the variability

respectively with a consistent sign over the region (Figure 13). This mode essentially accounts for the bias between our ocean

model and the WRF atmospheric model used to force the surface. Unfortunately, WRF was not integrated loosely coupled to25

the ROMS using the ROMS SST field, rather it was run using persistent estimates of daily SST during its integration. It must

be noted, however, that the monopole structure of the EOF1 does not represent a constant offset between ROMS and WRF

since the actual perturbation of surface heatflux and increment applied to near-surface temperature are given by the products of

the respective EOF1 and the PC1. As can be seen in the lower panel of Figure 13, the temporal evolution of the PC1 for both

surface heatflux and near-surface temperature adjustments is dominated by high-frequency, non-physical variance.30

The EOF1 modes of the near-surface velocity increments explain 26.1% and 20.8% of the variance respectively. Both modes

exhibit a strong impact south of the main Hawaiian Islands. The structure of the wind stress curl in this region results in the spin-

up of cyclonic and anticyclonic eddies to the north and south side of the lee side of each island respectively (Chavanne et al.,

2002). As a consequence, a zone of strong current shear is created between the North Equatorial Current and the Hawaiian Lee35
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Counter Current (Lumpkin and Flament, 2013) (see also Figure 1). The EOF1 modes of the near-surface velocity increments

are responsible for adjusting the state estimate for the significant eddy activity in the lee of Hawai‘i.

The EOFs of surface wind stress increments are confined to relatively small regions of the model domain (Figures 14 and

15). A significant change occurs after the HFR observations come online. During the period prior to the availability of the

HFR data (June, 2007–September, 2010), the wind stress was primarily adjusted in the lee regions where the winds are forced5

between islands (e.g., Kaiwi and ‘Alenuihāhā Channels and to a smaller degree over the the Kaua‘i Channel, Figure 14). The

wind stress curl in these regions plays an important role as a vorticity source to the ocean (Souza et al., 2015). Hence adjustment

of wind stress in the channels between the islands is critical for a reliable representation of ocean conditions. The magnitude

and sign of PCs of the wind stress adjustments for this period are driven by day-to-day variability (Figure 14, lower panels).

Also, the PCs of the East-West wind stress and North-South wind stress are largely uncorrelated aggravating an interpretation10

of the adjustments in terms of a larger scale atmospheric pattern or wind stress curl.

With the integration of the HFR measurements (October 2010), the dominant wind stress increments occur across the shallow

region close to the south coast of O‘ahu (Figure 15). The first mode for both East-West and North-South wind stress exhibits a

monopole structure adjusting the wind stress uniformly across the area covered by the HFR and its vicinity. The second modes

have an east-west dipole structure that will either increase or decrease the wind stress shear around the HFR region. Similarly15

to the pre-HFR period, the PCs of the wind stress increments are dominated by day-to-day variability and do not represent a

physical mode.

7 Conclusions

We have presented a 10-year reanalysis of the PacIOOS Hawaiian Island Ocean Forecast System and assessed the performance20

of the state-estimate solution and free-running forecasts. Using a time-dependent Incremental Strong constraint 4-dimensional

Variational Data Assimilation (I4D-Var) scheme, we show that the model represents the observational data well over the time

period. The state-estimate solution reduces the RMSA compared to the forecast by 3% (salinity) to 37% (surface velocities). A

limitation of the model-observation comparison is given by the fact that – in the absence of a sufficient number of independent

observations – only assimilated data could be used for the validation.25

The largest reduction of the cost function of the state-estimate solution occurs when minimizing the residuals to HFR data, with

SST also accounting for a significant improvement. On average, the assimilation achieves the near-optimal solution; however,

the variability is heavily influenced by the HFR observations. The analysis suggests that the observational errors associated

with HFR are too low and results could be improved by redefining these errors. This is supported by the increase in variability

and upward trend of optimality towards the end of the time period where HFR observations are most numerous.30

The increments made by the reanalysis have revealed that sea surface height and salinity initial conditions are not significantly

adjusted by the I4D-Var procedure; whereas temperature and velocity account for a significant change from the forecast field.

For the atmospheric forcing, surface salinity is insignificant, but the adjustments made surface heat flux and wind stresses alter
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the forcings by up to 20%. This corresponds to cost function statistics that point to HFR and temperature as the two dominant

observation sources.

The dominant EOF mode for adjustments of surface heat flux and near-surface temperature exhibit a monopole structure

indicating a slight bias correction between the ocean and atmospheric model. The leading modes of wind stress increments

are concentrated in the region south of O‘ahu. The wind stress heavily influences the surface currents and adjustments are5

mostly made as a consequence to HFR data. Additional analysis reveals that wind stress adjustments in the channels between

the islands dominated the increments in the period prior to the radar-based measurements of surface currents.

