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Abstract  9 

Cities are fundamental to climate change mitigation, and although there is increasing 10 

understanding about the relationship between emissions and urban form, this relationship has not 11 

been used to provide planning advice for urban land use so far. Here we present the Integrated 12 

Urban Complexity model (IUCm 1.0), which computes climate-smart urban forms, which are 13 

able to cut in half emissions related to energy consumption from urban mobility. Furthermore, 14 

we show the complex features that go beyond the normal debates about urban sprawl vs. 15 

compactness. Our results show how to reinforce fractal hierarchies and population density 16 

clusters within climate risk constraints to significantly decrease the energy consumption of urban 17 

mobility. The new model that we present aims to produce new advice about how cities can 18 

combat climate change.  19 

1. Introduction 20 

Cities are crucial for a decarbonized society. Urban areas emit roughly three quarters of global 21 

carbon emissions (Seto et al., 2014). Cities are self-organized emergent structures with fractal 22 

qualities (Batty, 2007). They are classical examples of complex adaptive systems, which call for 23 

models combining spatial explicitness with a complex systems approach (White, 1998; Clarke et 24 

al., 1997). 25 

The spatial distribution of urban land use and the density of population define the urban form. 26 

The debate in urban planning about the influence of population density and urban forms in 27 

mobility and derived energy is a long one. While some American-focussed analyses suggest that 28 

population density is not a primary determinant of energy-intensive forms of mobility (Ewing 29 
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and Cervero, 2010), other sources suggest that once the density is augmented, the reduction in 1 

the energy consumption of urban mobility is not immediate and take a longer time to realise (van 2 

Wee and Handy, 2014). Similarly, there is still a lack of complete understanding of the 3 

interaction between urban form and energy consumption and derived CO2 emissions (Seto et al., 4 

2014). Going beyond other approaches, Le Néchet (2012) suggests that, beyond density, the 5 

energy consumed in mobility is significantly correlated with the urban form, most specifically 6 

with measures of urban form related to a complexity science approach to density. The full 7 

potential of cities for mitigating climate change can only be achieved through considering the 8 

influence of the urban form on the energy needed for mobility. Hence, these measures of the 9 

urban form showing a significant correlation with energy consumption for mobility can be used 10 

to guide urban growth and transformation. Indeed, policy recommendations for the urban form in 11 

relation to energy consumption and derived CO2 emissions have not been yet produced 12 

systematically, although it is clear that a lack of urban planning increases congestion and 13 

pollution (Moreno et al, 2016).  14 

Furthermore, there is an opportunity to combine these spatially explicit insights about mitigation 15 

of CO2 emissions from energy consumption for mobility with spatially explicit information of 16 

climate risks. We therefore aim to cover this gap in urban planning by producing a new type of 17 

spatially explicit model, a model that optimizes urban forms and is able to take into account 18 

climate risks. A model that should be designed to produce planning suggestions that decrease the 19 

energy consumption of urban mobility, and the derived emissions and pollution, while taking 20 

into account climate risks.  21 

We present the first version of the Integrated Urban Complexity model (IUCm 1.0) and its first 22 

results, as a first step of an urban research agenda focussing on co-benefits between adaptation 23 

to, and mitigation of, climate change. The goals of this applied research agenda are to 24 

incorporate in urban planning the adaptation to the most important climate risks impacting cities, 25 

i.e. floods, droughts and heat island effect, while capturing the co-benefits with mitigation of 26 

greenhouse gas emissions leading to climate change and other forms of urban pollution. We find 27 

that the first results from this research agenda are already worth of consideration: a new type of 28 

urban planning advice providing spatially explicit insights on co-benefits between adaptation and 29 

mitigation shows in some cases a halving in the energy consumption of urban mobility while 30 
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constraining urban planning to flood risks (see Section 3.4 below). After the methods and results 1 

we present here, which include the IUCm 1.0 and its first results, the following steps of this 2 

agenda include (i) detail of urban transportation networks and infrastructures, (ii) detail of urban 3 

water supply and drought risks (Cremades, 2017), and (iii) 3-dimensional depiction of cities and 4 

land use and building covers to analyse heat-island effect together with a climate model.  5 

In this IUCm 1.0, we drive the evolution of a cellular automaton model depicting the urban form, 6 

and initially use statistical evidence to capture its implications in the energy consumption of 7 

urban mobility. IUCm 1.0 provides a methodology to compute the first “climate-smart urban 8 

forms”, a novel concept in urban land use that has been applied to agriculture before (Lipper et 9 

al., 2014). We first apply IUCm 1.0 to three idealized city forms representing the planning 10 

challenges of diverse types of real cities, and then we apply this to a real example: Frankfurt. 11 

Rather than just suggesting the concentration of density in the city centre, climate-smart urban 12 

forms are characterized by strengthened density hierarchies and improved connections between 13 

urban clusters. We believe that applying our approach is crucial to the development of urban 14 

strategies for climate action.  15 

2. Methods 16 

2.1. Introduction to the Integrated Urban Complexity model (IUCm 1.0) 17 

We propose a model with three major methodological constituents generating a new type of 18 

spatially explicit algorithm relating to changes in urban form with a decrease in the energy 19 

consumption of urban mobility, by combining cellular automata with an evidence-driven 20 

optimization process.  21 

First, the energy needed for urban mobility is related to the urban form. The urban form can be 22 

quantitatively analysed via spatial entropy, average distance between citizens, and with the slope 23 

of the rank-size rule, amongst other factors. The slope of the rank-size regression line applied to 24 

a city measures intra-urban polycentricism (Le Néchet, 2012). The average distance of the 25 

population measures the degree of urban sprawl, which influences the distance to urban services 26 

and activities (work, commerce, health, education, leisure) and thus the energy needed to have 27 

access to them (Ewing, 2008). Spatial entropy measures how organized is the distribution of 28 

population within the urban space (Batty, 1974). Further details of these parameters are provided 29 
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below in Section 2.2.1. The contribution of these parameters to the energy consumption of urban 1 

