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Abstract. The NASA Eulerian Snow On Sea Ice Model (NESOSIM) is a new, open source, snow budget model 

that is currently configured to produce daily estimates of the depth and density of snow on sea ice across the 

Arctic Ocean through the accumulation season. NESOSIM has been developed in a three-dimensional Eulerian 

framework and includes two (vertical) snow layers and several simple parameterizations (accumulation, wind 10 
packing, advection/divergence, blowing snow lost to leads) to represent key sources and sinks of snow on sea ice. 

The model is forced with daily inputs of snowfall and near-surface winds (from reanalyses), sea ice concentration 

(from satellite passive microwave data) and sea ice drift (from satellite feature tracking), during the accumulation 

season (August through April). In this study, we present the NESOSIM formulation, calibration efforts, 

sensitivity studies and validation efforts across an Arctic Ocean domain (100 km horizontal resolution). The 15 
simulated snow depth and density are calibrated with in-situ data collected on drifting ice stations during the 

1980s. NESOSIM shows strong agreement with the in-situ seasonal cycles of snow depth and density, and shows 

good (moderate) agreement with the regional snow depth (density) distributions. NESOSIM is run for a 

contemporary period (2000 to 2015), with the results showing strong sensitivity to the reanalysis-derived 

snowfall forcing data, with the MERRA/JRA-55 (ASR) derived snow depths generally higher (lower) than ERA-20 
Interim. We also generate and force NESOSIM with a consensus 'median' daily snowfall dataset from these 

reanalyses. The results are compared against snow depth estimates derived from NASA's Operation IceBridge 

(OIB) Snow Radar data from 2009-2015, showing moderate/strong correlations and root mean squared errors of 

~10 cm depending on the OIB snow depth product analyzed, similar to the comparisons between OIB snow 

depths and the commonly used modified Warren snow depth climatology. Potential improvements to this initial 25 
NESOSIM formulation are discussed in the hopes of improving the accuracy and reliability of these simulated 

snow depths and densities. 
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1 Introduction  

Snow on sea ice is a crucial component of the polar climate system. Its low thermal conductivity modulates sea 

ice growth through the cold winter months (e.g. Maykut and Untersteiner, 1971, Sturm et al., 2002), while its 

high surface albedo limits solar radiation absorption and thus inhibits sea ice melt in spring and summer (e.g. 

Warren, 1982; Grenfell and Perovich, 1984; Perovich, 2002). Conversely, freshwater production from snow melt 5 
facilitates melt pond formation in spring/summer which lowers the surface albedo and promotes sea ice melt 

(Eicken et al., 2002; 2004). The accumulation of snow on sea ice also modulates the freshwater flux into the 

ocean, a key component of the freshwater budget of the Arctic (e.g. Serreze et al., 2006).  

Estimates of snow depth on sea ice are also a required input for deriving sea ice thickness from satellite altimetry, 

e.g. from ESA's CryoSat-2 (e.g. Laxon et al., 2013) and NASA's upcoming ICESat-2 mission (Markus et al., 10 
2017). The altimetry technique involves measurements of sea ice freeboard, the extension of sea ice above a local 

sea level, and estimates of snow depth to derive sea ice thickness, with snow depth being one of the primary 

sources of uncertainty for both laser and radar altimetry (e.g. Giles et al., 2007). Poor knowledge of snow density 

provides a further source of uncertainty through its influence on the ice freeboard and radar penetration into the 

snow pack (e.g. Giles et al., 2007, Kern et al., 2015).  15 

Unfortunately, direct observations of snow depth and density across the polar oceans are very limited, due to 

difficulties in remotely sensing this relatively thin (O(10 cm)) and heterogeneous medium, and logistical 

challenges associated with in-situ data collection. Passive microwave data have been used to estimate snow depth 

over first-year ice on a basin-scale across both poles (e.g., Markus and Cavalieri 1998, Comiso et al., 2003, 

Maass et al., 2015), although these data are arguably more relevant for the first-year dominated Antarctic sea ice 20 
pack and tend to underestimate snow depth in deformed sea ice regimes (e.g. Worby et al., 2008; Brucker and 

Markus, 2013). Combinations of satellite and/or airborne sensors with variable snow penetration depths are also 

being explored as a means of producing basin-scale snow depth estimates (e.g. Armitage and Ridout, 2015, 

Guerreiro et al., 2016; Kwok and Markus, 2017), although this approach is still in its infancy and has limited 

temporal coverage. NASA’s Operation IceBridge has provided airborne measurements of snow depth on sea ice 25 
since 2009 (Kurtz et al., 2013). However, the Arctic snow depth data collected are primarily limited to the 

western Arctic sea ice cover in spring (the spring 2017 campaign also included a flight over the eastern Arctic 

Ocean), while the Southern Ocean data have only been briefly explored to-date (e.g. Kwok and Maksym, 2014). 

For the Arctic, a climatology of snow depth produced from Soviet drifting station data collected prior to 1991 
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(Warren et al., 1999) is still commonly used as a basin-scale snow depth product. The Soviet drifting station data 

also provide the only observationally-based basin-scale assessment of snow density currently available. This 

snow climatology is expected to be outdated due to the rapid changes experienced in the Arctic climate system 

over the last few decades (Webster et al., 2014), although recent efforts have been made to modify this 

climatology based on ice type (halving the climatology over first year ice, e.g. Laxon et al., 2013, Kwok and 5 
Cunningham, 2015). 

Due to these observational limitations, the sea ice community often utilize simple models of snow depth forced 

by reanalyses (primarily snowfall data) (e.g., Maksym and Markus 2008; Kwok and Cunningham, 2008; 

Blanchard‐Wrigglesworth et al., 2018). More sophisticated snow on sea ice models are available, such as 

SnowModel, a terrestrial snow model recently adapted for sea ice environments (Liston et al., 2018), as well as 10 
the prognostic snow layer included in sea ice climate model components, such as CICE (Hunke & Lipscomb, 

2010) and the Louvain-la-Neuve Sea Ice Model (LIM) which have recently undergone various improvements to 

their snow physics (Holland et al., 2011; Lecomte et al., 2015).  

In this study we present a new model to derive snow depth (and density) across the Arctic Ocean. Our aim is to 

develop a model of physical and computational simplicity to allow for a detailed assessment of the sensitivity of 15 
snow depths to the various input forcing data needed to produce seasonal, basin-scale, snow depths. The spread in 

reanalysis-derived snowfall estimates over the Arctic Ocean is high (Boisvert et al., 2018), while the importance 

and uncertainty of other forcing data (e.g. ice concentration and drift) are still largely unknown. We also wanted a 

model that could be forced with observed ice concentration and drift to help accurately constrain the seasonal sea 

ice cycle - a challenge for the more sophisticated sea ice models described above. Our overall goal is that 20 
NESOSIM can be used to produce reliable basin-scale daily snow depth and density estimates needed for satellite 

altimetry calculations of sea ice thickness for both historical analyses and near real-time operations across the 

polar oceans. We thus expect the model to increase in complexity with future model developments, e.g. new 

parameterizations or improvements to existing parameterizations as needed. A secondary utility of the model will 

be the production of daily/monthly/seasonal snow depths from reanalysis data that can help guide climate 25 
modelling research efforts addressing the representation and importance of snow on sea ice in the global climate 

system.  

In the following sections, we present and describe the model configuration/physics, the sensitivity of the model to 

the input forcing data (e.g. reanalyses snowfall, satellite-derived ice drifts), and model calibration/validation 
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efforts. We focus this initial study solely on the Arctic, however our plan is for the model to be applied and tested 

in a Southern Ocean framework in the near future. We conclude by looking ahead to potential improvements in 

the model physics and planned future activities related to our efforts to improve our understanding of snow on sea 

ice. 

2 Model description  5 

The NASA Eulerian Snow On Sea Ice Model (NESOSIM) is a three-dimensional, two-layer (vertical), Eulerian 

snow budget model developed with the primary aim of producing daily estimates of snow depth and density 

across the polar oceans. NESOSIM includes several parameterizations that represent key mechanisms of snow 

variability through the snow accumulation/growth season, and two snow layers to broadly represent the evolution 

of both old/compacted snow and new/fresh snow. NESOSIM is not currently configured to produce snow depth 10 
estimates through the melt season (late spring through summer) due to the lack of surface melt processes included 

in this initial model formulation. The NESOSIM v1.0 model schematic is shown in Figure 1.  
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Figure 1: Schematic of the NASA Eulerian Snow On Sea Ice Model (NESOSIM) presented in this study. The red 
(blue) text indicates processes that result in a loss (gain) of snow. 'Dynamics' indicates the combination of 
ice/snow advection and convergence/divergence which can cause either loss or gain of snow.  
 5 

We decided on a Eulerian snow budget approach (as opposed to a Lagrangian approach, e.g. Kwok and 

Cunningham, 2008) for a number of reasons: (i) it provides a framework flexible to the availability (or lack of) 

ice drift data, increasing the utility of the model in regions/time periods where ice drift data might be lacking, (ii) 

it provides a simple assessment of the spatial significance of the parameterized budget terms included in the 

model, including ice dynamics, and (iii) the parameterizations developed in this  framework can be easily 10 
transferred to other Eulerian sea ice models (e.g. the sea ice climate model component CICE) included in General 

Circulation Models (GCMs). The following subsections detail the model setup and various parameterizations 

currently included in NESOSIM. 

2.1 Model configuration 

NESOSIM includes two vertical layers on an x/y horizontal grid, with each horizontal grid-cell and snow layer 15 
featuring a prognostic snow depth and fixed snow density. This two-layer approach was taken to represent the 

strong differences in properties between dense snow, associated with wind slab, and fresh snow from recent 
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snowfall, while keeping the model computationally efficient and the model physics easily trackable. As stated 

previously, our plan is that NESOSIM will be used for studying snow on sea ice across the Arctic and Southern 

Oceans, however, for this initial analysis we run the model on a 100 km x 100 km polar stereographic grid 

covering the Arctic Ocean and peripheral seas (model domain shown later in Figure 5). This grid resolution was 

chosen due to considerations of computational efficiency and the horizontal resolutions of the various input data. 5 
The model is forced with daily data of snowfall and near-surface winds from reanalysis data, satellite passive 

microwave ice concentration, and satellite-derived ice drifts. 

Model variable  

Snow accumulation (m), ℎ!
!""  

Snowfall into the ocean (m), 𝑆!!"#  

Snow dynamics (m), ℎ!
!"# 

 

 

Snow divergence (m), ℎ!
!"#  

Snow advection (m), ℎ!
!"#  

Wind packing (m), ℎ!
!"  

Blowing snow lost to leads (m), ℎ!
!"  

Effective snow depth (m), ℎ!  

Physical snow depth (m), ℎ!/𝐴  

Bulk snow density (kg m-3), ⍴!!  

