Supplementary Materials

Development of the city-scale chemistry transport model CityChem – EPISODE and its application to the city of Hamburg

M. Karl¹

[1] Chemistry Transport Modelling, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany.

Correspondence to: M. Karl (matthias.karl@hzg.de)

S1. Standard method for calculation of the vertical eddy diffusivity

The standard method for calculation of the vertical eddy diffusivity is based upon the description in Byun et al. (1999). The non-dimensional profile functions of the vertical gradient of potential temperature, θ , are expressed as:

$$\phi_H = \Pr_0\left(1 + \beta_H \frac{z}{L}\right)$$
 for moderately stable $\left(1 \ge \frac{z}{L} > 0\right)$ (S.1a)

$$\phi_H = \left(1 - \gamma_H \frac{z}{L}\right)$$
 for unstable and neutral $\left(\frac{z}{L} \le 0\right)$ (S.1b)

Where Pr_0 is the Prandtl number for neutral stability and β_H and γ_H are coefficients of the profile functions determined through field experiments. For very stable conditions (z/L > 1) the expression suggested by Holtslag et al. (1990) is used to extend the applicability of the surface similarity:

$$\phi_H = \Pr_0\left(\beta_H + \frac{z}{L}\right) \tag{S.1c}$$

Within the planetary boundary layer (PBL), vertical eddy diffusivity is parameterized with:

$$K_{*}^{(z)} = \frac{\kappa u_{*} z (1 - z/h_{mix})^{3/2}}{\phi_{H}(z/L)} \qquad \text{for } \frac{z}{L} > 0 \quad (\text{stable}) \tag{S.2a}$$

$$K_*^{(z)} = \kappa w_* z (1 - z/h_{mix})$$
 for $\frac{z}{L} \le 0$ (unstable and neutral) (S.2b)

Where w^* is the convective velocity, h_{mix} is the height of the PBL (mixing height) above the urban area. For each vertical model layer, the eddy diffusivity is calculated iteratively within 5 sub-layers. The vertical eddy diffusivity of the respective layer is obtained as vertical average of the sub-layer diffusivities.

S2. Sub-grid model for point sources (SEGPLU)

The Gaussian segmented plume model SEGPLU (Walker and Grønskei, 1992) computes and keeps record of the subsequent positions of the plume segments and the pollutant concentration within each of the plume segments released from a point source. SEGPLU treats the emission from individual point sources as a temporal sequence of instantaneous releases of a specified pollutant mass. The finite length plume segments are emitted at discrete time intervals ΔT given by $\Delta T = 3600(s)/2N$, where N is an integer value. *N* depends on the meteorological conditions and becomes larger as the wind speed increases. The segments are redirected at every grid point and every simulation hour according to changes of the wind flow field. The subsequent position of plume segments and pollutant concentration within each of the plume segments is then calculated.

The initial horizontal position of the plume segment corresponds to the (x, y)-coordinates of the point source and the initial vertical position is estimated from plume rise formulas, where the plume rise is determined by stack height, stack exit velocity of the emitted pollutant and buoyancy of the effluent. The length of the plume segment is prescribed as $L_{seg} = u \cdot \Delta t$ and the direction of the plume is set equal to the wind direction at the point source. The mass of a pollutant $M_{seg,i}$ in the plume segment depends on the point source emission rate $Q_{p,i}$, as $M_{seg,i} = Q_{p,i} \cdot \Delta t$. While the plume segments are transported by horizontal advection, the new position of the plume segment (*Xseg, Yseg*) as function of the travel time t (time since release) is calculated as:

$$\begin{aligned} X_{seg}(t + \Delta t) &= X_{seg}(t) + u\Delta t & \text{and} \\ Y_{seg}(t + \Delta t) &= Y_{seg}(t) + v\Delta t \end{aligned} \tag{S.3}$$

The cross-wind dispersion of each plume segment is calculated according to (Irwin, 1983):

$$\sigma_y(t) = \sigma_v \cdot t \cdot \left(1/(1 + 0.9\sqrt{t/1000}) \right)$$
(S.4)

The vertical dispersion of the plume segments is calculated according to the expression by Venkatram et al. (1984):

$$\sigma_z(t) = \sigma_w \cdot t \cdot \sqrt{1 + \frac{t}{2T_L}}$$
(S.5)

The standard deviation of the horizontal wind fluctuations, σ_{ν} , and the vertical wind fluctuations, σ_{w} , are calculated using the profile method (as described in Slørdal et al. (2003); section 2.1). The Lagrangian timescale T_L is defined as:

$$T_L = \frac{\lambda}{\sigma_w} \tag{S.6}$$

The dispersion length λ is specified as $\lambda^{-1} = \lambda_s^{-1} + \lambda_n^{-1}$ with:

$$\lambda_s = \frac{\gamma^2 \sigma_W}{N}$$
 and $\lambda_n = \alpha \cdot z$ (S.7)

Where γ and α are empirical coefficients with values of 0.52 and 0.36, respectively, and *N* is the Brunt-Vaisala frequency, defined as:

$$N = \sqrt{\frac{g}{T} \frac{d\theta}{dz}}$$
(S.8)

Where g is the gravitational constant (9.80665 m s⁻²) and $d\theta/dz$ is the gradient of the potential temperature. For neutral or unstable conditions, $(d\theta/dz)$ is zero or negative) the Brunt-Vaisala frequency is set equal to zero, and T_L is calculated using $\lambda = \lambda n$. A consequence of Eq. (S.4) and (S.5) is, that the dispersion parameters for the plume segment dispersion are proportional to t for short travel time and proportional to \sqrt{t} for long travel time.