mobility has been quantified with statistical regressions at a 1 km scale, showing the statistical 2 

significance of these relationships (Le Néchet, 2012). 3 

Second, a multi-objective function to optimize urban forms is derived from the statistical 4 

evidence described above. This function reproduces the statistically significant influence of the 5 

above parameters on the energy consumption of urban mobility, using a probabilistic approach to 6 

deal with the uncertainties related to the parameters. 7 

Third, a cellular automaton departs from the density of population for each cell of the urban land 8 

use at the scale measured by the statistical evidence. In each step of the cellular automaton model 9 

the simulated urban complex system evolves according to the rule of the multi-objective function 10 

above, to minimize the energy consumption of urban mobility, while constrained by information 11 

about climate risks and stakeholders’ preferences.  12 

To showcase how the IUCm 1.0 suggests the transformation of cities, it is first applied to three 13 

idealized city forms. Then the results are provided for a real example: the high density urban 14 

cluster formed by Frankfurt, Offenbach and connected urban areas of lower density.  15 

The idealized city forms are used exclusively to show the model behaviour and represent the 16 

planning challenges of diverse types of real cities. The idealized city forms are (i) a polycentric 17 

city, (ii) a monocentric city with satellite towns, and (iii) a city characterized by a unique high 18 

density centre (Fig. 1). The polycentric city example presents challenges similar to those of 19 

Berlin while the challenges of the monocentric city form are in the same domain of those of 20 

Paris. The problems of the idealized dense city could be compared to those of Barcelona. 21 

To illustrate the options in the model to incorporate information constraining the evolution of a 22 

city, in relation to climate change related risks, the transformation of Frankfurt and surrounding 23 

areas is constrained by the urban surfaces currently under a flood return period of 100 years. The 24 

population from those locations with non-manageable risk is relocated by IUCm 1.0 with the 25 

same principles above, thus achieving the lowest energy consumption of urban mobility. 26 

 27 
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2.2. Model description 2 

The IUCm 1.0 integrates data and methods from a diversity of disciplines. So, the 3 

methodological components of the model are first outlined and then finally their combined 4 

functioning detailed. 5 

2.2.1.Evidence for the impact of urban form and density on the energy consumption 6 

of urban mobility 7 

Le Néchet (2012) provides significant statistical evidence of which urban morphological 8 

measures matter for the energy consumption of urban mobility in European cities; this evidence 9 

can be summarized in Table 1. The relevance in the objective function (Equation 1) of the urban 10 

morphological measures discussed in the article is weighted by the econometric results presented 11 

in Table 1 and calculated according to Equations 2, 3 and 4.  12 

Table 1. Estimates of the urban form related determinants of energy consumption of urban mobility. 13 

 Energy consumption of urban 
mobility  

[MJ/(inhabitant*year)] 

Std. error 
[MJ/(inhabitant*year)] 

Average distance between citizens [km] 279**** 74.88 

  

Spatial entropy [adimensional] 21700** 9172 

  

Rank size slope [adimensional] -9340*** 2776 

  
Notes: ****p<0.001, ***p<0.01, ** p<0.05, * p<0.1 14 
Source: Le Néchet (2012; priv. comm.).  15 

Let 𝐸" be the energy required for urban mobility, 𝑑 the average distance between citizens, 𝐸 the 16 

spatial entropy, and 𝑟 the rank size slope (Table 1). Following Le Néchet (2012), whose 17 

estimations for energy required for urban mobility have a correlation with the observed values 18 

characterized by an R2 value of 0.56, we calculate the energy consumption via 19 

𝐸" = 𝐾 +𝑤)𝑑 + 𝑤*𝐸 +𝑤+𝑟       (1)  20 
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where 𝑤, corresponds to the weight of the corresponding variable 𝑥. This weight is calculated 1 

from a normal distribution in the probabilistic setup through the mean of the weight and its 2 

standard error after Le Néchet (2012) (table 1); in the deterministic approach, only the mean of 3 

the weight is used.  4 

The variable energy was obtained by the UITP (Union Internationale des Transports Publics or 5 

International Association of Public Transport) in their Mobility in Cities database through 6 

consultation with local authorities in each metropolitan area about each type of fuel or electricity 7 

consumed per each mobility type, as reported in local statistics in 2001, or by extrapolation of 8 

periodic surveys into 2001; the information was provided only for those cities were there was 9 

sufficient information.  10 

The rank-size slope coefficient 𝑟is calculated via least squares minimization of the formula 11 

𝑟ln(k) = ln. /0
/121

3          (2)  12 

where 𝑃5 is the population of the 𝑘-th ranking cell and 𝑃787 is the total population.  13 

The slope of the rank-size rule indicates the degree of polycentricity. Cities with an uniform 14 

distribution of urban densities have values lower than 1, cities with pre-eminent cells with high 15 

density values (surpassing all other values) have values larger than 1 and cities with values close 16 

to 1 exhibit a rank-size relationship.  17 

In this rank-size relationship the densities of each cell in the city follow an order characterized by 18 

a statistical relationship between the population density in the cell and the rank of population 19 

densities in the city’s cells (Wong and Fotheringham, 1990), in which the number of cells within 20 

subsequent ranks of population densities decreases with higher density values.  21 

Furthermore, the rank-size distribution has been described as a type of fractal model (Chen and 22 

Zhou, 2003). Indeed the rank-size distribution is equivalent to a fractal, self-similar hierarchical 23 

structure for a large number of ranks (Chen, 2012), and our model increases the number of ranks 24 

along the transformation of cities while making cities less homogeneous. 25 

The next model variable, the entropy, is calculated via 26 
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          (3)  1 

where 𝑁 is the total number of cells in the city and 𝑃E the population in cell 𝑖.  2 

