
Anonymous Referee #1 
RC1: The manuscript “Realized ecological forecast through interactive Ecological Platform for 

Assimilating Data into model (EcoPAD)” by Y. Huang et al. presents the development of a web-based 
software system for quantitative ecological forecasting. The system is based on the availability of 

observational data, a process-oriented model, an algorithm for assimilating the observations into the 
model and a web-based workflow. Furthermore the paper describes the application of EcoPAD to the 

Spruce and Peatland Responses Under Climatic and Environmental change (SPRUCE) experiment in 
North Minnesota using the Terrestrial ECOsystem (TECO) model and a Markov Chain Monte Carlo 

assimilation technique in forecasting carbon fluxes and pools. 
The manuscript is mostly well written, however, at times (sections 1 and 2) it reads more like a ‘sales 

pitch’ for EcoPAD with quite a few repetitive elements (e.g. the list of elements included in the workflow 
appears at multiple places) and at other times (section 3) it reads as a review on the previous 

applications of EcoPAD. So in essence, my major concern is that there is little new science in the current 
version of the manuscript except for the technical engineering of the web-based software system, which 

in itself is not described in great detail. My recommendation is to focus the manuscript on these 
technical developments and provide a more in-depth description of the technical details of this system, 
however, I am not sure if this then still fits to GMD because the web-based software system 

development is very much focussed on information technology developments. 
Response: We appreciate the Reviewer’s valuable suggestions. The manuscript is organized to express 

the motivation of building EcoPAD, or why we need a platform like EcoPAD in ecological forecasting 
(Introduction, section 1), the technical support (section 2) and what we can benefit from EcoPAD (or 

its application and scientific values, sections 2, 3). The technical engineering is an important part of 
EcoPAD and the manuscript. The functionality of EcoPAD or the role of EcoPAD in advancing ecological 

forcasting is built upon the technical elements. But the manuscript is not only about technical details. 
Equally important is what we can benefit from such a platform for ecological forecasting. And the goal 

of the technical advances is to improve ecological forecasting. We emphasize that iterative 
interactions between model and data, as well as between modellers and experimenters, are valuable 

for ecological forecasting.  
 

We do not agree with the Reviewer that there is little new science in the manuscript. The near real 
time ecological forecasting itself is a new scientific advance in ecology. In addition, we integrated 
different case studies to illustrate how different components contribute to improve ecological 

forecasting. Case 3 and Case 4 comes from previous studies. Case 3 is about uncertainty and Case 4 is 
related to biophysical estimation. Cases 1, 2, and 5 are new case studies from this manuscript. Case 1 

focuses on the communication between modellers and experimenters. We believe that good 
ecological forecasting is built upon efforts from both modellers and experimenters. Even though this 

case is not direct technical advance, the techniques embedded in EcoPAD allow near- and real-time 



interactions between modellers and experimenters. This itself represents an important advance for 
scientific research that is enabled by modelling. Case 2 is related to acclimation or shift in parameter 

values. Case 5 compares realised vs. unrealised forecasting. The focus of this study is ecological 
forecasting. The practice of ecological forecasting is still at its early stage and good forecasting needs 

to integrate resources from different aspects. Each case study provides valuable information from 
different perspectives. But none of these cases alone guarantees good ecological forecasting. We keep 

Case 3 and Case 4 as they reflect important aspects, i.e. uncertainty and boundary conditions, that 
lead to good ecological forecasting. We have a section discuss the implications of these case studies 

for better ecological forecasting (section 4.2). And please also refer to our responses to Reviewer 2.      
          

RC1: Another concern relates to the use of the tool by the ‘general public’ or even experimentalists 
lacking the background knowledge on data assimilation as promoted by the authors of the manuscript. 

The concern is that with such a level of automation (essentially only clicking a button on a webpage to 
get the results of a complex data assimilation experiments) of a very complex system involving experts’ 

concepts from multiple disciplines the user could easily lose the connection to the underlying tools, such 
as the capability of the ecological model and the data assimilation algorithm. Both components may not 
be fit for the user’s purpose, so a misuse (even and especially unconsciously) of the system can easily 

happen without the user being able to notice because the user is not an expert of either the ecological 
model nor the data assimilation algorithm. An erroneous result (which can easily happen if e.g. some 

observations used in the assimilation are outliers or the assimilation algorithm produces parameter 
values outside of physical meaningful values etc) of such an automated system could be taken as real 

and thus be misused. In that sense there should be some caution in promoting this system to non-
specialist users. 

Response: We agree with the Reviewer that there are risks of misuses. Tool itself does not necessary 
equal to misuse. It depends on the people who use it and how it is used. Misuse is not unique to web-

based simulation and can also occur to non-web-based model simulation and data assimilation. For 
example, sometimes people who run complex process-based models, such as these embedded in big 

Earth system models, may not necessary know how different components of the model work. Or an 
experienced modeler of carbon cycling may not know much about how hydrology in the model works. 

In these situations, there are also risks of misuse. This is why we emphasize effective communication 
between different experts. Experimenters may not know the technical details of how to build a model 
or how to code the data assimilation algorism, but it is not to say they do not need to know how the 

system works. The communication between modelers and experimenters help the experimenters to 
understand what works in the background, what is the meaning of a parameter or process, what they 

can, or cannot do with the platform. The platform is carefully designed to avoid potential errors. For 
example, the experimenter is asked to prescribe the minimal and maximum values of the parameter 

they are interested in, avoiding the situation of non-meaningful parameter values. When it comes to 



outliers in observations or physical/biological boundaries of a parameter, actually, experimenters are 
more experienced than modellers in making judgements. And normally modellers consult 

experimenters on the quality and to which degree we can trust and use observation data. The 
observational data we used in EcoPAD-SPURCE went through the quality control from experimenters. 

We promote the hands-on experience for the ‘general public’ with prescribed examples to connect 
the ‘general public’ and ecological research. It is not to say we expect the ‘general public’ to 

understand the result displayed from the webpage without any guidance or consultancy with a 
specialist. We still need the modellers to support these activities and play an important role.   

  
Nevertheless, we do not rule out the possibility of potential errors, it is good to be cautious. EcoPAD 

archives relevant model parameters, boundary conditions, model structure and observational data for 
each modelling activity. If there are erroneous results, they can be traced through the archives. It does 

not provide a mechanism to detect unaware erroneous results, but it helps in the situation when 
people suspect that there are errors.                        

 
Detailed comments:  
Ll 31-33: This sentence is hard to understand, what are updated data? 

Response: We changed“updated data” into “new data”.   
 

L40: What is your definition of near real-time? 
Response: In the SPRUCE study, EcoPAD is setup to automatically update forecasting every week and 

is adaptable to different updating frequency depending on the research goal. In this specific case, we 
refer to “weekly” as near real-time.    

 
Ll 67-73: Maybe put a ‘e.g.’ in front of the mentioned references because these are only examples and 

there are many more possible references to cite as examples. 
Response: Good suggestion. We add ‘e.g.’  

 
Ll 92-94: Unrepresented processes and unknown parameter values are two different reasons for large 

uncertainties in simulating ecological systems. 
Response: We agree that unpresented processes and unknown parameter values can be two different 
reasons for large uncertainties in ecological modelling. But uncertainty of parameters sometimes also 

contains information about unrepresented processes. The separation between processes and 
parameters are context and scale dependent. For example, the decomposition of soil organic matter 

or litter can be represented through the parameter decomposition rate. The uncertainty of 
decomposition rate partly reflects unrepresented processes such as microbial dynamics.    

 



Ll 98/99: ‘to communicate model with data’ seems to be a weird expression. 
Response: We change this expression to “to combine model with data”. 

 
Ll 122/123 Model improvements do not necessarily happen after the end of an field experiment, other 

ways of improving a model rely on literature or new theoretical understanding. 
Response: We agree that there are other ways to improve model. We add “ Data-informed” at the 

beginning of the sentence.    
 

L 128: Interactive ecological forecasting does not require web-based technology. 
Response: We modify the sentence to “The web-based technology facilitates interactions”. There are 

different levels of “interactive”, in this manuscript “The interactive feature of EcoPAD (v1.0) is 
reflected in the iterative model updating and forecasting through dynamically integrating models with 

new observations, bidirectional feedbacks between experimenters and modellers, and flexible user-
model communication through web-based simulation, data assimilation and forecasting.” (Lines 191-

194, tracked manuscript) 
 
Ll 148/149: This sentence is hard to understand, please clarify what you mean here. 

Response: We rewrite this part as “The iterative model-data integration provides an approach to 
constantly improve ecological forecasting and is an important step especially for realizing near real-

time ecological forecasting.” And we explained that “Instead of projecting into future through 
assimilating observations only once, the iterative forecasting constantly updates forecasting along 

with ongoing new data streams or/and improved models.”   
 

L 175: Do you mean ‘quantitative’ forecasting? 
Response: Yes.  

 
L 220: Please specify in the manuscript how this is done. 

Response: We add “Each project has a separate folder where data are stored. Data are generally 
separated into two categories. One is used as boundary conditions for modelling and the other 

category is related to observations which are used for data assimilation. Scheduled sensor data are 
appended to existing data files with prescribed frequency.” (Lines 254-258, tracked Manuscript ) 
 

Ll 226/227: It would be interesting to see more details on how the data assimilation system can be 
independent on the specific ecological model. Usually, in a data assimilation system the underlying 

model and the applied data assimilation algorithm are closely connected on a code level. 
Response: We agree that there are connections between different components. We added “Linkages 

among the workflow, data assimilation system and ecological model are based on messaging. For 



example, the data assimilation system generates parameters that are passed to ecological models. 
The state variables simulated from ecological models are passed back to the data assimilation system. 

Models may have different formulations. As long as they take in the same parameters and generate 
the same state variables, they are functionally identical from the “eye” of the data assimilation 

system.” (Lines 256-262, tracked manuscript ) 
 

Ll 241-246: Hard to understand, maybe split in two sentences. 
Response: We rewrite this part as “SOM decomposition modelling follows the general form of the 

Century model [Parton et al., 1988] as in most earth system models. SOM is divided into pools with 
different turnover times (the inverse of decomposition rates) which are modified by environmental 

factors such as the soil temperature and moisture.” 
 

Ll 249-252: Again, hard to understand, maybe split in two sentences. 
Response: We rewrite the sentence as “Data assimilation is growing in importance as the process-

based ecological models, despite largely simplifying the real systems, are in great need to be complex 
enough to address sophisticate ecological issues. These ecological issues are composed of an 
enormous number of biotic and abiotic factors interacting with each other.” 

 
Ll 257-259: The underlying principle of Bayesian modelling is that the ingredients are specified by 

probability density functions. 
Response: It is not clear to us what information the Reviewer intended to add here.   

 
Ll 264/265: Complicated formulation, essentially what you want to say is that the posterior uncertainty 

is smaller than the prior after assimilating observations. 
Response: We agree that what we want to express is that the posterior uncertainty is likely to be 

smaller than the prior after assimilating observations. We elaborate on this part because some 
readers of the manuscript might be ecologist/experimentalist with limited background in modelling 

and Bayesian statistics.     
 

Ll 267-269: Please specify in the manuscript how you choose between DA techniques and what are the 
criteria for the selection. 
Response: Please refer to our response to L 401. EcoPAD is open to different DA techniques.  

 
Ll 271-273: Again, hard to understand, maybe split in two sentences. 

Response: We delete “which makes Bayesian inference, especially these with multi-dimensional 
integrals, workable”. 

 



L 275: What are the various uncertainty sources and why do other methods do not take all these sources 
into account? Please specify in the manuscript. 

Response: We remove the statement “is advantageous for better ecological forecasting as it” as it is 
not the objective of this manuscript to compare different data assimilation techniques.  

 
Ll 296/297: What is a good management in the sense here? 

Response: Good management is a subjective term. Nowadays Ecologists are working with large and 
heterogeneous ecological datasets routinely. Good management can broadly refer to management 

that improves the efficiency of activities that involve these large and heterogeneous ecological 
datasets.             

 
Ll 394/395: What are youngster? And why should they study ecological dynamics through their phones 

and tables opposed to seniors or others? 
Response: Youngster is a random example, instead of all-inclusive listing. We use youngster to 

delegate people who are not experts in ecology. We do not think we intend to have implicit meaning 
that says seniors or others should not do it. We apologize if we made readers feel in such way. To 
reduce over interpretation, we replaced youngster with “Non-ecologists, such as youngsters”.       

 
L 401: Doesn’t that contradict your earlier statement that you need to choose a DA technique that is fit 

for purpose (Ll 267-269)? 
Response: LI 267-269 states “EcoPAD is open to different data assimilation techniques depending on 

the ecological questions under study since the scientific workflow of EcoPAD is independent on the 
specific data assimilation algorithm. For demonstration, the Markov chain Monte Carlo (MCMC) [Xu et 

al., 2006] is described in this study.” We choose a DA technique for demonstration purposes and we 
do not state that only the chosen DA technique fits. Instead, we think our system is open to different 

DA techniques and L401 is not in contradiction with our previous statement.     
 

Ll 428-430: How is the automated forecast done? And who is analysing the results of the automated 
forecast? I suppose if something goes wrong in the automated processing and forecasting an 

experimentalist won’t be able a) notice that something went wrong and b) would be able to fix the 
bug/problem in the modelling chain. 
Response: EcoPAD-SPRUCE is built upon the teamwork. There are both modellers and experimenters.   

 We emphasize the interaction between experimenters and modellers, as illustrated through the 
section 3.4.1. Modellers built the automated forecasting algorism/code and experimenters also 

played an important role, such as, in preparing observations and interpretation of the modelling 
results. Experimenters are not good at finding out software bugs, but they might be more experienced 



in telling whether the modelling results make sense in reality. Details about how the automated 
forecast is done can be find in Section 3.3.         

 
Ll 443-446: It seems that there is a misconception between parameters and parameterisations: 

parameters should be invariant in time otherwise they are not parameters but a result of a 
parameterisation that depends on independent inputs. Could you please clarify this point in the 

manuscript. 
Response: We think the statement that whether a parameter should be time-independent is context 

dependent. People commonly link a parameter to a constant that does not change with time. But 
parameter does not equal to constant. The wiki takes parameter as “A parameter, generally, is any 

characteristic that can help in defining or classifying a particular system (meaning an event, project, 
object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when 

identifying the system, or when evaluating its performance, status, condition, etc.” 
(https://en.wikipedia.org/wiki/Parameter). And it is not uncommon to find “time-varying 

parameters” or “time-variant parameters” in literature, e.g., Tucci 1995, Lauzon and Bates, 1991; 
Zellner et al., 1991; Zeng et al., 1998; Jiang et al., 2015.     
    