The ground level concentration contribution $C_{point,p}$ from the plume segment released from a specific point source p to a certain receptor point is calculated using the Gaussian plume dispersion equation:

$$C_{point,p} = \frac{Q_p \cdot e^{-\lambda_w T_{add}}}{2\pi \cdot u \cdot \sigma_y \cdot \sigma_z} \cdot \exp\left[-\frac{y_r^2}{2\sigma_y^2}\right] \cdot \left\{ \exp\left[-\frac{\left(z_r - H_{eff}\right)^2}{2\sigma_z^2}\right] + \alpha_p \cdot \exp\left[-\frac{\left(z_r + H_{eff}\right)^2}{2\sigma_z^2}\right] \right\}$$
(S.9)

where

 x_r , y_r , z_r : receptor point location (x-axis is parallel with the wind direction),

 Q_p : emission rate (g s⁻¹) for the point source, corresponding to the plume segment,

 H_{eff} : effective emission height (m),

 α_p : partial reflection coefficient due to dry deposition,

- λ_{W} : wet scavenging coefficient (s⁻¹),
- T_{add} : advection time from start of the plume segment to the receptor point (s).

Dry deposition from plume segments is calculated using the partial reflection approach (Hanna et al., 1982). Wet deposition is calculated using predefined scavenging rates and the (grid-cell average) precipitation rate. When the plume segment reaches a predefined horizontal or vertical extent or when the segmented plume experiences a large change in wind direction (larger than the redirection limit), it is inserted into the (Eulerian) main grid cell containing its centre of mass. The size of the critical extent is optimally set as $\sigma_y/\Delta y = 4$ or $\sigma_z/\Delta z = 4$, where σ_y and σ_z are the horizontal and vertical length scales of the plume segment, and Δy and Δz are the grid spacing in the horizontal and vertical direction, respectively. Once the plume segment is transported outside of the model domain, its mass is lost. The model user can define (1) the maximum horizontal size

(as grid cell fraction, default: 0.25) of the plume segments in each vertical model layer, (2) the redirection limit angle (default: 30°), and (3) the minimum wind speed (default: 0.4 m s^{-1}) in SEGPLU.

S3. Sub-grid model for line sources (HIWAY-2)

The HIWAY-2 model (Petersen, 1980) is applicable for any wind direction, street orientation, and receptor location at distances tens to hundreds of meters downwind of the line source, given that the terrain is relatively uncomplicated. HIWAY-2 computes the concentration of a pollutant by numerically integrating the Gaussian plume point source equation over a finite length of the road. Each street lane (or lane segment) with vehicle traffic is simulated as a straight, continuous, finite length, line source with a uniform emission rate. The emission intensity on each of the lanes is assumed to be uniform along the line source. Pollutant concentrations caused by vehicle traffic are found by interpretation of the line source as a finite sum of simple Gaussian point-source plumes, and the total line source contribution is then derived by numerical integration (i.e. summation) over the length of the line source, thinking of the line source as a line-of-points.

The concentration contribution C_{line} at the receptor point r^* from traffic emissions is found by integrating the concentration contributions from each of the infinitesimal point sources along the line source *s*, according to:

$$C_{line,s} = \left(\frac{Q_s}{u}\right) \cdot \int_0^L \mathbf{f} ds \tag{S.10}$$

where Q_s (in g m⁻¹ s⁻¹) is the emission intensity from the line source, *L* is the source length (in m), *ds* is an infinitesimal line segment (in m), and f is the point source dispersion function (in m⁻²). Each of the point sources is placed in the middle of the lane, *m_l*, with distance of a half lane width, *w_l*/2, from the middle of the street.

The integral in Eq. (S.10) is approximated by use of Richardson extrapolation of the trapezoidal rule. Estimates are made dividing the line source into a number of intervals equal to 3, 6, ..., $3 \cdot (2)^9$.

Calculations are successively repeated for each partition class until the concentration estimates converge to within 2 percent of the previous estimate (Petersen, 1980).

The sub-grid model for line sources distinguishes between four classes of atmospheric stability by evaluating the temperature difference between a lower height (z_1) and an upper height (z_2) in the two lowest model layers, $\Delta T = (z_2 - z_1) \cdot dT/dz$. Table S.1 shows how the stability classes are related to the Pasquill-Gifford (P-G) classes.

For stable conditions or when the diffusion in the vertical is unlimited, the ordinary point source Gaussian dispersion function is used in Eq. (S.10), given by:

$$f = \frac{1}{2\pi \cdot \sigma_y \cdot \sigma_z} \cdot \exp\left[-\frac{y_r^2}{2\sigma_y^2}\right] \cdot \left\{ \exp\left[-\frac{(z_r - H_{tr})^2}{2\sigma_z^2}\right] + \exp\left[-\frac{(z_r + H_{tr})^2}{2\sigma_z^2}\right] \right\}$$
(S.11)

where H_{tr} is effective emission height (m) from traffic, assumed to be zero, z_r is the receptor height above ground (m), set to 2 m. The calculation of the crosswind and vertical dispersion parameters σ_y and σ_z is described below.

For unstable or neutral conditions, given that σ_z is larger than 1.6 times the mixing layer height h_{mix} , the concentration distribution below the mixing layer is considered to be uniform with height, regardless of either source or receptor height:

$$f = \frac{1}{\sqrt{2\pi} \cdot \sigma_y \cdot h_{mix}} \cdot \exp\left[-\frac{y^2}{2\sigma_y^2}\right]$$
(S.12)

For all other unstable or neutral conditions, multiple reflections at the ground are taken into account, and the following Gaussian dispersion function is used:

$$f = \frac{1}{2\pi \cdot \sigma_y \cdot \sigma_z} \cdot \exp\left[-\frac{y_r^2}{2\sigma_y^2}\right] \cdot \left\{ \exp\left[-\frac{(z_r - H_{tr})^2}{2\sigma_z^2}\right] + \exp\left[-\frac{(z_r + H_{tr})^2}{2\sigma_z^2}\right] + \sum_{n=1}^{\infty} \left(\exp\left[-\frac{1}{2}\left(\frac{z - H_{tr} - 2n \cdot h_{mix}}{\sigma_z}\right)^2\right] + \exp\left[-\frac{1}{2}\left(\frac{z + H_{tr} - 2n \cdot h_{mix}}{\sigma_z}\right)^2\right] + \exp\left[-\frac{1}{2}\left(\frac{z - H_{tr} + 2n \cdot h_{mix}}{\sigma_z}\right)^2\right] + \exp\left[-\frac{1}{2}\left(\frac{z - H_{tr} + 2n \cdot h_{mix}}{\sigma_z}\right)^2\right] \right\}$$
(S.13)

The infinite sum series in Eq. (S.13) converges rapidly, more than five summations (n = 5) of the four sum terms are seldom required (Petersen, 1980). In Equations (S.11) to (S.13) the dispersion parameters are evaluated for the given atmospheric stability class and downwind distance *x*.