Entropy measures the degree of organization of the cities’ densities. So, a perfect order of all 3 

cells having the same density would give a value of 1, whilst having all the population in a single 4 

cell would yield 0 (Batty, 1974; Le Néchet, 2012). 5 

Finally, the average distance between citizens is calculated via 6 

𝑑 =
∑ );G/;/G
>
;,G?@

/121(/121IJ)
          (4)  7 

with 𝑑EK representing the distance between the cells 𝑖 and 𝑗.  8 

The average distance between citizens is higher for large urban areas with citizens spread in low 9 

density cells, and lower for smaller urban areas with higher densities.  10 

2.2.2.Portraying idealized urban forms  11 

The idealized city forms display the density of a population in square cells of 1 kilometre. All 12 

their densities have been allocated randomly between 11,000 and 15,000 inhabitants per square 13 

kilometre for the dense areas and between 1,000 and 4,000 inhabitants per square kilometre for 14 

the immediate surroundings. The purpose of these city forms and their density values is to 15 

display the behaviour of the model in connection to different types of cities. The density values 16 

of idealized city forms are selected to represent high and low densities, and since they are part of 17 

an idealized city these values follow random values within the ranges of high and low densities.  18 

2.2.3.Data for real urban forms and model transferability to other cities 19 

The data for Frankfurt, detailing its urban land use and the spatial distribution of its population, 20 

comes from the Global Human Settlement Layer (Freire et al., 2015). The population grid of the 21 

Global Human Settlement Layer provides the basis for characterizing urban forms and 22 

population density globally, by combining data from remote sensing and population census, and 23 

we use this grid at 1 kilometre of cell size. The urban area used in the real example is defined by 24 
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the settlement grid of the Global Human Settlement Layer, particularly from the high density 1 

cluster containing Frankfurt am Main, Offenbach am Main and the connected lower density 2 

urban areas. Because the products used from the Global Human Settlement Layer are freely 3 

available for the entire globe, and because there is evidence for the model for Europe, the 4 

application to this model to a European city can be done in an immediate basis, by adapting the 5 

format of the Global Human Settlement Layer to the requirements of the model. The model can 6 

be applied to European cities using the existing evidence as described in Equation (1) at Section 7 

2.2.1. This evidence is implemented in the code available as described in Section 6. The data 8 

about flood risks can be obtained from multiple urban and regional data servers about risk 9 

management local servers (e.g. the reference of data for the German federal State of Hessen can 10 

be found in Section 2.2.4). The data about the spatially explicit population density comes from 11 

the Global Human Settlement Layer, the product for 1 km of pixel size is freely available 12 

worldwide at https://ghsl.jrc.ec.europa.eu. 13 

The mentioned high density cluster has been selected because of being (i) a large metropolitan 14 

area where the size of the pixels of the data of origin (1.000 meters) allow to a meaningful 15 

analysis, (ii) an area with an uncomplicated orography that would allow to present clearly the 16 

results of the first version of the model, and (iii) because of Frankfurt is an affluent city, with a 17 

higher likeliness of considering a large scale transformation or growth based on our insights. 18 

Finally (iv), choosing Frankfurt was convenient for institutional reasons related to the country of 19 

affiliation of the main author. The second reason (orography) thereby could appear as a 20 

confirmation bias (see Flyvbjerg, 2006) but this can safely be negated. The interpretation of the 21 

a-priori data would not allow a human to infer the results we present, especially the shape in the 22 

formation of hierarchies of densities and the halving of the energy consumption for urban 23 

mobility as presented in Section 3. 24 

2.2.4.Data about flooding in urban areas 25 

The model allows to limit population from areas under risk of urban flooding, by limiting the 26 

population in those cells subject to flood risks, and if there is population exceeding the limit, 27 

move it to other cells following the model algorithm, as described below under caption 28 

“Functioning of the IUCm 1.0” (Section 2.2.9).  29 
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The model constrains the cells to a maximum of 15,000 inhabitants per square kilometer (see 1 

caption “Operations research” below, Section 2.2.5); in the case of areas with risk of floods, the 2 

cell suffers a decrease in the 15,000 maximum, proportional to the surface occupied by areas of 3 

flood risk in the cell.  4 

The data for the simulated areas under flood risk for Frankfurt represent those surfaces under risk 5 

of floods with a recurrence interval of 100 years. This data is available via WFS Server 6 

(Geoportal Hessen, 2017).  7 

2.2.5.Operations research 8 

In each step of the evolution of the CA (see Section 2.2.7 below), the model performs a multi-9 

objective spatially-explicit mathematical optimization routine, which is applied in a probabilistic 10 

setup that considers the uncertainties in the objective function (Equation (1) (see Section 2.2.6 11 

below), and in a deterministic setup. In both cases, the objective function is constrained in each 12 

cell to keep population values equal or below 15,000 inhabitants per square kilometer, reflecting 13 

suggestions about maximum density for urban sustainability from Lohrey and Creutzig (2016).  14 

In the deterministic setup, the routine applied selects the next step in the transformation of the 15 

city that minimizes energy consumption as described in the objective function (for details see 16 

Section 2.2.9 below). Our model therefore defines an operations research (OR) spatially explicit 17 

problem. 18 

2.2.6.Probabilistic approach accounting for uncertainty 19 

The deterministic approach decides, based upon the weights of Le Néchet (2012) (table 1, first 20 

column), what is the scenario with the lowest energy consumption based upon equation (1). 21 

However, to account for the uncertainty in the weights from Le Néchet (2012) (standard errors in 22 

table 1), we also provide results from a probabilistic approach in the algorithm of the model. 23 

Instead of evaluating equation (1) for only the means in table 1, the probabilistic version draws 24 

1000 sets of weights, where each weight is drawn randomly from a normal distribution defined 25 

through the corresponding mean and standard error presented in table 1. This results in 1000 26 

(non-unique) cells that are candidates for the best scenario, one cell for each set of weights. The 27 

1000 inhabitants that are moved within one transformation step are then distributed equally 28 
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within the 1000 cells, i.e. the more often a cell is accounted for being the best scenario, the 1 

stronger the transformation is in this cell. In our simulations, the unique number of cells ranges 2 

from 1 to 18 for 1000 sets of weights.  3 

2.2.7.Cellular automata (CA)  4 

CA are a set of spatially discrete cells, which evolve in temporal steps following certain rules. 5 

