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Abstract.  16 

Traditional trial-and-error tuning of uncertain parameters in global atmospheric General 17 

Circulation Models (GCM) is time consuming and subjective. This study explores the 18 

feasibility of automatic optimization of GCM parameters for fast physics by using 19 

short-term hindcasts. An automatic workflow is described and applied to the 20 

Community Atmospheric Model (CAM5) to optimize several parameters in its cloud 21 

and convective parameterizations. We show that the auto-optimization leads to 10% 22 

reduction of the overall bias in CAM5, which is already a well calibrated model, based 23 

on a pre-defined metric that includes precipitation, temperature, humidity, and 24 

longwave/shortwave cloud forcing. The computational cost of the entire optimization 25 



procedure is about equivalent to about a single 12-year atmospheric model simulation. 26 

The tuning reduces the large underestimation in the CAM5 longwave cloud forcing by 27 

decreasing the threshold relative humidity and the sedimentation velocity of ice crystals 28 

in the cloud schemes; it reduces the overestimation of precipitation by increasing the 29 

adjustment time in the convection scheme. The physical processes behind the tuned 30 

model performance for each targeted field are discussed. Limitations of the automatic 31 

tuning are described, including the slight deterioration in some targeted fields that 32 

reflect the structural errors of the model. It is pointed out that automatic tuning can be 33 

a viable supplement to process-oriented model evaluations and improvement.  34 

 35 

1 Introduction  36 

In general circulation models (GCMs), physical parameterizations are used to describe 37 

the statistical characteristics of various sub-grid-scale physical processes (Hack et al., 38 

1994; Williams, 2005; Qian et al., 2015). These parameterizations contain uncertain 39 

parameters because the statistical relationships are often derived from sparse 40 

observations or from environmental conditions that differ from what the models are 41 

used for. Parameterization schemes that have many uncertain parameters include deep 42 

convection, shallow convection, and cloud microphysics/macrophysics. To achieve 43 

good performance of the model on some specific metrics, the values of these uncertain 44 

parameters are traditionally tuned based on the statistics of the final model performance 45 

or insight of the model developers through comprehensive comparisons and theoretical 46 

analysis of model simulations against observations (Allen et al., 2000; Hakkarainen et 47 

al., 2012; Yang et al., 2013). Generally, the uncertain physical parameters need to be 48 

re-tuned when new parameterization schemes are added into the models or used to 49 

replace existing one (Li et al., 2013).  50 

 51 

Recent studies take advantage of optimization algorithms to automatically and more 52 



effectively tune the uncertain parameters (Bardenet et al., 2013; Yang et al., 2013; 53 

Zhang et al., 2015). For example, Yang et al. (2013) tuned serval parameters in Zhang-54 

McFarlane convection scheme in Community Atmosphere Model Version 5 (CAM5, 55 

Neale et al. (2010)) using the simulated stochastic approximation annealing method. 56 

Qian et al. (2015) and Zhao et al. (2013) investigated the parameter sensitivity related 57 

to cloud physics, convection, aerosols and cloud microphysics in CAM5 using the 58 

generalized linear model. However, optimizations as in these works for GCMs require 59 

a long-time spin-up period to attain physically robust and meaningful signals, which is 60 

caused by strong nonlinear interactions at multiple scales between relevant processes 61 

(Wan et al., 2014). The parametric space of an AGCM is often strongly non-linear, 62 

multi-modal, high-dimensional, and inseparable. Therefore, automatically tuning 63 

parameters of global climate models requires a lot of model simulations with huge 64 

computational cost. This is also true for parameter sensitivity analysis which requires 65 

thousands of model runs to attain enough parameter samples. 66 

 67 

One approach to reduce the high computational burden is to approximate and replace 68 

the expensive model simulations with a cheaper-to-run surrogate model, which uses the 69 

regression methods to describe the relationship between input (i.e., the 15 adjustable 70 

parameters of a model) and output (i.e., the output variables of a GCM) (Wang and 71 

Shan, 2007; Neelin et al., 2010; Wang et al., 2014) to represent a real GCM. However, 72 

training an accurate surrogate model requires a large amount of input- output sampling 73 

data, which are obtained by running the GCM with different sets of parameters selected 74 

in a feasible parameter space. As a result, the total computational cost is still very large. 75 

Meanwhile, due to the strongly nonlinear characteristics, the surrogate model of 76 

AGCMs often cannot meet the fitting accuracy or can be an overfitting to the model 77 

output. 78 

 79 

The purpose of this study is to describe a method that combines automatic tuning with 80 



short-term hindcasts to optimize physical parameters, and demonstrate its application 81 

by using CAM5. The tuning parameters are selected based on previous CAM5 82 

parameter sensitivity analysis works (i.e., Zhang et al., 2015; Qian et al., 2015; and 83 