In the sub-grid line source model component, the dispersion parameters are generally defined as:

$$\sigma_y = \sqrt{\sigma_{ya}^2 + \sigma_{y0}^2} \tag{S.14a}$$

$$\sigma_z = \sqrt{\sigma_{za}^2 + \sigma_{z0}^2} \tag{S.14b}$$

where σ_{ya} is the crosswind dispersion and σ_{za} is the vertical dispersion, respectively, resulting from ambient turbulence, σ_{y0} is the initial crosswind dispersion and σ_{z0} is the initial vertical dispersion.

The initial spread of the plume from traffic due to vehicle induced turbulence depends on the wind speed (Slørdal et al., 2003):

$$\begin{cases} \sigma_{y0} = 3 & ; u > 3.0 \ ms^{-1} \\ \sigma_{y0} = 10 & ; u < 1.0 \ ms^{-1} \\ \sigma_{y0} = 10 - \left(7 \cdot \frac{u - 1.0}{2.0}\right); 1.0 \ ms^{-1} \le u \le 3.0 \ ms^{-1} \end{cases}$$
(S.15a)

$$\begin{cases} \sigma_{z0} = 1.5 & ; u > 3.0 \ ms^{-1} \\ \sigma_{z0} = 5 & ; u < 1.0 \ ms^{-1} \\ \sigma_{z0} = 5 - \left(3.5 \cdot \frac{u - 1.0}{2.0}\right); 1.0 \ ms^{-1} \le u \le 3.0 \ ms^{-1} \end{cases}$$
(S.15b)

The crosswind dispersion due to ambient turbulence is given by (Petersen, 1980):

$$\sigma_{ya} = 1000 \cdot x \cdot \frac{\sin \theta_p}{2.15 \cdot \cos \theta_p} \tag{S.16}$$

where x is the downwind distance (in km) and θ_p is the half angle of the crosswind plume spreading, given by:

$$\theta_p = \mathbf{c} - \mathbf{d} \cdot \ln\left(\frac{x}{x_0}\right) \tag{S.17}$$

In Eq. (S.17), c and d are constants depending on stability and x_0 is the normalizing distance (here 1 km is used). The vertical dispersion due to ambient turbulence is given by (Petersen, 1980):

$$\sigma_{za} = \mathbf{a} \cdot \mathbf{x}^{\mathbf{b}} \tag{S.18}$$

The empirical constants a and b depend on the stability. Values of a, b, c, and d are tabulated in Table S.1. Sufficiently far downwind the atmospheric dispersion process dominates. At 300 m downwind the above described dispersion curves are merged into the P-G dispersion curves.

At present deposition (dry or wet) is not explicitly included as a sink term in the line source model component.

S4. Simplified street canyon model

A Gaussian plume model is used for the calculation of the direct contribution to the concentration at the receptor point located at distance *x* from the line source, i.e. from the mid-line of the street, by integrating along the wind path at street level; the integration path depending on wind direction, extension of the recirculation zone and the street canyon length (Hertel and Berkowicz, 1989):

$$\int_{x_{start}}^{x_{end}} \frac{dC_{scdir,s}}{dx} dx = \sqrt{\frac{2}{\pi}} \cdot \frac{Q_s}{W_{sc}\sigma_w} \cdot \int_{x_{start}}^{x_{end}} \frac{1}{x + \frac{u_{street}\cdot h_0}{\sigma_w}} dx$$
(S.19)

Where h_0 is a constant that accounts for the height of the initial pollutant dispersion ($h_0 = 2$ m is used here, i.e. equal to the height of the receptor), σ_w is the vertical velocity fluctuation due to mechanical turbulence generated by wind and vehicle traffic in the street, and u_{street} is the wind speed at street level, calculated assuming a logarithmic reduction of the wind speed at roof top towards the bottom of the street (Berkowicz et al., 1997). Note that the wind direction at street level in the recirculation zone is mirrored compared to the roof level wind direction. Outside the recirculation zone, the wind direction is the same as at roof level. The vertical velocity fluctuation is calculated as a function of the street level wind speed, and the traffic produced turbulence by the following relationship (Berkowicz et al., 1997):

$$\sigma_w = \sqrt{(\alpha_s \mathbf{u}_{street})^2 + (\sigma_{w0})^2} \tag{S.20}$$

where α_s is a proportionality constant, empirically assigned a value of 0.1, and σ_{w0} is the trafficinduced turbulence, assigned a value of 0.25 m s⁻¹, typical for traffic on working days between 8 a.m. and 7 p.m. in situations where traffic-induced turbulence dominates (Kastner-Klein et al., 2000; fig. 6 therein). Traffic-induced turbulence plays an important role in the dispersion of pollutants in a street, particularly in low wind-speed conditions.