Those models display complex emergent behavior. CA have already been applied to urban 6 

contexts (Batty, 2007). The OR problem above represents a variation of CA, in which the 7 

concept of neighboring cells influencing the evolution of the CA is applied to all the cells 8 

representing the spatial distribution of the urban population at 1 kilometer of cell size. The 9 

discrete values of the cells evolve ranging between 0 and 15,000 (see Sections 2.2.2 and 2.2.5 for 10 

details). The rule defining the evolution of the CA is a mathematical optimization rule, which is 11 

the minimization of Equation 1.  12 

2.2.8.Complexity in the IUCm 1.0 13 

The model currently includes two methodological aspects linked to complexity. First, rank size 14 

slope can be a measure of the fractal structure of a city. Rank size slope captures the multi-scale 15 

hierarchy of densities inside urban settlements. Second, CA is a method suited for modeling 16 

complex systems like cities (Batty, 2007; White, 1998; Clarke et al., 1997). CA allow the 17 

emergence of complex urban structures, and the combination of CA with a multi-objective 18 

function guides this emergence towards climate-smart urban forms. A third complexity aspect is 19 

planned, which involves network science applied to urban transportation in urban settlements. 20 

2.2.9.Functioning of the IUCm 1.0 21 

Urban transformation is simulated with consecutive negative and positive changes in population 22 

of 1,000 inhabitants. This quantity is relatively small in comparison with the size of the modeled 23 

cities, and it has been chosen due to the computational constraints created by the time spent in 24 

the calculations included in the model. Each model step in the probabilistic setup follows the 25 

following algorithm:  26 

I) Move out 1,000 inhabitants  27 
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i) For each set of the 1,000 sets of weights drawn (see probabilistic description in Section 1 

2.2.6) 2 

a) For each cell (representing one scenario) 3 

(1) Move out 1,000 inhabitants (if possible) 4 

(2) Calculate the energy consumption for this scenario using Equation (1) 5 

b) Select the scenario with the lowest energy consumption 6 

ii) For each cell from I)i)b), subtract 1 inhabitant, and because there are 1,000 sets of 7 

weights, this action finally removes 1,000 inhabitants 8 

II) Add 1,000 inhabitants 9 

i) For each set of the 1,000 sets of weights drawn (see Section 2.2.6) 10 

a) For each cell (representing one scenario) 11 

(1) Add 1,000 inhabitants (if below the maximum population) 12 

(2) Calculate the energy consumption for this scenario using Equation (1) 13 

b) Select the scenario with the lowest energy consumption 14 

ii) For each cell from II)i)b), add 1 inhabitant; similarly as in I)ii), this action finally adds 15 

1,000 inhabitants 16 

III) Continue with I) 17 

The maximum population in step II)i)a)(1) is set to 15,000 inhabitants per each cell of a square 18 

kilometer. In cases with non-manageable climate risks related to riverine floods, this maximum 19 

population is decreased by a multiplication with the fraction of the grid cell that is not subject to 20 

non-manageable flood risk (see Section 2.2.4). With other risks, e.g. related to sea level rise, the 21 

procedure would be analogous. 22 

The model also excludes areas covered by forests, green urban areas, water bodies, airports and 23 

port areas through the same principle as the flood risk, by decreasing the maximum allowed 24 

population through a multiplication with the fraction of the grid cell that is not covered by 25 

Forests, Green urban areas, etc. The data for these excluded areas comes from the European 26 

Urban Atlas (EEA, 2017).  27 

Repeating the algorithm above allows us to simulate the transformation of the city towards a 28 

climate-smart urban form. This is achieved by moving out the population from those areas with 29 
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the highest energetic implications, and adding it to those areas with the lowest energetic 1 

implications, with constrains related to climate risks and potentially to all other aspects desired 2 

by planners and citizens, such as gardens, green corridors or areas with historical or other local 3 

values not subject to transformation.  4 

3. Results 5 

3.1. Application cases of the IUCm 1.0 6 

The IUCm 1.0 has three main applications: urban growth, urban transformation, and comparison 7 

of urban development plans. We provide results showing examples of urban growth and urban 8 

transformation for Frankfurt, and of urban transformation for idealised city forms to explore the 9 

functioning of the model. 10 

The simplest application case is the comparison of urban development plans, the implications in 11 

urban densities of two or more possible urban development plans can be used to compute the 12 

related energy consumption for urban mobility as explained above (Section 2.2.9) while detailing 13 

the functioning of the IUCm 1.0, specifically its steps I)i)a)(2) can be used for calculating the 14 

energy for each of the alternative urban development plans and the step I)i)b) for comparing each 15 

of the plans. 16 

In the application of urban growth, the initial scenario evolves optimising the progressive 17 

location of additional urban densities: in every step, the model suggests where would 1,000 18 

additional inhabitants have a lower impact on the energy consumption for urban mobility, so that 19 

from Section 2.2.9, only the step II) would be applied. An example of application for urban 20 

growth is presented below for Frankfurt in Section 3.3.3. 21 

In the hypothetical application of urban transformation the model alternatively finds where to 22 

add density like in the application of urban growth above, and where to remove population 23 

density from those places with the highest impact on energy consumption for urban mobility, so 24 

there are alternate steps in which one step is like in urban growth, and another moves out the 25 

population density from somewhere else with the highest implications in energy consumption for 26 

urban mobility, proceeding as detailed above in Section 2.2.9. Two examples of applications of 27 
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urban transformation are presented, one for idealised city forms in the next section, and one for 1 

Frankfurt in Section 3.4. 2 

3.2. Results for idealized urban forms. 3 

For the solely purpose of making a preliminary analysis of the results of the IUCm 1.0, we 4 

created idealized urban forms and made an application of urban transformation to them. When 5 

simulating the transformation of the urban form, the population is moved out from those places 6 

that have higher energetic implications and added to those places with lower energetic 7 

implications. This is done with 1,000 inhabitants for each model step. The amount of people 8 

moved within the urban form reflects the degree of transformation (Fig. 1). The positive impacts 9 

of the transformation are visible in the reduction in energy consumption for urban mobility (Fig. 10 