Zhao et al., 2013). A key question is whether the results tuned automatically in 84 

hindcasts can truly translate to the model’s climate simulation. To our knowledge, this 85 

paper is the first to use short-term weather forecasts to self-calibrate a climate model. 86 

 87 

The paper is organized as follows. The next section gives the description of the model 88 

and experimental design. Section 3 describes the tuning parameters, metrics and the 89 

optimization algorithm. The optimized model and results are presented in Section 4. 90 

The last section contains the summary and discussion.  91 

 92 

2 Model and experiments  93 

In this study, we use CAM5 as an example. The dynamical core uses the finite volume 94 

method of Lin and Rood (1996) and Lin (2004). Shallow convection is represented as 95 

in Park and Bretherton (2009). Deep convection is parameterized by Zhang and 96 

McFarlane (1995), which is further modified by Neale et al. (2008) as well as Richter 97 

and Rasch (2008). The cloud microphysics is handled by Morrison and Gettelman 98 

(2008). Fractional stratiform condensation are calculated by the parameterization of 99 

Zhang et al. (2003) and Park et al. (2014). The vertical transport of moisture, 100 

momentum, and heat by turbulent eddies are handled by Bretherton and Park (2009). 101 

Radiation is calculated by the Rapid Radiative Transfer Model for GCMs (RRTMG, 102 

Iacono et al. (2008); Mlawer et al. (1997)). Land surface process are represented by the 103 

Community Land Model version 4 (CLM4, Lawrence et al. (2011)). More details are 104 

in Neale et al. (2010).  105 

 106 

Two types of model experiments are conducted. One is the short-term hindcast 107 



simulations for model tuning. The second is AMIP simulation for verification of the 108 

tuned model. The hindcasts are initialized by the Year of Tropical Convection (YOTC) 109 

from the European Center for Medium-Range Weather Forecasts (ECMWF) re-analysis. 110 

The initialization uses the approach described in Xie et al. (2004) in the Cloud-111 

Associated Parameterizations Testbed (CAPT) developed by US Department of Energy 112 

(US DOE). Since the objective of the tuning approach presented here is not only for 113 

auto-calibration of the model, but also for fast calculations, only one-month hindcasts 114 

of July 2009 areis used in the tuning process. We carry out the simulations once every 115 

3 days with a 3-day hindcast (labeled as interval-Day3) during the optimization iteration. 116 

All of the 3 -day simulations for each hindcast run are used to make up the whole 117 

monthly data, which constitutes 31 days of model output. The AMIP simulation is 118 

conducted for 2000-2004 by using the observed climatological sea ice and sea surface 119 

temperature (Rayner et al., 2003). Simulation of the last three years is used for 120 

evaluation of the model. All simulations here use 0.9 latitude x 1.25 longitude 121 

horizontal resolution, with 30 vertical layers. 122 

 123 

The observational data are from the Global Precipitation Climatology Project (GPCP, 124 

Huffman et al. (2001)) for precipitation, the International Satellite Cloud Climatology 125 

Project (ISCCP)- Flux Data (Trenberth et al., 2009) for radiation fluxes, the CloudSat 126 

(Stephens et al., 2002) and the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite 127 

Observations (CALIPSO, Winker et al. (2009)) for satellite cloud data, and the National 128 

Center for Environmental Prediction-National Center for Atmospheric Research 129 

(NCEP-NCAR, Kalnay et al. (1996)) reanalysis for humidity and temperature.  130 

 131 

For this study, we focus on tuning parameters that are associated with fast physical 132 

processes so that short-term hindcasts can be used as an economical way of tuning. The 133 

philosophy behind the hindcasts is to keep the model dynamics as close to observation 134 

as possible while testing how the model simulates the quantities associated with fast 135 



physical processes. In other words, given the correct large-scale atmospheric conditions, 136 

errors in the physical variables are used to calibrate the fast physics parameters. This is 137 

different from calibration using AMIP simulations in which the circulation responds to 138 

the physics. The feasibility of the hindcast approach is based on the fact that errors in 139 

atmospheric models show up quickly in initialized experiments (Xie et al., 2004; Klein 140 

et al., 2006; Boyle et al., 25 2008; Hannay et al., 2008; Williams and Brooks, 2008; 141 

Martin et al., 2010; Xie et al., 2012; Ma et al., 2013, 2014; Wan et al., 2014). This is 142 

also found in the present study. Figure 1 shows the characteristics of the main biases in 143 

the CAPT and AMIP simulations in the default model for the five fields of long-wave 144 

and short-wave cloud forcing (LWCF and SWCF), humidity and temperature at 850 145 

hPa (Q850, T850), and precipitation (PRECT). For the CAPT, the biases are for July 146 