The integration path for Eq. (S.19) begins from x_{start} which is defined as the distance from the receptor point where the plume has the same height as the receptor, which is zero in the case that h_0 is smaller or equal to the height of the receptor. The upper integration limit is x_{end} defined as tabular values in Ottosen et al. (2015; Table 3 therein). The integration is performed along a straight line path against the wind direction. The calculation of the maximum integration path, L_{max} , depends on the wind direction with respect to the street axis, θ_{street} , i.e. angle between the street and the street level wind direction (Ottosen et al., 2015). When the integration path is long, as usually the case for near parallel flow, the plume from the traffic within the canyon will start dispersing out of the canyon at the top. It is assumed that this takes place when the plume height σ_z becomes equal to the general canyon building height, H_{sc} , defined as distance x_{esc} . From this point onwards, the contribution to the concentration at the receptor is assumed to decay exponentially with the rate given by $k_{esc} = \sigma_{wt}/H_{sc}$ (Hertel and Berkowicz, 1989).

The length of the recirculation zone, L_{rec} , is estimated as being twice the average building height of the canyon and limited by W_{sc} . The recirculation zone is modelled as a trapezium with the upper length L_{top} being half of the baseline length L_{base} , where L_{base} , is defined as $\min(L_{rec}, L_{max})$. The length of the hypotenuse of the trapezium is calculated as $L_{hyp} = \sqrt{(L_{base}/2)^2 + H_{sc}^2}$, assuming the leeward side edge of the recirculation zone to be the vertical building wall, with length of the building height. It is further assumed that the slant edge of the recirculation zone towards the opposite street side is not intercepted by buildings; L_{base} is therefore limited to the street canyon width W_{sc} . The contribution from recirculation is computed using a simple box model and concentrations are computed assuming equality of the inflow and outflow of the pollutant. This is expressed by the relationship (Berkowicz et al., 1997):

$$C_{screc,s} = \frac{Q_s}{W_{sc}} \cdot \frac{L_{base}}{\sigma_{wt}L_{top} + \sigma_{hyp}L_{hyp}}$$
(S.21)

Where σ_{wt} is the ventilation velocity of the canyon as given by Hertel and Berkowicz (1989) and σ_{hyp} is the average turbulence of the hypotenuse of the trapezium (slant edge towards the opposite street side).

S5. Numerical solver for chemistry

The photochemistry operator is used alternately with the transport (advection and diffusion) operator in the CityChem model for every model time step dt in the model. Each transport operator (advection and diffusion) has a timing of Δt seconds, while the photochemistry operator has a timing of $2\Delta t$ seconds. Hence for one model time step dt the full sequence transport/chemistry/ transport is performed.

The atmospheric photochemistry equations form a stiff non-linear system of ordinary differential equations (ODE):

$$\frac{dy}{dt} = P(t, y) - L(t, y) \cdot y, \quad k = 1, ..., m$$
 (S.22)

Where *y* is the solution vector containing the 3-D grid concentration field of *m* chemical species. *P* and *L* describe the photochemistry production and loss terms, respectively. Here P(t, y) is a vector of size *m*, and L(t, y) is a diagonal matrix of size $m \times m$. To integrate the system of equations a numerical solver based on the TWOSTEP algorithm defined by Verwer and Simpson (1995) has been implemented in CityChem. The further development of the chemistry scheme is flexible in the sense that additional compounds and reactions can be included using the chemical pre-processor GenChem (Simpson et al., 2012).

Following Verwer and Simpson (1995), a Gauss-Seidel integration procedure is used, where for each reactive species *k*, the production rate P_k , the loss rate L_k and then the updated concentrations y_k^{n+1} are calculated in turn.

The updated concentration for the iteration is obtained using a Padé approximation of a variablestep 2nd order Backward Differentiation Formula (BDF):

$$y_k^{n+1} = \frac{Y_k^n + \gamma \cdot \tau \cdot P_k(t_{n+1}, y^{n+1})}{1 + \gamma \cdot \tau \cdot L_k(t_{n+1}, y^{n+1})}$$
(S.23)

where τ is the time step between the solutions y^n and y^{n+1} , and $\gamma = (d+1)/(d+2)$, with $d = (t_n - t_{n-1})/(t_{n+1} - t_n)$; and $Y^n = [(d+1)^2 y^n - y^{n-1}]/(d^2 + 2d)$. P_k is the *k*'th element of the vector *P* and L_k is the *k*'th element on the diagonal of the matrix *L*.

An initial iterate is calculated by the following extrapolation formula (Verwer and Simpson, 1995):

$$y^{(0)} = y^n + \frac{1}{d}(y^n - y^{n-1})$$
(S.24)

During one iteration of the Gauss-Seidel method the initial iterate is used to calculate the estimate of the first species, which is then used to replace the initial iterate for the second species and so forth until all m species of the solution vector are calculated. At each iteration stage the latest values of concentrations are used for all reactants. As shown in Verwer and Simpson (1995), the Gauss-Seidel iterative method converges rapidly for gas-phase photochemistry schemes, suggesting that two iterations are sufficient. Consequently, the method implemented here uses only two iterations per time step.

In order to retain accuracy in the solution of the stiff ODE system, a weighted error norm is calculated as follows:

$$||E^{n+1}||_{w} = \max\left(\frac{|E_{k}^{n+1}|}{W_{k}^{n}}\right), \text{ with } W_{k}^{n} = \operatorname{atol}_{k} + \operatorname{rtol}_{k} \cdot |y_{k}^{n}|$$
(S.25)

Where atol_k and rtol_k for the absolute and relative error tolerance defined for all species of "CC45". The integration step is accepted if the weighted error norm fulfils the condition $||E^{n+1}||_w \leq 1.0$, whereas the integration is rejected if not. The relative tolerances for all species were set to 0.1 (i.e. 10 % relative error).

If two successive rejections occur the process is restarted. The missing starting value after a restart, or at the beginning of the simulation period, is calculated by the implicit Euler method:

$$y_k^{n+1} = \frac{Y_k^n + \tau \cdot P_k(t_{n+1}, y^{n+1})}{1 + \tau \cdot L_k(t_{n+1}, y^{n+1})}$$
(S.26)

which is treated with the Gauss-Seidel iterative method in the same way as the second order BDF (Eq. (S.23)), using two iterations per time step. However, as initial iterate $y^{(0)}$ the initial value y^0 is used instead of the value from the extrapolation formula in Eq. (S.24).