L 500: What are the SPRUCE communities doing with the results? 
Response: The results are used mostly for research. From the modelling part, Case 5 (section 3.4.5) is 

based on this part and ongoing studies are using these archived near-time forecasting to track the 
time-shift in acclimation and to track model elements that contribute to reducing forecasting 

uncertainty. The experimenters may adjust their sampling scheme, e.g., the sampling frequency or 
additional variables to be measured to reduce the forecasting uncertainty.     

  
L 512: ‘help experimenters think’ is an interesting expression. 

Response: We do not understand what the Reviewer intended to express here.   
 

Ll 712-714 Could you please clarify this statement. I don’t think this is true, complex models can of 
course assimilate pool-related data, see e.g. Thum et al., 2017. 

Response: The sentence is “In the past, complex models could not assimilate pool-related data to 
constrain their parameter estimation due to insurmountable computational demand in large scale 
studies.” The context is “large scale studies”.  Thum et al., 2017 is about site level studies, not large-

scale studies. For example, Bloom et al., 2016 assimilated large-scale pool-based observations. So we 
deleted this paragraph. 

 
Ll 729-732: Again, hard to understand, please clarify what you want to say here. 

https://en.wikipedia.org/wiki/Parameter


Response: We replace it with “Parameter values derived under the ambient condition was not 
applicable to the warming treatment in our methane case due to acclimation”. 

   
Figure 7: This figure is hard to understand and also the caption doesn’t help much to understand the 

panels. What exactly has been changed between S1-S3? What is realised and unrealised forecasting? 
And there seems to be no difference in time-scale among the panels. 

Response: The differences between S1-S3 are weather forcings and are indicated by “The upper 

panels show 3 series of forecasting with updated vs. stochastically generated weather forcing (Lines 
1352-1353, tracked manuscript)”. We changed “realised” and “unrealised” to “updated” and “un-

updated” respectively to reduce confusion. S1 is “un-updated” forecasting and the forecasting is 
generated with stochastically generated weather forcings over our whole forecasting period (2015-

2024). S2 and S3 are updated forecasting. S2 is updated through replacing the stochastically generated 
weather forcings by measured real weather forcings from January 2015 to July 2016. And S2 then 

forecasts the period from August 2016 to 2024 with updated states. S3 is updated with measured 
forcings from January 2015 to December 2016 and forecast after the end of the real measured forcing. 

The timing of updating is randomly chosen for demonstration purposes. We added specific time-
periods hopefully to make it clear about when measured vs. stochastically generated forcings are 

used. We also cleared it in the description with “ red corresponds to updated forecasting with two 
stages, that is, updating with measured weather forcing from January 2015 to July 2016 followed by 

forecasting with 100 stochastically generated weather forcing from August 2016 to December 2024 
(S2)” (Lines 1355-1357, tracked manuscript).             

  

Typos: Ll 126, 140, 154, 160, 187, 324, 456, 566 

Response: We correct typos throughout the manuscript.  
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Anonymous Referee #2 
This study, “Realized ecological forecast through interactive Ecological Platform for Assimilating 

Data into model (EcoPAD),” by Huang et al. introduces a web-based platform for data-model integration 
framework that “can” be used for ecological forecasting. The manuscript introduces the conceptual 

components of the framework relatively well, albeit with too much generic details on databases, web-
based workflow, metadata, data API, which are not the focus of GMDD. Even though I feel that the 

platform presented in the manuscript has a huge potential, I find the current state of the platform, and 
the example cases presented are not mature yet (with only one model, one data assimilation, one site). 

There is a little scientific advance from the study with results based on previous studies. The results and 
evidences presented, therefore, do not back the claim of ‘have-it-all’ platform that can be used by the 

scientists and ‘citizens’ alike. I think the manuscript should focus on specifically “what has been done” 
with thorough scientific discussion, and not “what can potentially be done.” This would help judge if the 

platform is truly flexible and interactive. 
Response: We apologize if our manuscript gave the reviewer an impression that EcoPAD is a “have-it-

all” platform. As a matter of fact, this manuscript presents the first version of EcoPAD, starting from 
one model, one data assimilation and its application at one site. Please also refer to our responses to 
your last two comments below about why we think one model and one detailed long-term site is also 

important for ecological research. We agree that this version is not the final version of the platform. 
We add the version number v1.0. In fact, we are currently incorporating the second model into 

EcoPAD and implementing at two more sites. We hope the functionality of EcoPAD expands as we 
incorporate more models and more data assimilation techniques into it and it is applied to more sites. 

Section 4.4 Future developments discusses the future work.  
 

Meanwhile, we think this platform is a significant advance in ecological forecasting and should be 
shared timely with the community to be a benefit from future researches. We appreciate that the 

Reviewer agrees that this platform has a huge potential in advancing ecological forecasting. Good 
ecological forecasting relies on integrative and cumulative efforts from multiple sectors of the 

research community. The work presented here is multi-faceted. It includes the realized near real-time 
ecological forecasting, the interactive model-experiment system, technical components and specific 

model elements (model structure, parameter and boundary condition) that affect forecasting. And it 
involves both modellers and experimenters. The realized near real-time ecological forecasting itself is 
new and a significant scientific breakthrough in ecological research. The interactive model-experiment 

system facilitated by EcoPAD is a new paradigm to promote the communication between modellers 
and experimenters. For the section related to specific model elements, there are 4 case studies, 2 

from previous results and 2 from this study. We mentioned 2 cases from previous studies to keep the 
integrity of the manuscript. But it is not reasonable to assume these 2 cases cover the majority of 

what we have delivered in this manuscript.  



 
We think it is necessary to have the description of the web-based scientific workflow. For one thing, it 

is relatively new in ecological literature. And on the other hand, the functionality of EcoPAD needs the 
support of the scientific workflow.    

 
We did not claim that the system can be used by the scientists and the citizen alike. We hope our 

revised manuscript make it clearer. The functionality of EcoPAD is multifaceted. It serves to help 
ecological forecasting and the priority task of EcoPAD is to improve researches related to ecological 

forecasting. Meanwhile, the web-based modelling and visualizations help broadly disseminate results 
of scientific research and extend the service of ecological research to the citizen. Good ecological 

forecasting need to integrate merits from multiple research communities and be beneficial to the 
society. EcoPAD is built upon integrating advances from process-based models, observations, data 

assimilation, information technology and human resources. It incorporates multiple elements, but it is 
not a “have-it-all” platform.        

      
The web-based workflow can be viewed as a specific technological advancement in the field of 
ecological forecasting, but web-based frameworks have been around for a while in the field of 

geoscience, e.g., PEcAn (as cited in the manuscript in line 138) and PALS. Therefore, I do not agree that it 
is already the first flexible framework as the manuscript claims. In fact, such claims are not always 

necessary, but that might just be my personal opinion. 
Response: We agree that the web-based workflow itself has been applied to geoscience for a while. 

But a platform, such as EcoPAD, that uses the workflow to automate data transfer and processing 
from sensor networks to ecological forecasting through data management, model simulation, data 

assimilation, forecasting and visualization is, to the best of our knowledge, among the first. We 
claimed that the system became the first system to enable interactive model-experiment (ModEx) 

integration. Based on our knowledge, ModEx is a term that emerged from a workshop organized by 
Dr. Yiqi Luo in 2012. Although ModEx has been practised for many projects, near-time interactive 

ModEx was enabled for the first time by EcoPAD. It relies on timely forecasting and bidirectional 
feedbacks between modellers and experimenters. It works hand-in-hand between modellers and 

experimenters within the life-cycle of field experimentation, which is not common. Technically, 
EcoPAD also has its uniqueness. Nevertheless, we agree with the Reviewer that it is not always 
necessary to claim who is first and we removed such expressions.                   

 
The quality of the figures should be improved, and the redundant information in the schematics should 

be eliminated. Also, the sources of the images used in the figures are not shown in the respective figures 
or captions. In general, the schematics can be more technical to suit the expertise of the reader-base of 

the GMDD. 



Response: We modify Figures 1,3,5 to reduce redundant information and deleted Figure 4. We add 
description of image sources to the caption of Figure 1: “Images from the SPRUCE field experiments 

(https://mnspruce.ornl.gov/) are used to represent data collection and the flowchart of TECO model is 
used to delegate ecological models”. Technical details related to Figure 1 are presented through 

Figures 2 and 3.     
 

The manuscript has several Grammatical errors and typos. At times, it feels like even a simple “spelling 
checker” has not be run through the whole manuscript once. At the same time, some paragraphs are 

excellently written without a blip. 
Response: We go through the manuscript carefully and correct the Grammatical errors and typos.    

 
Major comments: 

- The manuscript does not clarify what the “ecological forecasting” means. In the first paragraph, there 
are several examples of “ecological forecasting” from previous studies. In the end, the EcoPAD seems to 

be simulating the carbon stocks and fluxes, which is just an aspect of ecological forecasting. The title 
should be revised to be more specific to the scope and capabilities of EcoPAD. 
Response: We started the first paragraph with “One ambitious goal of ecology as a science discipline is 

to forecast states and services of ecological systems. Forecasting in ecology………”. Ecological 
forecasting broadly refers to “Forecasting in ecology”. So ecological forecasting covers multiple 

aspects that ecology covers. We introduced the scientific workflow of EcoPAD that wraps models, 
observations and data assimilation techniques. We emphasized that the scientific workflow is 

independent on the specific models. We took the SPRUCE project as an example to illustrate the 
scientific functionality of EcoPAD. Biogeochemistry is the main focus of the SPRUCE project and the 

model we wrapped in EcoPAD scientific workflow is a biogeochemical model that simulates carbon 
stocks and fluxes. No matter which aspect of ecology the model focus on, the functionality and 

workflow are similar as what we have illustrated through the biogeochemical example. We think the 
title is reasonable.         

 
- There is no specific section on the benchmarking of the performance of the EcoPAD simulations. This is 

a critical step to have a reliable platform that can be used for forecasting. Therefore, evaluation of 
model performance should be presented in detail in this manuscript. 
Response: Simulations have been evaluated in individual studies. For example, the paper by Huang et 

al. evaluated biophysical modelling of soil thermal dynamics, snow cover and frozen depths with 
observations. Jiang et al. (2018) evaluated biogeochemical modelling of carbon pools and fluxes with 

observations. And Ma et al. (2017) evaluated methane modelling against observation. In the future, 
we will evaluate accuracy of forecast results and attribute mismatches between forecasts and 

observations to several sources, such as forcing, model structure, parameterization, and initial values. 



    
- The examples presented here are for SPRUCE sites. It is not clear whether EcoPAD can be used easily in 

other sites, even though manuscript ends with statements on how the framework can easily be 
implemented for different FLUXNET sites and at continental scales. If such implementations are simple 

as the manuscript claims, they should be the main focus of the manuscript because the results 
presented here have been, at least partly, used in previous studies. 

Response: We remove the expression of ‘easy’ throughout the manuscript as it is contextual 
dependent and the perception differs among people with different backgrounds. Please refer to our 

initial response related to the main focus and the novelty of this manuscript and to your last comment 
about expanding this study spatially. 

 
- Once again, the results presented here just seem like a summary and discussion of previously 

published manuscripts from the main author and/or co-authors of the manuscript. In fact, I found the 
results presented in the Appendix A2 to be far more interesting than the results presented in the main 

text. There should be discussion on why most of the parameters are not well-constrained (Figure A5, 
right panel), or why Q10 parameters for CH4 is not as well constrained as those for r and why they differ 
for different temperature treatments (Figure 6). I understand that there may be counter argument on 

this issue being out of the scope of the current paper, but, it is necessary to discuss how these 
potentially unconstrained parameters affect the forecast skills of EcoPAD. After all, general public, who 

do not understand the technical and scientific details, may easily be misinformed with the uncertain 
forecast of EcoPAD. 

Response: We greatly appreciate reviewer’s interest in issues on constraining parameters. It is surely 
related to the forecast skills of EcoPAD v1.0 as rightfully pointed out by the reviewer. We even more 

appreciate the reviewer being considerate that the detailed discussion about constraining parameters 
is “out of the scope of the current paper”. It is difficult to balance different elements of the 

manuscript. For example, Reviewer 1 suggested to focus on the scientific workflow while this 
Reviewer suggested that the information about the scientific workflow was too much. It is a good idea 

to dig deep into how not well constrained parameters affect forecasting. The impact of not well 
constrained parameters is reflected in forecasting uncertainty, which is also an important topic we 

emphasized in this manuscript. Unconstrained parameters may result in high forecasting uncertainty 
and therefore low reliability of forecasting result. We added “Not well constrained parameters, for 
example, caused by lack of information from observational data, contribute to high forecasting 

uncertainty and low reliability of forecasting results (Lines 797-798, tracked manuscript).” to the 
section on implications for better forecasting, and also suggested that “….or to what extent 

unconstrained parameters affect forecasting uncertainty are all valuable questions (Lines 843-844, 
tracked manuscript).” in the part on forecasting uncertainty.         

 



- It is not clear from the manuscript what models or assimilation methods are currently available. There 
are several instances of “ensembles” and “structural uncertainty” but as far as I could decipher, EcoPAD 

only has one model and one data assimilation method until now. This is also relevant to explaining how 
EcoPAD can be used to quantify uncertainty from different sources. Such quantification of uncertainty 

would require factorial experiments with multiple model structures, process/mechanism formulations, 
cost functions, optimization/assimilation schemes with multiple observational constraints, and so on. It 

is not clear if EcoPAD already has such functionalities or if it is yet another potential use. If so, an 
explanation of how “ecologists” can add such functionalities would be useful. For example, is the 

interested developer responsible for creating a separate docker that satisfy all the system requirements 
for his/her own system? I could not test “adding functionality” because it requires registration to the 

system.  
Response: We apologize for the ambiguity. Yes. What presented in this manuscript are based on one 

model and one data assimilation method. We clarified this point with “Case studies presented in 
earlier sections are based primarily on one model (Lines 901-902, tracked manuscript)” in the revised 

manuscript. We also added one paragraph in the future developments section to discuss the concerns 
raised by the Reviewer.   
 

