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Abstract. Over the past twenty years, analyzing the abundance of the isotope chlorine-36 (36Cl) has emerged as a popular

tool for geologic dating. In particular, it has been observed that 36Cl measurements along a fault plane can be used to study

the timings of past ground displacements during earthquakes, which in turn can be used to improve existing seismic hazard

assessment. This approach requires accurate simulations of 36Cl accumulation for a set of fault-scarp rock samples, which

are progressively exhumed during earthquakes, in order to infer displacement histories from 36Cl measurements. While the5

physical models underlying such simulations have continuously been improved, the inverse problem of recovering displacement

histories from 36Cl measurements is still mostly solved on an ad-hoc basis. The current work resolves this situation by providing

a MATLAB implementation of a fast, automatic, and flexible Bayesian Markov-chain Monte Carlo algorithm for the inverse

problem, and provides a validation of the 36Cl approach to inference of earthquakes from the demise of the Last Glacial

Maximum until present. To demonstrate its performance, we apply our algorithm to a synthetic case to verify identifiability,10

and to the Fiamignano and Frattura faults in the Italian Apennines in order to infer their earthquake displacement histories and

to provide seismic hazard assessments. The results suggest high variability in slip rates for both faults, and large displacements

on the Fiamignano fault at times when the Colosseum and other ancient buildings in Rome were damaged.

1 Introduction

A fundamental problem in earthquake science is the paucity of reliable earthquake records including multiple large magnitude15

earthquakes on individual faults. This hinders a more advanced understanding of earthquake recurrence, which is a prerequi-

site to forecasting future earthquakes. A promising approach to address this problem is in-situ chlorine-36 (36Cl) cosmogenic

exposure dating of active normal faults (Zreda and Noller, 1998; Mitchell et al., 2001; Schlagenhauf et al., 2010). This ap-

proach is based on the fact that earthquakes progressively exhume bedrock fault planes and thereby expose the bedrock to an

increasing amount of cosmic radiation, which is the dominant source of 36Cl production in rock. The resulting characteristic20
36Cl concentration profiles along fault planes therefore provide information about the timing and intensity of past earthquakes.

A comprehensive mathematical model of 36Cl production was provided in (Gosse and Phillips, 2001) and later formed

the basis of a MATLAB code that computes 36Cl concentration profiles from temporal sequences of ground displacements

(Schlagenhauf et al., 2010). Manual attempts to find best fits have subsequently been used for various faults (Benedetti et al.,
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2002; Palumbo et al., 2004; Schlagenhauf et al., 2010, 2011; Yildirim et al., 2016). Manual fits, however, can be deceived by

local minima and do not impart information on possible alternative solutions and the resulting uncertainties in the inference

of earthquake histories. Indeed, the complexity of the model and the abundance of uncertain parameters results in a highly

nonlinear and nonconvex problem, so that statistically reliable claims cannot be made without thorough modeling of prior

beliefs, and proper accounting for parameter and model uncertainties.5

To address these issues, Cowie et al. (2017) used a Bayesian Markov-chain Monte Carlo (MCMC) sampler (Robert and

Casella, 2004) to generate ensembles of plausible solutions. However, the candidate space considered was restricted by the

assumption of equally spaced and sized displacements in active slip time periods. Also, priors on the placement and number of

active time periods were not discussed. Furthermore, their approach did not incorporate uncertainties in important parameters

such as the 36Cl spallation and muonic production rates, the colluvial wedge mean density, which is difficult to measure in the10

field, and the timing of the demise of the last glacial maximum (LGM) after which slip was preserved on the fault plane, which

is only known imprecisely. Finally, their implementation of the MCMC algorithm was not fully described, and no evidence of

convergence was shown.

The new Bayesian MCMC method proposed in the current work adopts the Brownian motion model for earthquake recur-

rence (Matthews et al., 2002) to form a candidate space for earthquakes that arise and the associated prior probabilities. Besides15

improving the recurrence prior, this enables forecasts of future earthquakes, which is crucial for the subsequent task of regional

seismic hazard assessment (Pace et al., 2006, 2014). Furthermore, we forgo the unrealistic assumption in (Cowie et al., 2017)

that all displacements are of equal size and instead allow sizes to lie in a fault-dependent range. We employ parallel tempering

(Woodard et al., 2009) to avoid premature convergence to local rather than global optima due to lack of explorative capabili-

ties. We verify global convergence with the diagnostic of Gelman and Rubin (1992). Since no model of 36Cl production can be20

completely accurate, we include an estimation of model discrepancy (Rougier, 2007; Rougier et al., 2013; Brynjarsdottir and

O’Hagan, 2014), which results in more realistic confidence bands and may help guide various research efforts to improve the

modeling of 36Cl accumulation. We also account for uncertainties in important parameters of the model that were previously

held fixed. More specifically, we assume uncertain production rates, attenuation lengths, and colluvium density, and we infer

the time during the demise of the LGM at which the effect of erosion became outpaced by the ground displacements. We apply25

our algorithm to a synthetic case to verify the identifiability of past earthquakes in our model.