The new time step, τ_{new} , is estimated by the expression:

$$\tau_{new} = \max\left(0.5, \min\left(2.0, \frac{0.8}{\sqrt{\|E^{n+1}\|_w}}\right)\right) \cdot \tau_{old}$$
(S.27)

The time step is further constrained by a prescribed minimum time step of 0.1 s and a maximum time step of 2dt.

Stability class	Nome	Temperature difference ΔT	Mapping to	Line-source parameterization of ambient turbulence				
	Name	between 10 m and 25 m	P-G class	а	b	С	d	
1	Unstable	$\Delta T < -0.5^{\circ}$	A, B, C	110.62	0.932	18.333	1.8096	
2	Neutral	$-0.5^\circ < \Delta T < 0.0^\circ$	D	86.49	0.923	14.333	1.7706	
3	Moderately stable	$0.0^\circ < \varDelta T < 0.5^\circ$	Е	61.14	0.915	12.5	1.0857	
4	Stable	$\Delta T > 0.5^{\circ}$	F	61.14	0.915	12.5	1.0857	

Table S1: Atmospheric stability classes in the sub-grid model components.

Reaction no.	Educts	Products	Rate coefficient				
Inorganic chemistry							
IN-1	OP + O2 + M	→ 03	$5.67E-34 \times M \times O2 \times (7/300)^{-2.8}$				
IN-2	OD + M	\longrightarrow OP	$1.8\text{E-11} \exp(107/T) \times \text{N2} + 3.2\text{E-11} \exp(67/T) \times \text{O2}$				
IN-3	OP + NO + M	\longrightarrow NO2	<i>ktr</i> (NO + OP)				
IN-4	OD + H2O	→ 2. OH	2.2E-10 × H2O				
IN-5	O3 + NO	\longrightarrow NO2 + O2	$1.4\text{E-12} \exp(-1310/T)$				
IN-6	O3 + NO2	\longrightarrow NO3 + O2	$1.4\text{E-}12 \exp(-2470/T)$				
IN-7	O3 + OH	\longrightarrow HO2 + O2	$1.7\text{E-}12 \exp(-940/T)$				
IN-8	O3 + HO2	\longrightarrow OH + 2 O2	$2.03\text{E-16} \times (300/T)^{-4.57} \exp(693/T)$				
IN-9	NO + NO3	\longrightarrow NO2 + NO2	$1.8\text{E-}11 \exp(110/T)$				
IN-10	NO + HO2	\longrightarrow NO2 + OH	$3.6\text{E-}12 \exp(270/T)$				
IN-11	NO3 + HO2	\longrightarrow NO2 + OH + O2	3.5E-12				
IN-12	NO2 + NO3	\longrightarrow N2O5	<i>ktr</i> (NO2 + NO3)				
IN-13	NO2 + OH + M	\longrightarrow HNO3	<i>ktr</i> (NO2 + OH)				
IN-14	N2O5	\longrightarrow NO2 + NO3	<i>ktr</i> (N2O5)				
IN-15	OH + H2	\longrightarrow HO2 + H2O	7.7E-12 $\exp(-2100/T)$				
IN-16	HO2 + HO2	→ H2O2	<i>FH20</i> × 2.2E-13 exp(600/ <i>T</i>)				
IN-17	HO2 + HO2 + M	→ H2O2	<i>FH20</i> × 1.9E-33 exp(980/ <i>T</i>)				
IN-18	OH + HNO3	\longrightarrow NO3 + H2O	k(OH + HNO3)				
IN-19	SO2 + OH	\longrightarrow HO2 + H2SO4	<i>ktr</i> (SO2 + OH)				

Table S2: Chemical reactions and photo-dissociation reactions of the "CC45" scheme. Give constants $\varepsilon 1$, $\varepsilon 2$, $\varepsilon 3$ and $\varepsilon 4$ for the photolysis reactions. For notes see end of Table.

IN-20	SO2 + CH3O2	\longrightarrow H2SO4 + HCHO + HO2	4.0E-17
IN-21	OH + HONO	\longrightarrow NO2	$2.5\text{E}-12 \exp(-260/T)$
IN-22	OH + NO	→ HONO	<i>ktr</i> (OH + NO)
Heterogeneo	us chemistry		
HE-1	H2SO4	\longrightarrow aerosol sink	5.0E-6 × M / 2.55E19
Methane che	mistry		
MA-1	OH + CH4	→ CH3O2	$1.85\text{E}-20 \times T^{2.8} \times \exp(-987/T)$
MA-2	CH3O2 + NO	\longrightarrow HCHO + HO2 + NO2	2.3E-12 $\exp(360/T)$
MA-3	CH3O2 + NO3	\longrightarrow HCHO + HO2 + NO2	1.3E-12
MA-4	OH + CH3OH	\longrightarrow HO2 + HCHO + H2O	6.38E-18 $\exp(144/T) \times T^2$
MA-5	HO2 + CH3O2	→ 0.9 CH3O2H + 0.1 HCHO	$3.8\text{E-}13 \exp(780/T)$
MA-6	CH3O2H + OH	→ HCHO + OH	$1.0\text{E-}12 \exp(190/T)$
MA-7	CH3O2H + OH	\longrightarrow CH3O2 + H2O	1.9E-12 exp(190/ <i>T</i>)
MA-8	OH + HCHO	\longrightarrow CO + HO2 + HO2	$1.25\text{E-}17 \times T^2 \times \exp(615/T)$
MA-9	NO3 + HCHO	\longrightarrow HNO3 + CO + HO2	$2.0\text{E-}12 \exp(-2440/T)$
MA-10	OH + CO	\longrightarrow HO2 + CO2	1.44E-13 + 3.43E-33 × M
Ethane and e	thanol chemistry		
EA-1	OH + C2H6	→ C2H5O2 + H2O	6.9E-12 exp(-1000/ <i>T</i>)
EA-2	C2H5O2 + NO	\longrightarrow HO2 + CH3CHO + NO2	2.55E-12 exp(380/ <i>T</i>)
EA-3	C2H5O2 + NO3	\longrightarrow HO2 + CH3CHO + NO2	2.3E-12
EA-4	OH + CH3CHO	$\longrightarrow \begin{array}{c} 0.95 \text{ CH3COO2} + 0.05 \\ \text{CH3O2} + 0.05 \text{ CO} \end{array}$	$4.4\text{E-12} \exp(365/T)$
EA-5	CH3COO2 + NO2 + M	\longrightarrow PAN	<i>ktr</i> (CH3OO2 + NO2)
EA-6	PAN + M	\longrightarrow CH3COO2 + NO2	ktr(PAN)
EA-7	CH3COO2 + NO	\longrightarrow NO2 + CH3O2 + CO2	$7.5\text{E}-12 \exp(290/T)$