“With these improvements, one goal of EcoPAD is to enable the research community to understand 
and reduce forecasting uncertainties from different sources and forecast various aspects of future 

biogeochemical and ecological changes as data become available. The example of Jiang et al. [2018] 
partitioned forecasting uncertainty from forcings and parameters. An exhaustive understanding of 

forecasting uncertainty in ecology need to also consider model structures, data assimilation schemes 
as well as different ecological state variables. Researchers interested in creating their own multiple 

model and/or multiple assimilation scheme version of EcoPAD can start from the GitHub repository 
(https://github.com/ou-ecolab ) where the source code of the EcoPAD workflow is archived. To add a 

new variable that is not forecasted in the EcoPAD-SPRUCE example, it requires modellers and 
experimenters to work together to understand their process-based models, their observations and 

how messaging works in the workflow of EcoPAD following the example of EcoPAD-SPRUCE. To add a 
new model or a new data assimilation scheme for variables that are forecasted in EcoPAD-SPRUCE, 

researchers need to create additional dockers and mount them to the existing workflow with the 
knowledge of how information are passed within the workflow.”                    
 

Specific comments:  
Line 53-55: The manuscript does not have any results or discussion on this, and thus this sentence 

should be removed from the abstract and the whole manuscript. 
Response: We have examples (e.g., the youngster example and the TreeWatch.Net) and a short 

discussion (the last paragraph of section 4.4) related to this part. Nevertheless, this part is not the 



main part of this manuscript and we remove it from the abstract. That being said, we think it is 
important to make scientific research approachable to the general public.         

 
Line 61: one science - a science? 

Response: We change “one” to “a” 
 

Line 62: Isn’t forecasting always for future? 
Response: We remove “future” 

 
Line 87-88: what are the “relevant mechanisms” that the previous systems are lacking and how does 

EcoPAD, and TECO therein, address these shortcomings? 
Response: The context of “relevant mechanisms” is comparing the non-parametric approach vs. 

process-based approach in long-term ecological prediction. For example, we can derive the 
relationship between net primary production (NPP) and light availability based on, say, 10 years’ 

measurement. But to predict NPP of the next 100 years, this empirical NPP-light relationship has 
limited capacity. The NPP-light relationship may fail to capture the impact of CO2 fertilization or water 
stress etc. under new conditions. In this case, physiological processes related to NPP coded in process-

based models (e.g., the Farquhar photosynthetic scheme) are “relevant mechanisms”.    
     

Line 110: one-directionary – unidirectional 
Response: We change one-directionary to unidirectional    

 
Line 114-128: I think the CARDAMOM model-data fusion system (Bloom et al., 2016) deserves a mention 

in this paragraph (http://www.pnas.org/content/113/5/1285) and in further discussions. 
Response: Thanks for suggesting this valuable reference. CARDAMOM is a specific study that applies 

the data assimilation method. We add it into sections when we mention Bayesian data assimilation 
and emergent ecological relationships. DART and CCDAS cited here are more about the software 

environment that makes it easier to conduct data assimilation. And we think it may not be 
appropriate to cite CARDAMOM here and we also remove the reference to GEMS.     

 
Line 132, 141, 146, 147, 252: spelling errors. I am not mentioning all the places here. Please check the 
whole manuscript carefully. 

Response: We correct typos throughout the manuscript.  
 

Line 151-153: It’s not clear what this sentence means. 
Response: We rewrite this part as “Forecasting is likely to be improved unidirectionally in which either 

only models are updated through observations, or only data collections/field experimentations are 



improved according to theoretical/model information, but not both. Ecological forecasting can also be 
bidirectionally improved so that both models and field experimentations are optimized hand in hand 

over time.” 
 

Line 176: qualitative means better quality or is it quantitative? 
Response: We change “qualitative” to “quantitative”. 

 
Line 210: Should clarify what ‘big data’ means in this context. Diverse data? 

Response:  We rewrite this part as “The ‘big data’ ecology generates a large volume of very different 
datasets across various scales.” So the ‘big data’ refers to both diverse data and the large volume of 

data.  
 

Line 215: cite FLUXNET 
Response: We add the reference: Baldocchi, D., E. Falge, L. H. Gu, R. Olson, D. Hollinger, S. Running, P. 

Anthoni, C. Bernhofer, K. Davis, R. Evans, J. Fuentes, A. Goldstein, G. Katul, B. Law, X. H. Lee, Y. Malhi, 
T. Meyers, W. Munger, W. Oechel, K. T. P. U, K. Pilegaard, H. P. Schmid, R. Valentini, S. Verma, T. 
Vesala, K. Wilson, and S. Wofsy (2001), FLUXNET: A new tool to study the temporal and spatial 

variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, Bulletin of the 
American Meteorological Society, 82(11), 2415-2434, doi:10.1175/1520-

0477(2001)082<2415:fantts>2.3.co;2  
 

Line 305: MongDB – MongoDB 
Response: We correct.  

 
Line 338: May be better to define what IT stands for, just for the sake of completeness. 

Response: We add “information technology” before “IT”. 
 

Line 345: Does docker have a website or citation? 
Response: We add the docker webpage: https://www.docker.com/  

 
Line 348-350: Isn’t it redundant (unnecessary duplication) to include input data in the docker? 
Response: It is necessary to have the input data in the docker. Each docker is an independent and 

complete unit that is capable of fulfilling a certain task requested by a user, for example, run a model 
simulation. This design makes the system easily portable and is not limited by the operation or 

filesystems, programming language or specific model requirement.   
 

Line 381: I think the web-based platform is for job submission and not web-based simulation. 

https://www.docker.com/


Response: The web-based platform is supported by the scientific flow, observational data, ecological 
models and data assimilation techniques. It receives requests from the user/command, triggers the 

task (model simulation, data assimilation or forecasting), carries out the task and displays the results. 
It is not just for job submissions.    

 
Line 404: clarify what ‘scientific values’ means. 

Response: By “scientific values”, we refer to the biological, physical or chemical meaning associated 
with each parameter. We modify “scientific values” to “different biological, physical or chemical 

meanings”.   
 

Line 415-422: Bayesian statistics has been used in previous ecosystems studies. Please find and cite 
these previous studies. 

Response: We add the references:  
Bloom, A. A., J. F. Exbrayat, I. R. van der Velde, L. Feng, and M. Williams (2016), The decadal state of 

the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence 
times, Proceedings of the National Academy of Sciences of the United States of America, 113(5), 1285-
1290, doi:10.1073/pnas.1515160113 

Ellison, A. M. (2004), Bayesian inference in ecology, Ecology Letters, 7(6), 509-520, doi:10.1111/j.1461-
0248.2004.00603.x 

Jiang, J., Y. Huang, S. Ma, M. Stacy, Z. Shi, D. M. Ricciuto, P. J. Hanson, and Y. Luo (2018), Forecasting 
responses of a northern peatland carbon cycle to elevated CO2 and a gradient of experimental 

warming, Journal of Geophysical Research: Biogeosciences, doi:10.1002/2017jg004040 
 

Line 433-438: I wonder if experimental/observational setup can be carried out in such short notice. 
Response: It depends. As methane is a routinely measured item of the project. If the person is already 

familiar with methane measurements, one week is enough for preparing. How it operates in practice 
depends on management. The example here is to show that experimenters can benefit from model 

information.   
 

Line 473: Is +0 the same as control experiment? 
Response: This experiment has CO2 fertilization and warming treatments. There are ambient and + 
0 °C plots. The difference between ambient and +0 °C treatment plots is the open-topped and 

controlled-environment enclosure. Ambient plot has no enclosure. We added this explanation to the 
section related to SPRUCE project. We discard the expression of “control experiment” as it may refer 

to both.  
 



Line 479: Is there any difference between data-model integration and data-model communication? If so, 
this should be clearly stated at the beginning. Both have been used frequently in the manuscript. 

Response:  We do not differ between data-model integration and data-model communication.  
 

Section 3.3: Is this process done systematically or through personal communication? If systematically, 
how are the updates (both of models and experiments) carried out theoretically and technically? 

Response: The near real time forecasting is done automatically. However, before setting up the 
automatic forecasting system, there are extensive non-automatic detailed communication, for 

example, about the unit of data from sensor vs. model. Experimenters can check forecasting results 
from the webpage. He or she may adjust the experimental plan, for example, change the date of 

measurements or make measurements of a new variable. However, the system cannot automatically 
incorporate measurements of a new variable without additional work of a modeller. The near real 

time forecasting is automated. But the loop of prediction-question-discussion-adjustment-prediction 
and benefits from the simultaneous updates of both models and experiments, as we showed in 

section 3.4.1, need interactive and non-automated communications among modellers and 
experimenters.                 
 

Line 548-552: In figure 6, it seems like the parameter ‘r’ is not well constrained for higher treatments of 
temperature. Discuss the reasons for this. 

Response: Thank you for your comment. From Figure 6, the parameter ‘r’ was constrained across all 
treatment temperatures. We calculated the Variance-Mean-ratio (VMR, a value larger than 1 indicates 

the distribution is constrained) to determine the dispersion of a probability distribution. VMR values 
for +4.5 °C to +9 °C are 2.1, 2.1, 2.1, 1.7, 1.2, which are all significantly larger than 1.0 based on the t-

test. The Reviewer might refer to why the spread or variation of the posterior distribution of the +9 °C 
treatment is larger than treatments with lower temperatures. The posterior distribution combines 

information from both the model and data. Neither the model nor the observations are perfect. We 
have fewer observation data points in higher temperature treatments. And variations from 

observations are larger in higher temperature treatments. In addition, the model may not be 
adequate to capture ecosystem responses to extreme temperature changes (i.e., higher temperature 

changes, e.g., +9 °C and +6.75 °C).     
 
Line 580: EcoPAD only includes one model, but the sentence says that it relies on ensembles of 

ecosystem models. This statement is misleading. 
Response: We add “will” to this sentence. And we check throughout the manuscript to correct 

locations where there could be confusions about what has been done and what will be done. We have 
a section “future developments” to clarify that multiple models are the future development plan.  

  



Line 586-611: Summary of Jiang et al., 2018 and Huang et al., 2017. So, the results presented in current 
study are specific for the models and tools used in those previous studies? If there is any additional 

scientific advancement in EcoPAD, this should be highlighted here. 
Response: This manuscript focuses on ecological forecasting. EcoPAD is the platform or the tool to 

help the study of ecological forecasting. We emphasize that integrative efforts are important for 
better ecological forecasting. The integration relies on advancements from observation, process-

based models, data assimilation or parameterization techniques, cyberinfrastructures, human power 
from both modellers and experimenters etc. We listed 5 cases to illustrate different components that 

are critical for ecological forecasting and can benefit from the EcoPAD platform. For integrity, we 
explained studies from Jiang et al., 2018 and Huang et al., 2017. Please also refer to our response to 

Reviewer 1.  
 

Line 620-630: To what extent does the parameter ranges depend on the uncertainty in the forcing? Is 
there a particular reason why the parameter values are randomly sampled from the posterior? Doesn’t 

it make sense to use the posterior distributions to get the parameter ranges within certain confidence 
intervals? 
Response: Parameter uncertainties (or parameter ranges) are obtained through assimilation 

observations from 2011 to 2014. In this period, the forcing is the real observed forcing. We do not 
have complete quantification of measurement uncertainties for each forcing and we did not account 

for measurement uncertainties of forcing variables. Parameter uncertainties generated in this study 
come from observational uncertainties of carbon variables. 

The posterior integrates information from both the prior and observation. It is the best knowledge we 
can know about parameters. From the posterior distribution, we can get the parameter ranges within 

certain confidence intervals. However, whether information of parameter ranges alone can be used to 
derive forecasting uncertainty (or range) depends on complex interactions among parameters, model 

structures and boundary conditions etc. In non-linear models or there are non-linear interactions 
among parameters or when the posterior distribution is non-normal, it is not easy to directly 

propagate parameter range to forecasting uncertainties.    
      

Line 631-642: It is not clear if GPP has an effect on carbon stocks in the TECO model. 
Response: There is a link between GPP and soil carbon stocks in the TECO model. GPP affects litterfall 
and therefore the input into soil carbon stocks. As Figure 7 shows, when the difference between GPP 

is different scenarios (S1, S2, S3) is close to zero, the differences in soil carbon stocks keep growing 
despite under the same randomly generated forcing. That means, the alternation of soil carbon 

stocks, no matter it is caused by changed GPP or environmental conditions, affects soil carbon 
prediction in a longer time scale compared to GPP.        

 



Line 668: It is not clear how these ‘scientific’ information is directly useful for general public. 
Response: We remove the “general public”.  

 
Line 680-681: I am not convinced that all 7 characteristics of EcoPAD have been backed by evidences 

presented in this manuscript. At least, this has not been clearly presented in the manuscript. 
Response: We did not elaborate on these 7 characteristics that are embedded in the system design, 

especially the workflow. From the previous comment, the Reviewer think it is not necessary to 
elaborate on the workflow. These characteristics are spread over the scientific workflow section. We 

do not plan to further elaborate on each characteristic and we do not have to repeat it here. So we 
removed this sentence.       

 
Line 688-705: The discussion here should be divided into the users (those who run the model) and 

developers (those who add processes and methods to EcoPAD). Since the developers need to carry out a 
lot of set-up using the GitHub repository, the web-based platform seems more suited to the users. This 

limits the options of the users to only the ones already available in EcoPAD, which is, as of now, only one 
model and one data-assimilation system for one site. As such, the potential applications of the model 
are not applicable to the web-based system. This should be clearly mentioned in the abstract, main text, 

and the conclusions. 
Response: EcoPAD is designed to satisfy the demand of people with different backgrounds. Users of 

EcoPAD range from people who want to expand and add more components to EcoPAD (developer 
from the Reviewer’s viewpoint) to people who can only use the existing EcoPAD-SPRUCE example. 

The set-up of GitHub repository is not as easy as using the existing EcoPAD-SPRUCE example, but this 
is not to say developers do not benefit from such platform. Section 2.3 summarizes how users 

(including developers) can benefit from the EcoPAD framework.          
 

Line 722: ‘model structure’ - In this use, does it mean different formulations of one process as in Jiang et 
al., 2018? 

Response: Difference in model structure refers to any difference other than parameter values in 
formulations. It might be formulations of one process or multiple processes.  

   
Line 744-745: What about the interactions between fluxes and pools? 
Response: It is not clear what this question refers to.  

 
Line 787-788: Assuming this statement is based on Table 1. But, it is not clear if the table is just a 

hypothetical example or based on the actual experience. 
Response: The SPRUCE project involves more than 100 scientists with different backgrounds. The 

discussion started from a teleconference after the delivery of model results, unfortunately, we did not 



record the teleconference. However, the discussion continued through emails. If necessary, we can 
show the email communications.    