Model parameter Default setting 

New snow density (kg m-3), ⍴!! 200 
Old snow density (kg m-3), ⍴!! 350 

Wind packing coefficient (s-1), 𝛼  5.8 x 10-7 

Blowing snow coefficient (m-1), 𝛽  2.9 x 10-7 

Wind action threshold (m s-1), ⍵ 5 

Forcing data  

Snowfall (kg m-2), 𝑆! ERA-I/MEDIAN-SF (as specified) 
Near-surface winds (m s-1), 𝑈 ERA-I 

Sea ice concentration, 𝐴 Bootstrap 

Sea ice motion (m s-1), 𝑢! NSIDCv3 (Polar Pathfinder) 

Table 1: Default model forcings and parameter settings used by NESOSIM. 
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At each daily time step, an effective snow depth within each grid cell is produced from our various snow budget 

terms (described in the following subsections) using a forward Euler method as 

Eq. (1): 

 ℎ!(𝑡 + 1, 0, 𝑥, 𝑦) =  ℎ!(𝑡, 0, 𝑥, 𝑦) +  𝛥 ℎ!
!""(𝑡, 𝑥, 𝑦) + 𝛥 ℎ!

!"#(𝑡, 0, 𝑥, 𝑦) + 𝛥 ℎ!
!"(𝑡, 0, 𝑥, 𝑦) + 𝛥 ℎ!

!"(𝑡, 𝑥, 𝑦)		

and	5 

 ℎ!(𝑡 + 1, 1, 𝑥, 𝑦) =  ℎ!(𝑡, 1, 𝑥, 𝑦) + 𝛥 ℎ!
!"#(𝑡, 1, 𝑥, 𝑦) + 𝛥 ℎ!

!"(𝑡, 1, 𝑥, 𝑦). 

where 𝑡	denotes the daily time index, the second index indicates the relevant snow layer (0 = new, 1 = old), and 

𝑥 and	𝑦	are the horizontal grid indices. NESOSIM uses two vertical layers: a “new” layer, ⍴!!, which represents 

recent snowfall, and an “old” layer, ⍴!!, which represents snow that has undergone wind compaction and snow 

grain metamorphism (Colbeck, 1982; Sturm and Massom, 2017). These two fixed snow densities are justified in 10 
more detail in the following subsection. We track the evolution of an effective snow depth within each grid-cell 

(the volume of snow per unit grid cell area) for simplicity. The actual snow depth over the ice fraction is 

calculated by dividing the effective grid-cell snow depth by the grid-cell ice concentration. 

We also calculate a bulk snow density, which is the weighted average density across the two snow layers, as 

Eq. (2): 15 

⍴!!  (𝑡, 𝑥, 𝑦) =  ((ℎ!(𝑡, 0, 𝑥, 𝑦)⍴!! +  ℎ!(𝑡, 1, 𝑥, 𝑦)⍴!!)/(ℎ!(𝑡, 0, 𝑥, 𝑦) + ℎ!(𝑡, 1, 𝑥, 𝑦)). 

Note that the bulk snow density is masked if the respective ice concentration in the given grid-cell is less than 

15%, or the effective snow depth is less than 2 cm. While the model tracks the snow budget terms for all grid cell 

ice concentrations, only grid-cells with an ice concentration above 15% are shown in the analysis, to prevent 

spurious interpretations in regions of near open water conditions.  20 

Each annual model run is initialized in the middle of summer (default of August 15th, rationale discussed in 

Section 2.5) and run until the following spring (May 1st). This early summer start time was chosen to include the 

significant snowfall expected across the Central Arctic through August (Radionov et al., 1997; Warren et al., 

1999; Boisvert et al., 2018) while also avoiding the periods of significant snow melt in late spring/early-mid 
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summer. We acknowledge that this end of August time period still likely includes surface melt events that are not 

captured/included in this model, but are hoped to be addressed in future model developments. We also apply a 

variable initial snow depth (at t = 0) across our model domain, as discussed in Section 3.4. New ice that 

subsequently forms in a given grid-cell is assumed to be snow free.  

2.2 Snow accumulation 5 

To accumulate snow on a given grid-cell, the snowfall water equivalent from our reanalysis field is converted to 

snow depth using a representative snow density. Snow pit and density data from the Surface Heat Budget of the 

Arctic Ocean (SHEBA) experiment and the Soviet drifting ice station data helped guide the parameterization of 

our seasonal snow density evolution. Initially, snow accumulates into the new/fresh snow layer within a given 

grid cell as  10 

Eq. (3): 

𝛥 ℎ!
!""(𝑡, 𝑥, 𝑦) = 𝑆!(𝑡, 𝑥, 𝑦) 𝐴(𝑡, 𝑥, 𝑦)/⍴!! ,	

where 𝑆!  (in units of kg m-2) is the gridded daily snowfall across the model domain and 𝐴 is the gridded daily ice 

concentration. The density of the new snow layer is fixed at ⍴!!  = 200 kg m-3. This value implicitly represents a 

combination of cold, dry snowfall (~150 kg m-3) and wet snowfall (~230 kg m-3) based on direct observations 15 
over Arctic sea ice (Radionov et al., 1997; Sturm et al., 2002).  

Snow can be transferred from the new snow layer to the old snow layer depending on the strength of the near-

surface wind forcing. The old snow layer is an implicit combination of two layers that, on average, comprise the 

majority of the snowpack bulk mass: wind slab and depth hoar (Sturm et al., 2002; Sturm, 2009). The density of 

wind slab ranges between ~300 kg m-3 and ~410 kg m-3 on average (Colbeck, 1982; Radionov et al., 1997; 20 
Warren et al., 1999; Sturm et al., 2002), while depth hoar has an average density of ~150 - 250 kg m-3 (Colbeck, 

1982; Sturm et al., 2002). Based on SHEBA data, the Arctic snow cover consists of slightly more wind slab than 

depth hoar, comprising ~80% of it collectively (Sturm et al., 2002). For this reason, we use a weighted average of 

the higher-end values of wind slab and depth hoar as the density value for the old snow layer, ⍴!!. However, we 

note that the density and ratio of wind slab and depth hoar layers depends on several factors including the 25 
atmospheric conditions during precipitation events, sea ice surface roughness, snow depth, and the internal 

snowpack temperature gradient (Sturm et al., 2002). We did experiment with alternative snow densities (e.g. the 
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wider spread of 150 and 400 kg m-3) but found this provided worse correspondence with the seasonal snow 

density evolution compiled from in-situ Soviet station data (introduced in Section 3.4).  

When wind speeds are greater than 5 m s-1, the change in snow depth from wind packing between the two snow 

layers respectively is given as: 

Eq. (2): 5 

𝛥 ℎ!
!"(𝑡, 0, 𝑥, 𝑦) = −𝛼 𝑇!  ℎ!(𝑡, 0, 𝑥, 𝑦) for 𝑈(𝑡, 𝑥, 𝑦) > ⍵ 

𝛥 ℎ!
!"(𝑡, 1, 𝑥, 𝑦) = (⍴!!/⍴!!)𝛼𝑇!ℎ!(𝑡, 0, 𝑥, 𝑦)  for 𝑈(𝑡, 𝑥, 𝑦) > ⍵ 

where 𝑈 is the 10 m wind speed,	⍵	is a wind action threshold for wind packing to occur (default of 5 m/s),	𝛼	is a 

wind packing coefficient which determines the fraction of the new snow layer that is transferred into the old snow 

layer (default value of 5.8 x 10-7 s-1) and 𝑇! is the number of seconds in our daily time step (= 86400 s). The 10 
second grid index in Eq. 2 (values of 0 and 1) represents the vertical snow layers. The wind action threshold of 5 

m s-1 was determined based on observational and modeling studies of blowing snow in the terrestrial Arctic and 

sea ice environments (Pomeroy et al., 1997; Radionov et al., 1997; Sturm and Stuefer, 2013), while the wind 

packing coefficient is a free/unconstrained parameter in the model. 

2.3 Ice/snow dynamics 15 

Snow within a given grid cell can also evolve due to ice motion. Here we adapt the ice concentration budget 

approach used in e.g. Holland and Kimura (2016) (and more recently in Petty et al., 2018) to snow depth as 

Eq. (3): 

𝛥 ℎ!
!"#(𝑡, 𝑥, 𝑦) = −𝛻. (ℎ!(𝑡, 𝑥, 𝑦)𝑢!(𝑡, 𝑥, 𝑦)), 

where 𝑢! is the daily gridded ice motion. As in the ice concentration budget studies discussed above, we can 20 
expand this into a divergence/convergence term, and an advection term, as 

Eq. (4): 

𝛥 ℎ!
!"#(𝑡, 𝑥, 𝑦) = −ℎ!(𝑡, 𝑥, 𝑦) .𝛻(𝑢!(𝑡, 𝑥, 𝑦)) and 
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𝛥 ℎ!
!"#(𝑡, 𝑥, 𝑦) = −𝛻(ℎ!(𝑡, 𝑥, 𝑦)) .  𝑢!(𝑡, 𝑥, 𝑦) ,	

where 𝛥 ℎ!
!"#is the change in effective snow depth from divergence/convergence, i.e. changes due to spatial 

gradients in ice motion, and 𝛥 ℎ!
!"#is the change in snow depth from advection, i.e. changes due to spatial 

gradients in snow depth (assuming constant drift). Note that this parameter is applied to both ‘old’ and ‘new’ 

snow layers concurrently.   

2.4 Blowing snow lost to leads 5 

Snow within a grid cell can also be lost to leads/open water in the ice pack due to the impact of wind forcing, i.e. 

blowing snow lost to leads. This parameter is expected to be most significant in regions where high lead 

fractions, wind speeds and snowfall (e.g. the marginal ice zone in the North Atlantic sector of the Arctic) are 

expected to result in significant wind blown snow lost to leads/open water (e.g. Leonard and Maksym, 2011). 

Note that we only apply this wind loss term to the new snow layer as we assume the ‘old’ wind packed snow 10 
layer is immune to the impact of wind forcing (e.g. Petrich et al., 2012; Trujillo et al., 2016). The blowing snow 

to leads term is calculated as 

Eq. (5): 

𝛥 ℎ!
!"(𝑡, 𝑥, 𝑦) = − 𝛽 𝑇!𝑈(𝑡, 𝑥, 𝑦) ℎ!(𝑡, 0, 𝑥, 𝑦)(1 − 𝐴(𝑡, 𝑥, 𝑦)) for 𝑈(𝑡, 𝑥, 𝑦) > ⍵ , 

where 𝛽 is a blowing snow coefficient (default value of 2.9 x 10-7 m-1). This is a free/unconstrained parameter in 15 
the model, with its default value chosen through our model calibration efforts.  