Finally, we study earthquake displacement histories for the Fiamignano and Frattura faults in the Italian Apennines. The

results provide new evidence of slip-rate variability of normal faults in the Italian Apennines. The timing of slip-rate episodes

can be reconciled with the historical record of earthquakes and damage to the Colosseum and other ancient buildings in Rome.

Beyond proposing a new approach to 36Cl earthquake dating, we extend our model to allow for Bayesian regional probabilistic30

seismic hazard assessment.

We supplement this paper with an easy-to-use MATLAB code of the proposed Bayesian MCMC method for earthquake

dating and regional probabilistic seismic hazard assessment.
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2 Simulation of 36Cl concentrations along fault scarps

Typical faults scarps are shown in Fig. 1a-c. These are characterized by two slopes that were originally joined, but are now

offset across a geological fault due to surface slip events during earthquakes. The original planar slope (see Fig. 1d) was formed

during the LGM, which for southern Europe ended around 20000 to 12000 years before present (20–12 ka), through intense

erosion on the upthrown side of the fault that was subject to freeze-thaw action (frost shattering) and sedimentation of the5

liberated slope debris (colluvium) on the downthrown side of the fault. Fig. 1d-f also shows how the morphology of the scarp

changes through time across the LGM to post-glacial transition.

Before the demise of the LGM (see Fig. 1d) erosion via freeze-thaw action rapidly removed the surface uplifted by earth-

quakes (Allen et al., 1999; Peyron et al., 1998). During the demise the LGM, decreasing erosion rates may have allowed fault

slip to be preserved as a scarp, depending on the relative rates of erosion and fault slip. However, after the demise the LGM10

(Fig. 1e), the slip was preserved due to low erosion rates relative to the fault slip rates (Roberts and Michetti, 2004; Cowie

et al., 2013, 2017). The type of slip is illustrated in Fig. 1h which shows decimeter scale slips produced during two earthquakes

at the Mt. Vettore fault on 24 August 2016 (Mw 6.1) and on 30 October 2016 (Mw 6.6). The Mw 6.6 surface rupture formed

in 2–4 seconds during coseismic slip, recorded by Global Navigation Satellite System receivers placed either side of the fault

before the earthquake (Wilkinson et al., 2017).15

The preserved fault plane can be sampled above ground and in excavated trenches. The 36Cl concentration in a fixed sample

of limestone bedrock evolves according to

dg(t)
dt

= φ(t)−λg(t), (1)

where g(t) is the 36Cl concentration (atomsg−1), φ(t) is the production rate (atomsg−1 yr−1) and λ is the decay rate of 36Cl

(yr−1). The main 36Cl production pathways in pure limestones are: spallation of 40Ca; muon capture by 40Ca, and thermal20

neutron capture by 35Cl. These processes depend on cosmic radiation flux which is attenuated by the surrounding environment

composed of air, colluvium and rock (see Fig. 1g). As a consequence, the production rate φ(t) in a rock sample through time

is strongly influenced by earthquake-induced changes to the surrounding environment. Roughly speaking, samples taken from

the trench have experienced 36Cl production at low rates due to shielding by overlying colluvium and neighboring limestone

bedrock, see Fig. 1g, whereas above-ground samples have experienced early sub-surface production before exhumation as25

well as subsequent surface production. This results in a characteristic 36Cl concentration profile along the fault plane, which

captures its history of ground displacements. Note that samples must be taken from a fault plane away from post-glacial alluvial

fans and eroded gullies where exposure is also influenced by post-glacial erosion and sedimentation (see Fig. 1f)

Formulae for surface production through the aforementioned processes as well as the associated attenuation, or shielding,

factors can be found in (Gosse and Phillips, 2001; Schlagenhauf et al., 2010). More than a decade of contributions to the30

modeling of 36Cl production (Lal, 1988; Phillips et al., 1996; Mitchell et al., 2001) have been assembled into a MATLAB code

that computes 36Cl concentrations in a set of bedrock samples for given sequences of scarp displacements and event times;

the code is provided in the supplement of (Schlagenhauf et al., 2010). The code solves Eq. (1) by a first-order finite-difference
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Figure 1. Images and illustrations of scarp evolution and radiation environment
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scheme, and uses various simplifications for calculating the shielding factors; for example, it assumes that the cosmic ray flux

decays exponentially with the depth of a sample beneath the colluvial wedge.

