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 2 

Abstract. Predicting future changes in ecosystem services is not only highly desirable but also 26 

becomes feasible as several forces (e.g., available big data, developed data assimilation (DA) 27 

techniques, and advanced cyberinfrastructure) are converging to transform ecological research to 28 

quantitative forecasting. To realise ecological forecasting, we have developed an Ecological 29 

Platform for Assimilating Data (EcoPAD (v1.0)) into models. EcoPAD (v1.0) is a web-based 30 

software system that automates data transfer and processing from sensor networks to ecological 31 

forecasting through data management, model simulation, data assimilation, forecasting and 32 

visualization. It facilitates interactive data-model integration from which model is recursively 33 

improved through updated data while data is systematically refined under the guidance of model. 34 

EcoPAD (v1.0) relies on data from observations, process-oriented models, DA techniques, and 35 

the web-based workflow.  36 

We applied EcoPAD (v1.0) to the Spruce and Peatland Responses Under Climatic and 37 

Environmental change (SPRUCE) experiment at North Minnesota. The EcoPAD-SPRUCE 38 

realises fully automated data transfer, feeds meteorological data to drive model simulations, 39 

assimilates both manually measured and automated sensor data into Terrestrial ECOsystem 40 

(TECO) model, and recursively forecast responses of various biophysical and biogeochemical 41 

processes to five temperature and two CO2 treatments in near real-time (weekly). Forecasting 42 

with EcoPAD-SPRUCE has revealed that mismatches in forecasting carbon pool dynamics are 43 

more related to model (e.g., model structure, parameter, and initial value) than forcing variables, 44 

opposite to forecasting flux variables. EcoPAD-SPRUCE quantified acclimations of methane 45 

production in response to warming treatments through shifted posterior distributions of the 46 

CH4:CO2 ratio and temperature sensitivity (Q10) of methane production towards lower values. 47 

Different case studies indicated that realistic forecasting of carbon dynamics relies on 48 
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appropriate model structure, correct parameterization and accurate external forcing. Moreover, 49 

EcoPAD-SPRUCE stimulated active feedbacks between experimenters and modellers to identify 50 

model components to be improved and additional measurements to be made. It becomes the 51 

interactive model-experiment (ModEx) system and opens a novel avenue for interactive dialogue 52 

between modellers and experimenters. Altogether, EcoPAD (v1.0) acts to integrate multiple 53 

sources of information and knowledge to best inform ecological forecasting.      54 

   55 

                56 

Key words:  57 

Data assimilation, SPRUCE, carbon, global change, real time, acclimation, forecast 58 

  59 



 4 

1. Introduction  60 

One ambitious goal of ecology as a science discipline is to forecast states and services of 61 

ecological systems. Forecasting in ecology is not only desirable for scientific advances in this 62 

discipline but also has practical values to guide resource management and decision-making 63 

towards a sustainable planet Earth. The practical need for ecological forecasting is particularly 64 

urgent in this rapidly changing world, which is experiencing unprecedented natural resource 65 

depletion, increasing food demand, serious biodiversity crisis, accelerated climate changes, and 66 

widespread pollutions in the air, waters, and soils (Clark et al., 2001;Mouquet et al., 2015). As a 67 

result, a growing number of studies have reported forecasting of, e.g., phenology (Diez et al., 68 

2012), carbon dynamics (Luo et al., 2016;Gao et al., 2011;Thomas et al., 2017), species 69 

dynamics (Clark et al., 2003;Kearney et al., 2010), pollinator performance (Corbet et al., 1995), 70 

epidemics (Ong et al., 2010), fishery (Hare et al., 2010), algal bloom (Stumpf et al., 2009), crop 71 

yield (Bastiaanssen and Ali, 2003), biodiversity (Botkin et al., 2007), plant extinction risk 72 

(Fordham et al., 2012), and ecosystem service (Craft et al., 2009) in the last several decades. 73 

Despite its broad applications, ecological forecasting is still sporadically practiced and lags far 74 

behind demand due to the lack of infrastructure that enables timely integration of models with 75 

data. This paper introduces the fully interactive infrastructure, the Ecological Platform for 76 

Assimilating Data (EcoPAD (v1.0)) into models, to inform near-time ecological forecasting with 77 

iterative data-model integration. 78 

Ecological forecasting relies on both models and data. However, currently the ecology 79 

research community has not yet adequately integrated observations with models to inform best 80 

forecast. Forecasts generated from scenario approaches are qualitative and scenarios are often 81 

not based on ecological knowledge (Coreau et al., 2009;Coreau et al., 2010). Data-driven 82 
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forecasts using statistical methods are generally limited for extrapolation and sometimes 83 

contaminated by confounding factors (Schindler and Hilborn, 2015). Recent emergent 84 

mechanism-free non-parametric approach, which depends on the statistical pattern extracted 85 

from data, is reported to be promising for short-term forecast (Ward et al., 2014;Perretti et al., 86 

2013;Sugihara et al., 2012), but has limited capability in long-term prediction due to the lack of 87 

relevant ecological mechanisms. Process-based models provide the capacity in long-term 88 

prediction and the flexibility in capturing short-term dynamics on the basis of mechanistic 89 

understanding (Coreau et al., 2009;Purves et al., 2013). Wide applications of process-based 90 

models are limited by their often complicated numerical structure and sometimes unrealistic 91 

parameterization (Moorcroft, 2006). The complex and uncertain nature of ecology precludes 92 

practice of incorporating as many processes as possible into mechanistic models. Our current 93 

incomplete knowledge about ecological systems or unrepresented processes under novel 94 

conditions is partly reflected in model parameters which are associated with large uncertainties. 95 

Good forecasting therefore requires effective communication between process-based models and 96 

data to estimate realistic model parameters and capture context-dependent ecological 97 

phenomena.  98 

Data-model fusion, or data-model integration, is an important step to combine models 99 

with data. But previous data-model integration activities have mostly been done in an ad hoc 100 

manner instead of being interactive. For example, data from a network of eddy covariance flux 101 

tower sites across United States and Canada was compared with gross primary productivity 102 

(GPP) estimated from different models (Schaefer et al., 2012). Luo and Reynolds (1999) used a 103 

model to examine ecosystem responses to gradual as in the real world vs. step increases in CO2 104 

concentration as in elevated CO2 experiments. Parton et al. (2007) parameterized CO2 impacts in 105 
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an ecosystem model with data from a CO2 experiment in Colorado. Such model-experiment 106 

interactions encounter a few issues: 1) Models are not always calibrated for individual sites and, 107 

therefore, not accurate; 2) It is not very effective because it is usually one-time practice without 108 

many iterative processes between experimenters and modellers (Dietze et al., 2013;Lebauer et 109 

al., 2013); 3) It is usually unidirectional as data is normally used to train models while the 110 

guidance of model for efficient data collection is limited; and 4) It is not streamlined and could 111 

not be disseminated with common practices among the research community (Lebauer et al., 112 

2013;Dietze et al., 2013;Walker et al., 2014). 113 

A few research groups have developed data assimilation systems to facilitate data-model 114 

integration in a systematic way. For example, data-model integration systems, such as the Data 115 

Assimilation Research Testbed - DART (Anderson et al., 2009) and the Carbon Cycle Data 116 

Assimilation Systems - CCDAS (Scholze et al., 2007;Peylin et al., 2016), combine various data 117 

streams (e.g., FLUXNET data, satellite data and inventory data) with process-based models 118 

through data assimilation algorithms such as the Kalman filter (Anderson et al., 2009) and 119 

variational methods (Peylin et al., 2016). These data assimilation systems automate model 120 

parameterization and provide an avenue to systematically improve models through combining as 121 

much data as possible. Data-informed model improvements normally happen after the ending of 122 

a field experiment and the interactive data-model integration is limited as feedbacks from models 123 

to ongoing experimental studies are not adequately realised. In addition, wide applications of 124 

these data assimilation systems in ecological forecasting are constrained by limited user 125 

interactions with its steep learning curve to understand these systems, especially for 126 

experimenters who have limited training in modelling.         127 
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The web-based technology facilitates interactions. Web-based modelling, which provides 128 

user-friendly interfaces to run models in the background, is usually supported by the scientific 129 

workflow, the sequence of processes through which a piece of work passes from initiation to 130 

completion. For example, TreeWatch.Net has recently been developed to make use of high 131 

precision individual tree monitoring data to parameterize process based tree models in real-time 132 

and to assess instant tree hydraulics and carbon status with online result visualization (Steppe et 133 

al., 2016). Although the web portal of TreeWatch.Net is currently limited to the purpose of 134 

visualization, it broadens the application of data-model integration and strengthens the 135 

interaction between modelling researches and the general public. The Predictive Ecosystem 136 