EA-8	OH + C2H5OH	\longrightarrow CH3CHO + HO2	6.7E-18 $\exp(511/T) \times T^2$
n-butane che	mistry		
NB-1	OH + NC4H10	→ SECC4H9O2	2.03E-17 exp(78/ T) × T^2
NB-2	NO + SECC4H9O2	NO2 + 0.65 HO2 + 0.65 → CH3COC2H5 + 0.35 CH3CHO + 0.35 C2H5O2	2.54E-12 $\exp(360/T)$
NB-3	OH + CH3COC2H5	→ CH3COCHO2CH3	2.53E-18 exp(503/ T) × T^2
NB-4	CH3COCHO2CH3 + NO	$\longrightarrow \frac{\text{NO2} + \text{CH3COO2} +}{\text{CH3CHO}}$	2.54E-12 $\exp(360/T)$
Ethene chem	istry		
EE-1	C2H4 + OH +M	→ CH2O2CH2OH	<i>ktr</i> (OH + C2H4)
EE-2	CH2O2CH2OH + NO	\longrightarrow NO2 + 2 HCHO + HO2	2.54E-12 $\exp(360/T)$
EE-3	C2H4 + O3	$\longrightarrow \begin{array}{c} 1.14 \text{ HCHO} + 0.63 \text{ CO} + 0.13 \\ \text{HO2} + 0.13 \text{ OH} + 0.14 \text{ H2O2} \end{array}$	9.1E-15 exp(-2580/ <i>T</i>)
Propene cher	mistry		
PE-1	OH + C3H6 + M	→ СН3СНО2СН2ОН	<i>ktr</i> (OH + C3H6)
PE-2	NO + CH3CHO2CH2OH	$\longrightarrow \frac{\text{NO2} + \text{CH3CHO} + \text{HCHO} + \text{HO2}}{\text{HO2}}$	2.54E-12 $\exp(360/T)$
PE-3	O3 + C3H6	$ \begin{array}{c} 0.545 \text{ HCHO} + 0.545 \\ \hline \text{CH3CHO} + 0.56 \text{ CO} + 0.36 \\ \text{OH} + 0.28 \text{ HO2} + 0.09 \text{ H2O2} \\ + 0.1 \text{ CH4} + 0.28 \text{ CH3O2} \end{array} $	5.5E-15 $\exp(-1880/T)$
o-xylene cher	mistry		
OX-1	OXYL + OH	→ OXYLOHO2	1.36E-11
OX-2	OXYLOHO2 + NO	$\longrightarrow \begin{array}{c} \text{NO2} + \text{CH3COCHO} + \\ \text{MEMALDIAL} + \text{HO2} \end{array}$	2.54E-12 $\exp(360/T)$
OX-3	MEMALDIAL + OH	\longrightarrow MEMALO2	5.58E-11
OX-4	MEMALO2 + NO	$\xrightarrow{\text{NO2} + \text{HO2} + \text{CH3COCHO}}_{\text{+ HCOCHO}}$	2.54E-12 $\exp(360/T)$
OX-5	OH + CH3COCHO	\longrightarrow CH3COO2 + CO	$1.9\text{E-12} \exp(575/T)$
OX-6	OH + HCOCHO	\longrightarrow HO2 + 2 CO	6.6E-18 exp(820/ T) × T^2

Isoprene chemistry

IS-1	$C5H8 + OH \longrightarrow ISOPO2$				2.7E-11 exp(390/ <i>T</i>)				
IS-2	ISOPO2 + NO		$\rightarrow \frac{\text{MVK} + \text{HCHO} + \text{HO2} + \text{NO2}}{\text{NO2}}$	2.54	$2.54\text{E-}12 \exp(360/T)$				
IS-3	MVK + OH		→ MVKO2	4.1E	-12 exp(45)	3/ <i>T</i>)			
IS-4	$MVKO2 + NO \longrightarrow CH3COCHO + HCHO + HCHO + HO2 + NO2 \qquad 1.4E-12 \exp(-180/T)$								
	1								
Reaction no.	Educts	ects Products			ε ₂	ε ₃	E 4		
Photolysis re	actions								
PH-1	O3	>	OD	2.00E-04	1.400	0.86	0.33		
PH-2	O3	>	OP	1.23E-03	0.600	0.92	0.41		
PH-3	NO2	\longrightarrow	OP + NO	1.45E-02	0.400	0.91	0.38		
PH-4	H2O2	>	2 OH	2.20E-05	0.750	0.88	0.35		
PH-5	HNO3	>	NO2 + OH	3.00E-06	1.250	0.87	0.33		
PH-6	нсно	>	CO + 2 HO2	5.40E-05	0.790	0.88	0.34		
PH-7	нсно	>	CO + H2	6.65E-05	0.600	0.89	0.35		
PH-8	СНЗСНО	>	CH3O2 + HO2 + CO	1.35E-05	0.940	0.87	0.33		
PH-9	CH3COC2H5	>	CH3COO2 + C2H5O2	2.43E-05	0.877	0.92	0.41		
PH-10	СНЗСОСНО	>	CH3COO2 + CO + HO2	9.72E-05	0.877	0.92	0.41		
PH-11	нсосно	>	1.9 CO + 0.1 HCHO + 0.5 HO2	5.40E-04	0.790	0.92	0.41		
PH-12	NO3	>	NO + O2	3.53E-02	0.081	0.92	0.42		
PH-13	NO3	>	NO2 + OP	8.94E-02	0.059	0.92	0.42		
PH-14	N2O5	>	NO2 + NO3	3.32E-05	0.567	0.88	0.35		
PH-15	СНЗО2Н	>	HCHO + OH + HO2	2.27E-05	0.620	0.88	0.35		
PH-16	HONO	>	OH + NO	3.22E-03	0.400	0.91	0.38		

