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Abstract. The NASA Eulerian Snow On Sea Ice Model (NESOSIM) is a new open source model that produces 

daily estimates of the depth and density of snow on sea ice across the polar oceans. NESOSIM has been 

developed in a three-dimensional Eulerian framework and includes two (vertical) snow layers and several simple 

parameterizations to represent the key sources and sinks of snow on sea ice. The model is forced with daily inputs 10 
of snowfall and near-surface winds (from reanalyses), sea ice concentration (from satellite passive microwave 

data) and sea ice drift (from satellite feature tracking), during the accumulation season (August through April). In 

this study, we present the NESOSIM formulation, initial calibration efforts, sensitivity studies and validation 

efforts across an Arctic Ocean domain (100 km horizontal resolution). The simulated snow depth and density are 

calibrated with in-situ data collected on drifting ice stations during the 1980s. NESOSIM demonstrates very 15 
strong agreement with the in-situ seasonal cycles of snow depth and density, and shows good (moderate) 

agreement with the regional snow depth (density) distributions. The results exhibit strong sensitivity to the 

reanalysis-derived snowfall forcing data, with the MERRA/JRA-55 (ASR) derived snow depths generally higher 

(lower) than ERA-Interim. We derive a new 'median' daily snowfall dataset from these three reanalysis datasets 

to improve reliability in our input snowfall data. NESOSIM is run for a contemporary period (2000 to 2015) and 20 
compared against snow depth estimates derived from NASA's Operation IceBridge (OIB) snow radar data from 

2009-2015, showing moderate/strong agreement, especially in the 2012-2015 comparisons. 

1 Introduction  

Snow on sea ice is a crucial component of the polar climate system. Its low thermal conductivity modulates sea 

ice growth through the cold winter months (e.g. Maykut and Untersteiner, 1971, Sturm et al., 2002), while its 25 
high surface albedo limits solar radiation absorption and thus inhibits sea ice melt in spring and summer (e.g. 

Warren, 1982; Grenfell and Perovich, 1984; Perovich, 2002). Conversely, freshwater production from snow melt 

facilitates melt pond formation in spring/summer which lowers the surface albedo and promotes sea ice melt 
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(Eicken et al., 2002; 2004). The accumulation of snow on sea ice also modulates the freshwater flux into the 

ocean, a key component of the freshwater budget of the Arctic (e.g. Serreze et al., 2006).  

Estimates of snow depth on sea ice are also a required input for deriving sea ice thickness from satellite altimetry, 

e.g. from ESA's CryoSat-2 (e.g. Laxon et al., 2013) and NASA's upcoming ICESat-2 mission (Markus et al., 

2017). The altimetry technique involves measurements of sea ice freeboard, the extension of sea ice above a local 5 
sea level, and estimates of snow depth to derive sea ice thickness, with snow depth being one of the primary 

sources of uncertainty for both laser and radar altimetry (e.g. Giles et al., 2007). Poor knowledge of snow density 

provides a further source of uncertainty through its influence on the ice freeboard and radar penetration into the 

snow pack (e.g. Giles et al., 2007, Kern et al., 2015).  

Unfortunately, observations of snow depth and density across the polar oceans are lacking, due to difficulties in 10 
remotely sensing this relatively thin (O(10 cm)) and heterogeneous medium, and logistical challenges associated 

with in-situ data collection. Passive microwave data have been used to estimate snow depth over first-year ice on 

a basin-scale across both poles (e.g., Markus and Cavalieri 1998, Comiso et al., 2003, Maass et al., 2015), 

although these data are arguably more relevant for the first-year dominated Antarctic sea ice pack and tend to 

underestimate snow depth in deformed sea ice regimes (e.g. Worby et al., 2008; Brucker and Markus, 2013). 15 
Combinations of satellite and/or airborne sensors with variable snow penetration depths are also being explored 

as a means of producing basin-scale snow depth estimates (e.g. Armitage and Ridout, 2015, Guerreiro et al., 

2016; Kwok and Markus, 2017), although this approach is still in its infancy and has limited temporal coverage. 

NASA’s Operation IceBridge has provided airborne measurements of snow depth on sea ice since its launch in 

2009 (Kurtz et al., 2013). However, the Arctic snow depth data collected are primarily limited to the western 20 
Arctic sea ice cover in spring (the spring 2017 campaign also included a flight over the eastern Arctic Ocean), 

while the Southern Ocean data have only been briefly explored to-date (e.g. Kwok and Maksym, 2014). As such, 

the sea ice community often relies on simple models of snow depth forced by reanalyses (primarily snowfall 

data) (e.g., Maksym and Markus 2008; Kwok and Cunningham, 2008; Blanchard-Wigglesworth et al., 2018) or, 

for the Arctic, a climatology of snow depth produced from Soviet drifting station data collected prior to 1991 25 
(Warren et al., 1999). The Soviet drifting station data also provide the only basin-scale assessment of snow 

density currently available. This snow climatology is also expected to be outdated due to the rapid changes 

experienced in the Arctic climate system over the last few decades (Webster et al., 2014). 
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In this study we present a new model to derive snow depth (and density) across the polar oceans. Our objective is 

to produce reliable basin-scale daily snow depth and density estimates needed for satellite altimetry calculations 

of sea ice thickness for both historical analyses and near real-time operations. A secondary utility of the model 

will be the production of daily/monthly/seasonal snow depths that can help guide climate modelling research 

efforts addressing the representation and importance of snow on sea ice in the global climate system. In the 5 
following sections, we present and describe the model configuration/physics, the sensitivity of the model to the 

input forcing data (e.g. reanalyses snowfall, satellite-derived ice drifts), and initial model calibration/validation 

efforts. We focus this initial study solely on the Arctic, however our plan is for the model to be applied and tested 

in a Southern Ocean framework in the near future. We conclude by looking ahead to potential improvements in 

the model physics and planned future activities related to our efforts to improve our understanding of snow on sea 10 
ice. 

2 Model description  

The NASA Eulerian Snow On Sea Ice Model (NESOSIM) is a three-dimensional, two-layer (vertical), Eulerian 

snow budget model developed with the primary aim of producing daily estimates of snow depth and density 

across the polar oceans. NESOSIM includes several parameterizations that represent key mechanisms of snow 15 
variability through the snow accumulation/growth season, and two snow layers to broadly represent the evolution 

of both old/compacted snow and new/fresh snow. The model schematic is shown in Figure 1. Our aim was to 

produce a model of physical and computational simplicity to allow for a detailed assessment of the sensitivity of 

the modeled snow depths to the various input data used. We expect the model to increase in complexity with 

future model developments, e.g. new parameterizations or improvements to existing parameterizations as needed. 20 
We decided on a Eulerian snow budget approach (as opposed to a Lagrangian approach, e.g. Kwok and 

Cunningham, 2008) for a number of reasons: (i) it provides a framework flexible to the presence (or lack of) ice 

drift data, increasing the utility of the model in regions/time periods where ice drift data might be lacking, (ii) it 

provides a simple assessment of the spatial significance of the parameterized budget terms included in the model, 

including ice dynamics, and (iii) the parameterizations developed in this  framework can be easily transferred to 25 
other Eulerian sea ice models (e.g. the Los Alamos sea ice model CICE) included in General Circulation Models 

(GCMs). The following subsections detail the model setup and various parameterizations currently included in 

NESOSIM.  
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Figure 1: Schematic of the NASA Eulerian Snow On Sea Ice Model (NESOSIM) presented in this study. The red 
(blue) text indicates processes that result in a loss (gain) of snow. 'Dynamics' indicates the combination of 
ice/snow advection and convergence/divergence which can cause either loss or gain of snow.  

2.1 Model configuration 5 

NESOSIM includes two vertical layers on an x/y horizontal grid, with each horizontal grid-cell and snow layer 

featuring a prognostic snow volume and fixed snow density. This two-layer approach was taken to represent the 

strong differences in properties between dense snow, associated with wind slab, and fresh, cold snow from recent 

snowfall, while keeping the model computationally efficient and the model physics easily trackable. As stated 

previously, our plan is that NESOSIM will be used for studying snow on sea ice across the Arctic and Southern 10 
Oceans, however, for this initial analysis we run the model on a 100 km x 100 km polar stereographic grid 

covering the Arctic Ocean and peripheral seas (shown later). This grid resolution was chosen due to 

considerations of computational efficiency and the horizontal resolutions of the various input data. 

The model is forced with daily data of snowfall, near-surface winds, ice concentration, and ice drift. We discuss 

the forcing datasets used in this study in Section 3. Note that in the model we track the evolution of snow volume 15 
(the volume of snow per unit grid cell, in units of meters) for simplicity, instead of snow depth. An effective 
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snow depth within a given grid cell is then produced by dividing the snow volume by the grid-cell ice 

concentration. The model run is initiated each year from the end of summer (default of August 15th, rationale 

discussed in Section 2.5) to the middle of spring (May 1st), to avoid the complexity of snow melt processes 

expected outside of these dates. We hope to extend the model runs into the melt season in future model 

development efforts. The default model configuration (forcings/parameter settings) are given in Table 1. 5 

Model parameter Default setting 

New snow density (kg m-3) 200 
Old snow density (kg m-3) 350 

Wind packing coefficient, 𝛼  0.05 

Blowing snow coefficient, 𝛽 0.0025 

Wind packing threshold, ⍵ (m s-1) 5 

Forcing data  

Snowfall ERA-I/MEDIAN-SF (as specified) 
Near-surface winds ERA-I 

Sea ice concentration Bootstrap 

Sea ice drift NSIDCv3 (Polar Pathfinder) 

Table 1: Default model forcings and parameter settings used by NESOSIM. 