2).  11 

Overall, it is clear that the IUCm 1.0 reinforces existing and potential hierarchies of densities 12 

within the urban land use (see movies in the Supplementary Materials and Fig. 1). This effect is 13 

related to the slope of the rank-size regression line (Eq.1). The objective function optimizes the 14 

slope of the rank-size regression line (Eq.1) while making the city less homogeneous. In this way 15 

it produces urban forms with a higher fractal order, i.e. reinforces spatially scaled entities—in 16 

terms of density—inside the urban form, along the evolution of the cellular automata.  17 

The IUCm 1.0 strengthens existing higher density urban clusters (Fig. 1), as a consequence of 18 

optimizing the spatial entropy and the average distance between citizens, which promotes the 19 

creation of higher density clusters. Overall, the low density areas surrounding the high density 20 

clusters are reduced, and some higher density features appear in the areas contacting with the 21 

central high density clusters. Besides, across the examples in Fig. 1, it can be consistently 22 

observed that the evolution of the cells keeps empty some spaces within the hierarchies of 23 

densities. This could be a consequence of the reinforced density on clusters and the enhancement 24 

of the fractal order. This implies that a mitigation-oriented urban space leaves ample room for 25 

designing adaptation-oriented measures in the urban form, such as air corridors and urban green 26 

areas.  27 
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There are also case-specific remarkable features (Fig. 1), the details and evolution of which are 1 

better observed in the movies accompanying this article (see movies in the Supplementary 2 

Materials). In the polycentric city the IUCm 1.0 creates and reinforces connections between 3 

higher density clusters, implying that it is possible to give advice on how polycentric cities can 4 

be further optimized. In the high density case, the initial dense centre characterized by a few cells 5 

with the highest density values is transformed into a complex hierarchy of high density clusters. 6 

In the monocentric case with satellite towns, the IUCm 1.0 emphasises existing hierarchies of 7 

higher density clusters and reinforces the connections between them, letting a more complex 8 

structure emerge. The sensitivity to the initial conditions make the model produce results that are 9 

unrelated in every example, just having in common an increased hierarchy of urban densities that 10 

mathematically corresponds with an increased fractal order. 11 

With regard to the results in energy reduction, these follow an expected decrease on marginal 12 

returns along the transformation effort, especially when using the probabilistic approach (Figs. 2 13 

and 3). Also according to expectations, the high density case initially achieved lower energy 14 

consumption per capita values with less effort than other idealized city types (Fig. 2). In 15 

counterfactual terms, the moving average of the marginal change of the energy consumption 16 

along the transformation does not differ between the idealized city types (Fig. 3).  17 

3.3. Urban growth in Frankfurt: optimizing the location of urban densities for a 2030 18 

population forecast. 19 

Applying the probabilistic setting to urban growth in Frankfurt, following the forecasted increase 20 

of 58,000 inhabitants projected by UN (2014) for the period 2015-2030, provides increase in 21 

densities in different parts of the high density cluster of Frankfurt metropolitan area (see Section 22 

2.2.3 for details). The location of these increased densities in the results are strongly determined 23 

by the constraints introduced in the model, namely areas under risk of floods with a return period 24 

of 100 years and green urban areas and water bodies, i.a. (see Section 2.2.4 for details). The 25 

impact on these areas is visible in Movie 1 (see Supplementary Materials), where in the left side 26 

it is shown the result of an unconstrained model run not taking into account these constraints, 27 

and in the right side it is shown the result of a model run that takes into account these flood risks 28 
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and other important urban infrastructure, which can also alleviate climate impacts related to heat 1 

island effect, like in the case of urban green areas.  2 

The rapid increase in the value of the slope of the rank size rule (Figure 6) suggest the 3 

application of the IUCm 1.0 to urban growth can have rapid and positive effects, by suggesting 4 

where to improve the policentricity of an urban settlement. Figures 4 and 5 show milder impacts 5 

on the values of average distance between citizens and spatial entropy, respectively.  6 

Comparing the smoothness of the lines in Figures 4, 5 and 6 with the energy display in Movie 1 7 

(see Supplementary Materials), the more irregular value shown in the video corresponds to the 8 

probabilistic setting picking the weights as explained in Section 2.2.6. Nonetheless, very 9 

importantly we can see that the video show how in both cases, the model is able to find locations 10 

for increasing population density that produce a lower energy consumption for urban mobility 11 

per capita. The quantity reduction in energy for urban mobility per capita is roughly of 1 GJ per 12 

year in both cases, with a final value of 17.7 GJ per capita and per year for the constrained 13 

simulation. It is noteworthy that the constraints in the simulation do not limit the opportunities 14 

for energy reduction, they just drive a different solution, at least for a relatively small increase of 15 

58,000 inhabitants. 16 

3.4. Results of a hypothetical transformation of the urban form of Frankfurt 17 

metropolitan area. 18 

We first analyse the resulting values for average distance between citizen, spatial entropy, and 19 

rank size slope in the probabilistic model run of the Frankfurt example depicted in Figure 5. The 20 

model reduces the average distance between citizens from 12.01 to 6.54, which significantly 21 

decreases the urban sprawl. The spatial entropy is reduced from 0.92 to 0.72, which shows that 22 

the homogeneity of the density of the cells has been reduced. Finally, the slope of the rank-size 23 

rule increased from 0.34 to 0.96, close to 1, which improves the polycentric properties of the 24 

city. It also improves the order of the rank-size relationship of the population density of all city 25 

cells, creating rank-ordered fractal hierarchies without a high degree of primacy. 26 