 
Line 790-791: I just wonder if it is too risky for experimenters to invest resources on carrying out 

experiments recommended by modellers who used one-single model? 
Response: Ideally, results or recommendations would be more reliable with multiple models. As a first 

step, one-single model provides valuable information. We emphasize on the uncertainty of 
forecasting. Potential results from alternative model structures are likely to be covered, to some 

extent, by forecasting uncertainty resulted from parameter uncertainties. We also emphasize on the 
iterative model updates to rely on information from observations. We agree with the Reviewer that 

one-single model is not the best choice, and it is valuable to incorporate more models in future 
studies.      

 
Line 804-817: I think these tasks of including several sites or using EcoPAD at continental studies should 

be a part of this manuscript. As I have mentioned previously, the results presented here have been 
published in previous studies. Using it in different ecosystems will validate the scientific soundness of 
EcoPAD and it will provide sufficient evidence of its potential wide-scale applications.  

Response: We agree with the Reviewer that it is meaningful to expand the application of EcoPAD 
spatially. We argue that it is equally important to focus on one detailed long-term manipulative 

ecological study to comprehensively introduce EcoPAD. We chose the SPRUCE experiment as a case to 
apply EcoPAD partly because the valuable scientific information it provides, and also because the rare 

opportunities to comprehensively illustrate the functionality of EcoPAD. For example, one of the 
opportunities is the intensive interactions between modellers and experimenters facilitated by 

EcoPAD. Both modelling and field experimentation are involved through the life-cycle of the project, 
which creates the opportunity to illustrate the bidirectional feedback between model forecasting and 

field experimentation. We are applying EcoPAD to different sites (e.g., precipitation manipulation 
sites, ecotrons) with different versions of models. However, as a start, we think it is worthwhile to 

elaborate the technical support and functionality of EcoPAD through EcoPAD-SPURCE.      
 

References:  

Huang YY, Jiang J, Ma S, Ricciuto D, Hanson PJ, Luo YQ (2017) Soil thermal dynamics, snow cover, and 
frozen depth under five temperature treatments in an ombrotrophic bog: Constrained 
forecast with data assimilation. Journal of Geophysical Research-Biogeosciences, 122, 2046-
2063. 

Jiang J, Huang Y, Ma S et al. (2018) Forecasting responses of a northern peatland carbon cycle to 
elevated CO2 and a gradient of experimental warming. Journal of Geophysical Research: 
Biogeosciences. 



Ma S, Jiang J, Huang YY et al. (2017) Data-Constrained Projections of Methane Fluxes in a Northern 
Minnesota Peatland in Response to Elevated CO2 and Warming. Journal of Geophysical 
Research-Biogeosciences, 122, 2841-2861. 
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Abstract. Predicting future changes in ecosystem services is not only highly desirable but also 

becomes feasible as several forces (e.g., available big data, developed data assimilation (DA) 

techniques, and advanced cyberinfrastructure) are converging to transform ecological research to 

quantitative forecasting. To realize ecological forecasting, we have developed an Ecological 

Platform for Assimilating Data (EcoPAD) into models. EcoPAD (v1.0) is a web-based software 

system that automates data transfer and processesprocessing from sensor networks to ecological 

forecasting through data management, model simulation, data assimilation, forecasting and 

visualization. It facilitates interactive data-model integration from which model is recursively 

improved through updated data while data is systematically refined under the guidance of model. 

EcoPAD (v1.0) relies on data from observations, process-oriented models, DA techniques, and 

the web-based workflow.  

We applied EcoPAD (v1.0) to the Spruce and Peatland Responses Under Climatic and 

Environmental change (SPRUCE) experiment at North Minnesota. The EcoPAD-SPRUCE 

realizes fully automated data transfer, feeds meteorological data to drive model simulations, 

assimilates both manually measured and automated sensor data into Terrestrial ECOsystem 

(TECO) model, and recursively forecast responses of various biophysical and biogeochemical 

processes to five temperature and two CO2 treatments in near real-time (weekly). The near real-

time forecastingForecasting with EcoPAD-SPRUCE has revealed that uncertainties or 

mismatches in forecasting carbon pool dynamics are more related to model (e.g., model 

structure, parameter, and initial value) than forcing variables, opposite to forecasting flux 

variables. EcoPAD-SPRUCE quantified acclimations of methane production in response to 

warming treatments through shifted posterior distributions of the CH4:CO2 ratio and temperature 

sensitivity (Q10) of methane production towards lower values. Different case studies indicated 
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that realistic forecasting of carbon dynamics relies on appropriate model structure, correct 

parameterization and accurate external forcing. Moreover, EcoPAD-SPRUCE stimulated active 

feedbacks between experimenters and modelers so asmodellers to identify model components to 

be improved and additional measurements to be made. It becomes the first interactive model-

experiment (ModEx) system and opens a novel avenue for interactive dialogue between 

modelers and experimenters.modellers and experimenters. Altogether, EcoPAD (v1.0) acts to 

integrate multiple sources of information and knowledge to best inform ecological forecasting.      

EcoPAD also has the potential to become an interactive tool for resource management, to 

stimulate citizen science in ecology, and transform environmental education with its easily 

accessible web interface.          

                

Key words:  

Data assimilation, SPRUCE, carbon, global change, real time, acclimation, forecast 
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1. Introduction  

One ambitious goal of ecology as onea science discipline is to forecast future states and 

services of ecological systems. Forecasting futures in ecology is not only desirable for scientific 

advances in this discipline but also has practical values to guide resource management and 

decision-making toward a sustainable planet earth. The practical need for ecological forecasting 

is particularly urgent in this rapidly changing world, which is experiencing unprecedented 

natural resource depletion, increasing food demand, serious biodiversity crisis, accelerated 

climate changes, and widespread pollutions in the air, waters, and soils [Clark et al., 2001; 

Mouquet et al., 2015]. As a result, a growing number of studies have been reported in the last 

several decades on forecasting of, e.g., phenology [Diez et al., 2012], carbon dynamics [Gao et 

al., 2011; Luo et al., 2016; Thomas et al., 2017], species dynamics [Clark et al., 2003; Kearney 

et al., 2010], pollinator performance[Corbet et al., 1995], epidemics [Ong et al., 2010], fishery 

[Hare et al., 2010], algal bloom [Stumpf et al., 2009], crop yield [Bastiaanssen and Ali, 2003], 

biodiversity [Botkin et al., 2007], plant extinction risk [Fordham et al., 2012], and ecosystem 

service [Craft et al., 2009]. Despite its broad applications, ecological forecasting is still 

sporadically practiced and lags far behind demand due to the lack of infrastructure that enables 

timely integration of models with data. This paper introduces the fully interactive infrastructure, 

the Ecological Platform for Assimilating Data (EcoPAD) into models, to inform near-time 

ecological forecasting with iterative data-model integration. 

Ecological forecasting relies on both models and data. However, currently the ecology 

research community has not yet adequately integrated observations with models to inform best 

forecast. Forecasts generated from scenario approaches are qualitative and scenarios are often 

not based on ecological knowledge [Coreau et al., 2009; Coreau et al., 2010]. Data-driven 
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forecasts using statistical methods are generally limited for extrapolation and sometimes 

contaminated by confounding factors [Schindler and Hilborn, 2015]. Recent emergent 

mechanism-free non-parametric approach, which depends on the statistical pattern extracted 

from data, is reported to be promising for short-term forecast [Sugihara et al., 2012; Perretti et 

al., 2013; Ward et al., 2014], but has limited capability in long-term prediction due to the lack of 

relevant ecological mechanisms. Process-based models provide the capacity in long -term 

prediction and the flexibility in capturing short -term dynamics on the basis of mechanistic 

understanding [Coreau et al., 2009; Purves et al., 2013]. Wide applications and tests of process-

based models are limited by their often complicated numerical structure and sometimes 

unrealistic parameterization [Moorcroft, 2006]. The complex and uncertain nature of ecology 

precludes practice of incorporating as many processes as possible into mechanistic models. Our 

current incomplete knowledge about ecological systems or unrepresented processes under novel 

conditions is partly reflected in model parameters which are associated with large 

uncertainty.uncertainties. Good forecasting therefore requires effective communication between 

process-based models and data to estimate realistic model parameters and capture context-

dependent ecological phenomena.  

Data-model fusion, or data-model integration, is an important step to communicate 

modelcombine models with data. But previous data-model integration actvitiesactivities have 

mostly been done in an ad hoc manner instead of being interactive. For example, data from a 

network of eddy covariance flux tower sites across United States and Canada was compared with 

gross primary productivity (GPP) estimatesestimated from different models [Schaefer et al., 

2012]. Luo and Reynolds [1999] used a model to examine ecosystem responses to gradual as in 

the real world vs. step increases in CO2 concentration as in elevated CO2 experiments. Parton et 
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al. [2007] parameterized CO2 impacts in an ecosystem model with data from a CO2 experiment 

in Colorado. Such model-experiment interactions encounter a few issues: 1) Models are not 

always calibrated for individual sites and, therefore, not accurate; 2) It is not very effective 

because it is usually one-time practice without many iterative processes between experimenters 

and modelersmodellers [Dietze et al., 2013; Lebauer et al., 2013]; 3) It is usually one-

directionaryunidirectional as data is normally used to train models while the guidance of model 

for efficient data collection is limited; and 4) It is not streamlined and could not be disseminated 

with common practices among the research community [Dietze et al., 2013; Lebauer et al., 2013; 

Walker et al., 2014]. 

A few research groups have developed data assimilation systems to faciliatefacilitate 

data-model integration in a systematic way. For example, data-model integration systems, such 

as the Data Assimilation Research Testbed - DART [Anderson et al., 2009], the General 

Ensemble Biogeochemical Modeling System - GEMS [Tan et al., 20052009] and the Carbon 

Cycle Data Assimilation Systems - CCDAS [Scholze et al., 2007; Peylin et al., 2016], combine 

various data streams (e.g., FLUXNET data, satellite data and inventory data) with process-based 

models through data assimilation algorithms such as the Kalman filter [Anderson et al., 2009] 

and variational methods [Peylin et al., 2016]. These data assimilaitonassimilation systems 

automate model parameterization and provided an avenue to systematically improve models 

through combining as much data as possible. Model Data-informed model improvements 

normally happen after the ending of ana field experiment and the interactive data-model 

intergrationintegration is limited as feedbacks from models to ongoing experimetalexperimental 

studies are not adequately realizedrealised. In addtionaddition, wide applications of these data 

assimilation systems in ecological forecasting are constrained by limited user interactions with 
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its steep learning curve to understand these systems, especially for exmperimentersexperimenters 

who have limited training in modelingmodelling.         

Realizing interactive ecological forecasting requiresThe web-based technology facilitates 

interactions. Web-based modelling, which provides user-friendly interfaces to faciliaterun 

models in the background, is usually supported by the scientific workflow, the sequence of 

processes through which a piece of work passes from initiation to completion. Web-based 

modeling, which provides user-friendly interfaces to run models in the background, is uaully 

supported by scientific workflow. For example, TreeWatch.Net has recently been developed to 

make use of  high precision individual tree monitoring data to parameterize process -based tree 

models in real-time and to assess instant tree hydraulics and carbon status with online result 

visualization [Steppe et al., 2016]. Although the web portal of TreeWatch.Net is currently 

limited to the purpose of visualization purposes, it largely broadens the application of data-model 

integration and strengthens the interaction of modeling results withbetween modelling researches 

and the general public. The Predictive Ecosystem Analyzer (PEcAn) is a scientific workflow that 

wraps around different ecosystem models and manages the flows of information coming in and 

out of the model [Lebauer et al., 2013]. PEcAn enables web-based model similationssimulations. 

Such a workflow has advantages, for exmapleexample, making ecological modelingmodelling 

and analysis convenient, transparent, reproducible and adaptable to new questions [Lebauer et 

al., 2013], and encouraging user-model interactions. PEcAn uses the Bayesian meta-analysis to 

synthesize plant trait data to estimate model parameters and associated uncertanties.uncertainties, 

i.e., the prior information for process-based models. Parameter uncertainties are 

propogatedpropagated to model uncertantiesuncertainties and displayed as outputs. It is still not 

fully interactive in the way that states are not updated iteractivelyiteratively according to 
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observations and the web-based data assimilation and then ecoloicalecological forecasting have 

not yet been fully realizedrealised.   

The iterative model-data intergration integration provides an approach to constantly 

improve ecological forecasting and is an important step to realize real orespecially for realizing 

near real-time ecological forecasting. Instead of projecting into future only one time through 

assimulating availableassimilating observations, interactive only once, the iterative forecasting 

constantly updates forecasting as soon asalong with ongoing new data stream arrivesstreams 

or/and model is modifiedimproved models. Forecasting is likely to be improved unidirectionally 

in which either only models are constantly updated through observations, or only data 

collections/field experimentations are regularly improved according to theoretical/model 

information., but not both. Ecological forecasting can also be bidirectionally improved so that 

both models and field experimetationsexperimentations are optimized hand in hand over time. 

Although the bidirctionalbidirectional case is rare in ecological forecasting, the unidirectional 

iterative forecasting has been reported. One excellent example of forecasting through 

dynamically and repeatedly integrating data with models is from infectious disease studies [Ong 

et al., 2010; Niu et al., 2014]. Dynamics of infectious diseases are tranditionalytraditionally 

captured by Susceptible-Infected-Removed (SIR) models. In the forecasting of the Singapore 

H1N1-2009 infections, SIR model parameters and the number of individuals in each state were 

updated daily, combining data renewed from local clinical reports. The evolving of the epidemic 

related parameters and states were captured through iteratively assimilating observations to 

inform forecasting. As a result, the model correctly forecasted the timing of the peak and 

declining of the infection ahead of time. Iterative forecasting dynamically integrates data with 

model and makes best use of both data and theoretical understandings of ecological processes.  
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The aim of this paper is to present a fully interactive platform, a web-based Ecological 

Platform for Assimilating Data into models (EcoPAD, v1.0), to best inform ecological 

forecasting. The interactive feature of EcoPAD (v1.0) is reflected in the iterative model updating 

and forecasting through dynamically integrating models with new observations, bidirectional 

feedbacks between experimenters and modelersmodellers, and flexible user-model 

communication through web-based simulation, data assimilation and forecasting. Such an 

interactive platform provides the infrastructure to effectively integrate available resources, from 

both models and data, modelersmodellers and experimenters, scientists and the general public, to 

improve scientific understanding of ecological processes, to boost ecological forecasting practice 

and transform ecology towards qualitativequantitative forecasting.           

In the following sections, we first describe the system design, major components and 

functionality of EcoPAD. (v1.0). We then use the Spruce and Peatland Responses Under 

Climatic and Environmental change (SPRUCE) experiment [Hanson et al., 2017] as a testbed to 

elaborate new opportunities brought by the platform. We finally discuss implications of EcoPAD 

(v1.0) for better ecological forecasting.  