We also keep track of snow that enters the ocean through snowfall into the open water fraction and blowing snow 

lost to leads, a quantity of relevance to those interested in the freshwater budgets of the polar oceans. This is 

given as  

Eq. (6): 20 

𝑆!!"#(𝑡, 𝑥, 𝑦) = 𝑆!(𝑡, 𝑥, 𝑦) (1 − 𝐴(𝑡, 𝑥, 𝑦))/⍴!!  −  𝛥 ℎ!
!"(𝑡, 𝑥, 𝑦) .	

For model testing we also ran NESOSIM with different combinations of the model parameterizations discussed 

above. When we turn off the wind-packing parameterization, snow remains fixed in the 'new' snow layer, despite 
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the strength of the wind forcing, so the model effectively becomes a 1-layer model. To account for the low bias in 

snow density expected by constraining the snow density to the density of fresh/new snow, we forced this snow 

layer with the daily climatological snow density based on Warren et al., (1999), which we refer to as ⍴-W99. 

3 Model forcing and calibration/validation data 

In the following subsections we describe the forcing data and calibration/validation data used in this study, 5 
including atmospheric forcing data (snowfall and winds), satellite-derived ice motion, satellite-derived ice 

concentration, Soviet drifting station snow depths/densities (for model calibration) and Operation IceBridge snow 

depths (for model validation). 

3.1 Atmospheric forcing  

We use snowfall data provided by the European Center for Medium Range Weather Forecast (ECMWF) ERA-10 
Interim (ERA-I) reanalysis. ERA-I is a global reanalysis that utilizes a 4D variational data assimilation scheme 

(Dee et al., 2011). We use the 12-hourly ERA-I snowfall data from August 15th 1980 to May 1st 1991 and August 

15th 2000 to May 1st 2015. We use the 0.75o x 0.75 o horizontal resolution data, which are summed to produce 

daily snowfall estimates across the Arctic. ERA-I snowfall data have been used in previous studies exploring 

snow accumulation over Arctic sea ice (e.g. Kwok and Cunningham, 2008; Blanchard‐Wrigglesworth et al., 15 
2018), while comparisons of reanalysis-derived precipitation data with coastal weather stations suggests ERA-I is 

one of the better products available for Arctic studies (Serreze and Hurst, 2000; Lindsay et al., 2014). A more 

detailed comparison of snowfall/precipitation estimates over the Arctic Ocean has recently been carried out 

alongside this study (Boisvert et al., 2018), which we expect to build on in the future. 

Reanalysis Producer Resolution* Coverage 

ERA-Interim European Centre for Medium-Range 
Weather Forecasts (ECMWF)  0.75o x 0.75o  1979 - present (NRT, few months 

data latency) 

ASRv1 Various contributors, see Bromwich et 
al., (2016) 

30 km x 30 
km 2000 - 2012 

JRA-55 Japanese Meteorological Agency (JMA)  0.56o x 0.56o  1958 - present (NRT, few months 
data latency) 

MERRA NASA’s Global Modeling and 
Assimilation Office (GMAO) 0.5o x 0.66o 1979 - June 2016 

Table 2: Summary of the four different reanalysis datasets used in this study (data availability often subject to 20 
change/updates, information given at the date of submission). NRT: Near real-time. *different resolutions 
available in some cases. 
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We explore the sensitivity of our results to the input snowfall data by forcing the model with snowfall estimates 

provided by three additional reanalysis-derived snowfall products. Unfortunately, not all reanalyses provide 

direct estimates of snowfall (and rainfall), and instead provide just total precipitation, e.g. the data from the 

widely used National Centers for Environmental Prediction (NCEP)-National Center for Atmospheric Research 

(NCAR) Reanalysis 1 and 2, so we focus our analysis on three other commonly used reanalyses that provide 5 
direct estimates of snowfall: the Japanese Meteorological Agency 55-year Japanese reanalysis (JRA-55); 

NASA’s Modern-Era Retrospective Analysis for Research and Application (MERRA); and the Arctic System 

Reanalysis, version 1 (ASRv1), as described below and summarized in Table 2.  

JRA-55: The Japanese Meteorological Agency (JRA) 55-year Japanese reanalysis (JRA-55) is a global 

atmospheric reanalysis that utilizes a 4-D variational assimilation system covering the period 1958 to present 10 
(Kobayashi et al, 2015). JRA-55 was developed as an improvement to their previous 25-year reanalysis (JRA-

25), which we do not include in this study. We use the daily JRA-55 snowfall data from August 15th 1980 to May 

1st 1991 and August 15th 2000 to May 1st 2015. The data were obtained from the National Center for Atmospheric 

Research's Research Data Archive at a horizontal resolution of 0.56o x 0.56o (~ 60 km), downscaled from the 

original 1.25 o  x 1.25 o  Gaussian grid. The data are being produced on a near real-time basis (2-6 month data 15 
latency). 

MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Application (MERRA) is a global 

reanalysis that utilizes a 3D variational data assimilation scheme within the Goddard Earth Observing System 

Data Assimilation System (GEOS-5) (Rienecker et al, 2011). We use the daily MERRA snowfall data from 

August 15th 1980 to May 1st 1991 and August 15th 2000 to May 1st 2015. The data are provided at a horizontal 20 
resolution of 0.5o (latitude) by 0.66 o (longitude). Note that an updated version of MERRA (MERRA-2) is also 

available, but is known to have a high precipitation bias compared to the other reanalyses (Boisvert et al., 2018) 

so we exclude this from our study.  

ASRv1: The Arctic System Reanalysis, version 1 (ASRv1) is a regional reanalysis based on the Weather Research 

and Forecasting model (Polar WRF) that utilizes a 3D variational data assimilation scheme and is adapted for the 25 
polar regions (Hines and Bromwich, 2008). The ASRv1 data are only available from 2000 to 2012, so we use the 

daily snowfall data from August 15th 2000 to May 1st 2012, which is provided at a horizontal resolution of 30 km 

x 30 km.  
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Considering the expected importance and uncertainty of the reanalysis-derived snowfall for deriving snow depth, 

we also produce a synthesized snowfall dataset by taking the median snowfall across the gridded snowfall 

products, for each daily grid-cell (data referred to as MEDIAN-SF). We use the gridded ERA-I, JRA-55 and 

MERRA snowfall data, as these products all cover the longer-term (1980-2015) time period. 

NESOSIM also requires daily estimates of near-surface winds to drive the wind packing and wind loss terms, 5 
which we take from the ERA-I reanalysis for all reanalysis model runs. Jakobsen et al., (2012, Figure 2) show 

that ERA-I winds had the lowest biases of several reanalysis-derived near-surface wind estimates compared to 

TARA drifting station data. We compute the magnitude of the winds from the six-hourly u/v vectors before 

averaging to produce a daily (gridded) wind magnitude dataset.  

We linearly interpolate all the daily snowfall (and ERA-I wind magnitude) estimates onto our 100 km x 100 km 10 
polar stereographic model domain. Gridding scripts written in Python are included in the GitHub code repository.  

3.2 Satellite derived ice motion data 

We primarily make use of the daily Polar Pathfinder ice motion data, version 3 (Tschudi et al., 2016) made 

available through the National Snow and Ice Data Center (the product is referred to herein as NSIDCv3). A daily 

ice motion vector is calculated using a cross-correlation technique applied to sequential daily satellite images 15 
acquired by passive microwave satellite sensors (i.e. a one day lag in parcel tracking) which are blended via 

optimal interpolation with estimates from the International Arctic Buoy Programme (IABP) and wind data from 

the National Centers for Environmental Prediction (NCEP)-National Center for Atmospheric Research (NCAR) 

Reanalysis. The data are available daily from October 1978 through February 2017 (at the time of writing) at a 

horizontal resolution of 25 km x 25 km. In this study we use the daily data from August 15th 1980 to May 1st 20 
1991 and August 15th 2000 to May 1st 2015. We grid the daily ice motion data onto our 100 km model domain 

(using linear interpolation) and smooth the data using a simple Gaussian filter (as in Holland and Kimura, 2016 

and Petty et al., 2018). 

Recent studies have explored the uncertainty in satellite-derived ice motion data (Sumata et al., 2014) and errors 

introduced by the NSIDC interpolation methodology (Szanyi et al, 2016). We thus also explore the sensitivity of 25 
the model results to the input ice motion data by forcing the model with ice motion estimates provided by three 

additional satellite-derived ice motion products, as described below and summarized in Table 3. 
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Product  Resolution Daily lag Data source Coverage Availability 

NSIDCv3 25 km 1 day AVHRR, SMMR, SSM/I , 
AMSR-E,IAPBs, NCEP-R1 

October 1978 - Feb 
2017 Public 

OSI-SAF 62.5 km 2 days ASCAT* October 2010 - present Public/NRT 

KIMURA 60 km 1 day AMSR-E, AMSR-2 Jan 2003 - Sep 2011 /  
July 2012 - Dec 2016 On request 

CERSAT 62.5 km 3 days ASCAT* January 2007 - 
present? Public/NRT 

Table 3: Summary of the different ice motion datasets used in this study based on information obtained at the 
time of submission. *These agencies produce drift datasets using different individual/combinations of satellite 
sensors not utilized in this study. NRT: Near real-time. 

OSISAF: The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) produce a 

number of low-resolution sea ice motion products from satellite passive microwave sensors and scatterometry 5 
(Lavergne, 2010). Here we use the merged ice motion product, which increases coverage and reliability over their 

single sensor drift products (Lavergne, 2010). The merged drift product uses a 2 day lag in ice parcel tracking and 

a Continuous Maximum Cross Correlation (CMMC) method to optimize the drift product, and is available daily 

(October through April) since 2010 at a horizontal resolution of 62.5 km x 62.5 km. 

CERSAT: The Centre ERS d’Archivage et de Traitement (CERSAT), part of the Institut Français de Recherché 10 
pour l’Exploitation de la Mer (IFREMER) produce a number of ice motion datasets by merging various 

combinations of satellite passive microwave and scatterometry data (Girard-Ardhiun and Ezraty 2012). Here we 

use data produced from the merging of Advanced Scatterometer (ASCAT) and the Special Sensor Microwave 

Imager (SSMI) data, which are available daily (September to May) since 2007 at a horizontal resolution of 62.5 

km x 62.5 km. Note that CERSAT provide data using both a 3 and 6 day lag in the tracking of ice displacement, 15 
but we use the 3 day lag data as this is closest to the 1 day lag used by the NSIDCv3 product.  