In the application of urban transformation to the urban form of Frankfurt the reduction goes 27 

beyond a remarkable 50% using the probabilistic approach (Fig. 7 and Fig. 8), the minima of the 28 
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deterministic approach in Fig. 7 appears to be related to non-convexities in the solution space of 1 

the optimization process.  2 

Still, the influence of climate-smart urban forms goes beyond 50% reduction. Indeed. other 3 

policies to pull (e.g. improvement of mass transportation systems) and push (congestion charges) 4 

a reduction in emissions from transportation require supportive urban forms in order to succeed 5 

(Combs and Rodríguez, 2014; Noordegraaf, Annema, and van Wee, 2014).  6 

4. Discussion 7 

The presented IUCm 1.0 drives the emergence of reinforced density hierarchies and higher 8 

density clusters within urban planning. This new fractal order of hierarchies and connected 9 

clusters, which depart from the existing city, goes beyond the sprawl vs. compact city debate. 10 

This suggests that neither linear planning nor unique centre-periphery logic should be considered 11 

for making a city sustainable and that policy recommendations about urban forms are only 12 

conceivable when modelling the city as a data-driven spatially-explicit complex system.  13 

The feasibility of the urban growth application suggested above is especially high for fast 14 

growing cities expanding beyond their current centre, and also the idea of urban densification for 15 

existing centres seems feasible, as it is not a new concept in the scientific literature (Jenks and 16 

Burgess, 2000; Fregolent et al., 2017). After this experimental case, in a real application the 17 

preferences of the urban stakeholders and additional climate risks, like the urban heat island 18 

effect, are a must to be considered. In a real application of our model for urban growth, the cases 19 

so far discussed with policy makers relate to (i) a large number of small areas with opportunities 20 

for development and densification spread in a metropolitan area, and (ii) an application to choose 21 

between a set of different planning alternatives. In these contexts, what is the meaning of step-22 

by-step model results that provide policy recommendations for urban growth? In the second case 23 

just mentioned, what matters would be the result in energy consumption computed by the step 24 

I)i)a)(2) of the algorithm in Section 2.2.9. In the first case, which appears to be a topical situation 25 

in urban planning, the model would provide density suggestions that would help policy-makers 26 

to plan the city for an increased population figure, however, the precise order of the step-wise 27 

results would matter much less for the policy-makers than the suggested densities and their 28 

location in space.  29 
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The feasibility of the type of transformation we suggest is seemingly low, at least in the short 1 

term, however it is supported by literature about the abandonment of human settlements 2 

(Schilling and Logan, 2008), and the relocation of human settlements in both the developed and 3 

the developing world. Outstanding amongst these relocation examples are cases of entire towns 4 

relocating far away within a decadal time scale with a rationale unrelated to global public 5 

interests but to the mining industry, like Malmberget and part of Kiruna in Sweden (Nilsson, 6 

2010), Picher, Cardin, and Hockerville in the United States (Shriver and Kennedy, 2005), or 7 

Leigh Creek in Australia (Robertson and Blackwell, 2016). 8 

The debate on relocation in relation to adaptation to climate change is significant in many world 9 

regions (the Arctic, Florida, Mozambique and the South Pacific, i.a.), and although a negative 10 

view prevails at the national level, at the local level relocation has become an adaptation and 11 

resilience tool for entire communities. Furthermore, planned anticipatory relocations show higher 12 

signs of success than reactive relocations (Petz, 2015). In some cases, relocation is not only seen 13 

as a tool for adaptation, but also as an opportunity (McNamara et al., 2016). Urban relocation in 14 

relation to mitigation of emissions is not explicitly discussed in the literature, but it is implicit in 15 

research pointing out that urban form can contribute to mitigation (see Seto et al., 2014). 16 

Densification is also implicit in debates about how much arable land could be kept by avoiding 17 

future increases in urban land (Bren d’Amour et al., 2017). To summarise: the intra-urban 18 

relocation suggested by our application of urban transformation is feasible and can be an 19 

opportunity for synergies between SDGs.  20 

Within the multi-level nature of urban decision-making framed e.g. by sub-national regions, 21 

metropolitan areas, municipalities and districts (Betsill and Bulkeley, 2006; Hooghe and Marks, 22 

2003), our planning suggestions for high density clusters and connected lower density urban 23 

areas provide an overall framework, which can be understood as a system of boundary 24 

conditions for other types of planning decisions at a finer spatial resolution.  25 

In any case, the suggested densities should be implemented with the least energy intensive 26 

strategy and prioritizing citizen comfort. Both depend upon multiple interrelated factors, other 27 

than density, that correspond to lower scale decision levels that are beyond the scope of this 28 

study. These multiple factors include building expected lifetime, design, layout, height, shape, 29 
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materials and type of surface cover, integration with green and blue urban landscapes, orientation 1 

and size of the houses, all of which have significant impact both on the embodied and 2 

operational energies and on the personal preferences of inhabitants (Seto et al., 2014; Pan, 2014; 3 

Kennedy and Buys, 2010).  4 

About the personal preferences of inhabitants, to limit negative externalities of high density, the 5 

model includes a limit of 15,000 inhabitants per square kilometer to avoid densities that are 6 

expected to create discomfort on urban inhabitants. Still, the local context or the preferences of 7 

the population about living in areas of higher density, as suggested by the results of the model, 8 

are not considered in the context of the normative results of our model. A possible avenue to 9 

consider these would be to discuss with local stakeholder the maximum density and the above 10 

factors leading to citizen comfort and livability that could make a difference to the local 11 

population. The preferences of stakeholders can be captured by participatory geographical 12 

information system (GIS) techniques enabling them to express where and how much the increase 13 

of densities should be limited. The underlying reasons of the prospective limitations are specific 14 

of every city and its idiosyncrasy: its cultural heritage areas, its history, and other multiple social, 15 

economic and environmental features could be sources of preferences for limitations in density 16 

and landscape change.  17 

4.1. Implications for the Sustainable Development Goals (SDG) of the Agenda 2030 18 

The IUCm 1.0 adds information into the spatial distribution of population about how to reduce 19 

energy and therefore emissions of urban mobility. This delineates climate-smart urban forms, on 20 

the one hand using real-world evidence that connects urban land use with energy, thus mitigating 21 