As part of this work, we provide a MATLAB code that circumvents some of the approximations and simplifications of

(Schlagenhauf et al., 2010), in particular in the computation of shielding factors. We use exact solutions of Eq. (1), piece-

wise exponentials, which is possible under the assumption of a constant-in-time production rate. These changes improved the5

predicted 36Cl concentration by around 5% in our numerical experiments. Furthermore, we introduce an offline phase during

which we pre-compute a database of shielding factors for a sparse grid (Barthelmann et al., 2000) of possible values of the

model parameters. By interpolating between these factors, we were able to accelerate the computations during the inverse prob-

lem by two orders of magnitude. Finally, an improvement of particular relevance to our case studies is that we also consider

events before the end of the LGM. We approximate the effects of the LGM on erosion in a binary manner, by assuming a single10

point in time, Tinit, before which erosion immediately eroded scarps formed by earthquakes, and after which erosion stopped

completely.

The provided MATLAB code calculates 36Cl concentrations in a set of bedrock samples for given sequences d= (d1, . . . ,dN )

and s= (s1, . . . ,sN ) of scarp displacements and event times and the following fault site properties:

– Geometric description (see Fig. 1g):15

– Dip of the lower slope, α (◦)

– Fault plane dip, β (◦)

– Dip of the upper slope above the fault, γ (◦)

– Geological properties:

– Rock mean density, ρrock (gcm−3)20

– Colluvial wedge mean density, ρcoll (gcm−3)

– Spallation production rate of 36Cl by fast secondary neutrons at the surface from 40Ca, Ψsp (atomsg−1 yr−1)

– Slow muon capture production rate of 36Cl at the surface from 40Ca, Ψµ (atomsg−1 yr−1)

– Neutron apparent attenuation length, Λsp, and muon apparent attenuation length, Λµ, for a horizontal unshielded

surface (cm)25

– Chemical compositions (ppm) of the rock in each sample and of the soil and pebbles in the colluvium

– Further properties:

– The influence of the geomagnetic field is specified through scaling factors for fast neutrons and slow muons, see

the supplementary material of (Schlagenhauf et al., 2010)

– The time during the demise of the LGM at which the effect of erosion became outpaced by the ground displace-30

ments, Tinit (yr)
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3 Bayesian inference of displacement histories using MCMC

In this section, we present a Bayesian MCMC algorithm that solves the inverse problem of the previous section, i.e., the in-

ference of past earthquakes from 36Cl measurements y = (y1, . . . ,yM ) at M sample sites along a single fault scarp. More

specifically, we compute posterior distributions for the vectors of fault displacements and event times, d= (d1, . . . ,dN )

and s= (s1, . . . ,sN ), respectively (and in particular for the number of events, N ). In addition, we treat the values of z :=5

(Tinit,Ψsp,Ψµ,Λsp,Λµ,ρcoll) as uncertain parameters and include them in the inference problem.

Denoting by y∗ the vector of true 36Cl concentrations, and by g(x) the output of the computer model of Eq. 2 for given

values of x := (d,s,z), we first observe the equation

y = y∗+ ε= g(x) + δ+ ε (2)

where ε is the measurement error, i.e., the discrepancy between the true and the measured concentrations, and δ := y∗−g(x) is10

the model error, i.e., the discrepancy between the model output and the true concentrations (Rougier et al., 2013; Brynjarsdottir

and O’Hagan, 2014). We assume that the measurement errors are independent and normally distributed, ε∼N (0,σ2) for a

given vector σ = (σ1, . . . ,σM ) of positive real numbers. The model error is assumed to be proportional to the measurements,

δ ∼N (0,(ρy)2), and we include the value of ρ > 0 in the inference problem.

To describe the Bayesian inference method, let us denote by θ := (x,ρ,φ) the vector of all unknowns, where φ contains15

auxiliary variables that are described in Sect. 3.1 below. If we have a prior belief on the value of θ, described by a probability

distribution Pθ, then the posterior distribution for θ given the measurements y can be found using Bayes’ rule,

Pθ|y ∝ Py|θPθ, (3)

with the distribution of y conditioned on a fixed value of θ, or likelihood, given by

Py|θ ∼N (g(x),σ2 + (ρy)2),20

To gain information about Pθ|y , we employ a MCMC method (Robert and Casella, 2004), which generates samples that can

be used to approximate statistical properties of Pθ|y . More specifically, we use a Metropolis-Hastings MCMC method, which

generates a sequence (chain) (θk)∞k=1 of random samples, where an initial sample is taken from the prior distribution and

each successive sample is generated from its predecessor by means of random proposal functions and an acceptance step that

guarantees that the sample distribution converges to the desired distribution Pθ|y as k→∞. To accelerate this convergence,25

we employ a parallel tempering approach that simultaneously generates L > 1 chains (θ(l)
k )∞k=1, 1≤ l ≤ L with progressively

flattened likelihood distributions,

P
(l)
y|θ ∼N (g(θ),κl(σ2 + (ρy)2)), 1 = κ1 < · · ·< κl < · · ·< κL,

and randomly swaps states between neighboring chains such that the resulting samples of the first chain (θ(1)
k )∞k=1, which uses

κ1 = 1, are still distributed according to Pθ|y (in the limit). This has been shown to accelerate the exploration of the state space30

in cases where the posterior distribution has multiple local maxima (Woodard et al., 2009).