Analyzer (PEcAn) is a scientific workflow that wraps around different ecosystem models and 137 

manages the flows of information coming in and out of the model (Lebauer et al., 2013). PEcAn 138 

enables web-based model simulations. Such a workflow has advantages, for example, making 139 

ecological modelling and analysis convenient, transparent, reproducible and adaptable to new 140 

questions (Lebauer et al., 2013), and encouraging user-model interactions. PEcAn uses the 141 

Bayesian meta-analysis to synthesize plant trait data to estimate model parameters and associated 142 

uncertainties, i.e., the prior information for process-based models. Parameter uncertainties are 143 

propagated to model uncertainties and displayed as outputs. It is still not fully interactive in the 144 

way that states are not updated iteratively according to observations and the web-based data 145 

assimilation and then ecological forecasting have not yet been fully realised.   146 

The iterative model-data integration provides an approach to constantly improve 147 

ecological forecasting and is an important step especially in realising the near real-time 148 

ecological forecasting. Instead of projecting into future through assimilating observations only 149 

once, the iterative forecasting constantly updates forecasting along with ongoing new data 150 
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streams or/and improved models. Forecasting is likely to be improved unidirectionally in which 151 

either only models are updated through observations, or only data collections/field 152 

experimentations are improved according to theoretical/model information, but not both. 153 

Ecological forecasting can also be bidirectionally improved so that both models and field 154 

experimentations are optimized hand in hand over time. Although the bidirectional case is rare in 155 

ecological forecasting, the unidirectional iterative forecasting has been reported. One excellent 156 

example of forecasting through dynamically and repeatedly integrating data with models is from 157 

infectious disease studies (Niu et al., 2014;Ong et al., 2010). Dynamics of infectious diseases are 158 

traditionally captured by Susceptible-Infected-Removed (SIR) models. In the forecasting of the 159 

Singapore H1N1-2009 infections, SIR model parameters and the number of individuals in each 160 

state were updated daily, combining data renewed from local clinical reports. The evolving of the 161 

epidemic related parameters and states were captured through iteratively assimilating 162 

observations to inform forecasting. As a result, the model correctly forecasted the timing of the 163 

peak and declining of the infection ahead of time. Iterative forecasting dynamically integrates 164 

data with model and makes best use of both data and theoretical understandings of ecological 165 

processes.  166 

The aim of this paper is to present a fully interactive platform, a web-based Ecological 167 

Platform for Assimilating Data into models (EcoPAD (v1.0)), to best inform ecological 168 

forecasting. The interactive feature of EcoPAD (v1.0) is reflected in the iterative model updating 169 

and forecasting through dynamically integrating models with new observations, bidirectional 170 

feedbacks between experimenters and modellers, and flexible user-model communication 171 

through web-based simulation, data assimilation and forecasting. Such an interactive platform 172 

provides the infrastructure to effectively integrate available resources, from both models and 173 
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data, modellers and experimenters, scientists and the general public, to improve scientific 174 

understanding of ecological processes, to boost ecological forecasting practice and transform 175 

ecology towards quantitative forecasting.           176 

In the following sections, we first describe the system design and major components of 177 

EcoPAD (v1.0). We then use the Spruce and Peatland Responses Under Climatic and 178 

Environmental change (SPRUCE) experiment (Hanson et al., 2017) as a testbed to elaborate the 179 

functionality and new opportunities brought by the platform. We finally discuss implications of 180 

EcoPAD (v1.0) for better ecological forecasting.  181 

 182 

2 EcoPAD (v1.0): system design and components 183 

2.1 General description: web-based data assimilation and forecast  184 

EcoPAD (v1.0) (https://ecolab.nau.edu/ecopad_portal/) focuses on linking ecological 185 

experiments/data with models and allows easily accessible and reproducible data-model 186 

integration with interactive web-based simulation, data assimilation and forecast capabilities. 187 

Specially, EcoPAD (v1.0) enables the automated near time ecological forecasting which works 188 

hand-in-hand between modellers and experimenters and updates periodically in a manner similar 189 

to the weather forecasting. The system is designed to streamline web request-response, data 190 

management, modelling, prediction and visualization to boost the overall throughput of 191 

observational data, promote data-model communication, inform ecological forecasting and 192 

improve scientific understanding of ecological processes (see Supplement for detailed 193 

functionalities of EcoPAD (v1.0)).  194 

To realise such data-informed ecological forecasting, the essential components of 195 

EcoPAD (v1.0) include experiments/data, process-based models, data assimilation techniques 196 

https://ecolab.nau.edu/ecopad_portal/
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and the scientific workflow (Figures 1-3). The scientific workflow of EcoPAD (v1.0) that wraps 197 

around ecological models and data assimilation algorithms acts to move datasets in and out of 198 

structured and catalogued data collections (metadata catalog) while leaving the logic of the 199 

ecological models and data assimilation algorithms untouched (Figures 1, 3). Once a user makes 200 

a request through the web browser or command line utilities, the scientific workflow takes 201 

charge of triggering and executing corresponding tasks, be it pulling data from a remote server, 202 

running a particular ecological model, automating forecasting or making the result easily 203 

understandable to users (Figures 1, 3). With the workflow, the system is agnostic to operation 204 

system, environment and programming language and is built to horizontally scale to meet the 205 

demands of the model and the end user community.  206 

 207 

2.2 Components 208 

2.2.1 Data  209 

Data is an important component of EcoPAD (v1.0) and EcoPAD (v1.0) offers systematic data 210 

management to digest diverse data streams. The ‘big data’ ecology generates a large volume of 211 

very different datasets across various scales (Mouquet et al., 2015;Hampton et al., 2013). These 212 

datasets might have high temporal resolutions, such as those from real time ecological sensors, or 213 

the display of spatial information from remote sensing sources and data stored in the geographic 214 

information system (GIS). These datasets may also include, but are not limited to, inventory data, 215 

laboratory measurements, FLUXNET databases or from long-term ecological networks 216 

(Baldocchi et al., 2001;Johnson et al., 2010;Robertson et al., 2012) . Such data contain 217 

information related to environmental forcing (e.g., precipitation, temperature and radiative 218 

forcing), site characteristics (e.g., soil texture and species composition) and biogeochemical 219 
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information. Datasets in EcoPAD (v1.0) are derived from other research projects in comma 220 

separated value files or other loosely structured data formats. These datasets are first described 221 

and stored with appropriate metadata via either manual operation or scheduled automation from 222 

sensors. Each project has a separate folder where data are stored. Data are generally separated 223 

into two categories. One is used as boundary conditions for modelling and the other category is 224 

related to observations that are used for data assimilation. Scheduled sensor data are appended to 225 

existing data files with prescribed frequency. Attention is then spent on how the particular 226 

dataset varies over space (x, y) and time (t). When the spatiotemporal variability is understood, it 227 

is then placed in metadata records that allow for query through its scientific workflow.     228 

2.2.2 Ecological models  229 

Process-based ecological model is another essential component of EcoPAD (Figure 1). In 230 

this paper, the Terrestrial ECOsystem (TECO) model is applied as a general ecological model for 231 

demonstration purposes since the workflow and data assimilation system of EcoPAD (v1.0) are 232 

relatively independent on the specific ecological model. Linkages among the workflow, data 233 

assimilation system and ecological model are based on messaging. For example, the data 234 

assimilation system generates parameters that are passed to ecological models. The state 235 

variables simulated from ecological models are passed back to the data assimilation system. 236 

Models may have different formulations. As long as they take in the same parameters and 237 

generate the same state variables, they are functionally identical from the “eye” of the data 238 

assimilation system.     239 

TECO simulates ecosystem carbon, nitrogen, water and energy dynamics (Weng and 240 

Luo, 2008;Shi et al., 2016). The original TECO model has 4 major submodules (canopy, soil 241 

water, vegetation dynamics and soil carbon/nitrogen) and is further extended to incorporate 242 
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methane biogeochemistry and snow dynamics (Huang et al., 2017;Ma et al., 2017). As in the 243 

global land surface model CABLE (Wang et al., 2010;Wang and Leuning, 1998), canopy 244 

photosynthesis that couples surface energy, water and carbon fluxes is based on a two-big-leaf 245 

model (Wang and Leuning, 1998). Leaf photosynthesis and stomatal conductance are based on 246 

the common scheme from Farquhar et al. (1980) and Ball et al. (1987) respectively. 247 