KIMURA: The KIMURA drift data are produced using brightness temperatures obtained by the Advanced 

Microwave Scanning Radiometer for EOS (AMSR-E) from January 2003 to September 2011 and the Advanced 

Microwave Scanning Radiometer 2 (AMSR-2) from July 2012 to December 2016 using a cross-correlation 

approach (see Kimura et al., 2013 for more details). Wintertime (November-December, January-March) ice 20 
motion vectors are derived using the 36-GHz channel, while the summertime drifts used in this study (August-

October, April) are derived using the 18-GHz channel, to maximize the reliability and coverage of the data. The 

data are provided at a 60 km x 60 km horizontal resolution.  
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We use data from these three additional products from August 15th 2010, 2012, 2013 and 2014 to May 1st of the 

subsequent years, a period of coincident data coverage across the four drift products (including NSIDCv3). We 

linearly interpolate all the daily drift datasets onto the 100 km x 100 km polar stereographic model domain used 

in this study. As highlighted above, not all the products produce drift estimates in August, or even September, so 

for those products we assume no ice motion through this period. To investigate the importance of ice motion, we 5 
also run the model assuming no ice motion for the entire model simulation (NODRIFT), as discussed in more 

detail later.  

3.3 Sea ice concentration 

We use the daily Bootstrap sea ice concentration (SIC) data, version 3 (Comiso, 2000 updated 2017), which are 

produced from passive microwave brightness temperature estimates and made available through the NSIDC. We 10 
choose to primarily use the Bootstrap over, for example NASA Team data (Cavalieri et al., 1996 updated 2017), 

another commonly used SIC dataset, as Bootstrap SIC data are less sensitive to surface melt, producing higher 

concentrations in general. We use the NASA Team data in a sensitivity study to explore the sensitivity of the 

model to this choice of sea ice concentration data. Due to differences in satellite orbit and sensor characteristics, 

the SIC data feature a time-varying pole hole depending on the passive microwave sensor used. As we require 15 
consistent SIC data across the pole hole, we follow the approach of Petty et al., (2018) and apply a mean SIC 

calculated in a 0.5o halo around the variable pole hole to all grid cells within the pole hole. The data are provided 

at a 25 km x 25 km resolution polar stereographic grid from 1978 through 2016, and we use the daily data from 

August 15th 1980 to May 1st 1991 and August 15th 2000 to May 1st 2015. We linearly interpolate the daily SIC 

data onto our 100 km x 100 km model domain. Note that a gap in the passive microwave record exists from 20 
December 3rd 1987 to January 13th 1988, so we do not run the model through the 1987-1988 winter period.  

3.4 Soviet station data and initial conditions  

We use in-situ snow data collected on the former Soviet Union's drifting ice stations for initial model calibration 

and to help guide our choice of initial conditions  (Radionov et al., 1997; Warren et al., 1999; Fetterer and 

Radionov, 2000). The drifting ice stations were in operation in 1937 and 1954-1991, although in this study we 25 
use the field observations collected from 1980-1991 due to the temporal overlap with the model forcing data. 

During the drifting ice stations, snow depth data were collected every 10 days in 10 m intervals along a 500 m or 

1000 m survey line. Snow density measurements were made every ~100 m along the same survey lines, and 
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atmospheric conditions were recorded at near-daily frequencies. Despite their limited spatial coverage, these data 

provide the most complete record of snow and atmospheric conditions to date over the Arctic sea ice pack.  

Initial conditions: We initialize the model on August 15th of each year with a snow depth representing the fraction 

of snow assumed to have survived the summer melt season and/or accumulated during summer. The August 

snow depth climatology compiled by Warren et al., (1999, referred to herein as W99) from the Soviet station data 5 
suggests significant amounts of snow (up to 10 cm) are present in late summer, especially over the Central Arctic 

sea ice north of Greenland  (Radionov et al., 1997). This inclusion of an initial snow depth was also guided by 

our preliminary model calibration studies that showed that including these initial conditions provided a better 

match with the seasonal snow depths observations (calibrations presented later). To produce initial mid-August 

snow depths, we use a near-surface air temperature-based scaling of the August W99 snow depth climatology to 10 
account for changes in the duration of the summer melt season (e.g. Markus et al., 2009). Briefly, we calculate 

the annual number of days with continuous, above-freezing, air temperatures (taken from the ERA-I reanalysis), 

which we refer to here as the summer melt duration. To create an initial (August) snow depth estimate for a given 

year, we linearly scale the W99 August snow depth climatology based on the summer melt duration of the chosen 

year and the climatological summer melt duration given in Radionov et al., (1997). If the melt duration is longer 15 
than the climatological mean in a specific region, the scaled August climatology reflects a reduction in snow 

depth in August due to the longer melt season. The snow depth is then distributed evenly over the 'old' and 'new' 

snow layers based on the climatological observations that some snow persists through summer (Radionov et al., 

1997), and the occurrence of summer snowfall events (Radionov et al., 1997; Perovich et al., 2017). While 

admittedly this is a crude approach for parameterizing an initial snow depth, our sensitivity studies demonstrated 20 
that initial conditions were necessary to improve the comparison with the drifting station observations (as 

presented and discussed in the following section), and indicate that late summer snowfall events might play a 

significant role in establishing the snow cover on Arctic sea ice prior to the fall/winter season (Warren et al., 

1999). The August W99 snow depth climatology and temperature scaled initial snow depth estimates (for 2012 

and 2013) are shown in Figure  2.  25 
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Figure 2: (left) Warren climatology of August snow depth, (middle and left) the initial conditions used in this 
study (broadly representing the snow depth as of August 15th) for 2012 and 2013 respectively, calculated using 
near-surface air temperature scaling. 

Model calibration: For our model calibration we use the raw snow depth and density data from the Soviet drifting 5 
stations 25, 26, 30 and 31. The data represent the average of a given survey line. The majority of survey lines 

remained constant each time they were sampled, so the dataset is a near-continuous time-series with a 10-day 

temporal resolution. Most survey lines were 1000 m in length, although in the earlier part of the historical record 

(e.g., before the 1980s), some ice stations had survey lines that were 500 m in length. Maps of the drifting 

stations are given in the supplementary information (Figure S3). Briefly, Station 25 drifted from the Central 10 
Arctic to the East Siberian Sea providing data from autumn 1981 to spring 1984, Station 26 drifted around the 

north of the East Siberian Sea providing data from autumn 1983 to spring 1984, Station 30 drifted around the 

north of the East Siberian Sea providing data from autumn 1988 to winter 1991, and Station 30 drifted around the 

Beaufort Sea providing data from winter 1989 to winter 1991. We use a simple nearest neighbor algorithm to 

match the data to the nearest model grid-cell for the relevant day the drifting station data were collected.  15 

3.5 NASA’s Operation IceBridge data 

We compare our NESOSIM snow depth estimates with spring snow depths collected by NASA’s Operation 

IceBridge (OIB) airborne mission. NASA’s OIB mission began collecting airborne observations of the polar 

regions in 2009, bridging the gap between NASA’s Ice, Cloud, and land Elevation Satellite (ICESat) mission 

which retired in 2009, and the future ICESat-2 mission scheduled for launch in the summer of 2018 (Markus et 20 
al., 2017). The OIB aircraft carry a suite of instruments designed to measure both land and sea ice, including their 
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overlying snow cover. Here we primarily make use of snow depth estimates derived from the ultra-wideband 

Snow Radar (Panzer et al., 2013), which are available at a 40 m along-track resolution. These snow depths are 

thought to carry an uncertainty of several centimeters, although this depends strongly on the ice/snow conditions, 

the particular Snow Radar system being used, and various other factors, e.g. geolocation errors associated with 

the plane pitch and roll (e.g. Kurtz et al., 2013; Kwok et al., 2017 and references therein). Various algorithms 5 
have been developed to produce snow depth estimates from the OIB Snow Radar data (Kwok et al., 2017), with 

the products showing broad agreement in the regional snow depth distributions, but significant intraregional and 

interannual differences, due primarily to changes in the radar configuration and algorithm tuning. To account for 

these differences we use the snow depth data from the (i) Snow Radar Layer Detection (SRLD) (Koenig et al., 

2016), (ii) NASA Goddard Space Flight Center (GSFC) (Kurtz et al., 2013) and (iii) Jet Propulsion Laboratory 10 
(JPL) (Kwok and Maksym, 2014; Kwok et al., 2017) snow depth products, that have produced, and made 

available, snow depth estimates at a 40 m along-track resolution from 2009 to 2015. We bin the 40 m OIB snow 

depth data onto our 100 km model grid and keep only the grid cells that included a significant quantity (> 1000 

points) of the raw snow depth data. The OIB data are provided for various days through spring of the relevant 

campaign (data from mid-March to early-May, depending on the campaign year), so we grid the OIB data daily, 15 
and compare this with coincident (daily) NESOSIM snow depth estimates. The OIB data are collected mainly 

over the western Arctic sea ice, limiting our validation efforts to this region of the Arctic. 

4 Model calibration and analysis 

We carried out model calibration over the period Aug 15th 1980 - May 1st 1991 due to the coincident Soviet 

station data available during this period. As noted previously, this excludes the 1987-1988 winter season due to 20 
the lack of complete sea ice concentration data available during this period. As stated earlier, our initial 

calibration efforts involved manually tuning NESOSIM to improve the general fit with the mean seasonal snow 

depth/density cycles shown in the Soviet station data. Specifically, we included the temperature-scaled initial 

August snow depths and tuned both the wind packing coefficient, α (Eq. 5), and blowing snow coefficient, 𝛽 (Eq. 

6). We decided against a more optimized calibration effort due to limitations in the calibration data, i.e. its sparse 25 
availability in space/time and differences in spatial scales. We instead used the Soviet station data to guide our 

model choices to achieve a more realistic seasonal cycle in snow depth and density. We also decided against 

specific model configuration parameter tuning due to these limitations in the calibration data, however this should 
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be considered when analyzing the model performance, especially with regard to our validation efforts (i.e. more 

sophisticated and/or configuration specific tuning could improve the comparisons shown). 

 
Figure 3: Comparison of NESOSIM snow depth (left) and snow density (right) data with drifting Soviet station 
data collected between 1981 and 1991. The top panels show the mean seasonal evolution of the snow depth and 5 
density for the model (blue) and Soviet station data (black), with the data binned into the different months the 
data were collected. The shaded area represents one standard deviation from the annual monthly mean. The 
bottom panels show scatter plots of all points for which there were temporal crossovers. The r-values indicate the 
correlation coefficient, while the colors indicate the different stations that collected the data. The NESOSIM data 
are from the default/ERA-I model configuration. 10 

In Figure 3 we show comparisons of our NESOSIM results using the default model configuration (summarized in 

Table 1) and ERA-I snowfall forcing with the drifting station snow depth and density data. Figure 3 shows both 

the mean seasonal cycle based on all drifting station data points and coincident model grid cell values over this 

time period binned monthly, and the correlations of snow depth and snow density for all coincident data 

(described in Section 3.4). Our calibrated NESOSIM results agree well with the mean seasonal cycle in snow 15 



20 
 

depth (r = 0.96 with a low bias of ~3 to 7 cm) and snow density (r = 0.97, no significant seasonal bias) in the 

drifting station data. The large spread in the in-situ snow density in September-October is due to the survival of 

snow through the summer melt season (high density) and recent autumn snowfall (low density). The correlations 

between the raw drifting station data and NESOSIM snow depths are lower, but still strong (r = 0.74), while the 

snow density correlation strength is moderate (r = 0.58), suggesting the model may be better capturing regional 5 
variability in snow depth over snow density. It should be noted, however, that snow density is highly variable in 

space and subject to large measurement uncertainties when collected in situ (Sturm, 2009). In general, the 

moderate/high correlations and seasonal comparisons provide confidence in the utility of NESOSIM for 

estimating snow depths across the Arctic.  