6

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-94
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 24 May 2018
c© Author(s) 2018. CC BY 4.0 License.



To fully specify our inference method, it remains to describe the prior distribution Pθ and the proposal functions that are

used for sample generation.

3.1 The prior distribution Pθ

We describe the prior distributions of different components of θ with the understanding that separately described components

are assumed to be stochastically independent.5

For the parameter ρ, which controls the relative model error, we assume a uniform prior distribution, ρ∼ U [0,ρmax = 0.1].

To describe a prior for the earthquake times s (and in particular the number of events N ), we extend our state space by a

stochastic process in [−Tmin,0] that is used to model earthquake occurrence, see Fig. 2. In doing so, we follow (Matthews et al.,

2002), where the time between successive earthquakes is modeled by an inverse Gaussian distribution, which is also called the

Brownian passage-time distribution since it describes the time required by a Brownian motion to reach a certain threshold.10

To account for large-scale time periods with differing average earthquake frequencies, we extend the model in (Matthews

et al., 2002) by including a Poisson(Λ Tmin)-distributed number J of switch points (tj)Jj=1, where tj ∼ U([−Tmin,0]) and

Λ∼ U([10−4,10−3]). This is equivalent to the assumption that the times between successive switch points are exponential

random variables whose mean 1/Λ is inferred in the interval [103,104]. We then define the drift a(t) and volatility b(t) of the

Brownian motion in the intervals of the resulting partition of [−Tmin,0] by15

(a(t), b(t)2) := (1/νj , τ2/νj) for tj ≤ t≤ tj+1 (with t0 :=−Tmin and tJ+1 := 0),

where the average inter-arrival times ν = (νj)Jj=0 are independent and identically distributed according to an Inverse Gamma

distribution with mean m∼ U([200,2000]) and shape parameter α∼ U([1,10]), and where τ ∼ U([0,1]) controls the short-

scale recurrence variability (with the above definitions, the standard deviation of inter-arrival times in the j-th subinterval

is τνj). Numerically, given values of ν and τ , we use forward Euler-Maruyama time stepping (Higham, 2001) with time20

discretization ∆t≈ 15 yr to simulate the resulting stochastic process on [−Tmin,0], with the modification that we reset the

process to 0, and generate an earthquake by extending d and s, each time it reaches the threshold 1. In formulae, we let

X̂i+1 :=Xi + a(i∆t)∆t+ b(j∆t)Wi+1,

Xi+1 :=




X̂i+1 if X̂i+1 < 1

0 else
(4)

The values Wi ∼N (0,∆t) together with ν and τ and the initial value X0 ∼ U([0,1]) form the vector of auxiliary variables φ

referred to above, which fully determines the process (Xi)
Tmin/∆t
i=0 , which in turn determines the vector of earthquake times s.25

For the prior distribution of the displacement vector d conditioned on the number N of earthquake events, we use a uniform

prior on the hypercube [dmin,dmax]N conditioned on the requirement that
∑N
n=1 dn =Hsc, whereHsc (see Fig.1) is the present

height of the fault scarp, and dmin and dmax are fault-dependent bounds on displacement sizes.

Finally, we assign prior distributions to the components of z: Tinit ∼ U([12000,20000]), Ψsp ∼N (48.8,1.7), Ψµ ∼N (190,19),

Λsp ∼ U([180,220]), and Λµ ∼ U([1300,1700]), where the first three are based on results of (Allen et al., 1999), (Stone et al.,30
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Figure 2. Sample path of stochastic process used for earthquake event time generation. Sample path generated with X0 = 0.16,

Tmin =−30000 yr, t1 =−10000 yr, ν = (15000yr,3000yr), τ = 0.5, and ∆t≈7 yr. The corresponding earthquake times are represented

by dots on the time axis, the switch point t1 is represented by a red vertical line.

1996), and (Heisinger et al., 2002), respectively, and the remaining are chosen to be uniform around values taken from (Schla-

genhauf et al., 2010). It is difficult to accurately measure the value of ρcoll in the field due to compaction of the sediment during

excavation of the sample trench at the base of the fault scarp, so we adopt the relatively wide prior ρcoll ∼ U([1.2,1.8]) for all

case studies considered in this work.