Transpiration and associated latent heat losses are controlled by stomatal conductance, soil water 248 

content and the rooting profile. Evaporation losses of water are balanced between the soil water 249 

supply and the atmospheric demand which is based on the difference between saturation vapor 250 

pressure and the actual atmospheric vapor pressure. Soil moisture in different soil layers is 251 

regulated by water influxes (e.g., precipitation and percolation) and effluxes (e.g., transpiration 252 

and runoff). Vegetation dynamic tracks processes such as growth, allocation and phenology. Soil 253 

carbon/nitrogen module tracks carbon and nitrogen through processes such as litterfall, soil 254 

organic matter (SOM) decomposition and mineralization. SOM decomposition modelling 255 

follows the general form of the Century model (Parton et al., 1988) as in most Earth system 256 

models. SOM is divided into pools with different turnover times (the inverse of decomposition 257 

rates) which are modified by environmental factors such as the soil temperature and moisture. 258 

2.2.3 Data assimilation  259 

Data assimilation is growing in importance as the process based ecological models, 260 

despite largely simplifying the real systems, are in great need to be complex enough to address 261 

sophisticate ecological issues. These ecological issues are composed of an enormous number of 262 

biotic and abiotic factors interacting with each other. Data assimilation techniques provide a 263 

framework to combine models with data to estimate model parameters (Shi et al., 2016), test 264 

alternative ecological hypotheses through different model structures (Liang et al., 2015), assess 265 
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information content of datasets (Weng and Luo, 2011), quantify uncertainties (Zhou et al., 266 

2012;Weng et al., 2011;Keenan et al., 2012), derive emergent ecological relationships (Bloom et 267 

al., 2016), identify model errors and improve ecological predictions (Luo et al., 2011b) (Figure 268 

2). Under the Bayesian paradigm, data assimilation techniques treat the model structure, initial 269 

and parameter values as priors that represent our current understanding of the system. As new 270 

information from observations or data becomes available, model parameters and state variables 271 

can be updated accordingly. The posterior distributions of estimated parameters or state variables 272 

are imprinted with information from both the model and the observation/data as the chosen 273 

parameters act to reduce mismatches between observations and model simulations. Future 274 

predictions benefit from such constrained posterior distributions through forward modelling 275 

(Figure S1). As a result, the probability density function of predicted future states through data 276 

assimilation normally has a narrower spread than that without data assimilation when everything 277 

else is equal (Niu et al., 2014;Luo et al., 2011b;Weng and Luo, 2011).           278 

EcoPAD (v1.0) is open to different data assimilation techniques since the scientific 279 

workflow of EcoPAD (v1.0) is independent on the specific data assimilation algorithm. For 280 

demonstration, the Markov chain Monte Carlo (MCMC) (Xu et al., 2006) is described in this 281 

study.  282 

MCMC is a class of sampling algorithms to draw samples from a probability distribution 283 

obtained through constructed Markov Chain to approximate the equilibrium distribution. The 284 

Bayesian based MCMC method takes into account various uncertainty sources which are crucial 285 

in interpreting and delivering forecasting results (Clark et al., 2001). In the application of 286 

MCMC, the posterior distribution of a parameter for given observations is proportional to the 287 

prior distribution of that parameter and the likelihood function which is linked to the fit/match 288 
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(or cost function) between model simulations and observations. EcoPAD (v1.0) currently adopts 289 

a batch mode, that is, the cost function is treated as a single function to be minimized and 290 

different observations are standardized by their corresponding standard deviations (Xu et al., 291 

2006). For simplicity, we assume uniform distributions in priors, and Gaussian or multivariate 292 

Gaussian distributions in observational errors, which can be operationally expanded to other 293 

specific distribution forms depending on the available information. Detailed description is 294 

available in Xu et al. (2006). 295 

2.2.4 Scientific workflow  296 

EcoPAD (v1.0) relies on its scientific workflow to interface with ecological models and 297 

data assimilation algorithms, manage diverse data streams, automates iterative ecological 298 

forecasting in response to various user requests. Workflow is a relatively new concept in the 299 

ecology literature but essential to realise real or near-real time forecasting. Thus, we describe it 300 

in detail below. The essential components of the scientific workflow of EcoPAD (v1.0) include 301 

the metadata catalog, web application-programming interface (API), the asynchronous task/job 302 

queue (Celery) and the container-based virtualization platform (Docker). The workflow system 303 

of EcoPAD (v1.0) also provides structured result access and visualization. 304 

2.2.4.1 Metadata catalog and data management      305 

Datasets can be placed and queried in EcoPAD (v1.0) via a common metadata catalog 306 

which allows for effective management of diverse data streams. Calls for good management of 307 

current large and heterogeneous ecological datasets are common (Vitolo et al., 2015;Michener 308 

and Jones, 2012;Ellison, 2010). Kepler (Ludascher et al., 2006) and the Analytic Web (Osterweil 309 

et al., 2010) are two example systems that endeavour to provide efficient data management 310 

through the storage of metadata including clear documentation of data provenance. Similarly to 311 
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these systems, EcoPAD (v1.0) takes advantage of modern information technology, especially the 312 

metadata catalog, to manage diverse data streams. The EcoPAD (v1.0) metadata schema includes 313 

description of the data product, security, access pattern, and timestamp of last metadata update 314 

etc. We use MongoDB (https://www.mongodb.com/ ), a NoSQL database technology, to manage 315 

heterogeneous datasets to make the documentation, query and storage fast and convenient. 316 

Through MongoDB, measured datasets can be easily fed into ecological models for various 317 

purposes such as to initialize the model, calibrate model parameters, evaluate model structure 318 

and drive model forecast. For datasets from real time ecological sensors that are constantly 319 

updating, EcoPAD (v1.0) is set to automatically fetch new data streams with adjustable 320 

frequency according to research needs.               321 

2.2.4.2 Web API, asynchronous task queue and docker    322 

The RESTful application-programming interface (API) which can deliver data to a wide 323 

variety of applications is the gateway of EcoPAD (v1.0) and enables a wide array of user-324 

interfaces and data-dissemination activities. Once a user makes a request, such as through 325 

clicking on relevant buttons from a web browser, the request is passed through the 326 

Representational State Transfer (i.e., RESTful) API to trigger specific tasks. The RESTful API 327 

bridges the talk between the client (e.g., a web browser or command line terminal) and the server 328 

(Figure 3). The API exploits the full functionality and flexibility of the HyperText Transfer 329 

Protocol (HTTP), such that data can be retrieved and ingested from the EcoPAD (v1.0) through 330 

the use of simple HTTP headers and verbs (e.g., GET, PUT, POST, etc.). Hence, a user can 331 

incorporate summary data from EcoPAD (v1.0) into a website with a single line of html code. 332 

Users will also be able to access data directly through programming environments like R, Python 333 

https://www.mongodb.com/
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and Matlab. Simplicity, ease of use and interoperability are among the main advantages of this 334 

API which enables web-based modelling.  335 

Celery (https://github.com/celery/celery ) is an asynchronous task/job queue that runs in 336 

the background (Figure 3). The task queue (i.e., Celery) is a mechanism used to distribute work 337 

across work units such as threads or machines. Celery communicates through messages, and 338 

EcoPAD (v1.0) takes advantage of the RabbitMQ (https://www.rabbitmq.com/) to manage 339 

messaging. After the user submits a command, the request or message is passed to Celery via the 340 

RESTful API. These messages may trigger different tasks, which include, but not limited to, pull 341 

data from a remote server where original measurements are located, access data through 342 

metadata catalog, run model simulation with user specified parameters, conduct data assimilation 343 

which recursively updates model parameters, forecast future ecosystem status and post-process 344 

of model results for visualization. The broker inside Celery receives task messages and handles 345 

out tasks to available Celery workers which perform the actual tasks (Figure 3). Celery workers 346 

are in charge of receiving messages from the broker, executing tasks and returning task results. 347 

The worker can be a local or remote computation resource (e.g., the cloud) that has connectivity 348 

to the metadata catalog. Workers can be distributed into different information technology (IT) 349 

infrastructures, which makes EcoPAD (v1.0) workflow expandable. Each worker can perform 350 

different tasks depending on tools installed in each worker. And one task can also be distributed 351 

into different workers. In such a way, EcoPAD (v1.0) workflow enables parallelization and 352 

distributed computation of actual modelling tasks across various IT infrastructures, and is 353 

flexible in implementing additional computational resources by connecting additional workers.    354 