In Figure 4, we highlight the sensitivity of NESOSIM to the chosen model configuration/sophistication, broadly 10 
representing the heuristic model tuning that was undertaken. First we tested the results of NESOSIM with 

different combinations of the various model parameterizations included.  Note that as discussed at the end of 

Section 2, when we turn off the wind-packing parameterization the model essentially becomes a one layer model 

so we use a fixed Warren et al., (1999) seasonal snow density climatology (constant density value across the 

Arctic). As this is based on the same drifting station data we compare our results to, it is perhaps unsurprising that 15 
this configuration provides a better match with the seasonal drifting station snow depth cycle, including deeper 

snow depths (and reduced low snow depth bias) from November to April. We chose to develop NESOSIM to 

allow for the production of snow depths that agree well with the old drifting station snow climatology, but able to 

also respond to the expected interannual variability and trends in Arctic climate over recent decades, hence the 

decision to develop and include a simple bulk density parameterization.  20 
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Figure 4: Differences between the mean (1980-1991) seasonal cycles in the drifting station data against various 
configurations of NESOSIM. The different symbols represent different levels of model sophistication, ⍴-W99: 
climatological Warren snow density, ⍴-2lyr: default prognostic two-layer snow density, WP: wind packing 
parameterization, BSL: blowing snow loss parameterization, IC: initial conditions. NO indicates that the 5 
parameterization/initial conditions have been turned off. The different colours then represent a doubling of 
individual model parameters, with all other settings fixed to the default settings (see Table 1). The black 
crosses/line represents the default/ERA-I results (as shown in Figure 3).  

Including the blowing snow loss parameterization resulted in slightly lower snow depths (~2 cm), but no 

significant change in snow density. This parameterization can impact the bulk density implicitly by reducing the 10 
amount of  fresh snow contributing to the total snow depth/density. As the drifting station data are collected 

primarily within the Central Arctic where ice concentrations are near to 100%, it was expected that including 

blowing snow loss would not result in significant differences, as this parameterization is expected to provide 

more of an impact in lower ice concentration regimes, where unfortunately in-situ snow depth data are lacking. 

Including the initial snow depths resulted in a small increase in snow depth and density, especially earlier in the 15 
seasonal cycle, as expected, reducing the low bias compared to the drifting station data. The seasonal correlations 

were similarly high across these model configurations, highlighting the primary role of the model configuration 

choices in determining the general bias of the seasonal snow depth/density cycle. 
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As a simple demonstration of the sensitivity of the model to the poorly constrained/unconstrained model 

parameters introduced in NESOSIM (the wind packing threshold, ω, the wind packing coefficient, α, the blowing 

snow loss coefficient, β), Figure 4 also shows results from NESOSIM with these three model parameters 

individually doubled (based on the default/ERA-I configuration). Doubling the wind packing threshold, ω, (from 

5 to 10 m/s) has a large impact on both the snow depth and density. By essentially reducing the likelihood for 5 
wind packing to occur, the snow accumulates and remains in the fresher 'new' snow layer for longer, significantly 

reducing the bulk snow density and increasing the seasonal snow depths. While this does produce snow depths 

that appear to agree better with the drifting station data, the low bias in the seasonal snow density suggest this is 

unphysical. Doubling the wind packing coefficient, α, (from 5.8e-7 to 1.16e-6) has broadly the opposite effect, as 

expected, reducing the snow depths by increasing the transfer of snow from the fresher 'new' snow layer to the 10 
denser 'old' snow layer. Doubling the blowing snow loss coefficient, β, (from 2.9e-7 to 5.8e-7) has a negligible 

impact, again likely due to the location of the in-situ data away from the lower concentration ice regimes where 

this process is more significant. 

As stated earlier, the differences in spatial scales and data coverage (time and space) make interpreting these 

comparisons/calibrations challenging. Specific model configurations may be required based on user demands, 15 
and our expectations is for these calibrations to evolve as new calibration data are made available and physical 

parameterizations introduced/updated. Note that we also compared the simulations of NESOSIM forced by the 

MERRA and JRA-55 snowfall data (Figures S2 and S3 provided in the Supplementary Information). In general 

the seasonal correlations with the drifting station data were similar to the ERA-I results, but the correlations of 

the raw data were slightly lower for JRA-55 (r = 0.69 for snow depth and r = 0.58 for snow density) and 20 
significantly lower for MERRA (r = 0.44 for snow depth and r = 0.57 for snow density). As discussed in Section 

3, it is likely that specific model configuration tuning could improve these comparisons and the later validation 

efforts, but we decided against a more optimized calibration approach due to the limitations in the Soviet station 

data. 

As discussed in Section 3.1, we also produced a synthesis snowfall dataset (MEDIAN-SF) using the median 25 
snowfall across the gridded ERA-I, JRA-55 and MERRA datasets. The MEDIAN-SF forced results are similar to 

the ERA-I results (Figures S4), in general, and show correlations similar to ERA-I and JRA-55 (r = 0.68 for snow 

depth and r = 0.58 for snow density). The MEDIAN-SF seasonal snow depths have a reduced low bias compared 

to the ERA-I results, although this difference is small. For the rest of this analysis we choose to mainly focus on 

the MEDIAN-SF forced results using the default configuration (Table 1) for simplicity. We provide a further 30 
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assessment of the impact of the snowfall data in the following regional analysis and when we analyze the regional 

distributions across the more recent (2000-2015) time period. 

4 Sensitivity studies and model validation 

Here we present and analyze the NESOSIM results from 2000 to 2015, a period broadly defined as the New 

Arctic considering the rapid sea ice declines during this time period (e.g. Serreze and Stroeve, 2015). This period 5 
also covers the temporal range of NASA's ICESat (2003 to 2008) and ESA's CryoSat-2 (2010 onwards) satellite 

altimetry missions, meaning the snow depth/density results presented here are planned to be of more relevance 

for those estimating sea ice thickness from these freeboard measurements. The period also includes temporal 

overlap with the ASR forcing data, and various satellite-derived ice motion products used. We provide examples 

of the model evaluation figures for the 1980s time period in the Supplementary Information (Figures S5 and S6). 10 
A more detailed study accounting for differences in the input forcing data is likely needed before any conclusions 

can be made regarding potential trends in seasonal Arctic snow depths, which is beyond the scope of this paper. 

We hope to explore trends in our simulated snow depths in future work, however. 
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Figure 5: Map of the Arctic model domain and regions used in this study: AO: Arctic Ocean, CA: Central Arctic, 
EA: Eastern Arctic, NA: North Atlantic. BS: Bering Sea and LS: Labrador Sea are peripheral seas also discussed 
in the manuscript. 

We focus our analysis on the Arctic Ocean (AO, everything north of 60 oN) and three specific regions that were 5 
chosen to represent different components of the Arctic sea ice/climate system: (i) the Central Arctic (CA, 

captures the thicker/multi-year ice over north of Greenland), (ii) the Eastern Arctic (EA, the increasingly first-

year ice dominated sea ice regime), (iii) North Atlantic (NA, a region influenced by the transpolar ice drift and 

the North Atlantic storm track), as shown in Figure 5. 

Figure 6 shows the seasonal snow depth and density evolution across our four study regions for the 2000-2015 10 
time period, using the default/MEDIAN-SF configuration (Table 1). The AO and CA region especially show 

strong initial increases in snow depth through fall (August to October) with the snow depth increasing at a slower 

rate from November to May, which is in good agreement with the W99 climatology. The EA and NA regions 

show a more uniform increase in snow depth from August to April. The NA region shows more daily snow depth 

variability, which was expected due to the strong ice drifts and the location of the NA storm track where passing 15 
cyclones can deposit large quantities of snow in a short period of time.  It is also worth noting the small decline in 

snow depth through September/October in the EA region which is driven by reduced snowfall and snow 

densification due to wind packing through this period. By May 1st the mean snow depths (and interannual 
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variability, calculated as one standard deviation of the annual values) are given as: 27.8 +/- 1.9 cm (AO),  31.8 

+/- 4.0 cm (CA),  23.2 +/- 2.9 cm (EA), 42.5 +/- 8.1 cm (NA). The May 1st snow depth results are summarized in 

Table 4, to aid comparison with the snow depths produced in the following sensitivity studies.  

 
Figure 6: Seasonal snow depth (black) and bulk density (green) evolution across the four study regions (shown in 5 
Figure 5) initiated from August 15th 2000-2014 and run until May 1st of the following year using the MEDIAN-
SF/parameter settings (Table 1). The thick lines show the mean values over this time period, while the shaded 
areas represent the interannual variability (one standard deviation).  

We see stronger increases in the bulk snow density through fall across all regions (also shown in Figure 4), with 

this density increase slowing through winter/spring, especially in the CA region, after December. The AO, CA 10 
and NA regions also show an interesting initial decrease in snow density, which is driven by the accumulation of 

new snow (with a lower density) compared to the equal mix of old and new snow densities included in our initial 

conditions. The mean bulk snow densities as of May 1st are given as: 309 +/- 2 kg/m3 (AO),  323 +/- 4 kg/m3 

(CA),  311 +/- 3 kg/m3 (EA), 318 +/- 6 kg/m3 (NA). 