3.2 MCMC proposal functions5

To explore the state space, we design a number of proposal functions and apply a subset of these before each rejection step in the

MCMC algorithm. For each component of z as well as for the values of ρ, ν, τ and X0, we include a global proposal from the

corresponding prior distribution as well as a local proposal based on a normal distribution around the current value. To propose

the partition of [−Tmin,0] and the corresponding piecewise constant drift and volatility coefficients, we employ Reversible

Jump MCMC (Green, 1995), which allows for the application of MCMC to variables whose state space contains subspaces10

of different dimensionality. To propose new values of (Wi)
Tmin/∆t
i=1 that drive the process (Xi)

Tmin/∆t
i=1 , we again use a global

proposal, which redraws all values independently, as well as a Brownian bridge-type local proposal that redraws the values

within a random subinterval of [−Tmin,0] from their prior distribution conditioned on maintaining their sum. If a proposal

changes the number of earthquakes, the earthquake displacement vector d (which then has a different size) is re-sampled too,

and if a proposal changes the number of switch points, the vectors of drift and volatility coefficients are re-sampled as well.15
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4 Application to synthetic 36Cl data

In this section we apply our Bayesian MCMC method to synthetic 36Cl data. To generate these data, we drew d and s

from the prior distributions described in Sect. 3.1 with dmin = 10 and dmax = 110 and applied the computer model of Sect.

2 using the chemical compositions of 146 rock samples from the Fiamignano fault (Cowie et al., 2017) and the values

z = (Tinit =−19000,Ψsp = 49.5,Ψµ = 200,Λsp = 195,Λµ = 1700,ρcoll = 1.6). The remaining parameters, which are not part5

of the inference problem, were chosen as Hsc = 2705, Htr = 115, ρrock = 2.7, α= 23, β = 42, and γ = 33, based on the true

values of the Fiamignano fault that were measured in the field. Finally, we perturbed the 36Cl concentration values according

to Eq. 2, with standard deviation σ = 2.5× 10−2g(x) for the measurement error and ρ= 3× 10−2 in the model error term.

The realizations of d and s are given in the supplementary material.

Figure 3. Measured and sampled 36Cl concentrations for the synthetic case with 146 36Cl measurements

We ran our MCMC method run using the priors specified in Sect. 3.1 for the uncertain parameters, i.e., Tinit ∼ U([12000,20000]),10

Ψsp ∼N (48.8,1.7), Ψµ ∼N (190,19), Λsp ∼ U([180,220]), and Λµ ∼ U([1300,1700]), ρcoll ∼ U([1.2,1.8]).

The results presented in this section are based on 2 independent MCMC chains, each consisting of L= 20 parallel tempering

levels. We performed 1374462 MCMC iterations of each chain, resulting in a combined number of 2474032 samples in the

first levels of the two independent chains after a 10% burn-in period. Among these samples were 843735 distinct scenarios,

whose repetitions correspond to rejected proposals and reflect their statistical weight. Finally, to accelerate post-processing and15

to decrease memory consumption, we saved only each 5th scenario together with its number of repetitions (thinning).
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Figure 4. The synthetic case with 146 36Cl measurements: the accumulated displacement (left), the mean earthquake intensity (right top) and

an event scatter plot (right bottom) showing true events (blue) and events from posterior samples (with grey scale to indicate frequencies).

Figure 5. Gelman-Rubin diagnostic for the synthetic case with 146 36Cl measurements

10

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-94
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 24 May 2018
c© Author(s) 2018. CC BY 4.0 License.



Figure 3 shows that the medians of the 36Cl concentrations of the posterior samples provide a good fit to the synthetic

measured concentrations. More importantly, Figure 4 (left) shows that the posterior median of the accumulated displacement

is close to the true value throughout the entire time span. This indicates that past earthquake activity can be recovered despite

measurement errors (here 2.5%), model errors (here 3%) and parameter uncertainties. Figure 4 (right) shows the posterior

mean earthquake intensity, i.e., the average displacement per time (computed for bins of width ∼500 years), and a scatter plot5

of all earthquake events of the posterior samples.

In both plots, the erosion during the last LGM has removed information and so leads to almost uniform posterior intensities

across time and through event sizes during the LGM, which means that individual events in that period cannot be recovered.

Nevertheless, including such events in our approach can be considered a way to obtain realistic prior 36Cl concentrations at the

end of the LGM, Tinit, as opposed to the alternative to start with zero concentrations or imposing ad-hoc pre-exposure times10

(Schlagenhauf et al., 2010).

Figure 5 shows that the PSRF value associated with the accumulated displacement values of Figure 4 is below 1.08.

Since the collection and chemical analysis of 36Cl samples involve time-consuming and costly fieldwork and lab work, in

particular the AMS analysis, it is worthwhile knowing whether fewer than 146 samples can provide similar insights. To answer

this question, we repeated our computations with a subset of 16 rock samples (see Fig. 6). Figure 7 shows that this reduced

Figure 6. Measured and sampled 36Cl concentrations for the synthetic case with 16 36Cl measurements

15

dataset leads to similar results as the complete dataset (cf. Fig. 4). These results are based on 421022 MCMC iterations of each

chain and using the same number of chains, burn-in and thinning as before, which led to a maximal PSRF value of 1.02.
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Figure 7. The synthetic case with 16 36Cl measurements: the accumulated displacement (left), the mean earthquake intensity (right top) and

an event scatter plot (right bottom) showing true events (blue) and events from posterior samples (with grey scale to indicate frequencies).