GHG emissions, and on the other hand constraining the evolution of the city with spatial explicit 22 

information about non-manageable climate-related risks—e.g. floods or sea-level rise—like it is 23 

assumed in Frankfurt, and in that way adapting the city to climate change. Climate-smart urban 24 

forms provide policy guidance for the achievement of the SDG 11 (sustainable cities and 25 

communities), specifically its targets 11.3 “Sustainable human settlement planning” and 11.b on 26 

“Integrated policies and plans towards resource efficiency, mitigation […]” (Nilsson et al., 27 

2016). 28 
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Beyond its implications on SDG 11, we analyse climate-smart urban forms in the light of the 1 

other SDGs to understand the interactions with the diversity of goals of a sustainable city. 2 

Further direct implications appear on climate action (SDG 13), reduced energy consumption 3 

(SDG 7), and reduced air pollution (SDG 3). There is room for co-benefits facilitated by urban 4 

form in several cases: more land available for ecosystem services (SDG 15) and food production 5 

(SDG 2); decreased impermeable land surfaces implying less water pollution from urban runoff 6 

(SDG 14); information and communication technologies (SDG 9) supporting the pull and push 7 

policies mentioned above (see Section 3) e.g. with real time metering and charging per road use; 8 

and increased resource and infrastructure efficiency and higher economic productivity (SDG 8), 9 

the latter in relation to denser social networks (Pentland, 2014). It has been shown too that lack 10 

of urban planning contributes to worsen climate impacts (Eliasson, 2000), which have 11 

differential effects depending upon social status (USCGRP, 2014). So improving planning would 12 

ameliorate inequality (SDG 10). No substantial implications from our results were found on 13 

poverty (SDG 1), education (SDG 4), gender (SDG 5), and responsible consumption and 14 

production (SDG 12). 15 

In relation to existing institutions and partnerships (SDGs 16 and 17), we found significant 16 

challenges to transform a city under current urban governance structures, which allow urban 17 

planning with short term objectives that produce unsustainable lock-ins (Nevens et al., 2013). 18 

Our innovative advice requires innovative governance approaches, which are necessary to 19 

achieve successful transformations in other sustainability domains (Loorbach, 2016). Rather than 20 

requesting that our normative results for Frankfurt should be implemented, we provide a new 21 

window of opportunity for urban sustainability, in which we put Frankfurt forward as an 22 

example for the potential of such transformation, namely halving the energy consumption for 23 

urban mobility per capita. Our results push forward current urban debates by challenging the 24 

ordinary way of thinking about cities, the actual sustainability potential of their existing 25 

institutions, the magnitude of their policy gaps, and the mindset of urban decision makers, 26 

practitioners and other stakeholders and policy partners. 27 

4.2. Outlook 28 



 

20 

In financial terms, the usual Keynesian governmental investments on carbon intensive road 1 

infrastructure could be redirected here. Indeed, the potential micro and macro economic positive 2 

effects should be investigated in the future and compared with other types of Keynesian 3 

investments. A valuable experiment would be a combination of the IUCm results with a cost-4 

benefit analysis. This could then inform policy makers where the suggested transformations of 5 

the IUCm should first take place. Additionally, from a scientific point of view, it would highlight 6 

the factors controlling the difference between a cost-benefit analysis and a model guided by a 7 

goal of resource efficiency. In order to provide this analysis, many of the environmental 8 

externalities and multiple factors detailed above in relation to the preferences of citizens would 9 

however need to be quantified and their interactions understood, in order to provide a full 10 

account of the benefits.  11 

Carbon neutral and near-zero carbon building strategies show how savings in operational energy 12 

can offset embodied carbon in 50 years (Pan, 2014; Zuo et al., 2013), which together with further 13 

effects of density on decreased energy for domestic heating (Liu and Sweeney, 2012), suggests 14 

that the overall impact of the transformation could trigger further reductions in energy 15 

consumption. However a specific analysis using life-cycle techniques, taking into account the 16 

multiple factors mentioned above, would be necessary to understand how to improve the 17 

potential for minimizing energy consumption at lower scales. 18 

We assume that the statistical relationship between urban form and energy consumption for 19 

urban mobility holds for the future as well, and to a degree, a change in this relationship could be 20 

captured by the probabilistic setup we are using. Because of this assumption, our results should 21 

be discussed also from the perspective of a possible future scenario of successful emissions 22 

reduction driven by automated shared-vehicles, either fed by an energy mix combining different 23 

sources and including fossil fuels, or fed 100% by renewable energies. Currently electricity is 24 

supplied by an energy mix combining different sources that includes fossil fuels, so in the case of 25 

a 100% renewables, our planning suggestions would still provide useful advice to further reclaim 26 

space from  private mobility, making that space free for citizen use (Karsten and van Vliet, 27 

2006), whilst reducing other environmental impacts related to the production of renewable 28 

energies (Leung and Yang, 2012). Such future scenarios can be conceptualized with smart fees 29 

based on the time spent on the road (Raccuja, 2017). 30 
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This approach has limitations due to the low availability of data and econometric evidence for 1 

driving the IUCm 1.0 outside Europe, both on mitigation and on adaptation to climate change 2 