The reanalysis has provided the testing for improvements to the PacIOOS operational forecast system. The data are being used

to update the back catalog available to the public at www.pacioos.hawaii.edu and will influence the future results from daily

forecasts. Analysis of the I4D-Var increments has provided a greater understanding of the variability in the region and will10

provide the basis for a move towards ensemble forecasting in the region.

Code availability. The specific ROMS FORTRAN source for this package is under the MIT-license and is available at:

ftp://ftp.soest.hawaii.edu/powellb/roms-gmd/roms-gmd.tar.gz

Model initial conditions and boundary forcing comes from the HYbrid Coordinate Ocean Model (hycom.org).

Data availability. Atmospheric surface forcing and HFRadar observations are distributed through the PacIOOS data portal (pacioos.hawaii.edu).15

Satellite measurements come from two sources; sea surface temperature and salinity are provided by the Physical Oceanography Distributed

Active Archive Centre (podaac.jpl.nasa.gov), and surface height anomalies are provided by the Copernicus Marine Environment Monitoring

Service (marine.copernicus.eu).

In Situ measurements used are available from 3 sources; Argo measurements through Global Ocean Data Assimilation Experiment (usgo-

dae.org), SeaGliders through the School of Ocean and Earth Science and Technology at the University of Hawai‘i at Mānoa20

(hahana.soest.hawaii.edu/seagliders), and CTDs through the Hawai‘i Ocean Time-Series project (hahana.soest.hawaii.edu/hot).

Reanalysis output is produced as 3-hourly snapshots of the 3D fields temperature, salinity and velocities, as well as the 2D sea surface height

field for the full time period. This data are archived through PacIOOS and can be made available for research purposes.
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Figure 1. Model domain and bathymetry, with mean currents labelled from Lumpkin and Flament (2013).
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Figure 2. Composite image of percentage coverage for all radar sites (situated at green dots) when all are operational. Where two sites

overlap the greater value is taken to indicate the level of coverage at each point.
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Figure 3. Number of observations used within data assimilation run. Note that there tend to be orders of magnitude more satellite or

remotely-sensed observations than in situ.
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Figure 4. Time-Series of percentage reduction in the I4D-Var cost function; Left column are pre-HFR observations, right post-HFR, with the

mean value given in parentheses. Dashed lines mark the limit of 0, below which there is no reduction in the cost function for that variable. A)

Total cost function reduction for all observations; B) Sea surface height observations, C) Temperature observations; D) Salinity observations;

E) HFR observations.
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Figure 5. Top - Gantt chart of remotely sensed observations used in the study. Bottom - Optimality of I4D-Var data assimilation with the

dashed line representing the theoretical minimum.
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Figure 6. Time series of spatially averaged background (blue) and observation (green) errors, with thick lines showing a priori values and

thin lines the posterior calculated using Equations (5) and (7). A) Sea Surface Height; B) Sea Surface Temperature; C) Sea Surface Salinity

and D) HFR.
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Figure 7. Time series of root mean squared anomalies (RMSA) between remotely sensed observations and two model realizations; the state

estimate (orange) and the forecast (blue). A) Sea Surface Height; B) Sea Surface Temperature; c) Sea Surface Salinity and D) HFRs
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Figure 8. Time series of anomaly correlation coefficients (ACC) between remotely sensed observations and two model realizations; the state

estimate (orange) and the forecast (blue). A) Sea Surface Height; B) Sea Surface Temperature; c) Sea Surface Salinity and D) HFRs
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.

Figure 9. Spatial maps of RMSA for SST observation sources for the forecast (left) and the state estimate (right). Top - OSTIA data (2007-

2008); Bottom - NAVO data (2008-2017). The typical error of representativeness is around 0.4 K.
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Figure 10. Spatial maps of HFR statistics for south O‘ahu for the forecast (left) and the state estimate (right). Top panel: RMSA; bottom

panel: ACC.
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Figure 11. RMSA (solid) and ACC (dashed) profiles of subsurface temperature (top) and salinity (bottom) for Argo floats, SeaGliders and

HOT CTDs for the forecast (blue) and the state estimate (orange). Data were binned into 50m intervals.
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Figure 12. Mean skill metric for remotely sensed observations as a function of forecast length. Solid lines: Skill (see equations 10 and 11);

dashed lines: standard deviation of skill. A) Sea Surface Height; B) Sea Surface Temperature; C) Sea Surface Salinity; D) HFRs and E)

subsurface temperature
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Figure 13. EOF1 and PC1 of initial condition increments for temperature, east-west velocity and north-south velocity (all averaged 0-100 m)

and of forcing perturbations applied to surface heat flux.
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Figure 14. Spatial EOF patterns and principal components (PC) of wind stress perturbations for the period prior to the assimilation of HFR

measurements (June 2007 - September 2010). The EOFs were calculated using the routines described in Dawson (2016).
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Figure 15. Spatial EOF patterns and principal components (PC) of wind stress perturbations for the period including the assimilation of HFR

measurements (January 2011 - January 2014).
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