5 Application to normal faults in the Italian Apennines

The Italian Apennines contain many examples of bedrock scarps on active normal faults and it has been suggested that rates

of slip produced by repeated earthquake rupture since the LGM can be used to investigate seismic hazard and the mechanics

of continental deformation (Piccardi et al., 1999; Roberts and Michetti, 2004; Cowie et al., 2013). The active normal faults

work to extend the continental crust at the present day in formerly-thickened crust of the Alpine-Apennines collision zone.5

The extension started at 2–3 Ma, as evidenced by dated sediments in extensional sedimentary basins formed by fault activity

(Cavinato and Celles, 1999; Roberts et al., 2002). The basins occur on the downthrown side of the faults, and contain accumu-

lations of sedimentary layers that are usually hundreds to a few thousand meters thick. When added to the offset implied by

the uplifted mountains on the upthrown side of the faults, total fault offsets are up to 2–2.5 km, which means long-term rates

of vertical motion across the faults are in the order of 0.1 cm/yr.10

In this section we apply our method to the Fiamignano and Frattura faults of the Italian Apennines, and show its applicability

to regional probabilistic seismic hazard assessments.

5.1 Fiamignano fault

The Fiamignano fault is located on the southwest (SW) flanks of the Apennines, approximately 60 km northeast of Rome.

Based on a study of 34 damaging earthquakes recorded in (Guidoboni et al., 2007; Galli and Molin, 2014; Vittori, 2015),15
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Figure 8. Location map of the central Apennines and the Fiamignano and Fraturra sample sites. Holocene active faults and historical ruptures

adapted from (Roberts and Michetti, 2004; Pace et al., 2006; Cowie et al., 2017; Mildon et al., 2017)

intensity VIII damage is expected at distances of less than ∼40–60 km of an epicenter from a Mw ∼ 6.0-6.5 event, and the

Fiamignano fault is one of the few Apennines normal faults with that epicentral distance to Rome (see Fig. 8) thus making it a

plausible source of the historic earthquake damage.

Rome was damaged in earthquakes of intensity VIII during at least three earthquakes in the 5th, 9th and 14th centuries,

respectively. Other earthquakes damaged the city in 801, 1091, 1231, 1279, 1298, 1328 AD (Guidoboni et al., 2007). The5

Colosseum was damaged in 484 AD or 508 AD, based on a stone inscription where a person know as “Decius Marius Venantius

Basilus,” a prefect of the city, declares that he directly paid for restoration works after an earthquake; the uncertainty in age is

because two Decius were consul, one in 484 AD and another in 508 AD. Damage consisted of collapse of the colonnades in the

summa cavea (upper seating section for plebian spectators) with major damage to the arena and podium. Collapse of the outer

rings of the Colosseum is sometimes attributed to an 847 AD earthquake, when the nearby church of Santa Maria Antiqua was10

abandoned after earthquake damage (Vittori, 2015). An earthquake also damaged Rome on September 9, 1349 AD, one of 3

large earthquakes in the Apennines on that day. This earthquake is thought to be linked to the Fiamignano fault based on the

observation that taxes were reduced in the vicinity of the Fiamignano fault due to misery and depopulation after the earthquake
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(Guerrieri et al., 2002). Damage and collapse reported in 14th century accounts are summarized in (Galli and Molin, 2014),

where the earthquake on that day is described as “the strongest seismic shaking ever felt in Rome” (Galli and Molin, 2014). It is

postulated that there was an abrupt collapse of the southern external ring of the Colosseum during this earthquake, as observed

in Fig. 9, because a bull fight was hosted there in 1332 AD, suggesting the Colosseum was intact, and an announcement that

the collapsed stones were for sale was made in the second half of the 14th century. Furthermore, an intact Colosseum can be5

seen on a coin from 1328 AD, whereas a damaged Colosseum is displayed on a 15th century image (Galli and Molin, 2014).

Minor damage to the Colosseum also occurred in a 1703 AD earthquake (Vittori, 2015).

Figure 9. Damage to the Colosseum in Rome

One of the goals of this work is to investigate whether the Fiamignano fault is a candidate for the historical damage accounts

in Rome based solely on 36Cl analysis. 36Cl data from the Fiamignano fault have previously been collected and analyzed in

(Cowie et al., 2017), where geomorphic and structural field mapping as well as laser and radar datasets were presented as10

evidence that their site was exhumed by tectonic slip as opposed to exhumation by erosion. Cowie et al. (2017) tried to infer an
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earthquake history for the fault, and the results suggest rapid displacement between approximately 2000 years ago and 1349

AD. However, the results were biased by the modeling constraint that the most recent earthquake was enforced to be at 1349

AD and by the use of constant inter-event times between slip-rate change points and constant displacement sizes.