2.2 Snow accumulation 

To accumulate snow in our model, the snowfall water equivalent from our reanalysis data is converted to snow 

volume using a representative snow density. Snow pit and density data from the Surface Heat Budget of the 

Arctic Ocean (SHEBA) experiment and the Soviet drifting ice station data helped guide the parameterization of 10 
our seasonal snow density evolution. Our modelled snow is partitioned into two density layers: a “new” layer, 

which represents recent snowfall, and an “old” layer, which represents snow that has undergone wind compaction 

and snow grain metamorphism (Colbeck, 1982; Sturm and Massom, 2017). Initially, snow accumulates into the 

new/fresh snow layer within a given grid cell as  

Eq. (1): 15 

𝛥 ℎ!
!""(𝑡, 𝑥, 𝑦) = 𝑆!(𝑡, 𝑥, 𝑦) 𝐴(𝑡, 𝑥, 𝑦)/⍴!! ,	
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where 𝑆!  (in units of kg m-2) is the gridded daily snowfall across the model domain, ⍴!! is the density of the new 

snow layer, 𝐴 is the gridded daily ice concentration, 𝑡	is	the	daily	time	index, and	𝑥 and	𝑦	are the horizontal grid 

indices. The density of the new snow layer is fixed at ⍴!!  = 200 kg m-3. This value implicitly represents a 

combination of cold, dry snowfall (~150 kg m-3) and wet snowfall (~230 kg m-3) based on direct observations 

over Arctic sea ice (Radionov et al., 1997; Sturm et al., 2002).  5 

Snow can be transferred from the new snow layer to the old snow layer depending on the strength of the near-

surface wind forcing. The old snow layer is an implicit combination of two layers that, on average, comprise the 

majority of the snowpack bulk density: wind slab and depth hoar (Sturm et al., 2002; Sturm, 2009). The density 

of wind slab ranges between ~300 kg m-3 and ~400 kg m-3 on average (Colbeck, 1982; Radionov et al., 1997; 

Warren et al., 1999; Sturm et al., 2002), while depth hoar has an average density of ~150 - 250 kg m-3 (Colbeck, 10 
1982; Sturm et al., 2002). Based on SHEBA data, both layers contribute roughly equally to the bulk thickness of 

the snow cover, comprising ~80% of it collectively (Sturm et al., 2002). For this reason, we use the average of the 

higher-end values of wind slab and depth hoar as the density value for the old snow layer. However, we note that 

the ratio of wind slab and depth hoar layers depends on several factors including the atmospheric conditions 

during precipitation events, sea ice surface roughness, snow depth, and the internal snowpack temperature 15 
gradient (Sturm et al., 2002). Our simple parameterization scheme is thus expected to be generally representative 

of basin-wide conditions, but will contribute to uncertainty in our modeled snow depths. 

When wind speeds are greater than 5 m s-1, the change in snow depth from wind packing between the two snow 

layers respectively is given as: 

Eq. (2): 20 

𝛥 ℎ!
!"(𝑡, 0, 𝑥, 𝑦) = −𝛼 ℎ!(𝑡, 0, 𝑥, 𝑦) for 𝑈(𝑡, 𝑥, 𝑦) > ⍵ 

𝛥 ℎ!
!"(𝑡, 1, 𝑥, 𝑦) = (⍴!!/⍴!!)𝛼ℎ!(𝑡, 0, 𝑥, 𝑦)  for 𝑈(𝑡, 𝑥, 𝑦) > ⍵ 

where 𝑈(𝑥, 𝑦) is the 10 m wind speed,	⍵	is a wind speed threshold for wind packing to occur (default of 5 m/s),	𝛼	

is a wind packing coefficient which determines the fraction of the new snow layer that is transferred into the old 

snow layer (default value of 0.05), and	⍴!!	is the density of the old snow layer. The second grid index in Eq. 2 25 
(values of 0 and 1) represents the vertical snow layers. The wind threshold of 5 m s-1 was determined based on 
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observational and modeling studies of blowing snow in the terrestrial Arctic and sea ice environments (Pomeroy 

et al., 1997; Radionov et al., 1997; Sturm and Stuefer, 2013). 

2.3 Ice/snow dynamics 

Snow within a given grid cell can also evolve due to ice drift. Here we adapt the ice concentration budget 

approach used in e.g. Holland and Kimura (2016) (and more recently in Petty et al., 2018) to snow volume as 5 

Eq. (3): 

𝛥 ℎ!
!"#(𝑡, 𝑥, 𝑦) = 𝛻(ℎ!(𝑡, 𝑥, 𝑦). 𝑢!(𝑡, 𝑥, 𝑦)), 

where 𝑢! is the daily gridded ice drift. As in the ice concentration budget studies discussed above, we can expand 

this into a divergence/convergence term and an advection term as 

Eq. (4): 10 

𝛥 ℎ!
!"#(𝑡, 𝑥, 𝑦) = ℎ!(𝑡, 𝑥, 𝑦) .𝛻(𝑢!(𝑡, 𝑥, 𝑦)) and 

𝛥 ℎ!
!"#(𝑡, 𝑥, 𝑦) = 𝛻(ℎ!(𝑡, 𝑥, 𝑦)) .  𝑢!(𝑡, 𝑥, 𝑦) ,	

where 𝛥 ℎ!
!"#is the change in snow volume from divergence/convergence, i.e. changes due to spatial gradients in 

ice drift, and 𝛥 ℎ!
!"#is the change in snow volume from advection, i.e. changes due to spatial gradients in snow 

volume (assuming constant drift). Note that this parameter is applied to both ‘old’ and ‘new’ snow layers 

concurrently.   15 

2.4 Blowing snow lost to leads 

Snow within a grid cell can also be lost to leads/open water in the ice pack due to the impact of wind forcing, i.e. 

blowing snow lost to leads. This parameter is expected to be most significant in regions where high lead 

fractions, wind speeds and snowfall (e.g. the marginal ice zone in the North Atlantic sector of the Arctic) are 

expected to result in significant wind blown snow lost to leads/open water (e.g. Leonard and Maksym, 2011). 20 
Note that we only apply this wind loss term to the new snow layer as we assume the ‘old’ wind packed snow 

layer is immune to the impact of wind forcing (e.g. Petrich et al., 2012; Trujillo et al., 2016). The blowing snow 

to leads is calculated as 
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Eq. (5): 

𝛥 ℎ!
!"(𝑡, 𝑥, 𝑦) = 𝛽 𝑈(𝑡, 𝑥, 𝑦) ℎ!(𝑡, 0, 𝑥, 𝑦)(1 − 𝐴(𝑡, 𝑥, 𝑦)), 

where 𝛽 is a blowing snow coefficient (default value of 0.025). 

We also keep track of snow that enters the ocean through snowfall into the open water fraction and blowing snow 

lost to leads, a quantity of relevance to those interested in the freshwater budgets of the polar oceans. This is 5 
given as  

Eq. (6): 

𝑆!!"#(𝑡, 𝑥, 𝑦) = 𝑆!(𝑡, 𝑥, 𝑦) (1 − 𝐴(𝑡, 𝑥, 𝑦))/⍴!!  +  𝛥 ℎ!
!"(𝑡, 𝑥, 𝑦 .	

2.5 Model evolution 

At each daily time step, the snow volume and density within each grid cell is updated based on the budget terms 10 
described above using a forward Euler method as 

Eq. (7): 

 ℎ!(𝑡 + 1, 0, 𝑥, 𝑦) =  ℎ!(𝑡, 0, 𝑥, 𝑦) +  𝛥 ℎ!
!""(𝑡, 𝑥, 𝑦) + 𝛥 ℎ!

!"#(𝑡, 0, 𝑥, 𝑦) + 𝛥 ℎ!
!"(0, 𝑥, 𝑦) + 𝛥 ℎ!

!"(𝑥, 𝑦)		

and	

 ℎ!(𝑡 + 1, 1, 𝑥, 𝑦) =  ℎ!(𝑡, 1, 𝑥, 𝑦) + 𝛥 ℎ!
!"#(𝑡, 1, 𝑥, 𝑦) + 𝛥 ℎ!

!"(1, 𝑥, 𝑦). 15 

Note that we also calculate a bulk snow density, which is the weighted average density across the two snow 

layers, as 

Eq. (8): 

⍴!!  (𝑡, 𝑥, 𝑦) =  ((ℎ!(𝑡, 0, 𝑥, 𝑦)⍴!! +  ℎ!(𝑡, 1, 𝑥, 𝑦)⍴!!)/(ℎ!(𝑡, 0, 𝑥, 𝑦) + ℎ!(𝑡, 1, 𝑥, 𝑦)). 

As discussed earlier, each model run is initialized at the end of summer (default of August 15th) and run until the 20 
following spring (May 1st). This early summer start time was chosen to include the significant snowfall expected 
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across the Central Arctic through August (Radionov et al., 1997; Warren et al., 1999; Boisvert et al., submitted). 

We acknowledge that this end of August time period also likely includes surface melt events that are not 

captured/included in this model but are hoped to be addressed in future model developments. We also apply a 

variable initial snow volume (at t = 0) across our model domain, as discussed in the following section. The model 

is easily adaptable, such that it can be reinitialized from a later date and run forward in time, making it suitable 5 
for near real-time operations, an expected use of this model in the near future. 

For initial model calibration we also ran NESOSIM with different combinations of the model parameterizations 

discussed above. When we turn off the wind-packing parameterization, snow remains fixed in the 'new' snow 

layer, despite the strength of the wind forcing, so the model effectively becomes a 1-layer model. To account for 

the low bias in snow density expected by constraining the snow density to the density of fresh/new snow, we 10 
forced this snow layer with the daily climatological snow density based on Warren et al., (1999), which we refer 

to as ⍴-W99. 

3 Model forcing and calibration/validation data 

In the following subsections we describe the forcing data and calibration/validation data used in this study, 

including atmospheric forcing data (snowfall and winds), satellite-derived ice drifts, satellite-derived ice 15 
concentration, soviet drifting station snow depths/densities (for model calibration) and Operation IceBridge snow 

depths (for model validation). 