Notes:

Special rate constants and reaction parameters:

 $FH2O = 1 + 1.4\text{E}-21 \exp(2200/T) \times \text{H2O};$ $k(\text{OH} + \text{HNO3}) = K_1 + (K_3 \times \text{M})/(1.0 + (K_3 \times \text{M}/K_4)) \text{ with } K_1 = 2.4\text{E}-14 \exp(460/T), K_3 = 6.5\text{E}-34 \exp(1335/T), K_4 = 2.7\text{E}-17 \exp(2199/T);$

Rate coefficients for three-body reactions using the Troe expression (e.g. Atkinson et al., 2006), where the reaction rates are calculated as: $ktr = \frac{k_0 k_\infty}{k_0 + k_\infty} F$, with the broadening factor *F* calculated using the approximate expression: $log_{10}F \cong \frac{log_{10}F_c}{1+[log_{10}(k_0/k_\infty)/N]^2}$, where $N = [0.75 - 1.27log_{10}F_c]$, are given as follows:

ktr (NO+OP): $k_0/M = 1.0E-31 (300/T)^{1.6}$, $k_{\infty} = 3.0E-11 (300/T)^{-0.3}$, $F_c = 0.85$; *ktr* (NO2+NO3): $k_0/M = 3.6E-30 (300/T)^{4.1}$, $k_{\infty} = 9.7E-12 (300/T)^{-0.2}$, $F_c = 0.35$; *ktr* (NO2+OH): $k_0/M = 3.3E-30 (300/T)^{3.0}$, $k_{\infty} = 4.1E-11$, $F_c = 0.40$; *ktr* (N2O5): $k_0/M = 1.3E-3 (300/T)^{3.5} \exp(-11000/T)$, $k_{\infty} = 9.7E14 (300/T)^{-0.1} \exp(-11080/T)$; *ktr* (OH+NO): $k_0/M = 7.4E-31 (300/T)^{2.4}$, $k_{\infty} = 3.3E-11 (300/T)^{0.3}$, $F_c = \exp(-T/1420)$; *ktr* (CH3OO2 + NO2): $k_0/M = 2.7E-28 (300/T)^{7.1}$, $k_{\infty} = 1.2-11 (300/T)^{0.9}$, $F_c = 0.3$; *ktr* (PAN): $k_0/M = 4.9E-3 (300/T)^{-12100}$, $k_{\infty} = 5.4E16 \exp(-13830/T)$, $F_c = 0.3$; *ktr* (OH+C2H4): $k_0/M = 8.6E-29 (300/T)^{3.1}$, $k_{\infty} = 9.0E-12 (300/T)^{0.85}$, $F_c = 0.48$; *ktr* (OH+C3H6): $k_0/M = 8.0E-27 (300/T)^{3.5}$, $k_{\infty} = 3.0E-11 (300/T)$, $F_c = 0.5$; *ktr* (SO2+OH): $k_0/M = 4.0E-31 (300/T)^{-3.3}$, $k_{\infty} = 2.0E-12$, $F = 0.45^{1/(1 + log_{10}(k_0/k_{\infty})^2)}$ **Table S3:** Statistical comparison of meteorological variables modelled with TAPM and observations for 2012 based on hourly values. Statistical parameters: number of observations (N), mean (observed, modelled), standard deviation (STD; observed, modelled), overall bias (Bias), correlation (Corr), root mean square error (RMSE), and index of agreement (IOA).

Station	Meteorological variable	N	Ō	\overline{M}	STD ₀	STD _M	Bias	Corr	RMSE	IOA
Hamburg weather mast (10 m)	Temperature [°C]	8691	9.71	10.17	5.92	5.95	0.15	0.96	1.55	0.98
	Wind speed [m s ⁻¹]	8605	3.03	3.02	1.53	1.34	0.01	0.79	0.94	0.88
	Wind direction [°]	8605	185.6	204.0	88.0	83.6	18.37	0.73	65.7	0.85
	Tot. solar radiation [W m ⁻²]	8690	113.5	144.5	175.0	206.2	31.05	0.81	122.8	0.89
Hamburg weather mast (50 m)	Temperature [°C]	8683	9.40	9.91	5.85	5.91	0.12	0.97	1.49	0.98
	Wind speed [m s ⁻¹]	8745	4.93	4.94	2.31	2.11	0.01	0.76	1.54	0.87
	Wind direction [°]	8745	198.5	206.8	87.7	83.4	8.27	0.75	61.1	0.87
DWD Hamburg Airport (10 m)	Temperature [°C]	8785	9.36	9.91	5.82	5.80	0.15	0.95	1.73	0.98
	Relative humidity [fraction]	8785	0.806	0.797	0.149	0.148	-0.01	0.70	0.116	0.83
	Wind speed [m s ⁻¹]	8785	3.94	3.07	2.01	1.44	-0.87	0.81	1.48	0.82
	Wind direction [°]	8785	203.5	205.5	86.5	83.5	2.02	0.72	64.1	0.85

Table S4: Stations of the Hamburg air quality monitoring network included in the comparison. Available pollutant measurements for 2012 are indicated by X. Station types: traffic (tra), industrial (ind), urban background (ubg).