2009, while for AMIP they are for July averaged over three years. It is seen that the 147 

CAPT hindcasts capture a great number of the systematic biases in the AMIP 148 

simulations. 149 

 150 

3 Tuning metrics and the optimization method  151 

Parameter estimation for a complex model involves several choices, including (1) what 152 

parameters to optimize; and what are the range of uncertainties in the parameters; (2) 153 

how to select and construct a performance metric; (3) how to estimate/optimize the 154 

parameters in a high-dimensional space; and (4) how to embed the parameter estimation 155 

in the process-based evaluation and development of the model. This section describes 156 

the first three questions. The last question is left to Section 4.  157 

 158 

3.1 Model parameters  159 

In our study, the tuning parameters are selected based on the CAM5 sensitivity results 160 

of Zhang et al. (2015). They include three parameters from the deep convection scheme 161 



and three parameters from the cloud scheme. They are listed in Table 1, along with their 162 

default values. The parameters from the convection scheme are the autoconversion 163 

efficiency of cloud water to precipitation, separately for land and ocean, and the 164 

convective relaxation time scale. The parameters from the cloud scheme are the 165 

minimum threshold relative humidity to form clouds, which is an equivalent parameter 166 

to the width of the subgrid scale distribution of relative humidity, separately for high 167 

and low clouds, and the sedimentation velocity of ice crystals. All these parameters are 168 

known to have large uncertainties. 169 

 170 

For the uncertainty ranges of the parameters to be used as bounds of optimal tuning, 171 

ideally, they should be derived from the development process of the parameterizations 172 

as part of the information from the empirically fitting to observations or to process 173 

models. In practice, however, most parameterizations do not contain this information. 174 

The uncertainty ranges of the parameters in this study are based on on previously 175 

published works (Covey et al., (2013) and previous CAM5 tuning exercises (Yang et. 176 

al., 2013; Qian et. al., 2015). They are listed in Table 1.  177 

 178 

3.2 The metrics  179 

Several metrics have been used in the literature to quantitatively evaluate and compare 180 

the performance of overall simulations of climate models (Murphy et al., 2004; Reichler 181 

and Kim, 2008; Gleckler et al., 2008). As a demonstration of the optimization method, 182 

in this study we use five fields in Figure 1 (LWCF, SWCF, PRECT, Q850 and T850) to 183 

form a metric. The daily observational data sources for these five fields are listed in 184 

Table 2. The tuning metric combines the Mean Square Error (MSE) of the five variables 185 

into a single target as the improvement index of model simulation, which is regarded 186 

as a function of the uncertain parameter values. When calculating the metric, we first 187 

compute the MSE of each target variable of the model simulation against the re-188 



analysis/observations as in Equations (1) and (2) for the tuning model and the default 189 

model respectively (Taylor, 2001; Yang et al., 2013; Zhang et al., 2015):  190 

(𝜎#$ )& = 	∑ 𝑤(𝑖),
-./ (𝐸#$ (𝑖) − 𝐸2$(𝑖))&             (1) 191 

(𝜎3$)& = 	∑ 𝑤(𝑖),
-./ 4𝐸3$(𝑖) − 𝐸2$(𝑖)5

&
																															(2) 192 

where 𝐸#$ (𝑖) is the model output at the ith location, and 𝐸2$(𝑖) is the corresponding 193 

reanalysis or observation data. 𝐸3$(𝑖) is the model simulated variables using the default 194 

parameter values. I is the number of grids. w is the weight value based on grid area. 195 

The final target improvement index is calculated by using the average of the MSE 196 

normalized by that of the control simulation as defined in Equation (3):  197 

𝜒& = 	 /
78
∑ (9:

8

9;8
)&78

$./                         （3） 198 

where NF is the number of the variables in Table 2. If the index is less than 1, the tuned 199 

simulation is considered as having better performance than the default simulation. The 200 

smaller this index value, the better the improvement achieves.  201 

 202 

When the differences between model simulation and observation at different grid points 203 

are independent of each other and follow normal distributions, minimizing the MSE 204 

over all grids would be equivalent to the maximum likelihood estimation of the 205 

uncertain parameters. For our experimental design, however, the mismatch between the 206 

short-term forecasts and instantaneous observation could be caused by small spatial 207 

displacements due to errors in the model initial condition instead of the model 208 

parameters. In such cases, errors could be highly correlated between neighboring grids, 209 

and the dependence of the metric on the control parameters may be marginalized or 210 

obscured. This problem may be lessened in long-term climate simulations, but extra 211 

care is needed for short-term forecasts. We therefore choose to use zonally averaged 212 

fields from the model and observations in the metric calculation to focus on the 213 

effective response at global scale.  214 

 215 



3.3 The optimization method  216 

The optimization method is based on an improved downhill simplex optimization 217 

algorithm to find a local minimum. Zhang et al. (2015) shows this algorithm can find a 218 

good local minimum solution based on the better choice of the initial parameter values. 219 