Another key feature that makes EcoPAD (v1.0) easily portable and scalable among 355 

different operation systems is the utilization of the container-based virtualization platform, the 356 

https://github.com/celery/celery
https://www.rabbitmq.com/
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docker (https://www.docker.com/). Docker can run many applications which rely on different 357 

libraries and environments on a single kernel with its lightweight containerization. Tasks that 358 

execute TECO in different ways are wrapped inside different docker containers that can “talk” 359 

with each other. Each docker container embeds the ecosystem model into a complete filesystem 360 

that contains everything needed to run an ecosystem model: the source code, model input, run 361 

time, system tools and libraries. Docker containers are both hardware-agnostic and platform-362 

agnostic, and they are not confined to a particular language, framework or packaging system. 363 

Docker containers can be run from a laptop, workstation, virtual machine, or any cloud compute 364 

instance. This is done to support the widely varied number of ecological models running in 365 

various languages (e.g., Matlab, Python, Fortran, C and C++) and environments. In addition to 366 

wrap the ecosystem model into a docker container, software applied in the workflow, such as the 367 

Celery, Rabbitmq and MongoDB, are all lightweight and portable encapsulations through docker 368 

containers. Therefore, the entire EcoPAD (v1.0) is readily portable and applicable in different 369 

environments.     370 

2.2.4.3 Structured result access and visualization 371 

EcoPAD (v1.0) enables structured result storage, access and visualization to track and 372 

analyse data-model fusion practice. Upon the completion of the model task, the model wrapper 373 

code calls a post processing call-back function. This call-back function allows for model specific 374 

data requirements to be added to the model result repository. Each task is associated with a 375 

unique task ID and model results are stored within the local repository that can be queried by the 376 

unique task ID. The store and query of model results are realised via the MongoDB and RESTful 377 

API (Figure 3). Researchers are authorized to review and download model results and parameters 378 

submitted for each model run through a web accessible URL (link). EcoPAD (v1.0) webpage 379 
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also displays a list of historical tasks (with URL) performed by each user. All current and 380 

historical model inputs and outputs are available to download, including the aggregated results 381 

produced for the graphical web applications. In addition, EcoPAD (v1.0) also provides a task 382 

report that contains all-inclusive recap of submitted parameters, task status, and model outputs 383 

with links to all data and graphical results for each task. Such structured result storage and access 384 

make sharing, tracking and referring to modelling studies instant and clear.      385 

                        386 

3 EcoPAD (v1.0) performance at testbed - SPRUCE  387 

3.1 SPRUCE project overview  388 

EcoPAD (v1.0) is being applied to the Spruce and Peatland Responses Under Climatic 389 

and Environmental change (SPRUCE) experiment located at the USDA Forest Service Marcell 390 

Experimental Forest (MEF, 47°30.476’ N, 93°27.162’ W) in northern Minnesota (Kolka et al., 391 

2011). SPRUCE is an ongoing project that focuses on long-term responses of northern peatland 392 

to climate warming and increased atmospheric CO2 concentration (Hanson et al., 2017). At 393 

SPRUCE, ecologists measure various aspects of responses of organisms (from microbes to trees) 394 

and ecological functions (carbon, nutrient and water cycles) to a warming climate. One of the 395 

key features of the SPRUCE experiments is the manipulative deep soil/peat heating (0-3 m) and 396 

whole ecosystem warming treatments (peat + air warmings) which include tall trees (> 4 m) 397 

(Hanson et al., 2017). Together with elevated atmospheric CO2 treatments, SPRUCE provides a 398 

platform for exploring mechanisms controlling the vulnerability of organisms, biogeochemical 399 

processes and ecosystems in response to future novel climatic conditions. The SPRUCE peatland 400 

is especially sensitive to future climate change and also plays an important role in feeding back 401 

to future climate change through greenhouse gas emissions as it stores a large amount of soil 402 
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organic carbon. Vegetation in the SPRUCE site is dominated by Picea mariana (black spruce) 403 

and Sphagnum spp (peat moss). The studied peatland also has an understory which include 404 

ericaceous and woody shrubs. There are also a limited number of herbaceous species. The whole 405 

ecosystem warming treatments include a large range of both aboveground and belowground 406 

temperature manipulations (ambient, control plots of + 0 °C, +2.25 °C, +4.5 °C, +6.75 °C and +9 407 

°C) in large 115 m2 open-topped enclosures with elevated CO2 manipulations (+0 or +500 ppm). 408 

The difference between ambient and +0 °C treatment plots is the open-topped and controlled-409 

environment enclosure.  410 

The SPRUCE project generates a large variety of observational datasets that reflect 411 

ecosystem dynamics from different scales and are available from the project webpage 412 

(https://mnspruce.ornl.gov/) and FTP site (ftp://sprucedata.ornl.gov/). These datasets come from 413 

multiple sources: half hourly automated sensor records, species surveys, laboratory 414 

measurements, laser scanning images etc. Involvements of both modelling and experimental 415 

studies in the SPRUCE project create the opportunity for data-model communication. Datasets 416 

are pulled from SPRUCE archives and stored in the EcoPAD (v1.0) metadata catalog for running 417 

the TECO model, conducting data-model fusion or forecasting. The TECO model has been 418 

applied to simulate and forecast carbon dynamics with productions of CO2 and CH4 from 419 

different carbon pools, soil temperature response, snow depth and freeze-thaw cycles at the 420 

SRPUCE site (Jiang et al., 2018;Huang et al., 2017;Ma et al., 2017).            421 

 422 

3.2 EcoPAD-SPRUCE web portal   423 

We assimilate multiple streams of data from the SPRUCE experiment to the TECO 424 

model using the MCMC algorithm, and forecast ecosystem dynamics in both near time and for 425 

https://mnspruce.ornl.gov/
ftp://sprucedata.ornl.gov/
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the next 10 years. Our forecasting system for SPRUCE is available at 426 

https://ecolab.nau.edu/ecopad_portal/. From the web portal, users can check our current near- 427 

and long-term forecasting results, conduct model simulation, data assimilation and forecasting 428 

runs, and analyse/visualize model results. Detailed information about the interactive web portal 429 

is provided in the supplementary information.       430 

3.3 Near time ecosystem forecasting and feedback to experimenters   431 

As part of the forecasting functionality, EcoPAD-SPRUCE automates the near time 432 

(weekly) forecasting with continuously updated observations from SPRUCE experiments (Figure 433 

4). We set up the system to automatically pull new data streams every Sunday from the SPRUCE 434 

FTP site that holds observational data and update the forecasting results based on new data 435 

streams. Updated forecasting results for the next week are customized for the SPRUCE 436 

experiments with different manipulative treatments and displayed in the EcoPAD-SPRUCE 437 

portal. At the same time, these results are sent back to SPRUCE communities and displayed 438 

together with near-term observations for experimenter’s reference.  439 

3.4 New approaches to ecological studies towards better forecasting     440 

3.4.1 Case 1: Interactive communications among modellers and experimenters      441 

EcoPAD-SPRUCE provides a platform to stimulate interactive communications between 442 

modellers and experimenters through the loop of prediction-question-discussion-adjustment-443 

prediction (Figure 4). We illustrate how the prediction-question-discussion-adjustment-444 

prediction cycle and stimulation of modeller-experimenter communication improves ecological 445 

predictions through one episode during the study of the relative contribution of different 446 

pathways to methane emissions. An initial methane model was built upon information (e.g., site 447 

characteristics and environmental conditions) provided by SPRUCE field scientists, taking into 448 

https://ecolab.nau.edu/ecopad_portal/
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account important processes in methane dynamics, such as production, oxidation and emissions 449 

through three pathways (i.e., diffusion, ebullition and plant-mediated transportation). The model 450 

was used to predict relative contributions of different pathways to overall methane emissions 451 

under different warming treatments after being constrained by measured surface methane fluxes. 452 

Initial forecasting results which indicated a strong contribution from ebullition under high 453 

warming treatments were sent back to the SPRUCE group. Experimenters doubted about such a 454 

high contribution from the ebullition pathway and a discussion was stimulated. It is difficult to 455 

accurately distinguish the three pathways from field measurements. Field experimenters 456 

provided potential avenues to extract measurement information related to these pathways, while 457 

modellers examined model structure and parameters that may not be well constrained by 458 

available field information. Detailed discussion is provided in Table 1. After extensive 459 

discussion, several adjustments were adopted as a first step to move forward. For example, the 460 

three-porosity model that was used to simulate the diffusion process was replaced by the 461 