3.1 Atmospheric forcing  

We use snowfall data provided by the European Center for Medium Range Weather Forecast (ECMWF) ERA-

Interim (ERA-I) reanalysis. ERA-I is a global reanalysis that utilizes a 4D variational data assimilation scheme 20 
(Dee et al., 2011). We use the 12-hourly ERA-I snowfall data from August 15th 1980 to May 1st 1991 and August 

15th 2000 to May 1st 2015. We use the 0.75o x 0.75 o horizontal resolution data, which are summed to produce 

daily snowfall estimates across the Arctic. ERA-I snowfall data have been used in previous studies exploring 

snow accumulation over Arctic sea ice (e.g. Kwok and Cunningham, 2008; Blanchard-Wigglesworth et al., 

2018), while comparisons of reanalysis-derived precipitation data with coastal weather stations suggests ERA-I is 25 
one the better products available for Arctic studies (Serreze and Hurst, 2000; Lindsay et al., 2014). A more 

detailed comparison of snowfall/precipitation estimates over the Arctic Ocean has recently been carried out 

alongside this study (Boisvert et al., submitted), which we expect to build on in the future. 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-84
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 7 May 2018
c© Author(s) 2018. CC BY 4.0 License.



10 
 

Reanalysis Producer Resolution* Coverage 

ERA-Interim European Centre for Medium-Range 
Weather Forecasts (ECMWF)  0.75o x 0.75o  1979 - present (NRT, few months 

data latency) 

ASRv1 Various contributors, see Bromwich et 
al., (2016) 

30 km x 30 
km 2000 - 2012 

JRA-55 Japanese Meteorological Agency (JMA)  0.56o x 0.56o  1958 - present (NRT, few months 
data latency) 

MERRA NASA’s Global Modeling and 
Assimilation Office (GMAO) 0.5o x 0.66o 1979 - June 2016 

Table 2: Summary of the four different reanalysis datasets used in this study (data availability often subject to 
change/updates, information given at the date of submission). NRT: Near real-time. *different resolutions 
available in some cases. 

We explore the sensitivity of our results to the input snowfall data by forcing the model with snowfall estimates 

provided by three additional reanalysis-derived snowfall products. Unfortunately, not all reanalyses provide 5 
direct estimates of snowfall (and rainfall), and instead provide just total precipitation, e.g. the data from the 

widely used National Centers for Environmental Prediction (NCEP)-National Center for Atmospheric Research 

(NCAR) Reanalysis 1 and 2, so we focus our analysis on three other commonly used reanalyses that provide 

direct estimates of snowfall: the Japanese Meteorological Agency 55-year Japanese reanalysis (JRA-55); 

NASA’s Modern-Era Retrospective Analysis for Research and Application (MERRA); and the Arctic System 10 
Reanalysis, version 1 (ASRv1), as described below and summarized in Table 2.  

JRA-55: The Japanese Meteorological Agency (JRA) 55-year Japanese reanalysis (JRA-55) is a global 

atmospheric reanalysis that utilizes a 4-D variational assimilation system covering the period 1958 to present 

(Kobayashi et al, 2015). JRA-55 was developed as an improvement to their previous 25-year reanalysis (JRA-

25), which we do not include in this study. We use the daily JRA-55 snowfall data from August 15th 1980 to May 15 
1st 1991 and August 15th 2000 to May 1st 2015. The data were obtained from the National Center for Atmospheric 

Research's Research Data Archive at a horizontal resolution of 0.56o x 0.56o (~ 60 km), downscaled from the 

original 1.25 o  x 1.25 o  Gaussian grid. The data are being produced on a near real-time basis (2-6 month data 

latency). 

MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Application (MERRA) is a global 20 
reanalysis that utilizes a 3D variational data assimilation scheme within the Goddard Earth Observing System 

Data Assimilation System (GEOS-5) (Rienecker et al, 2011). We use the daily MERRA snowfall data from 

August 15th 1980 to May 1st 1991 and August 15th 2000 to May 1st 2015. The data are provided at a horizontal 

resolution of 0.5o (latitude) by 0.66 o (longitude). Note that an updated version of MERRA (MERRA-2) is also 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-84
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 7 May 2018
c© Author(s) 2018. CC BY 4.0 License.



11 
 

available, but is known to have a high precipitation bias compared to the other reanalyses (Boisvert et al., 

submitted) so we exclude this from our study.  

ASRv1: The Arctic System Reanalysis, version 1 (ASRv1) is a regional reanalysis based on the Weather Research 

and Forecasting model (Polar WRF) that utilizes a 3D variational data assimilation scheme and is adapted for the 

polar regions (Hines and Bromwich, 2008). The ASRv1 data are only available from 2000 to 2012, so we use the 5 
daily snowfall data from August 15th 2000 to May 1st 2012, which is provided at a horizontal resolution of 30 km 

x 30 km.  

Considering the expected importance and uncertainty of the reanalysis-derived snowfall for deriving snow depth, 

we also produce a synthesized snowfall dataset by taking the median snowfall across the gridded snowfall 

products, for each daily grid-cell (data referred to as MEDIAN-SF). We use the gridded ERA-I, JRA-55 and 10 
MERRA snowfall data, as these products all cover the longer-term (1980-2015) time period. 

NESOSIM also requires daily estimates of near-surface winds to drive the wind packing and wind loss terms, 

which we take from the ERA-I reanalysis for all reanalysis model runs. Jakobsen et al., (2012, Figure 2) show 

that ERA-I winds had the lowest biases of several reanalysis-derived near-surface wind estimates compared to 

TARA drifting station data. We compute the magnitude of the winds from the six-hourly u/v vectors before 15 
averaging to produce a daily (gridded) wind magnitude dataset.  

We linearly interpolate all the daily snowfall (and ERA-I wind magnitude) estimates onto our 100 km x 100 km 

polar stereographic model domain.  

3.2 Satellite derived ice drift data 

We primarily make use of the daily Polar Pathfinder ice drift data, version 3 (Tschudi et al., 2016) made available 20 
through the National Snow and Ice Data Center (the product is referred to herein as NSIDCv3). A daily ice drift 

is calculated using a cross-correlation technique applied to sequential daily satellite images acquired by passive 

microwave satellite sensors (i.e. a one day lag in parcel tracking) which are blended via optimal interpolation 

with estimates from the International Arctic Buoy Programme (IABP) and wind data from the National Centers 

for Environmental Prediction (NCEP)-National Center for Atmospheric Research (NCAR) Reanalysis. The data 25 
are available daily from October 1978 through February 2017 (at the time of writing) at a horizontal resolution of 

25 km x 25 km. In this study we use the daily data from August 15th 1980 to May 1st 1991 and August 15th 2000 
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to May 1st 2015. We grid the daily ice drift data onto our 100 km model domain (using linear interpolation) and 

smooth the data using a simple Gaussian filter (as in Holland and Kimura, 2016 and Petty et al., 2018). 

Recent studies have explored the uncertainty in satellite-derived ice drift data (Sumata et al., 2014) and errors 

introduced by the NSIDC interpolation methodology (Szanyi et al, 2016). We thus also explore the sensitivity of 

the model results to the input ice drift data by forcing the model with ice drift estimates provided by three 5 
additional satellite-derived ice drift products, as described below and summarized in Table 3. 

Product  Resolution Daily lag Data source Coverage Availability 

NSIDCv3 25 km 1 day AVHRR, SMMR, SSM/I , 
AMSR-E,IAPBs, NCEP-R1 

October 1978 - Feb 
2017 Public 

OSI-SAF 62.5 km 2 days ASCAT* October 2010 - present Public/NRT 

KIMURA 60 km 1 day AMSR-E, AMSR-2 Jan 2003 - Sep 2011 /  
July 2012 - Dec 2016 On request 

CERSAT 62.5 km 3 days ASCAT* January 2007 - 
present? Public/NRT 

Table 3: Summary of the different ice drift datasets used in this study based on information obtained at the time 
of submission. *These agencies produce drift datasets using different individual/combinations of satellite sensors 
not utilized in this study. NRT: Near real-time. 

OSISAF: The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) produce a 10 
number of low-resolution sea ice drift products from satellite passive microwave sensors and scatterometry 

(Lavergne, 2010). Here we use the merged ice drift product, which increases coverage and reliability over their 

single sensor drift products (Lavergne, 2010). The merged drift product uses a 2 day lag in ice parcel tracking and 

a Continuous Maximum Cross Correlation (CMMC) method to optimize the drift product, and is available daily 

(October through April) since 2010 at a horizontal resolution of 62.5 km x 62.5 km. 15 

CERSAT: The Centre ERS d’Archivage et de Traitement (CERSAT), part of the Institut Français de Recherché 

pour l’Exploitation de la Mer (IFREMER) produce a number of ice drift datasets by merging various 

combinations of satellite passive microwave and scatterometry data (Girard-Ardhiun and Ezraty 2012). Here we 

use data produced from the merging of Advanced Scatterometer (ASCAT) and the Special Sensor Microwave 

Imager (SSMI) data, which are available daily (September to May) since 2007 at a horizontal resolution of 62.5 20 
km x 62.5 km. Note that CERSAT provide data using both a 3 and 6 day lag in the tracking of ice displacement, 

but we use the 3 day lag data as this is closest to the 1 day lag used by the NSIDCv3 product.  
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KIMURA: The KIMURA drift data are produced using brightness temperatures obtained by the Advanced 

Microwave Scanning Radiometer for EOS (AMSR-E) from January 2003 to September 2011 and the Advanced 

Microwave Scanning Radiometer 2 (AMSR-2) from July 2012 to December 2016 using a cross-correlation 

approach (see Kimura et al., 2013 for more details). Wintertime (November-December, January-March) ice drifts 

are derived using the 36-GHz channel, while the summertime drifts used in this study (August-October, April) 5 
are derived using the 18-GHz channel, to maximize the reliability and coverage of the data. The data are provided 

at a 60 km x 60 km horizontal resolution.  