Global optimization algorithms that aim to find the true minimum solution always 220 

require extreme amount of computational cost compared to the method used here, such 221 

as Covariance Matrix Adaptation Evolution Strategy (Hansen et al., 2003), Efficient 222 

Global Optimization (Jones et al., 1998) and Genetic Algorithm (Goldberg ,1989), and 223 

there is no guarantee they can find one within limited number of iterations which are 224 

often invoked for complicated problems. In practice, Zhang et al. (2015) showed the 225 

improved downhill simplex method outperformed the global optimization algorithms 226 

with the limited optimal iterations. 227 

 228 

The optimization procedure takes two steps. First, a pre-processing of selected 229 

parameter initial values is carried out to accelerate the convergence of optimization 230 

algorithm and to account for the ill-conditioning of the minimization problem. Next, 231 

the improved downhill simplex optimization algorithm is utilized to solve the problem 232 

due to its fast convergence and low computation for low-dimensional space. Meanwhile, 233 

an automatic workflow (Zhang et al., 2015) is used to take care of the complicated 234 

configuration process and management of model tuning. In the following, we give a 235 

brief description of these two steps. More details can be found in Zhang et al. (2015).  236 

 237 

The pre-processing uses a sampling strategy based on the single parameter perturbation 238 

(SPP) method, in which at one time just perturbs only one parameter with others fixed. 239 

The perturbed samples are uniform distribution across parametric space. Equation (3) 240 

defines the improvement index for each parameter samples. The distance of samples, 241 

defined as the difference between the indexes from using two adjacent samples, is then 242 

calculated. We call this step the first-level sampling. If the distance between two 243 



adjacent samples is greater than a predefined threshold, more refined samples between 244 

these two adjacent samples are conducted. This is the second-level sampling. Finally, 245 

the candidate initial values for the optimization method choose the k+1 samples with 246 

the best improvement index values, where k is the number of the parameters. In this 247 

study, k is 6. The convergence performance of the traditional downhill simplex heavily 248 

relies on the quality of its initial values. Inappropriate ones may give rise to ill-249 

conditioned simplex geometry. Therefore, a simplex checking is carried out to ensure 250 

as many distinct values of parameters as possible during the process of looking for 251 

initial values to ensure that the simplex is a good-conditioned geometry.  252 

 253 

The downhill simplex algorithm calculates the parameter values and the corresponding 254 

improvement index as defined in Equation (3) in each step of the iterations. The optimal 255 

results are achieved by expanding or shrinking the simplex geometry in each optimal 256 

step. In the processes of searching for the minimum index, the best set of tuning 257 

parameter values up to the current iteration step is kept to look for the direction and 258 

magnitude of the increments. The iteration is terminated when the tuning parameters 259 

reach quasi-steady state.  260 

 261 

Figure 2 summarizes the workflow of the experiments. The workflow is automated. It 262 

has two components: model calibration and verification. The calibration uses the 263 

hindcasts, the pre-defined metric and the optimization algorithm to derive the optimal 264 

parameter values. The verification uses AMIP climate simulation to check how 265 

effective the auto-calibration is for the application goal, which is to improve the metric 266 

in the AMIP simulation.  267 

 268 



4 Results  269 

4.1 The optimized model  270 

The change of performance index in the optimization iterations as a function of iteration 271 

step is shown in Figure 3. The blue line is the best performance index up to the current 272 

step. The red line is the real performance up to the current step. The latter has spikes 273 

during the iteration, especially near step 70, suggesting that the performance index in 274 

the parameter space has a complex geometry. Each iteration involves 31 days of 275 

hindcasts. The iteration is stopped at about the 142th iteration step when the searched 276 

parameters reach quasi-steady state. With 180 computing cores on a linux cluster, each 277 

iteration takes about 50 minutes. The computational time for an entire optimization is 278 

equivalent to about 12 years of an AMIP simulation, which is a tremendous reduction 279 

of computing time relative to traditional model tuning. 280 

 281 

The tuned values of the parameters are given in the column of “Tuned” in Table 1. In 282 

the default model, the autoconversion parameter c0 is smaller over land than over the 283 

oceans, reflecting more aerosols and smaller cloud particle sizes over land than over 284 

the oceans. When compared with the default values, the tuned c0 value over land is 285 

even smaller while the value over the ocean is even larger. The parameter that represents 286 

the time scale of the convective adjustment is larger in the tuned model than in the 287 

default model. For the three parameters in the cloud scheme, the minimum relative 288 

humidity in the tuned model is reduced for high clouds but increased for low clouds in 289 

the tuned model. The sedimentation velocity of ice crystals is reduced by over a half in 290 

the tuned model. The physical justification of these new parameter values is beyond the 291 

scope of this paper, but they are all within the range of known uncertainties by design 292 

of the optimal tuning. How the parameter change affects the simulation is discussed in 293 