(UITP, 2015). Further global evidence should be produced that incorporates either the location of 3 

urban services or land use types. Once this evidence is created the model could be available for a 4 

practical application in other world regions. 5 

Research should follow to improve the detail of the model and of the evidence driving it, mostly 6 

studying further detail of infrastructure, accessibility measures and transport systems, land use 7 

types and diversity of activities in land use mixes, and the 3-dimensional properties of cities. As 8 

mentioned above we plan to include further detail of urban transportation networks and 9 

infrastructures by applying network-based model to urban transportation in urban settlements, a 10 

deeper layer of information is planned to include infrastructures and transportation and street 11 

networks to improve how the model accounts for accessibility, and to extend the currently used 12 

information about population density with data of points of interest and of the location of jobs to 13 

proxy land use mixes, and to study the interaction of these factors with energy consumption as 14 

derived from network transit models. About the 3-dimensional properties of urban structures, a 15 

most realistic depiction of the urban heat island effect would require coupling with a low spatial 16 

resolution urban climate model able to analyse scenarios including 3-dimensional features and 17 

building covers, hence we plan a 3-dimensional representation of cities to model land use and 18 

building covers and analyse heat-island effect together with a climate model, which would allow 19 

us to suggest ventilation corridors and the use of vegetation in urban surfaces to reduce 20 

maximum temperatures and deal with an additional climate risks like the urban heat-island 21 

effect. These model developments are planned to integrate adaptation and mitigation at lower 22 

scales (Li et al., 2016; Koch et al. 2012). 23 

Despite the limitations identified, the methodology that we present goes beyond current exercises 24 

on global change in urban areas, like the spatially explicit population scenarios launched 25 

consistently with the Shared Socioeconomic Pathways (Jones and O’Neill, 2016). So far these 26 

scenarios only consider the concentration of population versus sprawl, and leave out crucial 27 

considerations of polycentrism, fractals and complexity in urban forms when providing 28 

information about sustainability. Besides, combining both adaptation to and mitigation of climate 29 

change in urban plans and policies effectively in a qualitative way (without a quantitative 30 
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spatially explicit model) has proved to be a challenge leading to conflicting, rather than co-1 

beneficial, outcomes (Hamin and Gurran, 2009). Summarizing, our planning advice is based on 2 

significant statistical measures relating the urban form with the energy consumption for urban 3 

mobility, and suggests the most efficient way of making urban forms not only more dense, but 4 

also less homogeneous and more fractal-like, whilst constrained by climate change related risks. 5 

5. Conclusions 6 

Whilst it is widely accepted that lack of urban planning increases congestion and pollution, urban 7 

planners aiming to transform cities and decrease greenhouse gas emissions require spatially 8 

explicit policy recommendations for decreasing urban energy for urban mobility.  9 

Delivering climate-smart guidance on urban land use planning is a major step towards urban 10 

sustainability and will significantly help the efforts of cities to combat climate change. Our 11 

unique results show how to put into operation complexity and intra-urban polycentrism for the 12 

design of climate-smart urban forms that question the simplicity of the sprawl vs. compact city 13 

debate. In this regard, the reinforced fractal order within climate risk constraints, the multiplicity 14 

of clusters, and the existing lower density spaces in between, are emergent features that go 15 

beyond that debate.  16 

Our approach presents a new tool for improved urban planning and is crucial to the development 17 

of mitigation strategies for cities, as required by the New Urban Agenda adopted after the United 18 

Nations Conference on Housing and Sustainable Urban Development (Moreno et al, 2016). 19 

Climate-smart urban forms are essential if cities are to achieve the 11th Sustainable 20 

Development Goal, related to Sustainable Cities and Communities (SDG 11). Further research 21 

should incorporate more climate-related risks, an improved urban depiction (including 3-22 

dimensional structures), urban services, and the urban planning nexus of climate change and 23 

inequality. 24 

6. Code availability 25 

IUCm 1.0 is an open source software, and the code and complete documentation are available at 26 

https://github.com/Chilipp/iucm and at http://doi.org/10.5281/zenodo.1982565 (Sommer and 27 

Cremades, 2018). The model is written in Python mainly using the numerical python libraries 28 

numpy and scipy (Jones et al., 2001), statsmodels (Seabold and Perktold, 2010), as well as 29 
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matplotlib (Hunter, 2007) and psyplot (Sommer, 2017) for the visualization. Detailed installation 1 

instructions can be found in the user manual: https://iucm.readthedocs.io.  2 
  3 
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Figures 1 
 2 

 3 

Fig. 1. The evolution of each of the three idealized cities using the probabilistic approach departs 4 
from an initial state and undergoes a number of transformations in the urban form; the degree of 5 
transformation is measured by the amount of population that is moved to another cell with lower 6 
energetic implications. After the initial state, an intermediate state and the final state are shown, 7 
these are a small subset of the model steps that appear in the movies of the Supplementary 8 
Materials.  9 
  10 

Inhabitants per square kilometre. 
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  1 

Fig. 2. The energy consumption for urban mobility per capita is reduced along the transformation 2 
of the urban form. The deterministic approach does not account for uncertainty and its evolution 3 
appears more stable, although its insights are limited compared to those of the probabilistic 4 
approach, which helps overcoming non-convexities in the feasible space of the optimization 5 
process, thus overcoming the limitations of a spatial explicit optimization in a changing urban 6 
form.  7 
 8 
 9 
  10 
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 1 

Fig. 3. The moving average (50 model steps) of the marginal contribution to energy consumption 2 
for urban mobility of moving out 1,000 inhabitants in each model step in the probabilistic model 3 
setting, and its standard deviation, do not visibly differ between city types. The overall trends 4 
show the expected decreased returns of the transformation efforts along the model steps. 5 
   6 
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 1 

Fig. 4. Moving average (5 model steps) of the average distance between citizens along the model 2 
runs minimising the energy consumption for urban mobility in Frankfurt. 3 
  4 
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 1 

Fig. 5. Moving average (5 model steps) of the spatial entropy along the model runs minimising 2 
the energy consumption for urban mobility in Frankfurt. 3 
  4 
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 1 

Fig. 6. Moving average (5 model steps) of the slope of the rank size rule along the model runs 2 
minimising the energy consumption for urban mobility in Frankfurt. 3 
  4 
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 1 
 2 

  3 

Fig. 7. Changes in energy consumption per capita along the transformation of the urban form of 4 
Frankfurt. The probabilistic approach creates some steps that punctually increase the energy 5 
consumption, still it overall doubles the decrease in energy consumption for transportation. 6 
  7 
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 1 

Fig. 8. Evolution of the transformation of the urban form of Frankfurt using the probabilistic 2 
approach. See movie S8 for more details. 3 
 4 
  5 

Inhabitants per square kilometre. 
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