 

2 EcoPAD: system design, components, and functionality 

2.1 General description: web-based data assimilation and forecast  

EcoPAD ((v1.0, https://ecolab.nau.edu/ecopad_portal/) focuses on linking ecological 

experiments/data with models and allows easily accessible and reproducible data-model 

integration with interactive web-based simulation, data assimilation and forecast capabilities. 

Specially, EcoPAD (v1.0) enables the automated near time ecological forecasting which works 

hand-in-hand between modelersmodellers and experimenters and updates periodically in a 

https://ecolab.nau.edu/ecopad_portal/
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manner similar to the weather forecasting. The system is designed to streamline web request-

response, data management, modelingmodelling, prediction and visualization to boost the overall 

throughput of observational data, promote data-model communication, inform ecological 

forecasting and improve scientific understanding of ecological processes.  

To realize such data-informed ecological forecasting, the essential components of 

EcoPAD (v1.0) include experiments/data, process-based models, data assimilation techniques 

and the scientific workflow (Figures 1-3). The scientific workflow of EcoPAD (v1.0) that wraps 

around ecological models and data assimilation algorithms acts to move datasets in and out of 

structured and catalogedcatalogued data collections (metadata catalog) while leaving the logic of 

the ecological models and data assimilation algorithms untouched (Figures 1, 3). Once a user 

makes a request through the web browser or command line utilities, the scientific workflow takes 

charge of triggering and executing corresponding tasks, be it pulling data from a remote server, 

running a particular ecological model, automating forecasting or making the result easily 

understandable to users (Figures 1, 3). With the workflow, the system is agnostic to operation 

system, environment and programming language and is built to horizontally scale to meet the 

demands of the model and the end user community.  

 

2.2 Components 

2.2.1 Data  

Data is an important component of EcoPAD (v1.0) and EcoPAD (v1.0) offers systematic data 

management to digest diverse data streams. The ‘big data’ ecology generates plethoraa large 

volume of very different datasets across various scales [Hampton et al., 2013; Mouquet et al., 

2015]. These datasets might have high temporal resolutions, such as those from real time 
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ecological sensors, or the display of spatial information from remote sensing sources and data 

stored in the geographic information system (GIS). These datasets may also include, but are not 

limited to, inventory data, laboratory measurements, FLUXNET databases or from long -term 

ecological networks [Baldocchi et al., 2001; Johnson et al., 2010; Robertson et al., 2012] . Such 

data contain information related to environmental forcing (e.g., precipitation, temperature and 

radiative forcing), site characteristics (includinge.g., soil texture, and species composition) and 

biogeochemical information. Datasets in EcoPAD (v1.0) are derived from other research projects 

in comma separated value files or other loosely structured data formats. These datasets are first 

described and stored with appropriate metadata via either manual operation or scheduled 

automation from sensors. Each project has a separate folder where data are stored. Data are 

generally separated into two categories. One is used as boundary conditions for modelling and 

the other category is related to observations that are used for data assimilation. Scheduled sensor 

data are appended to existing data files with prescribed frequency. Attention is then spent on how 

the particular dataset varies over space (x, y) and time (t). When the spatiotemporal variability is 

understood, it is then placed in metadata records that allow for query through its scientific 

workflow.     

2.2.2 Ecological models  

Process-based ecological model is another essential component of EcoPAD (Figure 1). In 

this paper, the Terrestrial ECOsystem (TECO) model is applied as a general ecological model for 

demonstration purposepurposes since the workflow and data assimilation system of EcoPAD 

(v1.0) are relatively independent on the specific ecological model. Linkages among the 

workflow, data assimilation system and ecological model are based on messaging. For example, 

the data assimilation system generates parameters that are passed to ecological models. The state 
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variables simulated from ecological models are passed back to the data assimilation system. 

Models may have different formulations. As long as they take in the same parameters and 

generate the same state variables, they are functionally identical from the “eye” of the data 

assimilation system.     

TECO simulates ecosystem carbon, nitrogen, water and energy dynamics [Weng and Luo, 

2008; Shi et al., 2016]. The original TECO model has 4 major submodules (canopy, soil water, 

vegetation dynamics and soil carbon/nitrogen) and is further extended to incorporate methane 

biogeochemistry and snow dynamics [Huang et al., 2017; Ma et al., 2017]. As in the global land 

surface model CABLE [Wang and Leuning, 1998; Wang et al., 2010], canopy photosynthesis 

that couples surface energy, water and carbon fluxes is based on  a two-big-leaf model [Wang 

and Leuning, 1998]. Leaf photosynthesis and stomatal conductance are based on the common 

scheme from Farquhar et al. [1980] and Ball et al. [1987] respectively. Transpiration and 

associated latent heat losses are controlled by stomatal conductance, soil water content and the 

rooting profile. Evaporation losses of water are balanced between the soil water supply and the 

atmospheric demand which is based on the difference between saturation vapor pressure at the 

temperature of the soil and the actual atmospheric vapor pressure. Soil moisture in different soil 

layers is regulated by water influxes (e.g., precipitation and percolation) and effluxes (e.g., 

transpiration and runoff). Vegetation dynamic tracks processes such as growth, allocation and 

phenology. Soil carbon/nitrogen module tracks carbon and nitrogen through processes such as 

litterfall, soil organic matter (SOM) decomposition and mineralization. SOM decomposition 

modelingmodelling follows the general form of the Century model [Parton et al., 1988] as in 

most earthEarth system models in which. SOM is divided into pools with different turnover 
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times (the inverse of decomposition rates) which are modified by environmental factors such as 

the soil temperature and moisture. 

2.2.3 Data assimilation  

Data assimilation is a cutting-edge statistical approach that integrates data with model in 

a systematicalsystematic way (Figure 2). Data assimilation is growing in importance as the 

process -based ecological models, despite largely simplifying the real systems, are in great need 

to be complex enough to address sophisticate ecological issues that. These ecological issues are 

composed of an enormous number of biotic and abiotic factors interacting with each other. Data 

assimilation techniques provide a framework to combine models with data to estimate model 

parameters [Shi et al., 2016], test alternative ecological hypotheses through different model 

structures [Liang et al., 2015], assess information content of datasets [Weng and Luo, 2011], 

quantify uncertainties [Weng et al., 2011; Keenan et al., 2012; Zhou et al., 2012], derive 

emergent ecological relationships [Bloom et al., 2016], identify model errors and improve 

ecological predictions [Luo et al., 2011b]. Under the Bayesian paradigm, data assimilation 

techniques treat the model structure, initial and parameter values as priors that represent our 

current understanding of the system. As new information from observations or data becomes 

available, model parameters and state variables can be updated accordingly. The posterior 

distributions of estimated parameters or state variables are imprinted with information from both 

the model and the observation/data as the chosen parameters act to reduce mismatches between 

observations and model simulations. Future predictions benefit from such constrained posterior 

distributions through forward modelingmodelling (Figure A1). As a result, the probability 

density function of predicted future states through data assimilation normally has a narrower 
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spread than that without data assimilation when everything else is equal [Luo et al., 2011b; Weng 

and Luo, 2011; Niu et al., 2014].           

EcoPAD (v1.0) is open to different data assimilation techniques depending on the 

ecological questions under study since the scientific workflow of EcoPAD is(v1.0) is relatively 

independent on the specific data assimilation algorithm. For demonstration, the Markov chain 

Monte Carlo (MCMC) [Xu et al., 2006] is described in this study.  

MCMC is a class of sampling algorithms to draw samples from a probability distribution 

obtained through constructed Markov Chain to approximate the equilibrium distribution, which 

makes Bayesian inference, especially these with multi-dimensional integrals, workable.. The 

Bayesian based MCMC method is advantageous for better ecological forecasting as it takes into 

account various uncertainty sources which are crucial in interpreting and delivering forecasting 

results [Clark et al., 2001]. In the application of MCMC, the posterior distribution of parameters 

for given observations is proportional to the prior distribution of parameters and the likelihood 

function which is linked to the fit/match (or cost function) between model simulations and 

observations. EcoPAD (v1.0) currently adopts a batch mode, that is, the cost function is treated 

as a single function to be minimized and different observations are standardized by their 

corresponding standard deviations [Xu et al., 2006]. For simplicity, we assume uniform 

distributions in priors, and Gaussian or multivariate Gaussian distributions in observational 

errors, which can be easilyoperationally expanded to other specific distribution forms depending 

on the available information. Detailed description is available in Xu et al. [2006]. 

2.2.4 Scientific workflow  

EcoPAD (v1.0) relies on its scientific workflow to interface ecological models and data 

assimilation algorithms, managing diverse data streams, automates iterative ecological 
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forecasting in response to various user requests. Workflow is a relatively new concept in the 

ecology literature but essential to realize real or near-real time forecasting. Thus, we describe it 

in detailsdetail below. The essential components of a scientific workflow of EcoPAD (v1.0) 

include the metadata catalog, web application-programming interface (API), the asynchronous 

task/job queue (Celery) and the container-based virtualization platform (Docker). The workflow 

system of EcoPAD (v1.0) also provides structured result access and visualization. 

2.2.4.1 Metadata catalog and data management      

Datasets can be placed and queried in EcoPAD (v1.0) via a common metadata catalog 

which allows for effective management of diverse data streams. Calls are common for good 

management of current large and heterogeneous ecological datasets [Ellison, 2010; Michener 

and Jones, 2012; Vitolo et al., 2015]. Kepler [Ludascher et al., 2006] and the Analytic Web 

[Osterweil et al., 2010] are two example systems that endeavorendeavour to provide efficient 

data management through storage of metadata including clear documentation of data provenance. 

Similarly to these systems, EcoPAD (v1.0) takes advantage of modern information technology, 

especially the metadata catalog, to manage diverse data streams. The EcoPAD (v1.0) metadata 

schema includes description of the data product, security, access pattern, and timestamp of last 

metadata update etc. We use MongDBMongoDB (https://www.mongodb.com/ ), a NoSQL 

database technology, to manage heterogeneous datasets to make the documentation, query and 

storage fast and convenient. Through MongDBMongoDB, measured datasets can be easily fed 

into ecological models for various purposes such as to initialize the model, calibrate model 

parameters, evaluate model structure and drive model forecast. For datasets from real time 

ecological sensors that are constantly updating, EcoPAD (v1.0) is set to automatically fetch new 

data streams with adjustable frequency depending on research needs.               
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2.2.4.2 Web API, asynchronous task queue and docker    

The RESTful application-programming interface (API) which can deliver data to a wide 

variety of applications is the gateway of EcoPAD (v1.0) and enables a wide array of user-

interfaces and data-dissemination activities. Once a user makes a request, such as through 

clicking on relevant buttons from a web browser, the request is passed through the 

Representational State Transfer (i.e., RESTful) API to trigger specific tasks. The RESTful API 

bridges the talk between the client (e.g., a web browser or command line terminal) and the server 

(Figure 3). The API exploits the full functionality and flexibility of the HyperText Transfer 

Protocol (HTTP), such that data can be retrieved and ingested from the EcoPAD (v1.0) through 

the use of simple HTTP headers and verbs (e.g., GET, PUT, POST, etc.). Hence, a user can 

incorporate summary data from EcoPAD (v1.0) into a website with a single line of html code. 

Users will also be able to access data directly through programming environments like R, Python 

and Matlab. Simplicity, ease of use and interoperability are among the main advantages of this 

API which enables web-based modelingmodelling.  

Celery (https://github.com/celery/celery ) is an asynchronous task/job queue that run 

atruns in the background (Figure 3). The task queue (i.e., Celery) is a mechanism used to 

distribute work across work units such as threads or machines. Celery communicates through 

messages, and EcoPAD (v1.0) takes advantage of the RabbitMQ (https://www.rabbitmq.com/) to 

manage messaging. After the user submitsubmits a command, the request or message is passed to 

Celery via the RESTful API. These messages may trigger different tasks, which include, but not 

limited to, pull data from a remote server where original measurements are located, access data 

through metadata catalog, run model simulation with user specified parameters, conduct data 

assimilation which recursively updates model parameters, forecast future ecosystem status and 

https://github.com/celery/celery
https://www.rabbitmq.com/
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post-process of model results for visualization. The broker inside Celery receives task messages 

and handles out tasks to available Celery workers which perform the actual tasks (Figure 3). 

Celery workers are in charge of receiving messages from the broker, executing tasks and 

returning task results. The worker can be a local or remote computation resource (e.g., the cloud) 

that has connectivity to the metadata catalog. Workers can be distributed into different 

information technology (IT) infrastructures, which makes EcoPAD (v1.0) workflow easily 

expandable. Each worker can perform different tasks depending on tools installed in each 

worker. And one task can also be distributed into different workers. In such a way, EcoPAD 

(v1.0) workflow enables parallelization and distributed computation of actual 

modelingmodelling tasks across various IT infrastructures, and is flexible in implementing 

additional computational resources by connecting additional workers.    

Another key feature that makes EcoPAD (v1.0) easily portable and scalable among 

different operation systems is the utilization of the container-based virtualization platform, the 

docker. (https://www.docker.com/). Docker can run many applications which rely on different 

libraries and environments on a single kernel with its lightweight containerization. Tasks that 

execute TECO in different ways are wrapped inside different docker containers that can “talk” 

with each other. Each docker container embeds the ecosystem model into a complete filesystem 

that contains everything needed to run an ecosystem model: the source code, model input, run 

time, system tools and libraries. Docker containers are both hardware-agnostic and platform-

agnostic, and they are not confined to a particular language, framework or packaging system. 

Docker containers can be run from a laptop, workstation, virtual machine, or any cloud compute 

instance. This is done to support the widely varied number of ecological models running in 

various languages (e.g., Matlab, Python, Fortran, C and C++) and environments. In addition to 
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wrap the ecosystem model into a docker container, software applied in the workflow, such as the 

Celery, Rabbitmq and MongoDB, are all lightweight and portable encapsulations through docker 

containers. Therefore, the entire EcoPAD (v1.0) is readily portable and applicable in different 

environments.     

2.2.4.3 Structured result access and visualization 

EcoPAD (v1.0) enables structured result storage, access and visualization to track and 

analyzeanalyse data-model fusion practice. Upon the completion of the model task completion, 

the model wrapper code calls a post processing callbackcall-back function. This callbackcall-

back function allows for model specific data requirements to be added to the model result 

repository. Each task is associated with a unique task ID and model results are stored within the 

local repository that can be queried by the unique task ID. The easy store and query of model 

results are realizedrealised via the MongoDB and RESTful API (Figure 3). Researchers are 

authorized to review and download model results and parameters submitted for each model run 

through a web accessible URL (link). EcoPAD (v1.0) webpage also displays a list of historical 

tasks (with URL) performed by each user. All current and historical model inputs and outputs are 

available to download, including the aggregated results produced for the graphical web 

applications. In addition, EcoPAD (v1.0) also provides a task report that contains all-inclusive 

recap of parameters submitted, task status, and model outputs with links to all data and graphical 

results for each task. Such structured result storage and access make sharing, tracking and 

referring to modelingmodelling studies instant and clear.      