We use data from these three additional products from August 15th 2010, 2012, 2013 and 2014 to May 1st of the 

subsequent years, a period of coincident data coverage across the four drift products (including NSIDCv3). We 

linearly interpolate all the daily drift datasets onto the 100 km x 100 km polar stereographic model domain used 10 
in this study. As highlighted above, not all the products produce drift estimates in August, or even September, so 

for those products we assume no ice drifts through this period. To investigate the importance of ice drift, we also 

run the model assuming no ice drift for the entire model simulation (NODRIFT), as discussed in more detail later.  

3.3 Sea ice concentration 

We use the daily Bootstrap sea ice concentration (SIC) data, version 3 (Comiso, 2000 updated 2017), which are 15 
produced from passive microwave brightness temperature estimates and made available through the NSIDC. We 

choose to primarily use the Bootstrap over, for example NASA Team data (Cavalieri et al., 1996 updated 2017), 

another commonly used SIC dataset, as Bootstrap SIC data are less sensitive to surface melt, producing higher 

concentrations in general. We use the NASA Team data in a sensitivity study to explore the sensitivity of the 

model to this choice of sea ice concentration data. Due to differences in satellite orbit and sensor characteristics, 20 
the SIC data feature a time-varying pole hole depending on the passive microwave sensor used. As we require 

consistent SIC data across the pole hole, we follow the approach of Petty et al., (2018) and apply a mean SIC 

calculated in a 0.5o halo around the variable pole hole to all grid cells within the pole hole. The data are provided 

at a 25 km x 25 km resolution polar stereographic grid from 1978 through 2016, and we use the daily data from 

August 15th 1980 to May 1st 1991 and August 15th 2000 to May 1st 2015. We linearly interpolate the daily SIC 25 
data onto our 100 km x 100 km model domain. Note that a gap in the passive microwave record exists from 

December 3rd 1987 to January 13th 1988, so we do not run the model through the 1987-1988 winter period.  
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3.4 Soviet station data and initial conditions  

We use in-situ snow data collected on the former Soviet Union's drifting ice stations for initial model calibration 

and to help guide our choice of initial conditions  (Radionov et al., 1997; Warren et al., 1999; Fetterer and 

Radionov, 2000). The drifting ice stations were in operation in 1937 and 1954-1991, although in this study we 

use the field observations collected from 1980-1991 due to the temporal overlap with the model forcing data. 5 
During the drifting ice stations, snow depth data were collected every 10 days in 10 m intervals along a 500 m or 

1000 m survey line. Snow density measurements were made every ~100 m along the same survey lines, and 

atmospheric conditions were recorded at near-daily frequencies. Despite their limited spatial coverage, these data 

provide the most complete record of snow and atmospheric conditions to date over the Arctic sea ice pack.  

Initial conditions: We initialize the model on August 15th of each year with a snow depth representing the fraction 10 
of snow assumed to have survived the summer melt season and/or accumulated during summer. The August 

snow depth climatology compiled by Warren et al., (1999, referred to herein as W99) from the Soviet station data 

suggests significant amounts of snow (up to 10 cm) are present in late summer, especially over the Central Arctic 

sea ice north of Greenland. This inclusion of an initial snow depth was also guided by our preliminary model 

calibration studies that showed that including these initial conditions provided a better match with the seasonal 15 
snow depths observations (calibrations presented later). To produce initial mid-August snow depths, we use a 

near-surface air temperature-based scaling of the August W99 snow depth climatology to account for changes in 

the duration of the summer melt season (e.g. Markus et al., 2009). Briefly, we calculate the annual number of 

days with continuous, above-freezing, air temperatures (taken from the ERA-I reanalysis), which we refer to here 

as the summer melt duration. To create an initial (August) snow depth estimate for a given year, we linearly scale 20 
the W99 August snow depth climatology based on the summer melt duration of the chosen year and the 

climatological summer melt duration given in Radionov et al., (1997). If the melt duration is longer than the 

climatological mean in a specific region, the scaled August climatology reflects a reduction in snow depth in 

August due to the longer melt season. The snow depth is then distributed evenly over the 'old' and 'new' snow 

layers based on the climatological observations that some snow persists through summer (Radionov et al., 1997), 25 
and the occurrence of summer snowfall events (Radionov et al., 1997; Perovich et al., 2017). While admittedly 

this is a crude approach for parameterizing an initial snow depth, our sensitivity studies demonstrated that initial 

conditions were necessary to improve the comparison with the drifting station observations (as presented and 

discussed in the following section), and indicate that late summer snowfall events might play a significant role in 

establishing the snow cover on Arctic sea ice prior to the fall/winter season (Warren et al., 1999). The August 30 
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W99 snow depth climatology and temperature scaled initial snow depth estimates (for 2012 and 2013) are shown 

in Figure  2.  

 
Figure 2: (left) Warren climatology of August snow depth, (middle and left) the initial conditions used in this 
study (broadly representing the snow volume as of August 15th) for 2012 and 2013 respectively, calculated using 5 
near-surface air temperature scaling. 

Model calibration: For our model calibration we use the raw snow depth and density data from the Soviet drifting 

stations 25, 26, 30 and 31. The data represent the average of a given survey line. The majority of survey lines 

remained constant each time they were sampled, so the dataset is a near-continuous time-series with a 10-day 

temporal resolution. Most survey lines were 1000 m in length, although in the earlier part of the historical record 10 
(e.g., before the 1980s), some ice stations had survey lines that were 500 m in length. Maps of the drifting 

stations are given in the supplementary information (Figure S3). Briefly, Station 25 drifted from the Central 

Arctic to the East Siberian Sea providing data from autumn 1981 to spring 1984, Station 26 drifted around the 

north of the East Siberian Sea providing data from autumn 1983 to spring 1984, Station 30 drifted around the 

north of the East Siberian Sea providing data from autumn 1988 to winter 1991, and Station 30 drifted around the 15 
Beaufort Sea providing data from winter 1989 to winter 1991. We use a simple nearest neighbor algorithm to 

match the data to the nearest model grid-cell for the relevant day the drifting station data were collected.  

3.5 NASA’s Operation IceBridge data 

We compare our NESOSIM snow depth estimates with spring snow depths collected by NASA’s Operation 

IceBridge (OIB) airborne mission. NASA’s OIB mission began collecting airborne observations of the polar 20 
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regions in 2009, bridging the gap between NASA’s Ice, Cloud, and land Elevation Satellite (ICESat) mission 

which retired in 2009, and the future ICESat-2 mission scheduled for launch in the summer of 2018 (Markus et 

al., 2017). The OIB aircraft carry a suite of instruments designed to measure both land and sea ice, including their 

overlying snow cover. Here we primarily make use of snow depth estimates derived from the ultra-wideband 

Snow Radar (Panzer et al., 2013), which are available at a 40 m along-track resolution. Various algorithms have 5 
been developed to produce snow depth estimates from the OIB Snow Radar data (Kwok et al., 2017), with the 

products showing broad agreement in the regional snow depth distributions, but significant intraregional and 

interannual differences, due primarily to changes in the radar configuration and algorithm tuning. To account for 

these differences we use the snow depth data from the (i) Snow Radar Layer Detection (SRLD) (Koenig et al., 

2016), (ii) NASA Goddard Space Flight Center (GSFC) (Kurtz et al., 2013) and (iii) Jet Propulsion Laboratory 10 
(JPL) (Kwok and Maksym, 2014; Kwok et al., 2017) snow depth products, that have produced, and made 

available, snow depth estimates at a 40 m along-track resolution from 2009 to 2015. We bin the 40 m OIB snow 

depth data onto our 100 km model grid and keep only the grid cells that included a significant quantity (> 1000 

points) of the raw snow depth data. The OIB data are provided for various days through spring of the relevant 

campaign (data from mid-March to early-May, depending on the campaign year), so we grid the OIB data daily, 15 
and compare this with coincident (daily) NESOSIM snow depth estimates. The OIB data are collected mainly 

over the western Arctic sea ice, limiting our validation effort to this region of the Arctic. 

4 Model calibration and analysis 

We carried out initial model calibration over the period Aug 15th 1980 - May 1st 1991 due to the coincident Soviet 

station data available during this period. As noted previously, this excludes the 1987-1988 winter season due to 20 
the lack of complete sea ice concentration data available during this period. As stated earlier, our initial 

calibration efforts involved manually tuning NESOSIM to improve the general fit with the mean seasonal snow 

depth/density cycles shown in the Soviet station data. Specifically, we included the temperature-scaled initial 

August snow depths and tuned both the wind packing coefficient, α (Eq. 5), and blowing snow coefficient, 𝛽 (Eq. 

6). We decided against a more optimized calibration effort due to limitations in the calibration data, i.e. its sparse 25 
availability in space/time and differences in spatial scales. We instead used the drifting station data to guide our 

model choices to achieve a more realistic seasonal cycle in snow depth and density.  
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Figure 3: Comparison of NESOSIM snow depth (left) and snow density (right) data with drifting station data 
collected between 1981 and 1991. The top panels show the mean seasonal evolution of the snow depth and 
density for the model (blue) and Soviet station data (black), with the data binned into the different months the 
data were collected. The shaded area represents one standard deviation from the annual monthly mean. The 5 
bottom panels show scatter plots of all points for which there were temporal crossovers. The r-values indicate the 
correlation coefficient, while the colors indicate the different stations that collected the data. The NESOSIM data 
are from the default/ERA-I model configuration. 