Section 4.2.  294 

 295 



The performance index of the tuned model in the hindcasts and the normalized MSE of 296 

the individual fields in the metric are given in Table 3 under the “Hindcasts” column. 297 

The performance index is reduced by about 10% in the tuned model. This is relatively 298 

a significant reduction, considering the fact that CAM5 is already a well-tuned model 299 

and a major upgrade of the CAM model from CAM4 to CAM5 also saw the changes in 300 

most of the variables are within 10% range in terms of RMSE (Flato et al., 2013). 301 

Looking at the MSE of the individual fields in the table, we find that the reduction in 302 

the performance index is not evenly distributed across the targeted fields. The largest 303 

reduction, at about 40%, is found for the MSE in the longwave cloud forcing LWCF. 304 

This is actually not a surprise. Zhang et al. (2015) showed that LWCF is highly sensitive 305 

to changes in the CAPE consumption time scale (zmconv_tau) and the minimum rh for 306 

high stable clouds (cldfrc_rhminh). Yang et al. (2013) also indicated the zmconv_tau 307 

was sensitive for LWCF. The autoconversion efficiency of cloud water to precipitation 308 

(zmconv_c0_lnd and zmconv_c0_ocn) and the cloud ice sedimentation velocity 309 

(cldsed_ai) were found to be sensitive for LWCF in Qian et al. (2016). That is to say, 310 

all the tuning parameters in this study are very sensitive for LWCF, resulting in this 311 

field to have the most improvement. There is about 8% reduction of MSE in 312 

precipitation PRECT and 4% reduction in 850-hPa temperature T850. However, two 313 

fields, the shortwave cloud forcing SWCF and the 850-hPa temperature Q850, are 314 

accompanied by 3% and 1% increases of errors respectively. As will be discussed later, 315 

this is indication of structural errors in the model whose solution cannot fit to all 316 

observations.  317 

 318 

The next critical question is whether the optimal results tuned in hindcasts are shown 319 

in the AMIP simulation. The last column in Table 3 under the heading of “AMIP” gives 320 

the performance index of the tuned model and the normalized MSE of the individual 321 

fields from the AMIP simulation. Three things are noted: First, the overall performance 322 

index is also improved by about 10% in the AMIP simulation in the tuned model. 323 



Second, as in the hindhcasts, the largest improvement is in the LWCF. Third, the fields 324 

that got improved in the AMIP simulations are the same as those in the hindcasts. We 325 

therefore conclude that the automatic tuning achieved the design goal of the algorithm.  326 

 327 

We also examined a 10-variable metric that is used by the Atmospheric Model Working 328 

Group of the Community Earth System Model (CESM) 329 

(https://www2.cesm.ucar.edu/working-groups/amwg/metrics). The five variables that 330 

we used in the performance index are a subset of these fields, except that precipitation 331 

in the AMWG metric is separated into land and ocean components. Therefore, there are 332 

six additional fields in the AMWG metric. Table 4 shows the percentage bias of the ten 333 

fields between the default/optimized model and the reference observations, which is 334 

computed based on 2-dimensional monthly mean fields as the follows:  335 

𝑏𝑖𝑎𝑠||%|| = | ABC
DDDDDD(E7FGDDDDDDDD)H	IJKDDDDDD)

IJKDDDDDD |             (4) 336 

It is seen that among the six new variables, surface pressure, oceanic tropical rainfall, 337 

Pacific Ocean surface stress, and zonal wind at 300 hPb are all improved in the tuned 338 

model. Increased errors are seen surface air temperature and precipitation over land. 339 

This evaluation is overall consistent with the improved performance metrics shown in 340 

Table 3 in which zonally averaged fields were used. This comparison lends credence to 341 

the intended objective of the tuning, with the exception over land for which additional 342 

parameters may be included for tuning.  343 

 344 

4.2 Interpretation of the tuned results  345 

We next examine the physical processes behind the changed performance index in the 346 

tuned model. Figures 4a, 4b, and 4d show respectively the annually averaged high cloud 347 

amount in the AMIP simulation of the satellite observation from CloudSat and 348 

CALIPSO, the default model, and the model bias. It is seen that CAM5 significantly 349 

underestimated high clouds in the tropics, including the western Pacific warm pool, and 350 



the central Africa and America, except in the narrow zonal band of the Inter-Tropical 351 