In our analysis, we use the same site parameter values and priors as in Sect. 4 except that we now use dmax = 300, motivated

by the large displacements for similar faults presented in (Wells and Coppersmith, 1994). We performed 1311016 MCMC5

iterations of each chain and used the same number of chains, the same burn-in and thinning as in the synthetic case. A maximal

PSRF value of 1.03 using two independent MCMC chains indicates convergence. The minimal weighted root mean squared

error (wRMS) among all scenarios was 1.42. The time required for the offline calculations was ∼15 minutes and the total time

was ∼12 days. In this work, we performed all numerical experiments on Intel Xeon E5-2680 v2 at 2.80 GHz (20 cores) with

MATLAB 2016a.10

Figure 10. Fiamignano fault: measured and sampled 36Cl concentrations

The sampled posterior 36Cl concentrations fit well to the measurements as observed in Fig. 10. Our results agree with (Cowie

et al., 2017) in that we find clear evidence of slip-rate variability and the slip-rate increasing through time before cessation of

slip in the last 600-700 years. Although the present 28m offset in the plane of the fault occurred at an average slip rate of ∼0.2

cm/yr, we find rapid slip of 1.0–1.4 cm/yr centered around 1 ka, see Fig. 11. A detailed view for the period from 5ka to present

is shown in Fig.12, where we observe that both of the two major earthquake events to have been observed in 847 AD and 134915

AD fall within this region of high intensity, see right top of Fig. 11, and potentially large displacements indicated by dark gray

regions in the right bottom of Fig. 11. In fact, even the 801, 1091, 1231, 1279, 1298, and 1328 AD earthquakes fall within the
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Figure 11. Fiamignano fault: the accumulated displacement (left), the mean earthquake intensity (right top) and an event scatter plot (right

bottom) showing events from posterior samples (with grey scale to indicate frequencies).

high intensity region at times when our findings suggest relatively low displacement sizes. This deserves further investigation,

and we hope it leads to palaeoseismic studies of offset late Holocene sediments on the Fiamignano fault that may be able to

verify or refute these possibilities.

In conclusion, our findings suggest that slip is highly-clustered in time and that the Fiamignano fault is a plausible source of

the 847 AD and 1349 AD earthquakes associated with damage to the Colosseum and other ancient buildings known from the5

historical record.

5.2 Frattura fault

36Cl data for the Frattura fault have been collected and analyzed in (Cowie et al., 2017), where geomorphic and structural

field mapping as well as laser and radar datasets were presented as evidence that their site was exhumed by tectonic slip as

opposed to exhumation by erosion. Unlike for the Fiamignano fault, the 36Cl data were collected sparsely (15 samples), similar10

to the situation in our synthetic case with reduced amount of data shown. The site-specific parameters for the Frattura fault

are α= 25, β = 53, and γ = 28, fault scarp height Hsc = 1570, and trench depth Htr = 130, the rock mean density ρrock = 2.7.

Here the maximum displacement size is again chosen conservatively as dmax = 300; though we mainly expect displacements

sizes less than 100 cm based on the data of (Wells and Coppersmith, 1994). As in the previous cases, we let ρcoll ∼ U([1.2,1.8]).

There are no known historical earthquakes for this fault consistent with records from towns and cities nearby, such as15

Sulmona and Pescasseroli, for which earthquake records extend back to Roman times. Indeed, the record is thought to be
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Figure 12. Fiamignano fault: detailed view of posterior displacement history and earthquake intensity. The vertical blue lines show the

timings of two events that damaged the Colosseum.

complete since 1349 AD for magnitudes larger than Mw 5.8; see (Guerrieri et al., 2002; Guidoboni et al., 2007; Pace et al.,

2006; Roberts and Michetti, 2004) for discussions of the completeness period.

We performed 522560 MCMC iterations of each chain and used the same number of chains, burn-in and thinning as in the

synthetic case. A maximal PSRF value of 1.003 indicates convergence of the MCMC algorithm. The minimal wRMS among

all scenarios was 1.78. The same settings are used for the offline calculations (∼15 minutes) and the total time was ∼3 days.5

Figure 14 suggests a scarp age at approximately 19 ka consistent with expected slope stabilization ages, which may well be

the marker for the time of the demise of the LGM shown in Fig. 1. After ∼19 ka, Figures 14 and 15 indicate highly variable

slip rates throughout the investigated time domain: initially a constant moderately-high slip rate until ∼15 ka, a decreasing slip

rate until ∼8 ka, a sudden peak in slip from ∼5–3 ka, and a low occurrence probability of earthquake events in the past ∼2500

years. The lack of earthquakes in the past ∼2500 years is consistent with historical earthquake records which show no major10

earthquakes in the vicinity.