Millington-Quirk model to more realistically represent methane diffusions in peat soil; the 462 

measured static chamber methane fluxes were also questioned and scrutinized more carefully to 463 

clarify that they did not capture the episodic ebullition events. Measurements such as these 464 

related to pore water gas data may provide additional inference related to ebullition. The updated 465 

forecasting is more reasonable than the initial results although more studies are in need to 466 

ultimately quantify methane fluxes from different pathways.    467 

3.4.2 Case 2: Acclimation of ecosystem carbon cycling to experimental manipulations   468 

As a first step, CH4 static chamber flux measurements were assimilated into TECO to 469 

assess potential acclimation phenomena during methane production under 5 warming treatments 470 

(+0, +2.25, +4.5, +6.75, +9 °C). Initial results indicated a reduction in both the CH4:CO2 ratio 471 
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and the temperature sensitivity of methane production based on their posterior distributions 472 

(Figure 5). The mean CH4:CO2 ratio decreased from 0.675 (+0 ˚C treatment) to 0.505 (+9 ˚C), 473 

while the temperature sensitivity (Q10) for CH4 production decreased from 3.33 (+0 ˚C) to 1.22 474 

(+9 ˚C treatment). Such shifts quantify potential acclimation of methane production to warming 475 

and future climate warming is likely to have a smaller impact on emission than most of current 476 

predictions that do not take into account of acclimation.  477 

Despite these results are preliminary as more relevant datasets are under collection with 478 

current ongoing warming manipulations and measurements, assimilating observations through 479 

EcoPAD (v1.0) provides a quantitative approach to timely assess acclimation through time. 480 

Melillo et al. (2017) revealed that the thermal acclimation of the soil respiration in the Harvard 481 

Forest is likely to be phase (time) dependent during their 26-year soil warming experiment. 482 

EcoPAD (v1.0) provides the possibility in tracing the temporal path of acclimation with its 483 

streamlined structure and archive capacity. Shi et al. (2015) assimilated carbon related 484 

measurements in a tallgrass prairie into the TECO model to study acclimation after 9-years 485 

warming treatments. They revealed a reduction in the allocation of GPP to shoot, the turnover 486 

rates of the shoot and root carbon pools, and an increase in litter and fast carbon turnovers in 487 

response to warming treatments. Similarly, as time goes on, the SPRUCE experiment will 488 

generate more carbon cycling related datasets under different warming and CO2 treatments, 489 

which can be mounted to EcoPAD (v1.0) to systematically quantify acclimations in carbon 490 

cycling through time in the future.                     491 

3.4.3 Case 3: Partitioning of uncertainty sources   492 

Uncertainties in ecological studies can come from observations (include forcing that 493 

drives the model), different model structures to represent the real world and the specified model 494 
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parameters (Luo et al., 2016). Previous studies tended to focus on one aspect of the uncertainty 495 

sources instead of disentangling the contribution from different sources. For example, the model 496 

intercomparison projects (MIPs), such as TRENDY, focus on uncertainty caused by different 497 

model structures with prescribed external forcing (Sitch et al., 2008). Keenan et al. (2012) used 498 

data assimilation to constrain parameter uncertainties in projecting Harvard forest carbon 499 

dynamics. Ahlstrom et al. (2012) forced one particular vegetation model by 18 sets of forcings 500 

from climate models of the Coupled Model Intercomparison Project Phase 5 (CMIP5), while the 501 

parameter or model structure uncertainty is not taken into account. 502 

EcoPAD (v1.0) is designed to provide a thorough picture of uncertainties from multiple 503 

sources especially in carbon cycling studies. Through focusing on multiple instead of one source 504 

of uncertainty, ecologists can allocate resources to areas that cause relative high uncertainty. 505 

Attribution of uncertainties in EcoPAD (v1.0) will rely on an ensemble of ecosystem models, the 506 

data assimilation system and climate forcing with quantified uncertainty. Jiang et al. [20Jiang et 507 

al. (2018) focused specifically on the relative contribution of parameter uncertainty vs. climate 508 

forcing uncertainty in forecasting carbon dynamics at the SPRUCE site. Through assimilating 509 

the pre-treatment measurements (2011-2014) from the SPRUCE experiment, Jiang et al. (2018) 510 

estimated uncertainties of key parameters that regulate the peatland carbon dynamics. Combined 511 

with the stochastically generated climate forcing (e.g., precipitation and temperature), Jiang et al. 512 

(2018) found external forcing resulted in higher uncertainty than parameters in forecasting 513 

carbon fluxes, but caused lower uncertainty than parameters in forecasting carbon pools. 514 

Therefore, more efforts are required to improve forcing measurements for studies that focus on 515 

carbon fluxes (e.g., GPP), while reductions in parameter uncertainties are more important for 516 

studies in carbon pool dynamics. Despite Jiang et al. (2018) does not quantify model structure 517 
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uncertainty, the project of incorporating multiple models inside EcoPAD (v1.0) is in progress, 518 

and future uncertainty assessment will benefit from EcoPAD (v1.0) with its systematically 519 

archived model simulation, data assimilation and forecasting.     520 

3.4.4 Case 4: Improving biophysical estimation for better ecological prediction    521 

Carbon cycling studies can also benefit from EcoPAD (v1.0) through improvements in 522 

biophysical estimation. Soil environmental condition is an important regulator of belowground 523 

biological activities and also feeds back to aboveground vegetation growth. Biophysical 524 

variables such as soil temperature, soil moisture, ice content and snow depth, are key predictors 525 

of ecosystem dynamics. After constraining the biophysical module by detailed monitoring data 526 

from the SPRUCE experiment through the data assimilation component of EcoPAD (v1.0), 527 

Huang et al. (2017) forecasted the soil thermal dynamics under future conditions and studied the 528 

responses of soil temperature to hypothetical air warming. This study emphasized the importance 529 

of accurate climate forcing in providing robust thermal forecast. In addition, Huang et al. (2017) 530 

revealed non-uniform responses of soil temperature to air warming. Soil temperature responded 531 

stronger to air warming during summer compared to winter. And soil temperature increased 532 

more in shallow soil layers compared to deep soils in summer in response to air warming. 533 

Therefore, extrapolating of manipulative experiments based on air warming alone may not 534 

reflect the real temperature sensitivity of SOM if soil temperature is not monitored. As robust 535 

quantification of environmental conditions is known to be a first step towards better 536 

understanding of ecological process, improvement in soil thermal predictions through EcoPAD 537 

(v1.0) data assimilation system is helpful in telling apart biogeochemical responses from 538 

environmental uncertainties and also in providing field ecologists beforehand key environmental 539 

conditions.  540 



 25 

3.4.5 Case 5: How do updated model and data contribute to reliable forecasting?     541 

Through constantly adjusted model and external forcing according to observations and 542 

weekly archived model parameter, model structure, external forcing and forecasting results, the 543 

contribution of model and data updates can therefore be tracked through comparing forecasted vs. 544 

realised simulations. For example, Figure 6 illustrates how updated external forcing (compared 545 

to stochastically generated forcing) and shifts in ecosystem state variables shape ecological 546 

predictions. “updated” means the real meteorological forcing monitored from the weather station. 547 

We use stochastically generated forcing to represent future meteorological conditions. Future 548 

precipitation and air temperature were generated by vector autoregression using historical dataset 549 

(1961–2014) monitored by the weather station. PAR, relative humidity and wind speed were 550 

randomly sampled from the joint frequency distribution at a given hour each month. Detailed 551 

information on weather forcing is available in Jiang et al. [20Jiang et al. (2018). Similarly as in 552 

other EcoPAD-SPURCE case studies, TECO is trained through data assimilation with 553 

observations from 2011-2014 and is used to forecast GPP and total soil organic carbon content at 554 

the beginning of 2015. For demonstrating purpose, Figure 6 only shows 3 series of forecasting 555 

results instead of updates from every week. Series 1 (S1) records forecasted GPP and soil carbon 556 

with stochastically generated weather forcing from January 2015-December 2024 (Figure 6a,b 557 

cyan). Series 2 (S2) records simulated GPP and soil carbon with observed (updated) climate 558 

forcing  from January 2015 to July 2016 and forecasted GPP and soil carbon with stochastically 559 

generated forcing from August 2016 - December 2024 (Figure 6a,b red). Similarly, the 560 

stochastically generated forcing in Series 3 (S3) starts from January 2017 (Figure 6a,b blue). For 561 

each series, predictions were conducted with randomly sampled parameters from the posterior 562 

distributions and stochastically generated forcing. We displayed 100 mean values (across an 563 
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ensemble of forecasts with different parameters) corresponding to 100 forecasts with 564 

stochastically generated forcing.  565 

GPP is highly sensitive to climate forcing. The differences between the updated (S2, 3) 566 

and initial forecasts (S1) reach almost 800 gC m-2 year-1 (Figure 6c). The discrepancy is strongly 567 

dampened in the following 1-2 years. The impact of updated forecasts is close to 0 after 568 

approximately 5 years. However, soil carbon pool shows a different pattern. Soil carbon pool is 569 

increased by less than 150 gC m-2, which is relative small compared to the carbon pool size of ca. 570 