2.3 Scientific functionality 

Scientific functionality of EcoPAD (v1.0) includes web-based model simulation, 

estimating model parameters or state variables, quantifying uncertainty of estimated parameters 
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and projected states of ecosystems, evaluating model structures, assessing sampling strategies, 

and conducting ecological forecasting. ThoseThese functions can be organized to answer various 

scientific questions. In addition to the general description in this section, the scientific 

functionality of EcoPAD (v1.0) is also illustrated through a few case studies in the following 

sections.  

EcoPAD (v1.0) is designed to perform web-based model simulation, which greatly 

reduces the workload of traditional model simulation through manual code compilation and 

execution. This functionality opens various new opportunities for modelersmodellers, 

experimenters and the general public. Model simulation and result analysis are automatically 

triggered after a simple click on the web-embedded button (Appendices Figures A2, A3 A6). 

Users are freed from repeatedly compiling code, running code and writing programs to 

analyzeanalyse and display model results. Such ease of use has great potential to popularize 

complex modelingmodelling studies that are difficult or inaccessible for experimenters and the 

general public. As illustrated through the outreach activities from the TreeWatch.Net [Steppe et 

al., 2016], the potential functionality of such web-based model simulation goes beyond its 

scientific value as its societal and educational impacts are critical in solving ecological issues. 

The web -based model simulation also frees users from model running environment, platform 

and software. Users can conduct model simulation and do analysis as long as they have internet 

access. For example, ecologists can conduct model simulation and diagnose the underlying 

reasons for a sudden increase in methane fluxes while they are making measurements in the 

field. YoungstersNon-ecologists, such as youngsters, can study ecological dynamics through 

their phones or tablets while they are waiting for the bus. Resource managers can make timely 

assessment of different resource utilization strategies on spot of a meeting.       
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EcoPAD (v1.0) is backed up by data assimilation techniques, which facilitate inference of 

model parameters and states based on observations. Ecology have witnessed a growing number 

of studies focusing on parameter estimation using inverse modelingmodelling or data 

assimilation as large volumes of ecological measurements become available. To satisfy the 

growing need of model parameterization through observations, EcoPAD (v1.0) streamlines 

parameter estimations and updates. Researchers can easily review and download files that record 

parameter values from EcoPAD (v1.0) result repository. Since these parameters may have 

different scientific valuesbiological, physical or chemical meanings, the functionality of EcoPAD 

(v1.0) related to parameter estimations can potentially embrace diverse subareas in ecology. For 

example, soil scientists can study the acclimation of soil respiration to manipulative warming 

through shifts in the distribution of the decomposition rate parameter from EcoPAD. (v1.0). The 

threshold parameter beyond which further harvesting of fish might cause a crash of fish stocks 

can be easily extracted through fish stock assessment models and observations if mounted to 

EcoPAD. (v1.0).   

EcoPAD (v1.0) promotes uncertainty analysis, model structure evaluation and error 

identification. One of the advantages of the Bayesian statistics is its capacity in uncertainty 

analysis compared to other optimization techniques [Xu et al., 2006; Wang et al., 2009; Zhou et 

al., 2012]. Bayesian data assimilation (e.g., MCMC) takes into account observation uncertainties 

(errors), generates distributions of model parameters and enables tracking of prediction 

uncertainties from different sources. [Ellison, 2004; Bloom et al., 2016; Jiang et al., 2018]. 

Uncertainty analysis through data assimilation applied to areas such as ecosystem phenology, 

fish life cycle and species migration [Clark et al., 2003; Cook et al., 2005; Crozier et al., 2008; 

Luo et al., 2011b], can potentially take advantage of EcoPAD (v1.0) platform to provide critical 
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information for well informed decisions in face of pressing global change challenges. In 

addition, the archive capacity of EcoPAD (v1.0) facilitates future inter-comparisons among 

different models or different versions of the same model to evaluate model structures and to 

disentangle structure uncertainties and errors. 

The realization of both the near -time and long -term ecological forecast is one of the key 

innovations of EcoPAD. (v1.0). Forecasting capability of EcoPAD (v1.0) is supported by process 

-based ecological models, multiple observational or experimental data, inverse parameter 

estimation and uncertainty quantification through data assimilation, and forward simulation 

under future external conditions. The systematically constrained forecast from EcoPAD (v1.0) is 

accompanied by uncertainty/confidence estimates to quantify the amount of information that can 

actually be utilized from a study. The automated near time forecast, which is constantly adjusted 

once new observational data streams are available, provides experimenters advanced and timely 

information to assess and adjust experimental plans. For example, with forecasted and displayed 

biophysical and biochemical variables, experimenters could know in advance what the most 

likely biophysical conditions are. Knowing if the water table may suddenly go aboveground in 

response to a high rainfall forecast in the coming week, could allow researcher to emphasize 

measurements associated with methane flux. In such a way, experimenters can not only rely on 

historical ecosystem dynamics, but also refer to future predictions. Experimenters will benefit 

especially from variables that are difficult to track in field due to situations such as harsh 

environment, shortage in man power or on instrument limitation.                     

Equally important, EcoPAD (v1.0) creates new avenues to answer classic and novel 

ecological questions, for example, the frequently reported acclimation phenomena in ecology. 

While growing evidence points to altered ecological functions as organisms adjust to the rapidly 
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changing world [Medlyn et al., 1999; Luo et al., 2001; Wallenstein and Hall, 2012], traditional 

ecological models treat ecological processes less dynamical, as the governing biological 

parameters or mechanisms fails to explain such biological shifts. EcoPAD (v1.0) facilitates the 

shift of research paradigm from a fixed process representation to a more dynamic description of 

ecological mechanisms with constantly updated and archived parameters constrained by 

observations under different conditions. Specifically to acclimation, EcoPAD (v1.0)  promotes 

quantitatively evaluations while previous studies remain mostly qualitative [Wallenstein and 

Hall, 2012; Shi et al., 2015]. We will further illustrate how EcoPAD (v1.0) can be used to 

address different ecological questions in the case studies of the SPRUCE project.     

                       

3 EcoPAD performance at testbed - SPRUCE  

3.1 SPRUCE project overview  

EcoPAD (v1.0)  is being applied to the Spruce and Peatland Responses Under Climatic 

and Environmental change (SPRUCE) experiment located at the USDA Forest Service Marcell 

Experimental Forest (MEF, 47°30.476’ N, 93°27.162’ W) in northern Minnesota [Kolka et al., 

2011]. SPRUCE is an ongoing project focuses on long-term responses of northern peatland to 

climate warming and increased atmospheric CO2 concentration [Hanson et al., 2017]. At 

SPRUCE, ecologists measure various aspects of responses of organisms (from microbes to trees) 

and ecological functions (carbon, nutrient and water cycles) to a warming climate. One of the 

key features of the SPRUCE experiments is the manipulative deep soil/peat heating (0-3 m) and 

whole ecosystem warming treatments (peat + air warmings) which include tall trees (> 4 m) 

[Hanson et al., 2017]. Together with elevated atmospheric CO2 treatments, SPRUCE provides a 

platform for exploring mechanisms controlling the vulnerability of organisms, biogeochemical 
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processes and ecosystems in response to future novel climatic conditions. The SPRUCE peatland 

is especially sensitive to future climate change and also plays an important role in feeding back 

to future climate change through greenhouse gas emissions as it stores a large amount of soil 

organic carbon. Vegetation in the SPRUCE site is dominated by Picea mariana (black spruce) 

and Sphagnum spp (peat moss). The studied peatland also has an understory which include 

ericaceous and woody shrubs. There are also a limited number of herbaceous species. The whole 

ecosystem warming treatments include a large range of both aboveground and belowground 

temperature manipulations (ambient, control plots of + 0 °C, +2.25 °C, +4.5 °C, +6.75 °C and +9 

°C) in large 115 m2 open-topped enclosures with elevated CO2 manipulations (+0 or +500 ppm). 

The difference between ambient and +0 treatment plots is the open-topped and controlled-

environment enclosure.  

The SPRUCE project generates a large variety of observational datasets that reflect 

ecosystem dynamics from different scales and are available from the project webpage 

(https://mnspruce.ornl.gov/) and FTP site (ftp://sprucedata.ornl.gov/). These datasets come from 

multiple sources: half hourly automated sensor records, species surveys, laboratory 

measurements, laser scanning images etc. Involvements of both modelingmodelling and 

experimental studies in the SPRUCE project create the opportunity for data-model 

communication. Datasets are pulled from SPRUCE archives and stored in the EcoPAD (v1.0) 

metadata catalog for running the TECO model, conducting data-model fusion or forecasting. The 

TECO model has been applied to simulate and forecast carbon dynamics with productions of 

CO2 and CH4 from different carbon pools, soil temperature response, snow depth and freeze-

thaw cycles at the SRPUCE site [Huang et al., 2017; Ma et al., 2017; Jiang et al., 2018].            

 

https://mnspruce.ornl.gov/
ftp://sprucedata.ornl.gov/
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3.2 EcoPAD-SPRUCE web portal   

We assimilate multiple streams of data from the SPRUCE experiment to the TECO 

model using the MCMC algorithm, and forecast ecosystem dynamics in both near time and for 

the next 10 years. Our forecasting system for SPRUCE is available at 

https://ecolab.nau.edu/ecopad_portal/. From the web portal, users can check our current near- 

and long -term forecasting results, conduct model simulation, data assimilation and forecasting 

runs, and analyzeanalyse/visualize model results. Detailed information about the interactive web 

portal is provided in the Appendices.       

3.3 Near time ecosystem forecasting and feedback to experimenters   

As part of the forecasting functionality, EcoPAD-SPRUCE automates the near time 

(weekly) forecasting with continuously updated observations from SPRUCE experiments (Figure 

54). We set up the system to automatically pull new data streams every Sunday from the 

SPRUCE FTP site that holds observational data and update the forecasting results based on new 

data streams. Updated forecasting results for the next week are customized for the SPRUCE 

experiments with different manipulative treatments and displayed in the EcoPAD-SPRUCE 

portal. At the same time, these results are sent back to SPRUCE communities and displayed 

together with near -term observations for experimenter’s reference.  

3.4 New approaches to ecological studies towards better forecasting     

3.4.1 Case 1: Interactive communications among modelersmodellers and experimenters      

EcoPAD-SPRUCE provides a platform to stimulate interactive communications between 

modelersmodellers and experimenters. Models require experimental data to constrain initial 

conditions and parameters, and to verify model performance. A reasonable model is built upon 

correct interpretation of information served by experimenters. Model simulations on the other 

https://ecolab.nau.edu/ecopad_portal/
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hand can expand hypotheseshypothesis testing, and provide thorough or advanced information to 

improve field experiments. Through recursively exchanging information between 

modelersmodellers and experimenters, both models and field experiments can be improved. As 

illustrated in Figure 54, through extensive communication between modelersmodellers and 

experimenters, modelersmodellers generate model predictions. Model predictions provide 

experimenters advanced information, help experimenters think, question and understand their 

experiments. Questions raised by experimenters stimulate further discussion and communication. 

Through communication, models or/and measurements are adjusted. With new measurements 

or/and strengthened models, a second round of prediction is highly likely to be improved. As the 

loop of prediction-question-discussion-adjustment-prediction goes on, forecasting is informed 

with best understandings from both data and model.        

We illustrate how the prediction-question-discussion-adjustment-prediction cycle and 

stimulation of modelermodeller-experimenter communication improves ecological predictions 

through one episode during the study of the relative contribution of different pathways to 

methane emissions. An initial methane model was built upon information (e.g., site 

characteristics and environmental conditions) provided by SPRUCE field scientists, taking into 

account important processes in methane dynamics, such as production, oxidation and emissions 

through three pathways (i.e., diffusion, ebullition and plant-mediated transportation). The model 

was used to predict relative contributions of different pathways to overall methane emissions 

under different warming treatments after being constrained by measured surface methane fluxes. 

Initial forecasting results which indicated a strong contribution from ebullition under high 

warming treatments were sent back to the SPRUCE group. Experimenters doubted about such a 

high contribution from the ebullition pathway and a discussion was stimulated. It is difficult to 
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accurately distinguish the three pathways from field measurements. Field experimenters 

provided potential avenues to extract measurement information related to these pathways, while 

modelersmodellers examined model structure and parameters that may not be well constrained 

by available field information. Detailed discussion is provided in Table 1. After extensive 

discussion, several adjustments were adopted as a first step to move forward. For example, the 

three-porosity model that was used to simulate the diffusion process was replaced by the 

Millington-Quirk model to more realistically represent methane diffusions in peat soil; the 

measured static chamber methane fluxes were also questioned and scrutinized more carefully to 

clarify that they did not capture the episodic ebullition events. Measurements such as these 

related to pore water gas data may provide additional inference related to ebullition. The updated 

forecasting is more reasonable than the initial results although more studies are in need to 

ultimately quantify methane fluxes from different pathways.    

3.4.2 Case 2: Acclimation of ecosystem carbon cycling to experimental manipulations   

As a first step, CH4 static chamber flux measurements were assimilated into TECO to 

assess potential acclimation phenomena during methane production under 5 warming treatments 

(+0, +2.25, +4.5, +6.75, +9 °C). Initial results indicated a reduction in both the CH4:CO2 ratio and 

the temperature sensitivity of methane production based on their posterior distributions (Figure 

65). The mean CH4:CO2 ratio decreased from 0.675 (control(+0 ˚C treatment) to 0.505 (+9 ˚C 

treatment), while the temperature sensitivity (Q10) for CH4 production decreased from 3.33 

(control(+0 ˚C) to 1.22 (+9 ˚C treatment). Such shifts quantify potential acclimation of methane 

production to warming and future climate warming is likely to have a smaller impact on emission 

than most of current predictions that do not take into account of acclimation.  
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Despite these results are preliminary as more relevant datasets are under collection with 

current ongoing warming manipulation and measurements, assimilating observations through 

EcoPAD (v1.0) provides a quantitative approach to timely assess acclimation through time. Melillo 

et al. [2017] revealed that the thermal acclimation of the soil respiration in the Harvard Forest is 

likely to be phase (time) dependent during their 26-year soil warming experiment. EcoPAD (v1.0) 

provides the possibility in tracing the temporal path of acclimation with its streamlined structure 

and archive capacity. Shi et al. [2015] assimilated carbon related measurements in a tallgrass 

prairie into the TECO model to study acclimation after 9-years warming treatments. They revealed 

a reduction in the allocation of GPP to shoot, the turnover rates of the shoot and root carbon pools, 

and an increase in litter and fast carbon turnovers in response to warming treatments. Similarly, as 

time goes on, the SPRUCE experiment will generate more carbon cycling related datasets under 

different warming and CO2 treatments, which can be mounted to EcoPAD (v1.0) to systematically 

quantify acclimations in carbon cycling through time in the future.                     