Convergence Zone (ITCZ) in the Pacific. The model also underestimated high clouds 352 

in regions of middle-latitude storm tracks. Since high clouds have large impact on the 353 

longwave cloud forcing LWCF, these biases in high clouds would cause 354 

underestimation of LWCF. Figures 5a, 5b and 5d show the LWCF in the observation, 355 

the default model, and the model bias. The bias field (Figure 5d) clearly shows that the 356 

model significantly underestimates the LWCF. Its spatial pattern largely mirrors the 357 

bias field in high cloud amount in Figure 4d.  358 

 359 

In the model optimization, as described before, a smaller relative humidity threshold 360 

value for high clouds in the cloud scheme and a smaller sedimentation velocity of ice 361 

crystals were derived. These two parameter adjustments can both act to increase high 362 

cloud amount and thus longwave cloud forcing. The simulated high cloud and its bias 363 

relative to observation are shown in Figures 4b to 4e. It can be seen that the overall bias 364 

in high cloud is significantly reduced in the tuned model. This leads to reduced negative 365 

bias in LWCF in the optimal model (Figures 5b to 5e).  366 

      367 

Changes in clouds are inevitably accompanied by changes in the shortwave cloud 368 

forcing SWCF, which was slightly deteriorated in the tuned model as discussed 369 

previously. We find that while high clouds are increased in the tuned model, clouds in 370 

the middle troposphere are reduced in middle and high latitudes (Figure 6). This 371 

reduction in middle clouds may have compensated the impact of increased high clouds 372 

on SWCF since SWCF is also used in the performance metric. This reduction of middle 373 

clouds is consistent with the increased precipitation efficiency parameter c0 in the tuned 374 

model over the ocean and the reduced convection to be discussed later.  375 

 376 

The impact of the tuning on other targeted fields is less dramatic than on LWCF. To see 377 

the impact clearly, we show in Figure 7 the zonally averaged biases in the AMIP 378 



simulation from the default CAM5 as the blue lines and the optimized model as the red 379 

lines. The 2-dimensional map figures are given in the Supplemental Materials. In 380 

addition to the large improvement in the LWCF, the overall improvement in PRECT 381 

and T850 can be seen. The optimized model simulates slightly smaller precipitation 382 

(PRECT) and warmer atmosphere (T850), which are all closer to observations. The 383 

reduction in precipitation is consistent with the larger value of the convection 384 

adjustment time scale in the tuned model than in the default model. The convection 385 

scheme uses a quasi-equilibrium closure based on the Convective Available Potential 386 

Energy (CAPE). The adjustment time scale is the denominator in the calculation of the 387 

cloud-base convective mass flux. When the time scale is longer, the mass flux is smaller, 388 

so is the convective precipitation. This reduction in precipitation is one likely cause of 389 

the larger SWCF (less cloud reflection) in the tuned model. In addition to the convection 390 

adjustment time scale, other parameters also impact precipitation. In particular, the 391 

impact of the increased precipitation efficiency over the ocean in the tuned model 392 

should partially offset the impact of the longer convective adjustment time scale. The 393 

change of PRECT is the net outcome of the multivariate dependences on all parameters 394 

that is found by the automatic optimization algorithm for the overall improvement of 395 

the performance index.  396 

 397 

The increase in LWCF and the reduced precipitation PRECT in the optimal model are 398 

energetically consistent for the atmosphere: There is less atmospheric longwave 399 

radiative cooling and less condensational heating in the tuned model. The magnitude of 400 

the LWCF increase is large (2.42 W/m2) relative to the change in condensational 401 

heating (2.03 W/m2) as derived from the change in global mean precipitation amount. 402 

As a result, the atmosphere is slightly warmer, which is also closer to observation 403 

(Figure 7e) and this is an improvement to the default model.  404 

 405 

While consistent improvements in different fields are desired, this is not always 406 



possible. For example, a warmer atmosphere is often accompanied by a moister 407 

atmosphere. Since temperature in the tuned model is warmer than that in the default 408 

model, there is more moisture in the tuned model. The atmosphere in the default model 409 

is already too moist (Figure 7d). As a result, the performance index in Q850 is slightly 410 

deteriorated. Since the optimization is based on a single combined metric of several 411 

target variables, the algorithm seeks to minimize this combined metric at the expense 412 

of the performance of other variables as long as the total metric is reduced. The fact 413 

that the default CAM5 overestimated water vapor and underestimated temperature as 414 

shown in Figures 7d and 7e indicates structural errors in the model: improving 415 

temperature could lead to larger biases in water vapor in the current model.  416 