62000 gC m-2. The impact of updated forecasts grows with time and reaches the highest at the 571 

end of the simulation year 2024. GPP is sensitive to the immediate change in climate forcing 572 

while the updated ecosystem status (or initial value) has minimum impact in the long-term 573 

forecast of GPP. The impact of updated climate forcing is relatively small for soil carbon 574 

forecasts during our study period. Soil carbon is less sensitive to the immediate change of 575 

climate compared to GPP. However, the alteration of system status affects soil carbon forecast 576 

especially in a longer time scale.   577 

Since we are archiving updated forecasts every week, we can track the relative 578 

contribution of ecosystem status, forcing uncertainty and parameter distributions to the overall 579 

forecasting patterns of different ecological variables and how these patterns evolve in time. In 580 

addition, as growing observations of ecological variables (e.g., carbon fluxes and pool sizes) 581 

become available, it is feasible to diagnose key factors that promote robust ecological forecasting 582 

through comparing the archived forecasts vs. observation and analysing archives of model 583 

parameters, initial values and climate forcing etc.                                                        584 

 585 

4 Discussion 586 
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4.1 The necessity of interactive infrastructure to realise ecological forecasting 587 

Interactions enable exchanging and extending of information so as to benefit from 588 

collective knowledge. For example, manipulative studies will have a much broader impact if the 589 

implications of their results can be extended from the regression between environmental variable 590 

and ecosystem response, such as be integrated into an ecosystem model through model-data 591 

communication. Such an approach will allow gaining information about the processes 592 

responsible for ecosystem’s response, constraining models, and making more reliable 593 

predictions. Going beyond common practice of model-data assimilation from which model 594 

updating lags far behind observations, EcoPAD (v1.0) enables iterative model updating and 595 

forecasting through dynamically integrating models with new observations in near real-time. 596 

This near real-time interactive capacity relies on its scientific workflow that automates data 597 

management, model simulation, data simulation and result visualization. The system design 598 

encourages thorough interactions between experimenters and modellers. Forecasting results from 599 

SPRUCE were timely shared among research groups with different background through the web 600 

interface. Expertise from different research groups was integrated to improve a second round of 601 

forecasting. Again, thanks to the workflow, new information or adjustment is incorporated into 602 

forecasting efficiently, making the forecasting system fully interactive.  603 

We also benefit from the interactive EcoPAD (v1.0) platform to broaden user-model 604 

interactions and to broadcast forecasting results. Learning about the ecosystem models and data-605 

model fusion techniques may lag one’s productivity and even discourage learning the modelling 606 

techniques because of their complexity and long learning curve. Because EcoPAD (v1.0) can be 607 

accessed from a web browser and does not require any coding from the user’s side, the time lag 608 

between learning the model structure and obtaining model-based results for one’s study is 609 
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minimal, which opens the door for non-modeller groups to “talk” with models. The online 610 

storage of one’s results lowers the risk of data loss. The results of each model run can be easily 611 

tracked and shared with its unique ID and web address. In addition, the web-based workflow also 612 

saves time for experts with automated model running, data assimilation, forecasting, structured 613 

result access and instantaneous graphic outputs, bringing the possibility for thorough exploration 614 

of more essence part of the system. The simplicity in use of EcoPAD (v1.0) at the same time 615 

may limit their access to the code and lowers the flexibility. Flexibility for users with higher 616 

demands, for example, those who wanted to test alternative data assimilation methods, use a 617 

different carbon cycle model, change the number of calibrated parameters, include the 618 

observations for other variables, is provided through the GitHub repository 619 

(https://github.com/ou-ecolab ). This GitHub repository contains code and instruction for 620 

installing, configuring and controlling the whole system, users can adapt the workflow to wrap 621 

their own model based on his or her needs. On one hand the web-based system with open source 622 

broadens the user community. On the other hand, it increases the risk of misuse and 623 

misinterpretation. We encourage users to be critical and consult system developers to avoid 624 

inappropriate application of the system.        625 

4.2 Implications for better ecological forecasting   626 

Specifically to reliable forecasting of carbon dynamics, our initial exploration from 627 

EcoPAD-SPRUCE indicates that realistic model structure, correct parameterization and accurate 628 

external environmental conditions are essential. Model structure captures important mechanisms 629 

that regulate ecosystem carbon dynamics. Adjustment in model structure is critical in our 630 

improvement in methane forecasting. Model parameters may vary between observation sites, 631 

change with time or environmental conditions (Medlyn et al., 1999;Luo et al., 2001). A static or 632 

https://github.com/ou-ecolab
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wrong parameterization misses important mechanisms (e.g., acclimation and adaptation) that 633 

regulate future carbon dynamics. Not well constrained parameters, for example, caused by lack 634 

of information from observational data, contribute to high forecasting uncertainty and low 635 

reliability of forecasting results. Correct parameterization is especially important for long-term 636 

carbon pool predictions as parameter uncertainty resulted in high forecasting uncertainty in our 637 

case study (Jiang et al., 2018). Parameter values derived under the ambient condition was not 638 

applicable to the warming treatment in our methane case due to acclimation. External 639 

environmental condition is another important factor in carbon predictions. External 640 

environmental condition includes both the external climatic forcing that is used to drive 641 

ecosystem models and also the environmental condition that is simulated by ecosystem models. 642 

As we showed that air warming may not proportionally transfer to soil warming, realistic soil 643 

environmental information needs to be appropriately represented to predict soil carbon dynamics 644 

(Huang et al., 2017). The impact of external forcing is especially obvious in short-term carbon 645 

flux predictions. Forcing uncertainty resulted in higher forecasting uncertainty in carbon flux 646 

compared to that from parameter uncertainty (Jiang et al., 2018). Mismatches in forecasted vs. 647 

realised forcing greatly increased simulated GPP and the discrepancy diminished in the long run. 648 

Reliable external environmental condition, to some extent, reduces the complexity in diagnosing 649 

modelled carbon dynamics. 650 

Pool-based vs. flux-based predictions are regulated differently by external forcing and 651 

initial states, which indicates that differentiated efforts are required to improve short- vs. long-652 

term predictions. External forcing, which has not been well emphasized in previous carbon 653 

studies, has strong impact on short-term forecasting. The large response of GPP to forecasted vs. 654 

realised forcing as well the stronger forcing-caused uncertainty in GPP predictions indicate 655 
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correct forcing information is a key step in short-term flux predictions. In this study, we 656 

stochastically generated the climate forcing based on local climatic conditions (1961-2014), 657 

which is not sufficient in capturing local short-term climate variability. As a result, updated GPP 658 

went outside our ensemble forecasting. On the other hand, parameters and historical information 659 

about pool status are more important in long-term pool predictions. Therefore, improvement in 660 

long-term pool size predictions cannot be reached by accurate climatic information alone. 661 

Instead, it requires accumulation in knowledge related to site history and processes that regulate 662 

pool dynamics.         663 

Furthermore, reliable forecasting needs understanding of uncertainty sources in addition 664 

to the future mean states. Uncertainty and complexity are major reasons that lead to the belief in 665 

“computationally irreducible” and low intrinsic predictability of ecological systems (Beckage et 666 

al., 2011;Coreau et al., 2010;Schindler and Hilborn, 2015). Recent advance in computational 667 

statistical methods offers a way to formally accounting for various uncertainty sources in 668 

ecology (Clark et al., 2001;Cressie et al., 2009). And the Bayesian approach embedded in 669 

EcoPAD (v1.0) brings the opportunity to understand and communicate forecasting uncertainty. 670 

Our case study revealed that forcing uncertainty is more important in flux-based predictions 671 

while parameter uncertainty is more critical in pool-based predictions. Actually, how forecasting 672 

uncertainty changes with time, what are the dominate contributor of forecasting uncertainty (e.g., 673 

parameter, initial condition, model structure, observation errors, forcing etc.), how uncertainty 674 

sources interact among different components, or to what extent unconstrained parameters affect 675 

forecasting uncertainty are all valuable questions that can be explored through EcoPAD (v1.0).  676 