3.4.3 Case 3: Partitioning of uncertainty sources   

Uncertainties in ecological studies can come from observations (include forcing that 

drives the model), different model structures to represent the real world and the specified model 

parameters [Luo et al., 2016]. Previous studies tended to focus on one aspect of the uncertainty 

sources instead of disentangling the contribution from different sources. For example, the model 

intercomparison projects (MIPs), such as TRENDY, focus on uncertainty caused by different 

model structures with prescribed external forcing [Sitch et al., 2008]. Keenan et al. [2012] used 

data assimilation to constrain parameter uncertainties in projecting Harvard forest carbon 

dynamics. Ahlstrom et al. [2012] forced one particular vegetation model by 18 sets of forcings 



 28 

from climate models of the Coupled Model Intercomparison Project Phase 5 (CMIP5), while the 

parameter or model structure uncertainty is not taken into account. 

EcoPAD (v1.0) is designed to provide a thorough picture of uncertainties from multiple 

sources especially in carbon cycling studies. Through focusing on multiple instead of one source 

of uncertainty, ecologists can allocate resources to areas that cause relative high uncertainty. 

Attribution of uncertainties in EcoPAD relies(v1.0) will rely on an ensemble of ecosystem 

models, the data assimilation system and climate forcing with quantified uncertainty. For 

example, Jiang et al. [2018] focused specifically on the relative contribution of parameter 

uncertainty vs. climate forcing uncertainty in forecasting carbon dynamics at the SPRUCE site. 

Through assimilating the pre-treatment measurements (2011-2014) from the SPRUCE 

experiment, Jiang et al. [2018] estimated uncertainties of key parameters that regulate the 

peatland carbon dynamics. Combined with the stochastically generated climate forcing (e.g., 

precipitation and temperature), Jiang et al. [2018] found external forcing resulted in higher 

uncertainty than parameters in forecasting carbon fluxes, but caused lower uncertainty than 

parameters in forecasting carbon pools. Therefore, more efforts are required to improve forcing 

measurements for studies that focus on carbon fluxes (e.g., GPP), while reductions in parameter 

uncertainties are more important for studies in carbon pool dynamics. Such kindDespite Jiang et 

al. [2018] does not quantify model structure uncertainty, the project of incorporating multiple 

models inside EcoPAD (v1.0) is in progress, and future uncertainty assessment benefitswill 

benefit from EcoPAD (v1.0) with its systematically archived model simulation, data assimilation 

and forecasting.      

3.4.4 Case 4: Improving biophysical estimation for better ecological prediction    
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Carbon cycling studies can also benefit from EcoPAD (v1.0) through improvements in 

external forcingbiophysical estimation. Soil environmental condition is an important regulator of 

belowground biological activities and also feeds back to aboveground vegetation growth. 

Biophysical variables such as soil temperature, soil moisture, ice content and snow depth, are 

key predictors of ecosystem dynamics. After constraining the biophysical module by detailed 

monitoring data from the SPRUCE experiment through the data assimilation component of 

EcoPAD, (v1.0), Huang et al. [2017] forecasted the soil thermal dynamics under future 

conditions and studied the responses of soil temperature to hypothetical air warming. This study 

emphasized the importance of accurate climate forcing in providing robust thermal forecast. In 

addition, Huang et al. [2017] revealed non-uniform responses of soil temperature to air warming. 

Soil temperature responded stronger to air warming during summer compared to winter. And soil 

temperature increased more in shallow soil layers compared to deep soils in summer in response 

to air warming. Therefore, extrapolating of manipulative experiments based on air warming 

alone may not reflect the real temperature sensitivity of SOM if soil temperature is not 

monitored. As robust quantification of environmental conditions is known to be a first step 

towards better understanding of ecological process, improvement in soil thermal predictions 

through EcoPAD (v1.0) data assimilation system is helpful in telling apart biogeochemical 

responses from environmental uncertainties and also in providing field ecologists beforehand key 

environmental conditions.  

3.4.5 Case 5: How do updated model and data contribute to reliable forecasting?     

Through constantly adjusted model and external forcing according to observations and 

weekly archived model parameter, model structure, external forcing and forecasting results, the 

contribution of model and data updates can therefore be tracked through comparing forecasted 
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vs. realizedrealised simulations. For example, Figure 76 illustrates how realizedupdated external 

forcing (compared to stochastically generated forcing) and shifts in ecosystem state variables 

shape ecological predictions. Similarly as in other EcoPAD-SPURCE case studies, TECO is 

trained through data assimilation with observations from 2011-2014 and is used to forecast GPP 

and total soil organic carbon content at the beginning of 2015. For demonstrating purpose, Figure 

76 only shows 3 series of forecasting results instead of updates from every week. Series 1 (S1) 

records forecasted GPP and soil carbon with stochastically generated weather forcing from 

January 2015-December 2024 (Figure 7a6a,b cyan). Series 2 (S2) records simulated GPP and 

soil carbon with observed climate forcing from January 2015 to July 2016 and forecasted GPP 

and soil carbon with stochastically generated forcing from August 2016 - December 2024 

(Figure 7a6a,b red). Similarly, the stochastically generated forcing in Series 3 (S3) starts from 

January 2017 (Figure 7a6a,b blue). For each series, predictions were conducted with randomly 

sampled parameters from the posterior distributions and stochastically generated forcing. We 

displayed 100 mean values (across an ensemble of forecasts with different parameters) 

corresponding to 100 forecasts with stochastically generated forcing.  

GPP is highly sensitive to climate forcing. The differences between the realizedupdated 

(S2, 3) and initial forecasts (S1) reach almost 800 gC m-2 year-1 (Figure 7c6c). The discrepancy 

is strongly dampened in the following 1-2 years. The impact of realizedupdated forecasts is close 

to 0 after approximately 5 years. However, soil carbon pool shows a different pattern. Soil 

carbon pool is increased by less than 150 gC m-2, which is relative small compared to the carbon 

pool size of ca. 62000 gC m-2. The impact of realizedupdated forecasts grows with time and 

reaches the highest at the end of the simulation year 2024. GPP is sensitive to the immediate 

change in climate forcing while the updated ecosystem status (or initial value) has minimum 
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impact in the long -term forecast of GPP. The impact of updated climate forcing is relatively 

small for soil carbon forecasts during our study period. Soil carbon is less sensitive to the 

immediate change of climate compared to GPP. However, the alteration of system status affects 

soil carbon forecast especially in a longer time scale.   

Since we are archiving realizedupdated forecasts every week, we can track the relative 

contribution of ecosystem status, forcing uncertainty and parameter distributions to the overall 

forecasting patterns of different ecological variables and how these patterns evolve in time. In 

addition, as growing observations of ecological variables (e.g., carbon fluxes and pool sizes) 

become available, it is feasible to diagnose key factors that promote robust ecological forecasting 

through comparing the archived forecasts vs. observation and analysing archives of model 

parameters, initial values and climate forcing etc.                                                        

 

4 Discussion 

4.1 The necessity of interactive infrastructure to realize ecological forecasting 

Substantial increases in data availability from observational and experimental networks, 

surges in computational capability, advancements in ecological models and sophisticated 

statistical methodologies and pressing societal need for best management of natural resources 

have shifted ecology to emphasis more on quantitative forecasts. However, quantitative 

ecological forecast is still young and our knowledge about ecological forecasting is relatively 

sparse, inconsistent and disconnected [Luo et al., 2011b; Petchey et al., 2015]. Therefore, both 

optimistic and pessimistic viewpoints exist on the predictability of ecology [Clark et al., 2001; 

Beckage et al., 2011; Purves et al., 2013; Petchey et al., 2015; Schindler and Hilborn, 2015]. 

Ecological forecasting is complex and advantages in one single direction, for example, 
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observations alone or statistical methodology alone, is less likely to lead to successful forecasting 

compared to approaches that effectively integrate improvements from multiple sectors. 

Unfortunately, realizedrealised ecological forecasting that integrates available resources is 

relative rare due to lack of relevant infrastructures.      

EcoPAD (v1.0) provides such effective infrastructure with its interactive platform that 

rigorously integrates merits from models, observations, statistical advance, information 

technology and human resources from experimenter, modeler as well as the general 

publicexperimenters and modellers to best inform ecological forecasting, boost forecasting 

practice and delivery of forecasting results. Interactions enable exchanging and extending of 

information so as to benefit from collective knowledge. For example, manipulative studies will 

have a much broader impact if the implications of their results can be extended from the 

regression between environmental variable and ecosystem response, such as be integrated into an 

ecosystem model through model-data communication. Such an approach will allow gaining 

information about the processes responsible for ecosystem’s response, constraining models, and 

making more reliable predictions. Going beyond common practice of model-data assimilation 

from which model updating lags far behind observations, EcoPAD (v1.0) enables iterative model 

updating and forecasting through dynamically integrating models with new observations in near 

real -time. This near real-time interactive capacity relies on its scientific workflow that automates 

data management, model simulation, data simulation and result visualization. The open, timely, 

convenient, transparent, flexible, reproducible and traceable characteristics of this platform, also 

thanks to its scientific workflow, encouragedsystem design encourages thorough interactions 

between experimenters and modelersmodellers. Forecasting results from SPRUCE were timely 

shared among research groups with different background through the web interface. Expertise 
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from different research groups was integrated to improve a second round of forecasting. Again, 

thanks to the workflow, new information or adjustment is relatively easy to 

incorporateincorporated into future forecasting efficiently, making the forecasting system fully 

interactive and dynamical.  

We also benefit from the interactive EcoPAD (v1.0) platform to broaden user-model 

interactions and to broadcast forecasting results. Learning about the ecosystem models and data-

model fusion techniques may lag one’s productivity and even discourage learning the 

modelingmodelling techniques because of their complexity and long learning curve. Because 

EcoPAD (v1.0) can be accessed from a web browser and does not require any coding from the 

user’s side, the time lag between learning the model structure and obtaining model-based results 

for one’s study is minimal, which opens the door for non-modelermodeller groups to “talk” with 

models. The online storage of one’s results lowers the risk of data loss. The results of each model 

run can be easily tracked and shared with its unique ID and web address. In addition, the web-

based workflow also saves time for experts with automated model running, data assimilation, 

forecasting, structured result access and instantaneous graphic outputs, bringing the possibility 

for thorough exploration of more essence part of the system. The simplicity in use of EcoPAD 

(v1.0) at the same time may limit their access to the code and lowers the flexibility. Flexibility 

for users with higher demands, for example, those who wanted to test alternative data 

assimilation methods, use a different carbon cycle model, change the number of calibrated 

parameters, include the observations for other variables, is provided through the GitHub 

repository (https://github.com/ou-ecolab ). This GitHub repository contains code and instruction 

for installing, configuring and controlling the whole system, users can easily adapt the workflow 

to wrap their own model based on his or her needs.  

https://github.com/ou-ecolab
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In addtion to benefit from its workflow, the advantage of EcoPAD is also reflected in its 

data assimilation capacity especially for land carbon studies. One focus of EcoPAD is to 

constrain parameters of terrestrial carbon models to predict long-term carbon dynamics (e.g., 100 

years) which are determined more by parameters than initial values of state variables [Weng and 

Luo, 2011]. EcoPAD incorporates the Bayesian framework, especially the MCMC method, to 

constrain parameters. In comparison, DART uses the Ensemble Kalman Filter to adjust model 

state variables, instead of parameters, to match observations over time. In the past, complex 

models could not assimilate pool-related data to constrain their parameter estimation due to 

insurmountable computational demand in large scale studies. For example, CCDAS normally 

only assimilates flux-based data [Peylin et al., 2016]. EcoPAD is flexible in assimilating both 

pool- and flux-based data into complex models so that both fluxes and turnover rates of pools 

can be constrained with its matrix representation [Hararuk et al., 2014; Luo, 2017] and its 

capability to wrap different models.  

4.2 Implications for better ecological forecasting   

Specifically to reliable forecasting of carbon dynamics, our initial exploration from 

EcoPAD-SPRUCE indicates that realistic model structure, correct parameterization and accurate 

external environmental conditions are essential. Model structure captures important known 

mechanisms that regulate ecosystem carbon dynamics. Adjustment in model structure is critical 

in our improvement in methane forecasting. Model parameters may vary between observation 

sites, change with time or environmental conditions [Medlyn et al., 1999; Luo et al., 2001]. A 

static or wrong parameterization misses important mechanisms (e.g., acclimation and adaptation) 

that regulate future carbon dynamics. Not well constrained parameters, for example, caused by 

lack of information from observational data, contribute to high forecasting uncertainty and low 
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reliability of forecasting results. Correct parameterization is especially important for long -term 

carbon pool predictions as parameter uncertainty resulted in high forecasting uncertainty in our 

case study [Jiang et al., 2018]. Although the picture about how neglecting of parameter shift 

affects carbon predictions has not yet been fully revealed from EcoPAD-SPRUCE as field 

measurements are still ongoing, our initial exploration indicates non-negligible acclimation of 

ecosystem methane production in response to warming.2018]. Parameter values derived under 

the ambient condition was not applicable to the warming treatment in our methane case due to 

acclimation. External environmental condition is another important factor in carbon predictions. 

External environmental condition includes both the external climatic forcing that is used to drive 

ecosystem models and also the environmental condition that is simulated by ecosystem models. 

As we showed that air warming may not proportionally transfer to soil warming, realistic soil 

environmental information needs to be appropriately represented to predict soil carbon dynamics 

[Huang et al., 2017]. The impact of external forcing is especially obvious in short term carbon 

flux predictions. Forcing uncertainty resulted in higher forecasting uncertainty in carbon flux 

compared to that from parameter uncertainty [Jiang et al., 2018]. Mismatches in forecasted vs. 

realizedrealised forcing greatly increased simulated GPP and the discrepancy diminished in the 

long run. Reliable external environmental condition, to some extent, reduces the complexity in 

diagnosing modeledmodelled carbon dynamics. 