In Figure 3 we show comparisons of our NESOSIM results using the default model configuration (summarized in 

Table 1) and ERA-I snowfall forcing with the drifting station snow depth and density data. Figure 3 shows both 10 
the mean seasonal cycle based on all drifting station data points and coincident model grid cell values over this 

time period binned monthly, and the correlations of snow depth and snow density for all coincident data 

(described in Section 3.4). Our calibrated NESOSIM results capture extremely well the mean seasonal drifting 

station snow depth (r = 0.96 with a low bias of ~3 to 7 cm) and snow density (r = 0.97, no significant seasonal 

bias). The large spread in the in-situ snow density in September-October is due to the survival of snow through 15 
the summer melt season (high density) and recent autumn snowfall (low density). The correlations between the 
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raw drifting station data and NESOSIM snow depths are lower, but still strong (r = 0.74), while the snow density 

correlation strength is more moderate (r = 0.58), suggesting the model may be better capturing regional 

variability in snow depth over snow density. It should be noted, however, that snow density is highly variable in 

space and subject to large measurement uncertainties when collected in situ (Sturm, 2009). In general, the 

moderate/high correlations and seasonal comparisons provide confidence in the utility of NESOSIM for 5 
estimating snow depths across the Arctic.  

 
Figure 4: Differences between the mean (1980-1991) seasonal cycles in the drifting station data against various 
configurations of NESOSIM. The different symbols represent different levels of model sophistication, ⍴-W99: 
climatological Warren snow density, ⍴-2lyr: default prognostic two-layer snow density, WP: wind packing 10 
parameterization, BSL: blowing snow loss parameterization, IC: initial conditions. The different colours then 
represent a doubling of individual model parameters, with all other settings fixed to the default settings (see Table 
1). The black crosses/line represents the default/ERA-I results (as shown in Figure 3).  

In Figure 4, we highlight the sensitivity of NESOSIM to the chosen model configuration/sophistication, broadly 

representing the heuristic model tuning that was undertaken. First we tested the results of NESOSIM with 15 
different combinations of the various model parameterizations included.  Note that as discussed at the end of 

Section 2, when we turn off the wind-packing parameterization the model essentially becomes a one layer model 

so we use a fixed Warren et al., (1999) seasonal snow density climatology (constant density value across the 
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Arctic). As this is based on the same drifting station data we compare our results to, it is perhaps unsurprising that 

this configuration provides a better match with the seasonal drifting station snow depth cycle, including deeper 

snow depths (and reduced low snow depth bias) from November to April. We chose to develop NESOSIM to 

allow for the production of snow depths that agree well with the old drifting station snow climatology, but able to 

also respond to the expected interannual variability and trends in Arctic climate over recent decades, hence the 5 
decision to develop and include more advanced density parameterizations.  

Including the blowing snow loss parameterization resulted in slightly lower snow depths (~2 cm) but no 

significant change in snow density. As the drifting station data are collected primarily within the Central Arctic, it 

was expected that including blowing snow loss would not result in significant differences, as this 

parameterization is expected to provide more of an impact in the marginal ice zone, where unfortunately in-situ 10 
snow depth data are lacking. Including the initial snow depths resulted in a small increase in snow depth and 

density, especially earlier in the seasonal cycle, as expected, reducing the low bias compared to the drifting 

station data. The seasonal correlations were similarly high across these model configurations, highlighting the 

primary role of the model configuration choices in determining the general bias of the seasonal snow 

depth/density cycle. 15 

As a simple demonstration of the sensitivity of the model to the relatively unconstrained model parameters 

introduced in NESOSIM (the wind packing threshold, ω, the wind packing coefficient, α, the blowing snow loss 

coefficient, β), Figure 4 also shows results from NESOSIM with these three model parameters individually 

doubled (based on the default/ERA-I configuration). Doubling the wind packing threshold, ω, (from 5 to 10 m/s) 

has a large impact on both the snow depth and density. By essentially reducing the likelihood for wind packing to 20 
occur, the snow accumulates and remains in the fresher 'new' snow layer for longer, significantly reducing the 

bulk snow density and increasing the seasonal snow depths. While this does produce snow depths that appear to 

agree well with the drifting station data, the low bias in the seasonal snow density suggest this is unphysical. 

Doubling the wind packing coefficient, α, (from 0.05 to 0.1) has broadly the opposite effect, as expected, 

reducing the snow depths by increasing the transfer of snow from the fresher 'new' snow layer to the denser 'old' 25 
snow layer. Doubling the blowing snow loss coefficient, β, (from 0.025 to 0.05) has a negligible impact, again 

likely due to the location of the in-situ data away from the lower concentration ice regimes where this process is 

more significant. 
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As stated earlier, the differences in spatial scales and data coverage (time and space) make interpreting these 

comparisons/calibrations challenging. Specific model configurations may be required based on user demands, 

and our expectations is for these calibrations to evolve as new calibration data are made available and physical 

parameterizations introduced/updated. Note that we also compared the simulations of NESOSIM forced by the 

MERRA and JRA-55 snowfall data (Figures S2 and S3 provided in the Supplementary Information). In general 5 
the seasonal correlations with the drifting station data were similar to the ERA-I results, but the correlations of 

the raw data were slightly lower for JRA-55 (r = 0.69 for snow depth and r = 0.58 for snow density) and 

significantly lower for MERRA (r = 0.44 for snow depth and r = 0.57 for snow density).  

As discussed in Section 3.1, we also produced a synthesis snowfall dataset (MEDIAN-SF) using the median 

snowfall across the gridded ERA-I, JRA-55 and MERRA datasets. The MEDIAN-SF forced results are similar to 10 
the ERA-I results, in general, and show correlations similar to ERA-I and JRA-55 (r = 0.68 for snow depth and r 

= 0.58 for snow density). The MEDIAN-SF seasonal snow depths have a reduced low bias compared to the ERA-

I results, although this difference is small. For the rest of this analysis we choose to mainly focus on the 

MEDIAN-SF forced results using the default configuration (Table 1) as we expect these results to be less prone 

to errors in the individual reanalyses and more reliable in regions/periods of challenging (e.g. heavy) snowfall. 15 
We provide a further assessment of the impact of the snowfall data in the following regional analysis and when 

we analyze the regional distributions across the more recent (2000-2015) time period. 

4.1 Regional analysis 

Here we provide a more detailed assessment of the regional NESOSIM results during this early Soviet station 

period (1980-1991). We focus our analysis on the Arctic Ocean (AO, everything north of 60 oN) and three 20 
specific regions that were chosen to represent different components of the Arctic sea ice/climate system: (i) the 

Central Arctic (CA, captures the thicker/multi-year ice over north of Greenland), (ii) the Eastern Arctic (EA, the 

increasingly first-year ice dominated sea ice regime), (iii) North Atlantic (NA, a region influenced by the 

transpolar ice drift and the North Atlantic storm track), as shown in Figure 5. 
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Figure 5: Map of the Arctic model domain and regions used in this study: AO: Arctic Ocean, CA: Central Arctic, 
EA: Eastern Arctic, NA: North Atlantic. BS: Bering Sea, LS: Labrador Sea are peripheral seas discussed in the 
manuscript. 

Figure 6 shows the seasonal snow depth and density evolution across our four study regions for the 1980-1991 5 
time period, using the default/MEDIAN-SF configuration (Table 1). The AO and CA region especially show 

strong initial increases in snow depth through fall (August to October) with the snow depth increasing at a slower 

rate from November to May, which is in good agreement with the W99 climatology. The EA and NA regions 

show a more uniform increase in snow depth from August to April. The NA region shows more daily snow depth 

variability, which was expected due to the strong ice drifts and the location of the NA storm track where passing 10 
cyclones can deposit large quantities of snow in a short period of time. By May 1st the mean snow depths (and 

interannual variability, calculated as one standard deviation of the annual values) are given as: 29.8 +/- 2.2 cm 

(AO),  32.6 +/- 5.2 cm (CA),  27.3 +/- 2.8 cm (EA), 40.7 +/- 6.9 cm (NA).  
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Figure 6: Seasonal snow depth (black) and bulk density (green) evolution across the four study regions (shown in 
Figure 3), initiated from August 15th 1980-1990 and run until May 1st of the following year using the MEDIAN-
SF/parameter settings (Table 1). The thick lines show the mean values over this time period, while the shaded 
areas represent the interannual variability (one standard deviation).  5 

We see stronger increases in the bulk snow density through fall across all regions (also shown in Figure 4), with 

this density increase slowing through winter/spring, especially in the CA region, after December. The AO, CA 

and NA regions also show an interesting initial decrease in snow density, which is driven by the accumulation of 

new snow (with a lower density) compared to the equal mix of old and new snow densities included in our initial 

conditions. The mean bulk snow densities as of May 1st are given as: 312 +/- 2 kg/m3 (AO),  326 +/- 4 kg/m3 10 
(CA),  314 +/- 6 kg/m3 (EA), 318 +/- 3 kg/m3 (NA). 

In Figure 7 we show the seasonal/regional snow depths from NESOSIM forced by the four different reanalysis-

derived snowfall estimates (ERA-I, JRA-55, MERRA and MEDIAN-SF), as described in Section 3.1. In general, 

the results show significant differences in the seasonal snow depths across all regions (up to ~10 cm across all 

regions). The rankings of snow depth between the different products is broadly consistent across the four regions, 15 
with JRA-55 and MERRA producing consistently higher snow depths (except in the EA region where MERRA 

produces slightly higher snow depths), and ERA-I consistently lower. The MEDIAN-SF snow depths are, in 

general, slightly higher than the ERA-I forced snow depths. In the CA region we can see that MERRA, ERA-I 

and MEDIAN-SF forced results are all broadly similar, with JRA-55 significantly higher (by ~5 cm from October 

onwards). It is thus expected that the MEDIAN-SF snowfall data will have excluded much of the high JRA-55 20 
snowfall data (the benefits of using a median instead of a mean snowfall). Despite the NA region having the 
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highest snow depths and interannual variability, the intra-reanalysis spread is similar to the other regions. The 

results further allude to the MEDIAN-SF dataset being a useful tool for producing estimates of snow depth 

considering the large uncertainty in reanalysis-derived snowfall. We further analyze the reanalysis sensitivity in 

the following section. 