4.3 Applications of EcoPAD (v1.0) to manipulative experiments and observation sites 677 
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Broadly speaking, data-model integration stands to increase the overall precision and 678 

accuracy of model-based experimentation (Luo et al., 2011b;Niu et al., 2014). Systems for which 679 

data have been collected in the field and which are well represented by ecological models 680 

therefore have the capacity to receive the highest benefits from EcoPAD (v1.0) to improve 681 

forecasts. In a global change context, experimental manipulations including ecosystem responses 682 

to changes in precipitation regimes, carbon dioxide concentrations, temperatures, season lengths, 683 

and species compositional shifts can now be assimilated into ecosystem models (Shi et al., 684 

2016;Xu et al., 2006;Gao et al., 2011;Lebauer et al., 2013). Impacts of these global change 685 

factors on carbon cycling and ecosystem functioning can now be measured in a scientifically 686 

transparent and verifiable manner. This leads to ecosystem modelling of systems and processes 687 

that can obtain levels of confidence that lend credibility with the public to the science’s forward 688 

progress toward forecasting and predicting (Clark et al., 2001). These are the strengths of a 689 

widely-available interface devoted to data-model integration towards better forecasting.   690 

The data-model integration framework of EcoPAD (v1.0) creates a smart interactive 691 

model-experiment (ModEx) system. ModEx has the capacity to form a feedback loop in which 692 

field experiment guides modelling and modelling influences experimental focus (Luo et al., 693 

2011a). We demonstrated how EcoPAD (v1.0) works hand-in-hand between modellers and 694 

experimenters in the life-cycle of the SPRUCE project. The EcoPAD-SPRUCE system operates 695 

while experimenters are making measurements or planning for future researches. Information is 696 

constantly fed back between modellers and experimenters, and simultaneous efforts from both 697 

parties illustrate how communications between model and data advance and shape our 698 

understanding towards better forecasts during the lifecycle of a scientific project. ModEx can be 699 

extended to other experimental systems to: 1, predict what might be an ecosystem’s  response to 700 
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treatments once experimenter selected a site and decided the experimental plan; 2, assimilate 701 

data experimenters are collecting along the experiment to constrain model predictions; 3, project 702 

what an ecosystem’s  responses may likely be in the rest of the experiment; 4, tell experimenters 703 

what are those important datasets experimenters may want to collect in order to understand the 704 

system; 5, periodically updates the projections; and 6, improve the models, the data assimilation 705 

system, and field experiments during the process.  706 

In addition to the manipulative experiments, the data assimilation system of EcoPAD 707 

(v1.0) can be used for automated model calibration for FLUXNET sites or other observation 708 

networks, such as the NEON and LTER (Johnson et al., 2010;Robertson et al., 2012). The 709 

application of EcoPAD (v1.0) at FLUXNET, NEON or LTER sites includes three steps in 710 

general. First, build the climate forcing in the suitable formats of EcoPAD (v1.0) from the 711 

database of each site; Second, collect the prior information (include observations of state 712 

variables) in the data assimilation system from FLUXNET, NEON or LTER sites; Third, 713 

incorporate the forcing and prior information into EcoPAD (v1.0), and then run the EcoPAD 714 

(v1.0) with the dynamic data assimilation system. Furthermore, facing the proposed continental 715 

scale ecology study (Schimel, 2011), EcoPAD (v1.0) once properly applied could also help 716 

evaluate and optimize field deployment of environmental sensors and supporting 717 

cyberinfrastructure, that will be necessary for larger, more complex environmental observing 718 

systems being planned in the US and across different continents.                       719 

4.4 Future developments 720 

EcoPAD (v1.0) will expand as time goes on. The system is designed to incorporate 721 

multiple process-based models, diverse data assimilation techniques and various ecological state 722 

variables for different ecosystems. Case studies presented in earlier sections are based primarily 723 



 33 

on one model. A multiple (or ensemble) model approach is helpful in tracking uncertainty 724 

sources from our process understanding. With rapid evolving ecological knowledge, emerging 725 

models with different hypotheses, such as the microbial-enzyme model (Wieder et al., 2013), 726 

enhance our capacity in ecological prediction but can also benefit from rapid tests against data if 727 

incorporated into EcoPAD (v1.0). In addition to MCMC (Braswell et al., 2005;Xu et al., 2006), a 728 

variety of data assimilation techniques have been recently applied to improve models for 729 

ecological forecasting, such as the EnKF (Gao et al., 2011), Genetic Algorithm (Zhou and Luo, 730 

2008) and 4-d variational assimilation (Peylin et al., 2016). Future development will incorporate 731 

different optimization techniques to offer users the option to search for the best model 732 

parameters by selecting and comparing the possibly best method for their specific studies. We 733 

focus mostly on carbon related state variables in the SPRUCE example, and the data assimilation 734 

system in EcoPAD (v1.0) needs to include more observed variables for constraining model 735 

parameters. For example, the NEON sites not only provide measured ecosystem CO2 fluxes and 736 

soil carbon stocks, but also resources (e.g., GPP/Transpiration for water and GPP/intercepted 737 

PAR for light) use efficiency (Johnson et al., 2010).  738 

Researchers interested in creating their own multiple model and/or multiple assimilation 739 

scheme version of EcoPAD (v1.0) can start from the GitHub repository (https://github.com/ou-740 

ecolab ) where the source code of the EcoPAD (v1.0) workflow is archived. To add a new 741 

variable that is not forecasted in the EcoPAD-SPRUCE example, it requires modellers and 742 

experimenters to work together to understand their process-based model, observations and how 743 

messaging works in the workflow of EcoPAD (v1.0) following the example of EcoPAD-744 

SPRUCE. To add a new model or a new data assimilation scheme for variables that are 745 

forecasted in EcoPAD-SPRUCE, researchers need to create additional dockers and mount them 746 
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to the existing workflow with the knowledge of how information are passed within the workflow 747 

(see Supplement for detailed information).   748 

With these improvements, one goal of the EcoPAD (v1.0) is to enable the research 749 

community to understand and reduce forecasting uncertainties from different sources and 750 

forecast various aspects of future biogeochemical and ecological changes as data becomes 751 

available. EcoPAD (v1.0) acts as a tool to link model and data, not as a substitution for neither 752 

model nor data. Ecological forecasting through EcoPAD (v1.0) relies strongly on theoretical 753 

(model) and empirical (data) ecological studies. Questions such as what are major factors 754 

regulating temporal variability of methane emissions cannot be directly answered by EcoPAD 755 

(v1.0). How to make use of EcoPAD (v1.0) to inspire breakthroughs in both theoretical and 756 

empirical ecological studies worth future exploration.                757 

The power of EcoPAD (v1.0) also lies in the potential service it can bring to the society. 758 

Forecasting with carefully quantified uncertainty is helpful in providing support for natural 759 

resource manager and policy maker (Clark et al., 2001). It is always difficult to bring the 760 

complex mathematical ecosystem models to the general public, which creates a gap between 761 

current scientific advance and public awareness. The web-based interface from EcoPAD (v1.0) 762 

makes modelling as easy as possible without losing the connection to the mathematics behind the 763 

models. It will greatly transform environmental education and encourage citizen science (Miller-764 

Rushing et al., 2012;Kobori et al., 2016) in ecology and climate change with future outreach 765 

activities to broadcast the EcoPAD (v1.0) platform.    766 

5 Conclusion  767 

The fully interactive web-based Ecological Platform for Assimilating Data (EcoPAD 768 

(v1.0)) into models aims to promote data-model integration towards predictive ecology through 769 
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bringing the complex ecosystem model and data assimilation techniques accessible to different 770 

audience. It is supported by meta-databases of biogeochemical variables, libraries of modules of 771 

process models, toolbox of inversion techniques and the scalable scientific workflow. Through 772 

these components, it automates data management, model simulation, data assimilation, 773 

ecological forecasting, and result visualization, providing an open, convenient, transparent, 774 

flexible, scalable, traceable and readily portable platform to systematically conduct data-model 775 

integration towards better ecological forecasting. 776 

We illustrated several of its functionalities through the Spruce and Peatland Responses 777 