 May 1st snow depth (cm) 

NESOSIM configuration  Arctic Ocean 
(AO) 

Central 
Arctic (CA) 

Eastern Arctic 
(EA) 

North Atlantic 
(NA) 

Snowfall sensitivity results     
2001-2015 (ASRv1) 21.4 (1.5) 23.5 (3.2) 16.6 (2.7) 37.4 (5.4) 

2001-2015 (MERRA) 30.6 (2.6) 31.6 (3.1) 25.8 (3.6) 45.7 (9.0) 

2001-2015 (JRA-55) 32.0 (1.9) 37.4 (4.7) 25.4 (3.3) 50.4 (9.5) 
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2001-2015 (ERA-I) 25.5 (1.7) 30.7 (4.1) 22.0 (2.5) 38.5 (7.3) 

2001-2012 (MEDIAN-SF) 27.8 (1.9) 31.8 (4.0) 23.2 (2.9) 42.5 (8.1) 

Ice drift sensitivity results 

    2011-2015* (MEDIAN-SF/ NODRIFT) 27.3 (2.2) 32.4 (2.9) 24.8 (4.0) 38.7 (10.3) 

2011-2015* (MEDIAN-SF/OSISAF) 26.3 (2.2) 32.9 (3.8) 23.4 (3.7) 38.9 (9.6) 

2011-2015* (MEDIAN-SF/KIMURA) 25.7 (2.2) 32.9 (4.3) 21.2 (3.5) 38.9 (10.6) 

2011-2015* (MEDIAN-SF/CERSAT) 26.3 (2.2) 33.1 (3.9) 23.2 (3.6) 38.5 (10.0) 

2011-2015* (MEDIAN-SF/NSIDCv3) 26.7 (2.2) 32.4 (4.6) 22.9 (3.5) 39.9 (9.1) 

Ice concentration sensitivity results 

    2001-2015 (MEDIAN-SF/NASA Team) 23.4 (1.7) 28.0 (4.0) 20.3 (2.8) 35.4 (7.8) 

Table 4: Mean snow depths as of May 1st across the four study regions (rows, regions given in Figure 5) for 
NESOSIM using different forcings and time periods (columns). The numbers in brackets represent interannual 
variability and are calculated as one standard deviation of the annual values. The default NESOSIM configuration 
is MEDIAN-SF snowfall, ERA-I winds, NSIDCv3 ice motion and Bootstrap ice concentration *Note that these 
2011-2015 ice motion sensitivity runs exclude the 2012-2013 winter season due to the lack of KIMURA drift 5 
data.  

4.2  Budget analysis 

Here we discuss the relative contributions to the seasonal snow depth evolution from the various snow budget 

terms currently included in NESOSIM. Results of the various NESOSIM budget terms and the total snow depth 

and bulk density are shown in Figure 7 across our four study regions for this 2000s time period. The black 10 
(green) lines/shading that represent the snow depth (bulk density) are the same as the results shown in Figure 6.  

Across the AO region, we see that accumulation is higher than snow depth, as expected (higher by ~30 cm by 

May 1st, around double the May 1st snow depth), with wind packing (~20 cm) and wind blowing snow lost to 

leads (~10 cm), providing significant reductions in snow depth. In the EA and CA region especially, the blowing 

snow loss term is negligible, while in the NA region it is more significant (contributes a sink of ~18 cm by May 15 
1st). The NA region also shows a small (~2 cm) increase (decrease) in snow depth driven by snow/ice divergence 

(ice/snow advection). 
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Figure 7: Seasonal snow budget evolution across the four study regions (shown in Figure 5), initiated from 
August 15th 2000-2014 and run until May 1st of the following year using the default/MEDIAN-SF NESOSIM 
simulations. The thick lines show the mean, daily, regional values over this time period, while the shaded areas 
represent the interannual variability (one standard deviation).  5 

To further explore the different budget terms we also show maps of the various budget terms as of May 1st over 

the same time period, as shown in Figure 8. The maps highlight that many of these terms, especially the ice/snow 

dynamics (advection and convergence), exhibit high spatial variability, which the regional means discussed 

previously mask. For example, the NA region shows a strong mix of positive snow advection and convergence 

adjacent to the coast of Svalbard (i.e. snow is advected into the region and is constrained against the coastline), 10 
but an advection out of the region further to the north as the ice either drifts down towards Svalbard/Fram Strait 

or into the Central Arctic.  
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Figure 8: Snow budget terms as of May 1st, averaged over the 2001 to 2015 time period using the 
default/MEDIAN-SF NESOSIM simulations. The black lines show the four study regions used throughout this 
study. Note the different color bar scales in panels (h) to (k).  
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The ice dynamic behaviour around the pole is thought to be spurious considering interpolating issues across the 

pole hole in the NSIDCv3 drift product (Szanyi et al, 2016), one reason why we did not include this region in our 

regional analysis. In the following section we assess the sensitivity of our results to the input ice motion dataset, 

which will provide some further information as to the reliability of these dynamic budget terms. 

As stated earlier, we hope to explore these decadal and regional differences more in future work. However, it is 5 
worth noting that the regional snow budget results and May 1st budget maps using the same default/MEDIAN-SF 

configuration but run for the 1980s time period were similar to the 2000s time period results (Supplementary 

Information Figure S4 and S5). The noteworthy differences in the budget terms include a less significant increase 

in blowing snow lost to leads in the CA region and less  convergent driven snow depth increases in the new 

period, although accumulation and wind packing still dominate the budget terms for both periods. The NA results 10 
also do not show the advection-driven reduction in snow depth in March/April that was present in our 2000s 

results.  

4.3  Reanalysis sensitivity study 

In Figure 9 we show the seasonal/regional snow depths from NESOSIM forced by the various reanalysis-derived 

snowfall estimates (ERA-I, JRA-55, MERRA and MEDIAN-SF) from 2000 to 2015 and the ASRv1 forced 15 
results which are only available up to 2012, as described in Section 3.1. The May 1st results are summarized in 

Table 4. In general, the results show significant differences in the seasonal snow depths across all regions (up to 

~10 cm across all regions). The rankings of snow depth between the different products is broadly consistent 

across the four regions, with JRA-55 and MERRA producing consistently higher snow depths (except in the EA 

region where MERRA produces slightly higher snow depths), and ERA-I consistently lower. The MEDIAN-SF 20 
snow depths are, in general, slightly higher than the ERA-I forced snow depths. In the CA region we can see that 

MERRA, ERA-I and MEDIAN-SF forced results are all broadly similar, with JRA-55 significantly higher (by ~5 

cm from October onwards). It is thus expected that the MEDIAN-SF snowfall data will have excluded much of 

the high JRA-55 snowfall data (the benefits of using a median instead of a mean snowfall). Despite the NA 

region having the highest snow depths and interannual variability, the intra-reanalysis spread is similar to the 25 
other regions. The ASRv1 forced snow depths in the AO, CA and EA regions are significantly lower during the 

December-April time period, despite showing strong similarities to the other reanalysis-forced results in August 

to November. The ASRv1 results in the NA region however, are very similar to the ERA-I forced results. Note 

that we tested the impact of the different time periods by producing the same figure for the 2000-2012 period (not 
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shown) which showed that the differences between ASRv1 and the other products was similar and not sensitive 

to this time period difference. The results further allude to the need for a consensus (e.g. median) snowfall dataset 

to force the model with considering the large uncertainty in reanalysis-derived snowfall.  

 
Figure 9: Seasonal snow depth evolution across the four study regions (shown in Figure 5) initiated from August 5 
15th 2000-2014 and run until May 1st of the following year, forced by five different reanalysis snowfall products. 
This figure also includes results using the ASRv1 forced simulations (which are limited to Aug 15th 2000 to May 
1st 2012). The thick lines show the mean (daily) regional snow depths over this time period, while the shaded 
areas represent interannual variability (one standard deviation). All model runs use the default forcings/parameter 
settings.  10 

Figure 10 shows maps of the mean snow depths on May 1st over the same 2001-2015 time period, for the model 

simulations forced by the MEDIAN-SF snowfall then the differences from this MEDIAN-SF simulation using the 

four individual snowfall products.  
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Figure 10: Simulated snow depths on May 1st (averaged over May 1st 2001 to 2015), using the MEDIAN-SF 
snowfall forcing (top left) and then the difference to the simulations forced by the four different snowfall 
products (bottom and top right). The ASRv1 forced results are limited to May 1st 2012. Red (blue) colours 
indicate the individual reanalysis-forced simulations have higher (lower) snow depth. 5 

The maps highlight the regional variability across the products, but consistency in the MERRA/JRA-55 (ASR) 

high (low) difference compared to MEDIAN-SF. The JRA-55 and MERRA forced results both show 

significantly higher (10-20 cm) snow depths through Bering Strait, the NA/Fram Strait region, and the southern 

Labrador Sea. The ERA-I results show slightly lower snow depths over most of the Arctic, small increases 

around the Canadian Archipelago, and larger decreases in the Fram and Bering Strait region, driven by the larger 10 
differences in these regions in the MERRA/JRA-55 forcings. The magnitude of the precipitation events in Fram 

Strait are often large, but highly variable, due to the active storm track and the resulting difficulties of producing 

reliable precipitation rates during these events (Boisvert et al., 2018). As discussed earlier, it is challenging to 

determine from this study any particular reanalysis-derived snowfall dataset that might be more appropriate (or 



32 
 

an obvious outlier) for producing accurate snow depth estimates across the Arctic. However, the MEDIAN-SF 

forced results appear to provide a useful synthesis of the available snowfall data. 

4.4  Ice motion sensitivity 

We also explore the sensitivity of NESOSIM to the input satellite-derived ice motion data available during this 

period. Here we show results from the default/MEDIAN-SF configuration forced by four different satellite-5 
derived ice drift products: NSIDCv3, KIMURA, CERSAT and OSISAF, as described in Section 3.2. Due to 

limitations in the temporal coverage of the different drift datasets, the model is only run for four years initialized 

from Aug 15th 2011-2015 (excluding 2012 initialized runs as KIMURA data are not available due to gaps in the 

AMSR-E/AMSR2 record). The regional snow depth estimates from NESOSIM forced by these four ice drift 

products are shown in Figure 11, with the May 1st results summarized in Table 4. In general, the ice drift 10 
sensitivity study shows a smaller spread in the mean snow depths across the different products (up to ~3.5 cm), 

compared with the reanalysis sensitivity study (up to ~13 cm). We also show results of NESOSIM forced with no 

ice drift (NODRIFT), which demonstrates that including ice drift appears not to be a crucial process for capturing 

the variability in snow depth at this regional scale, i.e. ice dynamics appear to be a clear second order term 

compared to snowfall when analyzed at this regional scale.  15 

 
Figure 11: Seasonal snow depth evolution across the four study regions (shown in Figure 5), initiated in August 
15th 2010, 2012, 2013, 2014 and run until May 1st of the following year, forced by four different ice motion 
datasets and assuming no ice motion (NODRIFT). The thick lines show the mean (daily) regional snow depths 
over this time period, while the shaded areas represent interannual variability (one standard deviation). All model 20 
runs use the default/MEDIAN-SF parameter settings.  
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The most obvious impact of ice drift is in the EA and NA regions. In the EA region the inclusion of ice drift 

reduces the snow depth by 1.4 - 3.6 cm, with the magnitude depending on the ice drift product chosen (the 

KIMURA forced results shows the biggest decrease in this region) In the NA region the inclusion of ice drift 

increases the snow depth by 3.8 to 5.3 cm (the NSIDCv3 forced results shows the biggest increase in this region). 

 5 

Figure 12: Modeled snow depth on May 1st (averaged over May 1st 2011, 2013, 2014, 2015), assuming no ice 
motion (NODRIFT, top left) and then the difference to the simulations forced by the four different ice motion 
products and the mean snow depth from the four different forced model runs. 