 5 
Figure 7: Seasonal snow depth evolution across the four study regions (shown in Figure 7), initiated from August 
15th 1980-1990 and run until May 1st of the following year, forced by four different reanalysis snowfall products. 
The thick lines show the mean (daily) regional snow depths over this time period, while the shaded areas 
represent interannual variability (one standard deviation). All model runs use the default forcings/parameter 
settings.  10 

4.2  Budget analysis 

Here we discuss the relative contributions to the seasonal snow depth evolution from the various snow budget 

terms currently included in NESOSIM, focusing on the old time period results presented thus far. Results of the 

various NESOSIM budget terms and the total snow depth/volume and bulk density are shown in Figure 8 across 

our four study regions. The black (green) lines/shading that represent the snow depth (bulk density) are the same 15 
as the results shown in Figure 6.  

Across the AO region, we see that accumulation is higher than snow depth, as expected (higher by ~25 cm by 

May 1st, around double the May 1st snow depth), with wind packing (~18 cm) and wind blowing snow lost to 

leads (~9 cm), providing significant sinks of snow. In the EA and CA region especially, the blowing snow loss 

term is negligible, while in the NA region it is more significant (contributes a sink of ~18 cm by May 1st). The 20 
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NA region also shows a small (~2 cm) increase in snow depth driven by snow/ice convergence and a seasonally 

variable change in snow depth from ice/snow advection.  

 

Figure 8: Seasonal snow budget evolution across the four study regions (shown in Figure 5), initiated from 
August 15th 1980-1990 and run until May 1st of the following year using the default/MEDIAN_SF NESOSIM 5 
simulations. The thick lines show the mean, daily, regional values over this time period, while the shaded areas 
represent the interannual variability (one standard deviation).  

To further explore the different budget terms we also show maps of the various budget terms as of May 1st over 

the same 1981-1991 time period, as shown in Figure 9. The maps highlight that many of these terms, especially 

the ice/snow dynamics (advection and convergence), exhibit high spatial variability, which the regional means 10 
discussed previously mask. For example, the NA region shows a strong mix of positive snow advection and 

convergence adjacent to the coast of Svalbard (i.e. snow is drifting into the region and is constrained against the 

coastline), but an advection out of the region further to the north as the ice either drifts down towards 

Svalbard/Fram Strait or into the Central Arctic.  

The bimodal ice dynamic behaviour around the pole is thought to be spurious considering interpolating issues 15 
across the pole hole in the NSIDCv3 drift product (Szanyi et al, 2016), one reason why we did not include this 

region in our regional analysis. In the following section we assess the sensitivity of our results to the input ice 

drift dataset, which will provide some further information as to the reliability of these dynamic budget terms. 
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Figure 9: Snow budget terms as of May 1st, averaged over the 1981 to 1991 time period. The black lines show 
the four study regions used throughout this study. All model runs used the default forcings/parameter settings. 
Note the different color bar scales in panels (h) to (k). 
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4 Sensitivity studies and model validation 

Here we present and analyze the NESOSIM results from 2000 to 2015, a period broadly defined as the New 

Arctic considering the rapid sea ice declines during this time period (e.g. Serreze and Stroeve, 2015). This period 

also covers the temporal range of NASA's ICESat (2003 to 2008) and ESA's CryoSat-2 (2010 onwards) satellite 5 
altimetry missions, meaning the snow depth/density results presented here are planned to be of more relevance to 

those estimating sea ice thickness from these freeboard measurements. The period also includes temporal overlap 

with the ASR forcing data, and various satellite-derived ice drift products used. Results from NESOSIM forced 

with the MEDIAN-SF snowfall forcing and default settings from 2000 to 2015 are shown in Figure 10. 

 10 
Figure 10: As in Figure 6 but for the simulations initiated from August 15th 2000-2014 and run until May 1st of 
the following year. The simulations all use the default/MEDIAN-SF configuration. 

The seasonal cycles over this New Arctic period are similar to the old period, but generally feature slightly 

reduced snow depths. The mean (2001-2015) May 1st snow depths are: 27.3 +/- 1.9 cm (AO),  31.5 +/- 4.0 cm 

(CA),  23.0 +/- 2.9 cm (EA), 41.8 +/- 8.1 cm (NA) while the mean May 1st bulk snow densities are:  309 +/- 2 15 
kg/m3 (AO),  323 +/- 4 kg/m3 (CA),  311 +/- 3 kg/m3 (EA), 318 +/- 6 kg/m3 (NA). The May 1st snow depth 

results are summarized in Table 4, to aid comparison with the snow depths produced in the following sensitivity 

studies. In the CA region, we see a more gradual increase in snow depth through fall compared to the old time 

period, while in the EA region we see an interesting decline in snow depth through September/October, which 
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was not present in the old period except for the small period of constant snow depth at the start of October. While 

the NA region shows a similar snow depth as of May 1st between the two time periods, the new time period 

shows deeper snow depths in fall and winter. The results allude to strong regional variability in snow depth 

across the Arctic Ocean. A more detailed study accounting for differences in the input forcing data is likely 

needed before any conclusions can be made regarding potential trends in seasonal Arctic snow depths, which is 5 
beyond the scope of this paper. We hope to explore trends in our simulated snow depths in future work, however.  

 May 1st snow depth (cm) 

NESOSIM configuration  Arctic Ocean 
(AO) 

Central 
Arctic (CA) 

Eastern Arctic 
(EA) 

North Atlantic 
(NA) 

2001-2015 (ERA-I) 25.0 (1.7) 30.4 (4.1) 21.7 (2.5) 37.9 (7.3) 

2001-2015 (MERRA) 30.0 (2.6) 31.3 (3.1) 25.5 (3.6) 44.9 (9.0) 

2001-2015 (JRA-55) 31.5 (1.9) 37.1 (4.7) 25.1 (3.2) 49.5 (9.5) 

2001-2015 (MEDIAN-SF) 27.3 (1.9) 31.5 (4.0) 23.0 (2.9) 41.8 (8.1) 

2001-2012 (ASRv1) 21.0 (1.4)  23.3 (3.2)  16.4 (2.7)  36.9 (5.4)  

2011-2015* (MEDIAN-SF/ NSIDCv3) 26.2 (2.2) 32.2 (4.6) 22.7 (3.5) 39.2 (9.0) 

2011-2015* (MEDIAN-SF/OSISAF) 25.8 (2.1) 32.6 (3.8) 23.2 (3.6) 38.1 (9.5) 

2011-2015* (MEDIAN-SF/KIMURA) 25.3 (2.2) 32.7 (4.3) 21.0 (3.5) 38.3 (10.5) 

2011-2015* (MEDIAN-SF/CERSAT) 25.9 (2.1) 32.8 (3.9) 23.0 (3.6) 37.7 (9.9) 

2011-2015* (MEDIAN-SF/NODRIFT) 26.8 (2.2) 32.2 (2.9) 24.6 (3.9) 33.9 (10.2) 

2001-2015 (MEDIAN-SF, NASA Team) 22.6 (1.7) 27.4 (4.1) 19.8 (2.7) 34.1 (7.7) 

Table 4: Mean snow depths as of May 1st across the four study regions (rows, regions given in Figure 5) for 
different NESOSIM using different forcings and time periods (columns). The numbers in brackets represent 
interannual variability and are calculated as one standard deviation of the annual values. *Note that these 2011-
2015 ice drift sensitivity runs exclude the 2012-2013 winter season due to the lack of KIMURA drift data.  10 

5.1  Reanalysis sensitivity 

In Figure 11 we show the seasonal/regional snow depths from NESOSIM forced by the four different reanalysis-

derived snowfall estimates over this new time period. We use the same reanalyses shown in the old time period 

sensitivity test (ERA-I, JRA-55, MERRA and MEDIAN-SF) but also include the ASRv1 forced results which are 

available during this period, but only up to 2012.  The various reanalysis forced May 1st results are summarized 15 
in Table 4.  
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Figure 11: As in Figure 7 but for the simulations initiated from August 15th 2000-2014 and run until May 1st of 
the following year. This figure also includes results using the ASRv1 forced simulations (which are limited to 
Aug 15th 2000 to May 1st 2012). 

In general, the results show similar sensitivity to the input snowfall data compared to the old time period results. 5 
The rankings of snow depth between the different products is also similar, except for the EA region, where 

MERRA now shows a clear high snow depth bias compared to the other forced simulations. The ASRv1 forced 

snow depths in the AO, CA and EA regions are significantly lower during the December-April time period, 

despite showing strong similarities to the other reanalysis-forced results in August to November. The ASRv1 

results in the NA region however, are very similar to the ERA-I forced results. Note that we tested the impact of 10 
the different time periods by producing the same figure for the 2000-2012 period (not shown) which showed that 

the differences between ASRv1 and the other products was similar and not sensitive to this time period 

difference. 
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Figure 12: Modeled snow depth on May 1st (averaged over May 1st 2001 to 2015), using the MEDIAN-SF 
snowfall forcing (top left) and then the difference to the simulations forced by the four different snowfall 
products (bottom and top right). The ASRv1 forced results are limited to May 1st 2012.  

Figure 12 shows maps of the mean snow depths on May 1st over the same 2001-2015 time period, for the model 5 
simulations forced by the MEDIAN-SF snowfall then the differences from this MEDIAN-SF simulation using the 

four individual snowfall products. The maps highlight the regional variability across the products, but consistency 

in the MERRA/JRA-55 (ASR) high (low) bias compared to MEDIAN-SF. The JRA-55 and MERRA forced 

results both show significantly higher (10-20 cm) snow depths through Bering Strait, the NA/Fram Strait region, 

and the southern Labrador Sea. The ERA-I results show slightly lower snow depths over most of the Arctic, small 10 
increases around the Canadian Archipelago, and larger decreases in the Fram and Bering Strait region, driven by 

the larger differences in these regions in the MERRA/JRA-55 forcings. The magnitude of the precipitation events 

in Fram Strait are highly variable, due to the active storm track and the resulting difficulties of producing reliable 

precipitation rates during these events. As discussed in the old time period section, it is challenging to determine 
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from this study any particular reanalysis-derived snowfall dataset that might be more appropriate (or an obvious 

outlier) for producing accurate snow depth estimates across the Arctic. However the MEDIAN-SF forced results 

appear to provide a useful synthesis of the available  snowfall data. 