In summary, the improved performance index in the LWCF is consistent with the 417 

dominant impact of the reduced values in the threshold relative humidity for high 418 

clouds and the sedimentation velocity of ice crystals. The improvement in PRECT is 419 

consistent with the increased convective adjustment time scale. The improvement in 420 

T850 is consistent with the large increase in LWCF and reduced radiative cooling of 421 

the atmosphere. The deterioration in SWCF is consistent with the impact of increased 422 

autoconversion rate, longer convective adjustment time scale, and increased threshold 423 

relative humidity of low clouds, all of which can lead to reduction of cloud water. The 424 

deterioration in Q850 is likely the result of larger T850 in the tuned model.  425 

 426 

These results point to both the benefits and limitation of the described model tuning. 427 

The benefit is the improvement in a pre-defined metric, with has led to improvements 428 

in several fields. The limitation is that not all fields can be improved. Some fields may 429 

get worse as a result of the algorithm in achieving the largest improvement in the total 430 

pre-defined metric. One may use different weights for different fields in Equation (1) 431 

or impose conditional limits on the normalized MSE for the individual fields. The 432 

benefits of such alternative approaches will surely depend on specific applications, but 433 

structural errors cannot be eliminated by the tuning.  434 



5 Summary and Discussion  435 

We have presented a method of economic automatic tuning by using short-term 436 

hindcasts for one month. It is used to optimize CAM5 by adjusting several empirical 437 

parameters in its cloud and convection parameterizations. The computational cost of 438 

the entire tuning procedure is less 12-years of one single AMIP simulation. We have 439 

demonstrated that the tuning accomplished the design goal of the algorithm. We show 440 

about 10% improvement in our pre-defined metric for CAM5 that is already a well-441 

calibrated model. Among the five targeted fields of LWCF, SWCF, PRECT, T850 and 442 

Q850, the largest improvement is to the longwave cloud radiative forcing LWCF, which 443 

has about 40% improvement in the zonal mean MSE. We have shown that while the 444 

improvements in LWCF, PRECT and T850 are consistent with the improved 445 

atmospheric energy budget, they lead to slight deterioration in the SWCF and Q850 that 446 

reflects structural errors of the model. The overall improvement is also seen in the 10-447 

variable AMWG metrics.  448 

 449 

The optimized model contains reduced values of the threshold relative humidity for 450 

high clouds and sediment velocity of ice crystals, which act to increase the high cloud 451 

amount and increase the longwave cloud forcing, thereby reducing its significant 452 

underestimation in the default model. The optimization gave increased convection 453 

adjustment time that can explain reduced precipitation in the tuned model and the 454 

reduction of the precipitation biases. These two changes also help to reduce the 455 

temperature bias. The gains in these fields however are accompanied by slight 456 

deterioration in shortwave cloud forcing that is consistent with the reduced precipitation, 457 

and slight deterioration in humidity that is consistent with the increased temperature. 458 

The optimized results can help understand the interactive effect of multiple parameters, 459 

discover the systematic and structural errors by exploring the parameter calibration 460 

ultimate performance. 461 

 462 



While benefits of the automatic tuning are clearly seen, there are several limitations of 463 

using the present workflow for automatic tuning of GCMs. First, not all fields can be 464 

simultaneously improved since parameter tuning cannot eliminate structural errors in 465 

the model. Tuning is not an alternative to improving a model, rather it is an economic 466 

way to calibrate some parameters within a candidate parameterization framework. 467 

Second, the optimized model may be caused by compensation of errors. Therefore, 468 

process-based model evaluation and physical explanation of the model improvements 469 

are always necessary. Third, the tuning by using hindcasts is only applicable for 470 

parameters affecting fast physics. For model bias that develops over long time scales, 471 

such as those from coupled ocean-atmospheric models, this approach cannot be used, 472 

although the conceptual approach may be applied with longer integrations. Finally, the 473 

choices of the model parameters, uncertain ranges, and metrics are somewhat subjective. 474 