Under Climatic and Environmental change (SPRUCE) experiment. The iterative forecasting 778 

approach from EcoPAD-SPRUCE through the prediction-question-discussion-adjustment-779 

prediction cycle and extensive communication between model and data creates a new paradigm 780 

to best inform forecasting. In addition to forecasting, EcoPAD (v1.0) enables interactive web-781 

based approach to conduct model simulation, estimate model parameters or state variables, 782 

quantify uncertainty of estimated parameters and projected states of ecosystems, evaluate model 783 

structures, and assess sampling strategies. Altogether, EcoPAD-SPRUCE creates a smart 784 

interactive model-experiment (ModEx) system from which experimenters can know what an 785 

ecosystem’s response might be at the beginning of their experiments, constrain models through 786 

collected measurements, predict ecosystem’s response in the rest of the experiments, adjust 787 

measurements to better understand their system, periodically update projections and improve 788 

models, the data assimilation system, and field experiments.  789 

Specifically to forecasting carbon dynamics, EcoPAD-SPRUCE revealed that better 790 

forecasting relies on improvements in model structure, parameterization and accurate external 791 

forcing. Accurate external forcing is critical for short-term flux-based carbon predictions while 792 
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right process understanding, parameterization and historical information are essential for long-793 

term pool-based predictions. In addition, EcoPAD (v1.0) provides an avenue to disentangle 794 

different sources of uncertainties in carbon cycling studies and to provide reliable forecasts with 795 

accountable uncertainties.      796 

 797 
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Tables  1099 

Table 1. Discussion stimulated by EcoPAD-SPRUCE forecasting among modellers and 1100 

experimenters on how to improve predictions of the relative contribution of different pathways 1101 

of methane emissions   1102 

 Discussion  
1 No strong bubbles are noted at field and a non-observation constrained modelling study at a similar site from 

another project concluded minor ebullition contribution, which are at odds with TECO result.  
2 CH4:CO2 ratio might explain the discrepancy. The other modelling study assumed that decomposed C is 

mainly turned into CO2 and a smaller fraction is turned into CH4. The large CH4:CO2 ratio at this site may 
result in higher CH4 flux. It seems that the most “flexible” term is ebullition because any "excess" (above 
saturation) CH4 is immediately released to ebullition, while the plant transport term is constrained by 
vegetation data. 

3 Experimental researches on the relative contribution to methane emission from three different pathways are 
rare.  

4 Current available observations include net surface flux of methane from the large collars, incubation data that 
should represent methane sources within the profile, and gas/DOC profile data that can indicate active zones 
within the peat profile. What are additional data needed to constrain relative contribution of different 
pathways? 

5 I had always thought that peatlands don’t bubble much, but the super-sensitive GPS measurements found 
movements of the surface of the GLAP peatlands consistent with degassing events, and subsurface radar 
images did show layers that were interpreted as bubble-layers. 

6 Pore water gas data, perhaps N2 or Ar may shed some light on the relative importance of ebullition. 
7 It is really hard to accurately distinguish the three pathways. It has to rely on multiple approaches. Particularly 

for the SPRUCE site, the vegetation cover varies, vegetation species varies. How many channels each species 
has affect the transport? Meanwhile, the presence of plant (even not vascular plant) will lead to more gas 
transport, but as bubbles, rather than plant-mediated transport. 

8 It depends on model structure and algorithm to simulate diffusion, vascular, and ebullition. Most models 
assume a threshold to allow ebullition. Diffusion is treated in similar ways as ebullition in some models (most 
one layer or two layers models). For the multiple layers models, the diffusion occurs from bottom to top mm 
by mm, layer by layer, therefore, the gas diffusion from top layer to atmosphere is considered the diffusion 
flux. If that is the case, the time step and wind speed and pressure matter (most models do not consider wind 
and pressure impacts). Plant transport is really dependent on the parameter for plant species, aerenchyma, etc. 
The gas transportability of plant is associated with biomass, NPP, or root biomass, seasonality of plant growth, 
etc. in models. All these differences might cause biases in the final flux. 

9 With only the CH4 emission data cannot constrain the relative contribution of three pathways. Concentration 
data in different soil layers may help constrain. 

10 Diffusion coefficient calculation in TECO adopts the "three-porosity-model" which is ideal for mineral soil, 
but may not fit the organic soil. "Millington-Quirk model" for should be a better choice for peat soil. 

11 The boundary condition should be taken care of, but it brings in more uncertainties including the wind speed 
and piston velocity, etc., 

12 CH4 emissions captured in static chambers does not include the episodic ebullition events. So (1) the static 
chambers underestimate the total methane emission and (2) might need to exclude the ebullition pathway when 
using the observation data to constrain the CH4 emission. But this point seems haven't been paid attention to in 
other models. 
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Figure Legends  1104 

Figure 1 Schema of approaches to forecast future ecological responses from common practice 1105 

(the upper panel) and the Ecological Platform for Assimilation of Data (EcoPAD (v1.0)) (bottom 1106 

panel). The common practice makes use of observations to develop or calibrate models to make 1107 

predictions while the EcoPAD (v1.0) approach advances the common practice through its fully 1108 

interactive platform. EcoPAD (v1.0) consists of four major components: experiment/data, model, 1109 

data assimilation and the scientific workflow (green arrows or lines). Data and model are 1110 

iteratively integrated through its data assimilation systems to improve forecasting. And its near-1111 

real time forecasting results are shared among research groups through its web interface to guide 1112 

new data collections. The scientific workflow enables web-based data transfer from sensors, 1113 

model simulation, data assimilation, forecasting, result analysis, visualization and reporting, 1114 

encouraging broad user-model interactions especially for the experimenters and the general 1115 

public with limited background in modelling. Images from the SPRUCE field experiments 1116 

(https://mnspruce.ornl.gov/) are used to represent data collection and the flowchart of TECO 1117 

model is used to delegate ecological models.           1118 

Figure 2  The data assimilation system inside the Ecological Platform for Assimilation of Data 1119 

(EcoPAD (v1.0)) towards better forecasting of terrestrial carbon dynamics   1120 

Figure 3  The scientific workflow of EcoPAD (v1.0). The workflow wraps ecological models 1121 

and data assimilation algorithms with the docker containerization platform. Users trigger 1122 

different tasks through the Representational State Transfer (i.e., RESTful) application-1123 

programming interface (API). Tasks are managed through the asynchronous task queue, Celery. 1124 

Tasks can be executed concurrently on a single or more worker servers across different scalable 1125 

https://mnspruce.ornl.gov/
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IT infrastructures. MongoDB is a database software that takes charge of data management in 1126 

EcoPAD (v1.0) and RabbitMQ is a message broker.   1127 

 1128 

Figure 4. Schema of interactive communication between modellers and experimenters through 1129 

the prediction-question-discussion-adjustment-prediction cycle to improve ecological 1130 

forecasting. The schema is inspired by an episode of experimenter-modeller communication 1131 

stimulated by the EcoPAD-SPRUCE platform. The initial methane model constrained by static 1132 

chamber methane measurements was used to predict relative contributions of three methane 1133 

emission pathways (i.e., ebullition, plant mediated transportation (PMT) and diffusion) to the 1134 

overall methane fluxes under different warming treatments (+ 0 °C, +2.25 °C, +4.5 °C, +6.75 °C 1135 

and +9 °C). The initial results indicated a dominant contribution from ebullition especially under 1136 

+9 °C which was doubted by experimenters. The discrepancy stimulated communications 1137 

between modellers and experimenters with detailed information listed in Table 1. After extensive 1138 

discussion, the model structure was adjusted and field observations were re-evaluated. And a 1139 

second round of forecasting yielded more reliable predictions.   1140 

Figure 5. Posterior distribution of the ratio of CH4:CO2 (panel a) and the temperature sensitivity 1141 

of methane production (Q10_CH4, panel b) under 5 warming treatments.   1142 

Figure 6. Updated vs. un-updated forecasting of gross primary production (GPP, panels a,c) and 1143 

soil organic C content (SoilC, panels b,d). The upper panels show 3 series of forecasting with 1144 

updated vs. stochastically generated weather forcing. “updated” means the real meteorology 1145 

forcing monitored from field weather station. Cyan indicates forecasting with 100 stochastically 1146 

generated weather forcing from January 2015 to December 2024 (S1); red corresponds to 1147 

updated forecasting with two stages, that is, updating with measured weather forcing from 1148 
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January 2015 to July 2016 followed by forecasting with 100 stochastically generated weather 1149 

forcing from August 2016 to December 2024 (S2); and blue shows updated forecasting with 1150 

measured weather forcing from January 2015 to December 2016 followed by forecasting with 1151 

100 stochastically generated weather forcing from January 2017 to December 2024 (S3). The 1152 

bottom panels display mismatches between updated forecasting (S2,3) and the original un-1153 

updated forecasting (S1). Red displays the difference between S2 and S1 (S2-S1) and blue shows 1154 

discrepancy between S3 and S1 (S3-S1). Dashed green lines indicate the start of forecasting with 1155 

stochastically generated weather forcing. Note that the left 2 panels are plotted on yearly time-1156 

scale and the right 2 panels show results on monthly time-scale.               1157 
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