The regional snow budget results and May 1st budget maps using the default/MEDIAN-SF simulations are 

similar to the figures presented for the old time period (Figures 8 and 9) and are thus provided in the 5 
Supplementary Information (Figure S4 and S5). The noteworthy differences in the budget terms include a more 

significant increase in blowing snow lost to leads in the CA region and increases in convergent driven snow depth 

increases in the new period, although accumulation and wind packing still dominate the budget terms for both 

periods. The NA region also includes an interesting advection-driven reduction in snow depth in March/April that 

was not present in the old time period results. 10 

5.2  Ice drift sensitivity 

The newer time period allows us to explore the sensitivity of NESOSIM to the input satellite-derived ice drift 

data due to the coincident data products available during this period. Here we show results from the 

default/MEDIAN-SF configuration forced by four different satellite-derived ice drift products: NSIDCv3, 

KIMURA, CERSAT and OSISAF, as described in Section 3.2. Due to limitations in the temporal coverage of the 15 
different drift datasets, the model is only run for four years initialized from Aug 15th 2011-2015 (excluding 2012 

initialized runs as KIMURA data are not available due to gaps in the AMSR-E/AMSR2 record). The regional 

snow depth estimates from NESOSIM forced by these four ice drift products are shown in Figure 13, with the 

May 1st results summarized in Table 4. In general, the ice drift sensitivity study shows a smaller spread in the 

mean snow depths across the different products (up to ~3.5 cm), compared with the reanalysis sensitivity study 20 
(up to ~14 cm). We also show results of NESOSIM forced with no ice drift (NODRIFT), which demonstrates that 

including ice drift appears not to be a crucial process for capturing the regional variability in snow depths, i.e. ice 

dynamics appear to be a clear second order term compared to snowfall when presented at this regional scale. The 

most obvious impact of ice drift is in the EA region, where the inclusion of ice drift reduces the snow depth by a 

few centimeters, with the magnitude depending on the ice drift product chosen (the KIMURA forced results 25 
shows the biggest decrease in this region).  
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Figure 13: Seasonal snow depth evolution across the four study regions (shown in Figure 3), initiated in August 
15th 2010, 2012, 2013, 2014 and run until May 1st of the following year, forced by four different ice drift datasets 
and assuming no ice drift (NODRIFT). The thick lines show the mean (daily) regional snow depths over this time 
period, while the shaded areas represent interannual variability (one standard deviation). All model runs use the 5 
default/MEDIAN-SF parameter settings.  

Figure 14 shows maps of the snow depths  averaged on May 1st over the same 2011-2015 time period,  for the 

model simulations assuming no drift (NODRIFT) then the differences from this NODRIFT simulation using the 

various ice drift products. In general, the results show strong similarity in the spatial impacts of ice drift, 

including strong decreases in snow depth (up to ~10 cm) in the northeastern sector of the Arctic, and increases 10 
(up to ~10-20 cm) in the region directly north and west of Svalbard. There are clear differences between the 

different ice drift results though, with the NSIDCv3 and KIMURA forced results showing more of an impact on 

snow depth in the peripheral Arctic regions, e.g. strong decreases in the north and increases in the south Bering 

Strait, and strong increases in the Labrador Sea. This is thought to be driven primarily by the increased spatial 

coverage of these data compared to OSI-SAF and CERSAT, which may be masking some of the ice drift data in 15 
these regions of low ice concentration and uncertain ice drift. The maps also highlight that at more local scales, 

the ice dynamic contribution to snow depth variability could be significant. The data around the pole hole are also 

questionable in some of the products and may be related to interpolation issues across the pole hole. More 

specifically, the NSIDCv3 and OSISAF forced simulations show increases in snow depth at the north pole, which 

are not apparent in the CERSAT and KIMURA simulations, suggesting this increase is likely spurious.  20 
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Figure 14: Modeled snow depth on May 1st (averaged over May 1st 2011, 2013, 2014, 2015), assuming no ice 
drift (NODRIFT, top left) and then the difference to the simulations forced by the four different ice drift products 
and the mean snow depth from the four different forced model runs. 

In general, Figures 13 and 14 suggest that the NSIDCv3 (Polar Pathfinder) forced simulations exhibit no obvious 5 
biases compared to the results using the other drift products, except for the issues of spurious snow depths within 

the pole hole. Note that another reason for exploring the ice drift products was to understand any potential biases 

if one of the near real-time products (e.g. OSI-SAF, CERSAT) were used to run NESOSIM in a near real-time 

framework, which does not appear to be the case. 

5.3  Ice concentration sensitivity 10 

Finally we present and discuss the snow depth results from NESOSIM driven by two different satellite-derived 

ice concentration products (Bootstrap and NASA Team) as described in Section 3.3. The regional snow depth 

estimates from NESOSIM forced by these two ice concentration products over the new time period are shown in 

Figure 15, with the May 1st results summarized in Table 4. In general, the ice concentration sensitivity study 
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demonstrates that the choice of ice concentration product is significant, with differences of several centimeters 

between the two simulations across the study regions (e.g. > 7 cm differences in the NA snow depths).  

 

Figure 15: Seasonal snow depth evolution across the four study regions (shown in Figure 3), initiated from 
August 15th 2000-2014 and run until  May 1st of the following year, forced by the Bootstrap (magenta) and 5 
NASA Team (blue) ice concentration datasets. The thick lines show the mean (daily) regional snow depths over 
this time period, while the shaded areas represent interannual variability (one standard deviation). All model runs 
use the default/MEDIAN-SF configuration. 

This was somewhat expected given the known low bias in the NASA Team concentration data (e.g. Meier, 2005; 

Ivanova et al., 2015), reducing the concentration of sea ice for snow to accumulate on. More specifically the 10 
Bootstrap data use daily-variable tie-points and are thus thought to improve the distinction between surface melt 

and open water. The lower concentrations also increase the blowing snow lost to leads term (as this is a function 

of the open water fraction). The snow budget terms using the NASA Team concentration data are shown in the 

Supplementary Information (Figure S6) to highlight this further, with all regions showing reduced snow 

accumulation and blowing snow lost to leads increased, and now significant, across all regions. Again, we believe 15 
the Bootstrap data better represent the seasonal ice conditions, although we appreciate uncertainties still remain 

regarding the treatment of surface melt/melt ponds and their impact on snow accumulation/depth. 

5.4  Validation with Operation IceBridge data 

Here we present and discuss comparisons of our NESOSIM snow depth estimates with NASA’s Operation 

IceBridge spring snow depth data from 2009 to 2015, as described in Section 3.5. We first show the basin-20 
averaged results for the various OIB snow depth products each spring (from 2009 to 2015) and the coincident 
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NESOSIM snow depth estimates, to assess how well NESOSIM captures the mean snow depth and expected 

interannual snow depth variability across this broad region of the Arctic. As discussed in Section 3.5, the OIB 

flights mainly cover the western Arctic sea ice pack, broadly within and to the west of the Central Arctic domain 

used in our earlier regional analyses, although this does vary each year. Maps of the OIB snow depth results 

across the different products are given in Kwok et al., (2017). 5 

 
Figure 16: Comparisons of the annual mean snow depths from NESOSIM (default configuration) forced with 
different reanalyses, and the various Operation IceBridge (OIB) snow depth products. The blue (red) shading 
represents the annual mean spread across the different NESOSIM results (OIB products). The markers are spread 
across the shaded areas to improve readability. 10 

Figure 16 highlights the significant and variable spread in the annual mean OIB snow depth estimates (product 

spread of ~5 to 20 cm depending on the year), with the OIB-JPL snow depths consistently higher and less 

variable than the other two OIB products (SRLD and GSFC). The reanalysis-forced NESOSIM snow depths 

exhibit a more consistent spread of ~5 cm, with the JRA-55 forced results consistently higher than the other 

reanalyses. This was expected based on our previous analyses (e.g. the Central Arctic results shown in Figure 15 
11b). The large spread in the OIB snow depths make it challenging to assess the reliability and accuracy of our 

NESOSIM results. In general, however, there is broad agreement between the NESOSIM and OIB results in 

terms of the mean snow depths and the broad pattern of interannual variability.  
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Figure 17: Scatter plots of NASA’s Operation IceBridge (OIB) snow depths from the three OIB products 
interpolated onto our 100 km model grid, and coincident NESOSIM/MEDIAN-SF snow depth estimates for 2009 
to 2015 (a to g) and all years of data (h), including the correlation coefficient (r) and root mean squared error 
(RMSE).  5 
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To assess how well the model captures regional snow depth variability we show scatter plots in Figure 17 of the 

MEDIAN-SF-NESOSIM snow depths and the three OIB snow depth products from 2009-2015. A summary of 

the correlation coefficients (r) and root mean squared errors (RMSEs) across the three OIB products and 

NESOSIM forced by the three individual (and median) reanalysis products, are given in Table 5.  