It would be much more satisfactory if their selections can be done automatically and 475 

more objectively. Several improvements can be made to the presented method. 476 

Different weights can be used for the targeted fields. Sensitivity to different target 477 

metrics can be studied. Multiple target metrics may be designed to optimize different 478 

sets of parameters. Constraints such as energy balance at the top of the atmosphere may 479 

be imposed. It is also possible to use time-varying solutions as metrics to target 480 

variabilities such as the Madden-Julian Oscillation (MJO) in models. These could be 481 

subject for future research.  482 

 483 

Code and data availability. The source code of CAM5.3 are available from 484 

http://www.cesm.ucar.edu/models/cesm1.2/. The downhill simplex algorithm, the 485 

scripts of running the model driven by the optimization algorithm, and the scripts of 486 

computing metrics can be found at 487 

http://everest.msrc.sunysb.edu/tzhang/capt_tune/GCM_paras_tuner/. The observation 488 

data which is used to compute the metrics in the short-term hindcast tuning and validate 489 

the optimization in AMIP is at 490 



http://everest.msrc.sunysb.edu/tzhang/capt_tune/capt_tune_obs/. 491 
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Table 1. A summary of parameters to be tuned in CAM5. The default and final tuned 686 

optimal values are shown, as well as the valid ranges. 687 

Parameter  Description  Default Range Tuned 

zmconv_c0_lnd Autoconversion coefficient over land in 

ZM deep convection scheme 

5.90e-3 2.95e-3-8.85e-3 5.35e-3 

zmconv_c0_ocn Autoconversion coefficient over ocean 

in ZM deep convection scheme 

4.50e-2 2.25e-2-6.75e-2 6.48e-2 

zmconv_tau Time scale for consumption rate of 

CAPE for deep convection in ZM deep 

convection scheme 

3600 1800-6400 4010 

cldfrc_rhminh Minimum rh for high stable clouds 0.8 0.6-0.9 0.661 

cldfrc_rhminl Minimum rh for low stable clouds 0.896 0.8-0.95 0.913 

cldsed_ai cloud ice sedimentation velocity 700 300-1100 300 

 688 

Table 2. The selected output variables of CAM5 included in the performance metrics 689 

and the sources of the corresponding observations 690 

Variable Full name Observation 

LWCF Longwave cloud forcing ISCCP 

SWCF Shortwave cloud forcing ISCCP 

PRECT Total precipitation rate GPCP 

Q850 Specific Humidity at 850hPa NCEP 

T850 Temperature at 850hPa NCEP 
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Table 3. The optimal improvement index of each variable and total comprehensive 697 

metric of CAPT run and AMIP run.  698 

Variable  Hindcasts AMIP 

Total metrics 0.903 0.895 

LWCF 0.556 0.496 

SWCF 1.069 1.004 

PRECT 0.921 0.841 

Q850 1.013 1.189 

T850 0.956 0.947 

 699 

Table 4. The percentage biases of the ten fields between the Default/Tuned and their 700 

reference observations 701 

Bias ||%|| Default  Tuned 

Sea Level Pressure (ERAI) 0.007 0.004 

SW Cloud Forcing (ISCCP) 3.603 5.116 

LW Cloud Forcing (ISCCP) 17.607 8.643 

Land Rainfall (30N-30S, GPCP) 7.466 7.944 

Ocean Rainfall (30N-30S, GPCP) 30.048 25.284 

Land 2-m Temperature (Willmott) 0.128 0.175 

Pacific Surface Stress (5N-5S, ERS) 17.866 17.295 

Zonal Wind (300mb, ERAI) 7.341 7.068 

Relative Humidity (ERAI) 11.383 11.610 

Temperature (ERAI) 0.502 0.408 

 702 
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 705 



 706 

Figure 1. The comparison between short-term hindcasts and long-term AMIP. The Y-707 

axis is bias between the simulations and the observations. The black line is the July 708 

mean state from 2000 to 2004 of AMIP simulations. The blue, red, and green lines 709 

represent the second day hindcast (labeled as Day2), the fifth day hindcast (labeled as 710 

Day5), and the interval-Day3 hindcasts, respectively for July 2009. 711 

 712 

 713 



 714 

Figure 2. Flow diagram of the automatic calibration of parameters via the short-term 715 

CAPT and the verification of optimized parameters through long-term AMIP 716 

simulations. 717 
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 723 

Figure 3. The change of performance index in the optimization iterations. The X-axis 724 

is the optimization iterations. The Y-axis is the improvement index in Eq.3. The red line 725 

is the index in a given iteration step, while the blue line is the best index up to this time 726 

step. 727 
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 735 

Figure 4. The spatial distribution of high cloud amount in (a) observation, (b) CNTL, 736 

(c) EXP, (d) CNTL minus observation, (e) EXP minus observation. 737 
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 745 
Figure 5. Same as Figure 4 except for LWCF. 746 
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 753 

Figure 6. Pressure-latitude distributions of cloud fraction of in (a) EXP, (b) CNTL, and 754 

(c) EXP - CNTL. 755 



 756 

Figure 7. Meridional distribution of the AMIP difference between EXP/CNTL and 757 

observations of LWCF (a), SWCF (b), PRECT (c), Q850 (d), and T850 (e). The red line 758 

is the output variable of EXP. The blue line is the output variable of CNTL. 759 
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