Station code	Station name	Coordinates (UTM 32N); height (a.s.l.)	Station type	O ₃	SO ₂	NO	NO ₂	PM _{2.5}	PM ₁₀
80KT	Altona-Elbhang	562611 E; 5933342 N; 25 m	ubg		х	х	Х		х
21BI	Billbrook	571730 E; 5931713 N; 5 m	ind		х	х	Х		х
51BF	Bramfeld	573434 E; 5943029 N; 31 m	ubg	Х		х	Х		
72FI	Finkenwerder West	555949 E; 5932255 N; 0 m	ind			х	Х		х
68HB	Habichtstrasse	569743 E; 5938684 N; 12 m	tra			х	Х	х	х
64KS	Kieler Strasse	562563 E; 5935470 N; 16 m	tra			х	Х	х	
70MB	Max-Brauer Allee	562473 E; 5934507 N; 25 m	tra			х	Х		х
17SM	Stresemannstrasse	563414 E; 5935091 N; 20 m	tra			х	Х		х
52NG	Neugraben	556885 E; 5926120 N; 3 m	ubg	Х		х	Х		
13ST	Sternschanze	564134 E; 5935504 N; 15 m	ubg	Х	х	х	Х	х	х
20VE	Veddel	567752 E; 5930928 N; 5 m	ind		х	х	Х	х	х
61WB	Wilhelmsburg	565692 E; 5929231 N; 3 m	ubg		х	х	Х	х	х
54BL	Blankenese	552066 E; 5935753 N; 75 m	ubg	Х		х	Х		
27TA	Tatenberg	571900 E; 5927121 N; 2 m	ubg	Х		х	Х		
74BT	Billstedt	573088 E; 5932744 N; 18 m	ubg			Х	Х		

References

- Atkinson, R., Baulch, D. L., Cox, R.A., Crowley, J.N., Hampson, R. F., Hynes, R.G., Jenkin, M. E., Rossi, M. J., Troe, J., and Subcommittee, I.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II gas phase reactions of organic species, Atmos. Chem. Physics, 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.
- Berkowicz, R., Hertel, O., Larsen, S. E., Sørensen, N. N., and Nielsen, M.: Modelling traffic pollution in streets, Ministry of Environment and Energy, National Environmental Research Institute, Roskilde, Denmark, available at: http://www2.dmu.dk/1_viden/2_Miljoetilstand/3_luft/4_spredningsmodeller/5_OSPM/5_description/ModellingTrafficPollution_re port.pdf (Last Accessed: 22.11.2017), 1997.
- Byun, D. W., Young, J., Pleim, J., Odman, M. T., and Alapaty, K.: Chapter 7 "Numerical Transport Algorithms for the Community Multiscale Air Quality (CMAQ) Chemical Transport Model in Generalized Coordinates" In: Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. EPA/600/R-99/030, U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC, 1999.
- Hanna, S. R., Briggs, G. A., and Hosker Jr., R. P.: Handbook on Atmospheric Diffusion, edited by: Smith, J. S., DOE/TIC-11223, Technical Information Center, US Department of Energy, Springfield, USA, 1982.
- Hertel, O. and Berkowicz, R.: Modelling Pollution from Traffic in a Street Canyon, Evaluation of Data and Model Development, National Environmental Research Institute, Roskilde, Denmark, 1989.
- Holtslag, A. A., de Bruin, E. I. F., and Pan, H.-L.: A high resolution air mass transformation model for short-range weather forecasting, Mon. Weather Rev., 118, 1561–1575, 1990.

- Irwin, J. S.: Estimating plume dispersion a comparison of several sigma schemes. J. Clim. Appl. Meteor., 22, 92–114, 1983.
- Kastner-Klein, P., Berkowicz, R., and Plate, E. J.: Modelling of vehicle induced turbulence in air pollution studies for streets, Int. Journal of Environment and Pollution, 14(1-6), 496–507, doi: 10.1504/IJEP.2000.000573, 2000.
- Ottosen, T.-B., Kakosimos, K. E., Johansson, C., Hertel, O., Brandt, J., Skov, H., Berkowicz, R., Ellermann, T., Jensen, S. S., and Ketzel, M.: Analysis of the impact of inhomogeneous emissions in the Operational Street Pollution Model (OSPM), Geosci. Model Dev., 8, 3231– 3245, doi:10.5194/gmd-8-3231-2015, 2015.
- Petersen, W. B.: User's Guide for Hiway-2: A Highway Air Pollution Model, US Environmental Protection Agency, EPA-600/8-80-018, Research Triangle Park, NC, USA, 1980.
- Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D., Fagerli, H., Flechard, C. R., Hayman, G. D., Gauss, M., Jonson, J. E., Jenkin, M. E., Nyíri, A., Richter, C., Semeena, V. S., Tsyro, S., Tuovinen, J.-P., Valdebenito, Á., and Wind, P.: The EMEP MSC-W chemical transport model technical description, Atmos. Chem. Phys., 12, 7825–7865, doi:10.5194/acp-12-7825-2012, 2012.
- Slørdal, L. H., Solberg, S., and Walker, S. E.: The Urban Air Dispersion Model EPISODE applied in AirQUIS2003, Technical description, Norwegian Institute for Air Research, NILU TR 12/2003, Kjeller, Norway, 2003.
- Venkatram, A., Strimaitis, D. and Dicristofaro, D.: A semiempirical model to estimate vertical dispersion of elevated releases in the stable boundary layer. Atmos. Environ. (1967), 18(5), 923–928, 1984.

- Verwer, J. and Simpson, D.: Explicit methods for stiff ODEs from atmospheric chemistry, Applied Numerical Mathematics, 18, 413-430, 1995.
- Walker, S. E. and Grønskei, K.E.: Spredningsberegninger for on-line overvakning i Grenland. Programbeskrivelse og brukerveiledning (In Norwegian), Norwegian Institute for Air Research, NILU OR 55/92, Kjeller, Norway, 1992.