Figure 12 shows maps of the snow depths averaged on May 1st over the same 2011-2015 time period,  for the 

model simulations assuming no drift (NODRIFT) then the differences from this NODRIFT simulation using the 10 
various ice motion products. In general, the results show strong similarity in the spatial impacts of ice motion, 

including strong decreases in snow depth (up to ~10 cm) in the northeastern sector of the Arctic, and increases 

(up to ~10-20 cm) in the region directly north and west of Svalbard. There are clear differences between the 
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different ice motion results though, with the NSIDCv3 and KIMURA forced results showing more of an impact 

on snow depth in the peripheral Arctic regions, e.g. strong decreases in the north and increases in the south 

Bering Strait, and strong increases in the Labrador Sea. This is thought to be driven primarily by the increased 

spatial coverage of these data compared to OSI-SAF and CERSAT, which may be masking some of the ice 

motion data in these regions of low ice concentration and uncertain ice drift. The maps also highlight that at more 5 
local scales, the ice dynamic contribution to snow depth variability could be significant. The data around the pole 

hole are also questionable in some of the products and may be related to interpolation issues across the pole hole. 

More specifically, the NSIDCv3 and OSISAF forced simulations show increases in snow depth at the north pole, 

which are not apparent in the CERSAT and KIMURA simulations, suggesting this increase is likely spurious.  

In general, Figures 11 and 12 suggest that the NSIDCv3 (Polar Pathfinder) forced simulations exhibit no obvious 10 
biases compared to the results using the other ice motion products, except for the issues of spurious snow depths 

within the pole hole and issues around the ice edge.  

4.5  Ice concentration sensitivity 

Finally we present and discuss the snow depth results from NESOSIM driven by two different satellite-derived 

ice concentration products (Bootstrap and NASA Team), as described in Section 3.3. The regional snow depth 15 
estimates from NESOSIM forced by these two ice concentration products over the 2000-2015 time period are 

shown in Figure 13, with the May 1st results summarized in Table 4. In general, the ice concentration sensitivity 

study demonstrates that the choice of ice concentration product is significant, with differences of several 

centimeters between the two simulations across the study regions (e.g. ~7 cm differences in the NA snow depths). 
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Figure 13: Seasonal snow depth evolution across the four study regions (shown in Figure 5), initiated from 
August 15th 2000-2014 and run until  May 1st of the following year, forced by the Bootstrap (magenta) and 
NASA Team (blue) ice concentration datasets. The thick lines show the mean (daily) regional snow depths over 
this time period, while the shaded areas represent interannual variability (one standard deviation). All model runs 5 
use the default/MEDIAN-SF configuration. 

This was somewhat expected given the known low bias in the NASA Team concentration data (e.g. Meier, 2005; 

Ivanova et al., 2015), reducing the concentration of sea ice for snow to accumulate on. More specifically the 

Bootstrap data use daily-variable tie-points and are thus thought to improve the distinction between surface melt 

and open water. The lower concentrations also increase the blowing snow lost to leads term (as this is a function 10 
of the open water fraction). The snow budget terms using the NASA Team concentration data are shown in the 

Supplementary Information (Figure S7) to highlight this further, with all regions showing reduced snow 

accumulation and blowing snow lost to leads increased, and now significant, across all regions. Again, we believe 

the Bootstrap data better represent the seasonal ice conditions, although we appreciate uncertainties still remain 

regarding the treatment of surface melt/melt ponds and their impact on snow accumulation/depth. 15 

4.6  Validation with Operation IceBridge data 

Here we present and discuss comparisons of our NESOSIM snow depth estimates with NASA’s Operation 

IceBridge spring snow depth data from 2009 to 2015, as described in Section 3.5. We first show the basin-

averaged results for the various OIB snow depth products each spring (from 2009 to 2015) and the coincident 

NESOSIM snow depth estimates, to assess how well NESOSIM captures the mean snow depth and expected 20 
interannual snow depth variability across this broad region of the Arctic. As discussed in Section 3.5, the OIB 
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flights mainly cover the western Arctic sea ice pack, broadly within and to the west of the Central Arctic domain 

used in our earlier regional analyses, although this does vary each year. Maps of the OIB snow depth retrievals 

across the different products are given in Kwok et al., (2017). 

 
Figure 14: Comparisons of the annual mean snow depths from NESOSIM (default configuration) forced with 5 
different reanalyses, and the various Operation IceBridge (OIB) snow depth products. The blue (red) shading 
represents the annual mean spread across the different NESOSIM results (OIB products). The markers are spread 
across the shaded areas to improve readability.  

Figure 14 highlights the significant and variable spread in the annual mean OIB snow depth estimates (product 

spread of ~5 to 20 cm depending on the year), with the OIB-JPL snow depth retrievals consistently higher and 10 
less variable than the other two OIB products (SRLD and GSFC). The reanalysis-forced NESOSIM snow depths 

exhibit a more consistent spread of ~5 cm, with the JRA-55 forced results consistently higher than the other 

reanalyses. This was expected based on our previous analyses (e.g. the Central Arctic results shown in Figure 

11b). The large spread in the OIB snow depths make it challenging to assess the reliability and accuracy of our 

NESOSIM results. In general, however, there is broad agreement between the NESOSIM and OIB results in 15 
terms of the mean snow depths and the broad pattern of interannual variability.  
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Figure 15: Scatter plots of NASA’s Operation IceBridge (OIB) snow depths from the three OIB products binned 
onto our 100 km model grid, and coincident NESOSIM/MEDIAN-SF snow depth estimates for all years of data 
from 2009-2015, including the correlation coefficient (r) and root mean squared error (RMSE). The contours 
show the kernel density estimate of the distributions. 5 
 
To assess how well the model captures regional snow depth variability we show scatter plots in Figure 15 of the 

MEDIAN-SF-NESOSIM snow depths and the three OIB snow depth products from 2009-2015 (the regressions 

for each year are given in Figure S8). A summary of the correlation coefficients (r) and root mean squared errors 

(RMSEs) across the three OIB products and NESOSIM forced by the three individual (and median) reanalysis 10 
products for individual years and for all years of data, are given in Table 5, with the regressions shown in Figures 

S9-11. 

In general, the comparisons are highly variable and depend mainly on the chosen analysis year and the reanalysis 

snowfall dataset, rather than the OIB product. The correlations between the OIB snow depth retrievals and the 

NESOSIM snow depths improve significantly in 2012 (r = 0.63 - 0.75) compared to the proceeding years (r = -15 
0.15 - 0.61). The improved correlations in 2012 onwards coincide with increases in the OIB flight coverage, that 

include more of the Central Arctic and Beaufort/Chukchi seas, meaning the data better represent the regional 

variability in snow depths across the western Arctic. The strength of the correlations are highest in 2012 and 

2013, while the  RMSEs are lowest (< 10 cm) between 2011 and 2013, especially in the ERA-I and MEDIAN-SF 

forced results. The OIB-SLRD RMSEs are generally lower than the RMSEs calculated with the other OIB 20 
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products between 2010 and 2015, but significantly higher in 2009 when the signal-to-noise ratio of the earlier 

version of the Snow Radar used on OIB was higher (Kwok et al., 2017). The 2009 OIB snow depth results should 

thus be treated with caution.  

 
MEDIAN-SF ERA-I JRA-55 MERRA 

Year SRLD JPL  GSFC SRLD JPL  GSFC SRLD JPL  GSFC SRLD JPL  GSFC 

2009 
0.27 

17 cm 

0.17 

11 cm 

0.30 

12 cm 

0.37 

15 cm 

0.24 

10 cm 

0.36 

11 cm 

0.32 

21 cm 

0.19 

11 cm 

0.36 

12 cm 

0.18 

19 cm 

0.12 

11 cm 

0.21 

13 cm 

2010 
0.12 

12 cm 

0.06 

10 cm 

0.11 

11 cm 

0.27 

11 cm 

0.27 

9 cm 

0.29 

10 cm 

0.16 

16 cm 

0.07 

11 cm 

0.15 

14 cm 

-0.06 

13 cm 

-0.15 

12 cm 

-0.08 

13 cm 

2011 
0.38 

11 cm 

0.28 

8 cm 

0.46 

9 cm 

0.56 

10 cm 

0.47 

7 cm 

0.61 

8 cm 

0.29 

16 cm 

0.20 

9 cm 

0.38 

12 cm 

0.14 

10 cm 

0.04 

9 cm 

0.25 

10 cm 

2012 
0.73 

8 cm 

0.70 

8 cm 

0.73 

9 cm 

0.75 

8 cm 

0.72 

8 cm 

0.75 

9 cm 

0.72 

12 cm 

0.67 

11 cm 

0.72 

10 cm 

0.67 

8 cm 

0.63 

9 cm 

0.66 

11 cm 

2013 
0.69 

7 cm 

0.68 

13 cm 

0.65 

15 cm 

0.73 

7 cm 

0.74 

12 cm 

0.70 

14 cm 

0.67 

9 cm 

0.65 

10 cm 

0.63 

12 cm 

0.67 

7 cm 

0.66 

13 cm 

0.64 

15 cm 

2014 
0.68 

10 cm 

0.63 

9 cm 

0.63 

11 cm 

0.74 

9 cm 

0.70 

9 cm 

0.68 

10 cm 

0.64 

12 cm 

0.58 

12 cm 

0.60 

15 cm 

0.53 

11 cm 

0.48 

10 cm 

0.52 

10 cm 

2015 
0.659 

9 cm 

0.52 

10 cm 

0.48 

10 cm 

0.68 

8 cm 

0.62 

9 cm 

0.54 

9 cm 

0.58 

13 cm 

0.50 

11 cm 

0.49 

15 cm 

0.37 

10 cm 

0.29 

11 cm 

0.32 

10 cm 

All years 
0.58 

10 cm 

0.54 

10 cm 

0.47 

11 cm 

0.64 

9 cm 

0.62 

9 cm 

0.53 

10 cm 

0.57 

14 cm 

0.53 

11 cm 

0.47 

13 cm 

0.43 

11 cm 

0.41 

11 cm 

0.37 

12 cm 

Table 5: Correlation coefficient (r, top rows) and root mean squared error (RMSE, bottom rows) from the 

correlations between the various reanalysis-forced NESOSIM results, and OIB derived snow depths. The 5 
MEDIAN-SF scatter plots for all years of data are shown in Figure 15, with other reanalysis forced scatter plots 

given in the Supplementary Information. The 'all years' results in Table 5 provide a summary of the correlations 

using all the OIB snow depth retrievals from 2009-2015. The MERRA forced results produce significantly lower 

correlations to the OIB snow depths (r = 0.37 to 0.43) compared to the other reanalyses, while the ERA-I forced 

results show the highest correlations (r = 0.53 to 0.64) and lowest RMSEs (9 - 10 cm). The MEDIAN-SF results 10 
show slightly lower correlations (r = 0.47 - 0.58) and higher RMSEs (10-11 cm) compared to ERA-I.  In general, 

however, the moderate to strong correlations give us confidence that NESOSIM is producing reasonable snow 

depth estimates across the western Arctic. The RMSEs of ~10 cm imply the expected level of accuracy in our 
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NESOSIM snow depths, although these validations are hindered by uncertainty in the OIB snow depth retrievals 

(Kwok et al., 2017) and a lack of OIB retrievals in the eastern Arctic Ocean.  