 MEDIAN-SF ERA-I JRA-55 MERRA 

Year SRLD JPL  GSFC SRLD JPL  GSFC SRLD JPL  GSFC SRLD JPL  GSFC 

2009 
0.17 

16 cm 

0.16 

11 cm 

0.29 

12 cm 

0.26 

15 cm 

0.23 

10 cm 

0.36 

12 cm 

0.21 

21 cm 

0.18 

11 cm 

0.35 

12 cm 

0.08 

18 cm 

0.11 

11 cm 

0.20 

13 cm 

2010 
0.36 

11 cm 

0.24 

11 cm 

0.37 

11 cm 

0.42 

10 cm 

0.36 

10 cm 

0.44 

9 cm 

0.40 

15 cm 

0.25 

11 cm 

0.40 

13 cm 

0.20 

12 cm 

0.05 

13 cm 

0.20 

12 cm 

2011 
0.34 

11 cm 

0.25 

8 cm 

0.43 

9 cm 

0.53 

10 cm 

0.44 

7 cm 

0.59 

8 cm 

0.25 

15 cm 

0.17 

9 cm 

0.35 

12 cm 

0.09 

10 cm 

-0.01 

9 cm 

0.23 

10 cm 

2012 
0.72 

9 cm 

0.68 

9 cm 

0.72 

10 cm 

0.73 

8 cm 

0.70 

8 cm 

0.74 

9 cm 

0.70 

12 cm 

0.66 

11 cm 

0.71 

10 cm 

0.65 

8 cm 

0.61 

10 cm 

0.65 

11 cm 

2013 
0.68 

7 cm 

0.66 

14 cm 

0.64 

15 cm 

0.72 

7 cm 

0.72 

13 cm 

0.68 

14 cm 

0.66 

9 cm 

0.63 

11 cm 

0.62 

13 cm 

0.66 

8 cm 

0.64 

14 cm 

0.63 

15 cm 

2014 
0.64 

11 cm 

0.56 

11 cm 

0.64 

10 cm 

0.69 

10 cm 

0.63 

10 cm 

0.68 

10 cm 

0.61 

13 cm 

0.54 

13 cm 

0.62 

15 cm 

0.50 

12 cm 

0.42 

12 cm 

0.53 

10 cm 

2015 
0.50 

10 cm 

0.42 

11 cm 

0.50 

10 cm 

0.58 

10 cm 

0.52 

11 cm 

0.55 

9 cm 

0.49 

13 cm 

0.41 

12 cm 

0.50 

15 cm 

0.30 

11 cm 

0.21 

12 cm 

0.35 

9 cm 

All years 
0.55 

11 cm 

0.51 

11 cm 

0.48 

11 cm 

0.61 

10 cm 

0.58 

10 cm 

0.54 

10 cm 

0.55 

14 cm 

0.50 

11 cm 

0.49 

13 cm 

0.42 

11 cm 

0.38 

12 cm 

0.39 

12 cm 

Table 5: Correlation coefficient (r, top rows) and root mean squared error (RMSE, bottom rows) from the 5 
correlations between the various reanalysis-forced NESOSIM results, and OIB derived snow depths. The 
MEDIAN-SF scatter plots are shown in Figure 17. 

In general, the comparisons are highly variable and depend mainly on the chosen analysis year and the reanalysis 

snowfall dataset, rather than the OIB product. The correlations between the OIB snow depths and the NESOSIM 

snow depths improve significantly in 2012 (r = 0.61 to 0.74) compared to the proceeding years (r = -0.01 to 10 
0.59). The improved correlations in 2012 onwards coincide with increases in the OIB flight coverage, that 

include more of the Central Arctic and Beaufort/Chukchi seas, meaning the data better represent the regional 

variability in snow depths across the western Arctic. The strength of the correlations are highest in 2012 and 

2013, while the  RMSEs are lowest (< 10 cm) between 2011 and 2013, especially in the ERA-I and MEDIAN-SF 
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forced results. The OIB-SLRD RMSEs are generally lower than the RMSEs calculated with the other OIB 

products between 2010 and 2015, but significantly higher in 2009 when the signal-to-noise ratio of the earlier 

version of the Snow Radar used on OIB was higher (Kwok et al., 2017). The 2009 OIB snow depth results should 

thus be treated with caution.  

The 'all years' results in Table 5 provide a summary of the correlations using all the OIB snow depths from 2009-5 
2015. The MERRA forced results produce significantly lower correlations to the OIB snow depths (r = 0.38 to 

0.42) compared to the other reanalyses, while the ERA-I forced results show the highest correlations (r = 0.58 to 

0.61) and lowest RMSEs (10 cm). The MEDIAN-SF results show slightly lower correlations (r = 0.48 to 0.55) 

and higher RMSEs (11 cm) compared to ERA-I.  In general, however, the moderate to strong correlations give us 

confidence that NESOSIM is producing reasonable snow depth estimates across the western Arctic. The RMSEs 10 
of ~10 cm imply the expected level of accuracy in our NESOSIM snow depths, although these validations are 

hindered by uncertainty in the OIB snow depth observations (Kwok et al., 2017) and a lack of OIB observations 

in the eastern Arctic Ocean.  

In the sensitivity studies presented earlier, we focused primarily on the MEDIAN-SF simulations, due to 

considerations of snowfall reliability in regions of high and uncertain precipitation - e.g. the North Atlantic 15 
sector. The OIB data lack coverage in this region, however, making it hard to assess if this synthesized forcing 

snowfall produces more accurate snow depths in these more challenging regions of the Arctic. Data from the 

2017 OIB flights into the eastern Arctic will hopefully provide some assessment of our NESOSIM snow depths 

in this region of the Arctic, however (the data has yet to be released). Our contemporary (New Arctic) NESOSIM 

results still lack validation of the simulated snow densities, due to the lack of basin-scale density data available 20 
during this time period. 

6 Summary 

In this study we presented the newly developed NASA Eulerian Snow On Sea Ice Model (NESOSIM). The snow 

depth and density simulated in NESOSIM (from August 15th to May 1st) across an Arctic Ocean domain (100 km 

horizontal grid) were first compared against in-situ data collected by drifting Soviet stations during the 1980s. 25 
The model produced very strong agreement with the seasonal cycles of snow depth and density and good 

(moderate) agreement with the regional snow depth (density) distribution. A budget analysis provided insight into 

the relative processes contributing to the seasonal evolution in snow depth, with snow accumulation driving 
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increases in snow depth, and wind packing reducing snow depth (through an increase in the bulk snow density). 

Blowing snow lost to leads provided a significant sink of snow, but only in the lower ice concentration, high 

wind/snow depth regime of the North Atlantic sector.  

The model was run for a contemporary period (2000 to 2015) to produce seasonal snow depth and density 

estimates representative of the New Arctic climate system. The model showed strong sensitivity to the reanalysis-5 
derived snowfall forcing data, with the MERRA/JRA-55 (ASR) derived snow depths generally higher (lower) 

than ERA-I. We derived a new synthesized snowfall dataset based on the median ERA-I, MERRA and JRA-55 

snowfall data, to improve model reliability especially in regions of high/uncertain precipitation. The results 

across this newer period also allowed us to explore the sensitivity of NESOSIM to the input ice drift data, where 

we showed this had a second order effect compared to the choice of reanalysis snowfall forcing. The ice drift still 10 
appears to be important at smaller spatial scales, e.g. by reducing snow depths in the Eastern Arctic and driving 

higher snow depths north of Svalbard and within Fram Strait. We compared our NESOSIM snow depths against 

spring snow depths derived from data collected by NASA's Operation IceBridge (OIB) since 2009 (up to spring 

of 2015). Our comparisons show moderate/strong correlations for the data collected from 2012-2015, with the 

ERA-I and MEDIAN-SF forced results showing the best correspondence with the OIB snow depths. These 15 
encouraging comparisons provide us with some confidence in our simulated daily NESOSOM snow depth and 

density estimates, however we expect that further model development, testing, and validation is needed.   

NESOSIM is being made available as an open source project (https://github.com/akpetty/NESOSIM), to 

encourage continued model development and active engagement with the snow on sea ice community. The model 

code is written in Python, an open source programming language (Python Software Foundation, 20 
https://www.python.org/), to better enable future community development efforts. Our hope is that the model will 

continue to evolve as additional snow processes are incorporated, especially as new field and remote sensing 

snow observations are collected and made available for calibration/validation. Obvious examples of planned 

future improvements include the incorporation of snow-ice formation, snow melt and rain on snow processes, 

which are not currently included in this initial model version, enabling the model to be run year-round. 25 

As we look towards the launch of NASA's ICESat-2 and the production of sea ice thickness from the derived 

freeboard product, we must also consider potential increases in model resolution, and a better assessment of the 

ability of NESOSIM to capture smaller-scale (< 100 km) snow depth variability. Snow depth and density 

information collected during the Norwegian young sea ICE (N-ICE2015) expedition (Merkouriadi et a., 2017) 
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and the upcoming Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) will provide 

crucial insight into the importance of smaller-scale phenomena not currently included in NESOSIM, while our 

model results can hopefully provide useful basin-scale context to the measurements being taken. 

Model availability 

All the data processing and figure generation was carried out using the Python programming language (Python 5 
Software Foundation, https://www.python.org/). The model code, including installation details and test data, can 

be found on GitHub (https://github.com/akpetty/NESOSIM). 

Data availability 

A link to the model output (hosted on the NASA Cryospheric Sciences website) will be made available after 

completion of peer review, along with the gridded OIB snow depths and KIMURA ice drift data. 10 

The ERA-I snowfall and wind data were obtained through the ECWMF Meteorological Archival and Retrieval 

System (http://apps. ecmwf.int/datasets/data/interim_full_ daily/). The JRA-55 snowfall data were obtained 

through the NCEP Research Data Archive (RDA) (http://rda.ucar.edu/ datasets/ds628.0). The MERRA snowfall 

data were obtained through the NASA Goddard Earth Sciences Data and Information Services Center 

(https://disc.sci.gsfc.nasa.gov/datasets?page=1&keywords=merra).  15 
 

The sea ice concentration data were obtained through the National Snow and Ice Data Center (NSIDC), including 

daily NASA Team (http://nsidc.org/data/nsidc-0051) and Bootstrap (https://nsidc.org/data/nsidc-0079) data.  

 

The NSIDCv3 Polar Pathfinder ice drift data were obtained through the NSIDC (http://nsidc.org/data/nsidc- 20 
0116). The CERSAT ice drift data were obtained from the IFREMER website (ftp://ftp.ifremer.fr/ifremer/ 

cersat/products/gridded/psi-drift/). The OSI-SAF data were obtained through their web portal 

(http://osisaf.met.no/p/ice/).  
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