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I enjoyed this paper, but I will focus on section 3, as this is where I have some
doubts about what the authors have done, and whether it is correct. These doubts
stem from their explanation of MCMC at the bottom of p6, which is technically
wrong. In line 25, it is the stationary distribution of the Markov chain which
converges to the target, and there is a similar misunderstanding in line 29. This
convergence implies that Cesaro means converge in mean-square to expectations;
i.e. a sample from the chain can be used to estimate expectations. There is also
some confusion in sec 3.2 which I will come back to below.

The authors have a statistical model with some parameters 0, a stochastic
process II, and some parameters controlling the stochastic process, ¢. They
do not name II and ¢ explicitly, but II is the stochastic process generating
{(t1,dy), ..., (tn,dn)}. The authors will want to use a complicated II, and this
means, typically, that it will be simple to sample from II | ¢ but very hard to
evaluate p(IT | ¢). II| ¢ is complicated for two reasons. First, realistic earthquake
models are much more complicated than marked Poisson processes; second, they
will want to impose the constraints that dy;, < d; < dpax, and Zf\; d;, = H,..
This would never happen by chance in an unconstrained simulation, and so it
must be built-in to the prior, as explained at the bottom of p7.

I am skeptical of whether the authors are able to evaluate p(II | ¢) for their
complicated model, which is a highly non-linear function of a Brownian motion (it
is not clear in the MS whether or this is normal or geometric Brownian motion). I
am also confused about the proposal described at the start of sec 3.2. I would like
to point out that in a Metropolis-Hastings MCMC scheme they do not need to
evaluate p(I1]1)), if they always propose 11| from the prior. The MH acceptance

ratio is

_ LI, p(@) p(I [ ) p(¢") - prop(d,¢) prop(Il| ¢)
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where L is the likelihood function, primes indicate the proposed values, and ‘prop’
is the proposal distribution, which may depend on (6, 11,4). So if prop(Il | ¥) =
p(IT| ¢), then the MH acceptance ratio simplifies to

L' IV, ¢") p(0) p(¢') | prop(6, )
L(9,T1,4) p(0) p(v) ~ prop(#,¢')

Now it is quite true that this chain will be slow to mix, if the likelihood is highly

concentrated. But that is exactly why tempering is a good idea. Tempering is



a good trick for whenever we are forced to propose from the prior, owing to the
difficulty of computing the probability density. I think there is an interesting
message in this paper, which is that this method is applicable even though IT | ¢
is very complicated.

In their MH-MCMC scheme, prop(f, ) is a random walk, although I caution
the authors to make sure that they include the Jacobian term if using a trans-
formation: e.g., random walking in logs for non-negative parameters, or logits for
bounded parameters, or else be clear about reflection at the boundaries. They
might also consult, e.g., Andrieu and Thoms (2008), to implement an adaptive
phase at the start of their chain, and to make cautious proposals using the prin-
ciple components of the estimated posterior variance matrix. All of this needs to
be stated in the MS.

The description of the proposal in sec 3.2 is confused. I believe that some issues
have been resolved above, by always sampling IT | from the prior, and tempering.
If the authors do not do this, then they will have to give explicit forms for p(IT|))
and for prop(II | ¢), so that readers can implement the algorithm themselves. I
do not understand the Reversible Jump part at all. 11| is a point process; the
fact that the number of components varies is irrelevant.

In terms of diagnostics, the authors will need to demonstrate that their very
intricate MCMC does indeed have the correct target distribution, using, e.g.,
the method of Cook et al. (2006); see also Dan Simpson’s update at http://
andrewgelman.com/2018/04/18/better-check-yo-self-wreck-yo-self/. This
will also check that the authors are using a long-enough burn-in, and so separate
Gelman-Rubin diagnostics are not required in the MS, although they may be help-
ful when setting-up the chain. As an aside, 2 independent chains is not nearly

enough for Gelman-Rubin: 8 is much better.
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