In the sensitivity studies presented earlier, we focused primarily on the MEDIAN-SF simulations, due in-part to 

considerations of high snowfall variability in regions of high and uncertain precipitation - e.g. the North Atlantic 

sector. The OIB data lack coverage in this region, however, making it hard to assess if this synthesized forcing 5 
snowfall produces more accurate snow depths in these more challenging regions of the Arctic. Data from the 

2017 OIB flights into the eastern Arctic will hopefully provide some assessment of our NESOSIM snow depths 

in this region of the Arctic, however (the data was not available for this study but was made available during the 

review phase of this paper). Our contemporary (2000-2015) NESOSIM results still lack validation of the 

simulated snow densities, due to the lack of basin-scale density data available during this time period. 10 

We can further assess the performance of NESOSIM by comparing these results with comparisons of OIB and 

the commonly used Warren snow depth climatology (Warren et al., 1999). As stated in the introduction, more 

recent uses of this climatology tend to apply a scaling factor (usually 50%) to the snow depths over first-year ice. 

We follow the same approach here, using the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI 

SAF, www.osi-saf.org) ice type product which is derived from a combination of passive microwave and 15 
scatterometry data at 10 km horizontal resolution (Breivik et al., 2012). We derive daily modified W99 snow 

depths (referred to herein as mW99) for the same 100 km bins used in Figures 14 and 15 (where we have OIB 

data), with the comparisons shown in Figure 16.  
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Figure 16: As in Figure 15 but showing comparisons of modified Warren snow depths (mW99) against the OIB 
snow depths.  

In general these comparisons are similar, although in some cases the mW99 snow depths compare better with the 

OIB snow depths, depending on the product analyzed. Note that the bimodal nature of the mW99 data is due to 5 
the binary ice type weighting scheme, which does significantly improve the comparison to the OIB data based on 

the RMSE and correlation coefficients (comparisons of unmodified W99 data are given in Figure S12). The low 

RMSE values in the JPL-OIB comparison is driven by the very good agreement in the mean snow depth, while 

the GSFC and SRLD products tend to show a slight low bias, increasing the RMSE values. Figure 14 shows that 

the OIB-JPL product exhibits less interannual variability than the other products, which may provide some 10 
explanation for the better correspondence with the W99 climatology. We also carried out OIB comparisons by 

delineating by ice type (first-year ice and multi-year ice) using the same OSI-SAF product discussed above.  

However, the results were mixed, and were also strongly dependent on the OIB product analyzed. Such 

delineations are also hindered by the lower coverage of first-year ice in the OIB data, despite this becoming an 

increasingly dominant component of the Arctic sea ice pack. We thus choose to exclude this analysis from our 15 
discussion for simplicity.  

In general the modified Warren results are useful for placing the NESOSIM-OIB comparisons in context, which 

clearly show a higher spread and tend to suffer from positive and negative biases depending on the OIB product 
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chosen. Bias correcting the NESOSIM snow depths could improve these comparisons, but uncertainty still 

remains regarding which OIB product better represents 'truth' at this basin-scale.  

6 Summary 

In this study we presented the newly developed NASA Eulerian Snow On Sea Ice Model (NESOSIM). The snow 

depth and density simulated in NESOSIM (from August 15th to May 1st) across an Arctic Ocean domain (100 km 5 
horizontal grid) were first compared against in-situ data collected by drifting Soviet stations during the 1980s. 

The model produced very strong agreement with the seasonal cycles of snow depth and density and good 

(moderate) agreement with the regional snow depth (density) distribution.  

The model was run for a contemporary period (2000 to 2015) to produce seasonal snow depth and density 

estimates representative of the New Arctic climate system. A budget analysis provided insight into the relative 10 
processes contributing to our modelled seasonal evolution in snow depth, with snow accumulation driving 

increases in snow depth, and wind packing reducing snow depth (through an increase in the bulk snow density). 

Blowing snow lost to leads provided a significant sink of snow, but only in the lower ice concentration, high 

wind/snow depth regime of the North Atlantic sector.  

The model showed strong sensitivity to the reanalysis-derived snowfall forcing data, with the MERRA/JRA-55 15 
(ASR) derived snow depths generally higher (lower) than ERA-I. We derived a new synthesized snowfall dataset 

based on the median ERA-I, MERRA and JRA-55 snowfall data. We briefly assessed the sensitivity of 

NESOSIM to the input concentration data, with our results suggesting that the choice of concentration product 

(Bootstrap and NASA Team explored in this study) can have a significant impact on the simulations, and should 

not be overlooked. We also explored the sensitivity of NESOSIM to the input ice motion data, where we showed 20 
this had a second order effect compared to the choice of reanalysis snowfall forcing in our regional mean 

comparisons. The ice motion still appears to be important at smaller spatial scales, e.g. by reducing snow depths 

in the Eastern Arctic and driving higher snow depths north of Svalbard and within Fram Strait.  

We compared our NESOSIM snow depths against spring snow depths derived from data collected by NASA's 

Operation IceBridge (OIB) since 2009 (up to spring of 2015) from three different algorithms. Our comparisons 25 
show moderate/strong correlations for the data collected from 2012-2015, but weaker correlations before this. 

The root mean squared differences were around 10 cm, but depend on the year analyzed, snowfall forcing and the 
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OIB product analyzed. The ERA-I and MEDIAN-SF forced results showing the best correspondence with the 

OIB snow depths. These results were compared with comparisons between OIB and the modified Warren snow 

depth climatology, which showed similar correlations and root mean squared errors.  

Errors in snow depths of around 10 cm are thought to contribute to errors in ice thickness estimates derived from 

laser (radar) satellite altimetry of ~70 cm (50 cm) assuming typical freeboards of ~30 cm (Giles et al., 2007). We 5 
expect that further model development, calibration, and validation is needed to improve accuracy and reliability 

in the NESOSIM snow depths/densities, to improve their utility in ice thickness retrieval analyses.   

6.1  Future work 

This initial formulation of NESOSIM (v1.0) has focused on: (i) incorporating several key snow parameterizations 

needed to capture the regional and seasonal variability in snow depth and density across the Arctic Ocean, and 10 
(ii) providing a framework simple and computationally efficient enough to run the various sensitivity studies 

needed to assess the importance of input forcing data. As highlighted throughout the manuscript, our relatively 

simple snow model is expected to undergo improvements to its model physics in efforts to increase its potential 

accuracy and reliability, together with further analyses of the input forcing data, especially snowfall (extending 

the precipitation comparison of Boisvert et al., 2018). Examples of expected future improvements to NESOSIM 15 
include the following, in order of priority:  

• Incorporation of snow thermodynamics: modelling the temperature evolution of the snow pack and snow 

melt/refreeze processes, allowing us to run NESOSIM year-round. Challenges will include accurately 

modelling or parameterizing the temperature profile through the snow layers and the possible retention of 

meltwater within the snow pack and its impact on the snow density.  20 

• Increased vertical snow layers: including depth hoar as an explicit snow layer as we introduce the snow 

thermodynamics described above. Model validation will be an obvious challenge. 

• Snow-ice formation: NESOSIM is currently run independent of the sea ice state, meaning we include no 

information regarding the potential for snow-ice formation - the depression of the snow layer below sea 

level and the conversion of snow to ice.  This is thought to be particularly important for running 25 
NESOSIM in the Southern Ocean (e.g. Massom et al., 2001), where snow-ice conversion is expected to 
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be more prevalent, but also in our North Atlantic sector (e.g. Granskog et al., 2017). Challenges will 

involve incorporating observed or simulated sea ice freeboard. 

• Increased horizontal resolution: As we look towards the launch of NASA's ICESat-2 and the production 

of sea ice thickness from the derived freeboard product, we hope to increase the model resolution and 

conduct assessments of the ability of NESOSIM to capture smaller-scale (< 100 km) snow depth 5 
variability. 

Snow depth and density information collected during the Norwegian young sea ICE (N-ICE2015) expedition 

(Merkouriadi et a., 2017) and the upcoming Multidisciplinary drifting Observatory for the Study 

of Arctic Climate (MOSAiC) will provide crucial insight into the importance of smaller-scale phenomena not 

currently included in NESOSIM, while our model results can hopefully provide useful basin-scale context to the 10 
measurements being taken. 

NESOSIM is being made available as an open source project (https://github.com/akpetty/NESOSIM), to 

encourage continued model development and active engagement with the snow on sea ice community. The model 

code is written in Python, an open source programming language (Python Software Foundation, 

https://www.python.org/), to better enable future community development efforts. Our hope is that the model will 15 
continue to evolve as additional snow processes are incorporated, especially as new field and remote sensing 

snow observations are collected and made available for calibration/validation. Model availability 

All the data processing and figure generation was carried out using the Python programming language (Python 

Software Foundation, https://www.python.org/). The model code, including installation details and test data, can 

be found on GitHub (https://github.com/akpetty/NESOSIM). 20 

Data availability 

A link to the model output (hosted on the NASA Cryospheric Sciences website) will be made available after 

completion of peer review, along with the gridded OIB snow depths and KIMURA ice motion data. 

The ERA-I snowfall and wind data were obtained through the ECWMF Meteorological Archival and Retrieval 

System (http://apps. ecmwf.int/datasets/data/interim_full_ daily/). The JRA-55 snowfall data were obtained 25 
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through the NCEP Research Data Archive (RDA) (http://rda.ucar.edu/ datasets/ds628.0). The MERRA snowfall 

data were obtained through the NASA Goddard Earth Sciences Data and Information Services Center 

(https://disc.sci.gsfc.nasa.gov/datasets?page=1&keywords=merra).  

 

The sea ice concentration data were obtained through the National Snow and Ice Data Center (NSIDC), including 5 
daily NASA Team (http://nsidc.org/data/nsidc-0051) and Bootstrap (https://nsidc.org/data/nsidc-0079) data.  

 

The NSIDCv3 Polar Pathfinder ice motion data were obtained through the NSIDC (http://nsidc.org/data/nsidc- 

0116). The CERSAT ice motion data were obtained from the IFREMER website (ftp://ftp.ifremer.fr/ifremer/ 

cersat/products/gridded/psi-drift/). The OSI-SAF ice motion data were obtained through their web portal 10 
(http://osisaf.met.no/p/ice/).  
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