The displacement histories of the Fiamignano and Frattura faults provide insights into slip-rate variability. The relatively

short-lived bursts of high activity observed in our results occur at different times on faults in the same tectonic setting. This

suggests that this is not a regional pulse of synchronous high slip, but probably related to the dynamics of interaction between

each fault and its neighbors (Cowie et al., 2012), and that slip is highly-clustered in time, which has important implications for15

forecasting seismic hazard as discussed below.
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Figure 13. Frattura fault: measured and sampled 36Cl concentrations

5.3 Application to regional probabilistic seismic hazard assessment

Our results show that calculating probabilistic seismic hazard is considerably more challenging than previously thought. Cur-

rent probabilistic seismic hazard calculations are based on the Brownian passage-time (BPT) distribution and require specifi-

cation of the most recent earthquake time, the mean inter-event time, and the CV value (standard deviation of inter-event times

divided by the mean inter-event time) to factor in variability in the inter-event time (Pace et al., 2016). However, our results5

show that in addition to the variability in inter-event times around a constant slip-rate, faults show heightened activity and

quiescence over time periods lasting a few millenia relative to the longer term deformation rate. The differences in slip-rate

between time of heightened activity (>1cm/yr) and quiescence (<0.1 cm/yr) are dramatic. These two timescales of slip-rate

variability are not considered by current methods for calculating probabilistic seismic hazard (Pace et al., 2006, 2016; Tesson

et al., 2016). To address this omission, we extend our more complex earthquake recurrence process – a Brownian motion with10

time-varying drift and noise – into the future, which enables us to sample more realistic next earthquake event times. More

specifically, for each of our posterior samples, we continue the simulation of the corresponding Brownian motion sample path

(such as that shown in Fig. 2) until another earthquake is generated. For this purpose, we use the sample-dependent values

of the parameters describing the behavior of the Brownian motion: the average time 1/Λ between large-scale changes in slip

activity, the small-scale recurrence variability τ and the hyperparameters α and m that describe the distribution of average15

inter-arrival times in new slip activity periods. Thus, our approach is as a natural extension of the state-of-the-art methodology
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Figure 14. Frattura fault: the accumulated displacement (left), the mean earthquake intensity (right top) and an event scatter plot (right

bottom) showing events from posterior samples (with grey scale to indicate frequencies).

Figure 15. Frattura fault: detailed view of posterior displacement history and earthquake intensity.
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that accounts for large-scale slip-rate variability and informs the resulting more complex model by the full displacement history

at a given fault site.

We provide the posteriors of the next earthquake time for the Fiamignano and Frattura faults in Fig. 16. An important finding

is that the values differ between the two faults, suggesting that with more data it may be possible to map such posteriors across

entire regions such as that shown in Fig. 8. We expect site specific values for these posteriors to change on a length-scale5

of 20–30 km, the length of individual faults. Thus, our approach facilitates high spatial resolution seismic hazard mapping

by implicitly including individual seismic sources (active/capable faults), the long-term slip-rates, and importantly the two

timescales of slip-rate variability (millennial-scale heightened activity or quiescence, and inter-earthquake time variability).

Figure 16. Posteriors of next earthquake time for Fiamignano (left) and Frattura (right)

However, a note of caution is that these results are probably only meaningful for near-future prediction. A physical basis

that explains the cause of the slip-rate variability resulting from fault interaction would further improve probabilistic hazard10

analysis, as mentioned in (Tesson et al., 2016). During and after rupture, stress is resolved onto neighboring faults, and this

is thought to produce temporal variation in slip-rate on faults that manifests itself in terms of temporal earthquake clustering

(Scholz, 2010; Cowie et al., 2012; Mildon et al., 2017). Interaction allows the fault systems to share out the work associated

with deforming a region between different faults so that only a few of the total number of active faults take part in regional

deformation on millennial timescales (Cowie et al., 2012). Further work, including 36Cl results from many faults in the same15

region, is needed to elucidate such interaction.
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6 Conclusions

This work provides a validation of the 36Cl approach to inference of earthquake occurrence from the demise of the LGM

until present. We propose a Bayesian MCMC method for the study of earthquake displacement histories, with applications

to regional probabilistic hazard assessment. The method improves on the 36Cl modeling in (Schlagenhauf et al., 2010), the

Bayesian inference for 36Cl earthquake recovery in (Cowie et al., 2017), and the regional probabilistic hazard assessment in5

(Pace et al., 2006; Tesson et al., 2016). After demonstrating identifiability in the inverse problem through a synthetic case study,

we present probabilistic earthquake displacement histories for the Fiamignano and Frattura faults in the Italian Apennines.

We obtain highly variable slip-rates at both faults, in agreement with earlier studies of the region. At the Fiamignano fault,

our findings suggest slip in earthquakes at times when the Colosseum and other ancient buildings in Rome were damaged.

Conversely, at the Frattura fault, our result is consistent with the fact that no large earthquakes were reported since Roman10

times.
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