Pool-based vs. flux-based predictions are regulated differently by external forcing and 

initial states, which indicates that differentiated efforts are required to improve short vs. long -

term predictions. External forcing, which has not been well emphasized in previous carbon 

studies, has strong impact on short term forecasting. The large response of GPP to forecasted vs. 

realizedrealised forcing as well the stronger forcing-caused uncertainty in GPP predictions 
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indicate correct forcing information is a key step in short term flux predictions. In this study, we 

stochastically generated the climate forcing based on local climatic conditions (1961-2014), 

which is not sufficient in capturing local short -term climate variability. As a result, 

realizedupdated GPP went outside our ensemble forecasting. On the other hand, parameters and 

historical information about pool status are more important in long -term pool predictions. 

Therefore, improvement in long -term pool size predictions cannot be reached by accurate 

climatic information alone. Instead, it requires accumulation in knowledge related to site history 

and processes that regulate pool dynamics.         

Furthermore, reliable forecasting needs understanding of uncertainty sources in addition 

to the future mean states. Uncertainty and complexity are major reasons that lead to the belief in 

“computationally irreducible” and low intrinsic predictability of ecological systems [Coreau et 

al., 2010; Beckage et al., 2011; Schindler and Hilborn, 2015]. Recent advance in computational 

statistical methods offers a way to formally accounting for various uncertainty sources in 

ecology [Clark et al., 2001; Cressie et al., 2009]. And the Bayesian approach embedded in 

EcoPAD (v1.0) brings the opportunity to understand and communicate forecasting uncertainty. 

Our case study revealed that forcing uncertainty is more important in flux-based predictions 

while parameter uncertainty is more critical in pool-based predictions. Actually, how forecasting 

uncertainty in carbon forecasting changes with time, what are the dominate sourcescontributor of 

forecasting uncertainty (e.g., parameter, initial condition, model structure, observation errors, 

forcing etc.) under different conditions,.), how uncertainty sources interact among different 

components, or to what extent unconstrained parameters affect forecasting uncertainty are all 

valuable questions that can be explored through EcoPAD. (v1.0).  

4.3 Applications of EcoPAD to manipulative experiments and observation sites 
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Broadly speaking, data-model integration stands to increase the overall precision and 

accuracy of model-based experimentation [Luo et al., 2011b; Niu et al., 2014]. Systems for 

which data have been collected in the field and which are well represented by ecological models 

therefore have the capacity to receive the highest benefits from EcoPAD (v1.0) to improve 

forecasts. In a global change context, experimental manipulations including ecosystem responses 

to changes in precipitation regimes, carbon dioxide concentrations, temperatures, season lengths, 

and species compositional shifts can now be assimilated into ecosystem models [Xu et al., 2006; 

Gao et al., 2011; Lebauer et al., 2013; Shi et al., 2016]. Impacts of these global change factors 

on carbon cycling and ecosystem functioning can now be measured in a scientifically transparent 

and verifiable manner. This leads to ecosystem modelingmodelling of systems and processes that 

can obtain levels of confidence that lend credibility with the public to the science’s forward 

progress toward forecasting and predicting [Clark et al., 2001]. These are the strengths of a 

widely-available interface devoted to data-model integration towards better forecasting.   

The data-model integration framework of EcoPAD (v1.0) creates a smart interactive 

model-experiment (ModEx) system. ModEx has the capacity to form a feedback loop in which 

field experiment guides modelingmodelling and modelingmodelling influences experimental 

focus [Luo et al., 2011a]. We demonstrated how EcoPAD (v1.0) works hand-in-hand between 

modelersmodellers and experimenters in the life-cycle of the SPRUCE project. Field experiment 

from SPRUCE community provides basic data to set up the ecosystem model and update model 

parameters recursively, while the forecasting from ecosystem modelingmodelling informs 

experimenters the potential key mechanisms that regulate ecosystem dynamics and help 

experimenters to question and understand their measurements. The EcoPAD-SPRUCE system 

operates while experimenters are making measurements or planning for future researches. 
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Information is constantly fed back between modelersmodellers and experimenters, and 

simultaneous efforts from both parties illustrate how communications between model and data 

advance and shape our understanding towards better forecasts during the lifecycle of a scientific 

project. ModEx can be easily extended to other experimental systems to: 1, predict what might 

be an ecosystem’s  response to treatments once experimenter selected a site and decided the 

experimental plan; 2, assimilate data experimenters are collecting along the experiment to 

constrain model predictions; 3, project what an ecosystem’s  responses may likely be in the rest 

of the experiment; 4, tell experimenters what are those important datasets experimenters may 

want to collect in order to understand the system; 5, periodically updates the projections; and 6, 

improve the models, the data assimilation system, and field experiments during the process.  

In addition to the manipulative experimental, the data assimilation system of EcoPAD 

(v1.0)  can be used for automated model calibration for FLUXNET sites or other observation 

networks, such as the NEON and LTER [Johnson et al., 2010; Robertson et al., 2012]. The 

application of EcoPAD (v1.0) at FLUXNET, NEON or LTER sites includes three steps in 

general. First, build the climate forcing in the suitable formats of EcoPAD (v1.0) from the 

database of each site; Second, collect the prior information (include observations of state 

variables) in the data assimilation system from FLUXNET, NEON or LTER sites; Third, 

incorporate the forcing and prior information into EcoPAD, (v1.0), and then run the EcoPAD 

(v1.0) with the dynamic data assimilation system. Furthermore, facing the proposed continental 

scale ecology study [Schimel, 2011], EcoPAD (v1.0) once properly applied could also help 

evaluate and optimize field deployment of environmental sensors and supporting 

cyberinfrastructure, that will be necessary for larger, more complex environmental observing 

systems being planned in the US and across different continents.  Altogether, with its milestone 
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concept, EcoPAD (v1.0) benefits from observation and modelingmodelling and at the same time 

advances both observation and modelingmodelling of ecological studies.                       

4.4 Future developments 

As we indicated, EcoPAD (v1.0) will expand as time goes on. The system is designed to 

incorporate multiple biogeochemicalprocess-based models, diverse data assimilation techniques 

and various ecosystemecological state variables for different ecosystems. Case studies presented 

in earlier sections are based primarily on one model. A multiple (or ensemble) model approach is 

helpful in tracking uncertainty sources from our process understanding. With rapid evolving 

ecological knowledge, emerging models with different hypotheses, such as the microbial-enzyme 

model [Wieder et al., 2013], enhance our capacity in ecological prediction but can also benefit 

from rapid tests against data if incorporated into EcoPAD. (v1.0). In addition to MCMC 

[Braswell et al., 2005; Xu et al., 2006], a variety of data assimilation techniques have been 

recently applied to improve models for ecological forecasting, such as the EnKF [Gao et al., 

2011], Genetic Algorithm [Zhou and Luo, 2008] and 4-d variational assimilation [Peylin et al., 

2016]. Future development will incorporate different optimization techniques to offer users the 

option to search for the best model parameters by selecting and comparing the possibly best 

method for their specific studystudies. We focus mostly on carbon related state variables in the 

SPRUCE example, and the data assimilation system in EcoPAD (v1.0) needs to include more 

observed variables for constraining model parameters. For example, the NEON sites not only 

provide measured ecosystem CO2 fluxes and soil carbon stocks, but also resources (e.g., 

GPP/Transpiration for water and GPP/intercepted PAR for light) use efficiency [Johnson et al., 

2010]. With these improvements, one goal of the EcoPAD is to enable the research community 
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to run models and forecast various aspects of future biogeochemical changes as data becomes 

available. 

With these improvements, one goal of EcoPAD (v1.0) is to enable the research 

community to understand and reduce forecasting uncertainties from different sources and 

forecast various aspects of future biogeochemical and ecological changes as data become 

available. The example of Jiang et al. [2018] partitioned forecasting uncertainty from forcings 

and parameters. An exhaustive understanding of forecasting uncertainty in ecology need to also 

consider model structures, data assimilation schemes as well as different ecological state 

variables. Researchers interested in creating their own multiple model and/or multiple 

assimilation scheme version of EcoPAD (v1.0) can start from the GitHub repository 

(https://github.com/ou-ecolab ) where the source code of the EcoPAD (v1.0) workflow is 

archived. To add a new variable that is not forecasted in the EcoPAD-SPRUCE example, it 

requires modellers and experimenters to work together to understand their process-based model, 

their observations and how messaging works in the workflow of EcoPAD (v1.0) following the 

example of EcoPAD-SPRUCE. To add a new model or a new data assimilation scheme for 

variables that are forecasted in EcoPAD-SPRUCE, researchers need to create additional dockers 

and mount them to the existing workflow with the knowledge of how information are passed 

within the workflow.                   

The power of EcoPAD (v1.0) not only lies in its scientific values, but also in the potential 

service it can bring to the society. Forecasting with carefully quantified uncertainty is helpful in 

providing support for natural resource manager and policy maker [Clark et al., 2001]. It is 

always difficult to bring the complex mathematical ecosystem models to the general public, 

which creates a gap between current scientific advance and public awareness. The web-based 
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interface from EcoPAD (v1.0) makes modelingmodelling as easy as possible without losing the 

connection to the mathematics behind the models. It will greatly transform environmental 

education and encourage citizen science [Miller-Rushing et al., 2012; Kobori et al., 2016] in 

ecology and climate change with future outreach activities to broadcast the EcoPAD (v1.0) 

platform.    

5 Conclusion  

The fully interactive web-based Ecological Platform for Assimilating Data (EcoPAD) 

into models aims to promote data-model integration towards predictive ecology through bringing 

the complex ecosystem model and data assimilation techniques easily accessible to different 

audience. It is supported by meta-databases of biogeochemical variables, libraries of modules of 

process models, toolbox of inversion techniques and easilythe scalable scientific workflow. 

Through these components, it automates data management, model simulation, data assimilation, 

ecological forecasting, and result visualization, providing an open, convenient, transparent, 

flexible, scalable, traceable and readily portable platform to systematically conduct data-model 

integration towards better ecological forecasting. 

We illustrated several of its functionalities through the Spruce and Peatland Responses 

Under Climatic and Environmental change (SPRUCE) experiment. The iterative forecasting 

approach from EcoPAD-SPRUCE through the prediction-question-discussion-adjustment-

prediction cycle and extensive communication between model and data creates a new paradigm 

to best inform forecasting. In addition to forecasting, EcoPAD enables interactive web-based 

approach to conduct model simulation, estimate model parameters or state variables, quantify 

uncertainty of estimated parameters and projected states of ecosystems, evaluate model 

structures, and assess sampling strategies. Altogether, EcoPAD-SPRUCE creates a smart 
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interactive model-experiment (ModEx) system from which experimenters can know what an 

ecosystem’s response might be at the beginning of their experiments, constrain models through 

collected measurements, predict ecosystem’s response in the rest of the experiments, adjust 

measurements to better understand their system, periodically update projections and improve 

models, the data assimilation system, and field experiments.  

Specifically to forecasting carbon dynamics, EcoPAD-SPRUCE revealed that better 

forecasting relies on improvements in model structure, parameterization and accurate external 

forcing. Accurate external forcing is critical for short-term flux-based carbon predictions while 

right process understanding, parameterization and historical information are essential for long -

term pool -based predictions. In addition, EcoPAD provides an avenue to disentangle different 

sources of uncertainties in carbon cycling studies and to provide reliable forecasts with 

accountable uncertainties.      
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Tables  

Table 1. Discussion stimulated by EcoPAD-SPRUCE forecasting among modelersmodellers and 

experimenters on how to improve predictions of the relative contribution of different pathways 

of methane emissions   

 Discussion  
1 No strong bubbles are noted at field and a non-observation constrained modelingmodelling study at a 

similar site from another project concluded minor ebullition contribution, which are at odds with TECO 
result.  

2 CH4:CO2 ratio might explain the discrepancy. The other modelingmodelling study assumed that 
decomposed C is mainly turned into CO2 and a smaller fraction is turned into CH4. The large CH4:CO2 ratio 
at this site may result in higher CH4 flux. It seems that the most “flexible” term is ebullition because any 
"excess" (above saturation) CH4 is immediately released to ebullition, while the plant transport term is 
constrained by vegetation data. 

3 Experimental researches on the relative contribution to methane emission from three different pathways are 
rare.  

4 Current available observations include net surface flux of methane from the large collars, incubation data 
that should represent methane sources within the profile, and gas/DOC profile data that can indicate active 
zones within the peat profile. What are additional data needed to constrain relative contribution of different 
pathways? 

5 I had always thought that peatlands don’t bubble much, but the super-sensitive GPS measurements found 
movements of the surface of the GLAP peatlands consistent with degassing events, and subsurface radar 
images did show layers that were interpreted as bubble-layers. 

6 Pore water gas data, perhaps N2 or Ar may shed some light on the relative importance of ebullition. 
7 It is really hard to accurately distinguish the three pathways. It has to rely on multiple approaches. 

Particularly for the SPRUCE site, the vegetation cover varies, vegetation species varies. How many 
channels each species has affect the transport? Meanwhile, the presence of plant (even not vascular plant) 
will lead to more gas transport, but as bubbles, rather than plant-mediated transport. 

8 It depends on model structure and algorithm to simulate diffusion, vascular, and ebullition. Most models 
assume a threshold to allow ebullition. Diffusion is treated in similar ways as ebullition in some models 
(most one layer or two layers models). For the multiple layers models, the diffusion occurs from bottom to 
top mm by mm, layer by layer, therefore, the gas diffusion from top layer to atmosphere is considered the 
diffusion flux. If that is the case, the time step and wind speed and pressure matter (most models do not 
consider wind and pressure impacts). Plant transport is really dependent on the parameter for plant species, 
aerenchyma, etc. The gas transportability of plant is associated with biomass, NPP, or root biomass, 
seasonality of plant growth, etc. in models. All these differences might cause biases in the final flux. 

9 With only the CH4 emission data cannot constrain the relative contribution of three pathways. Concentration 
data in different soil layers may help constrain. 

10 Diffusion coefficient calculation in TECO adopts the "three-porosity-model" which is ideal for mineral soil, 
but may not fit the organic soil. "Millington-Quirk model" for should be a better choice for peat soil. 

11 The boundary condition should be taken care of, but it brings in more uncertainties including the wind speed 
and piston velocity, etc., 

12 CH4 emissions captured in static chambers does not include the episodic ebullition events. So (1) the static 
chambers underestimate the total methane emission and (2) might need to exclude the ebullition pathway 
when using the observation data to constrain the CH4 emission. But this point seems haven't been paid 
attention to in other models. 
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Figure Legends  

Figure 1 Schema of approaches to forecast future ecological responses from common practice 

(the upper panel) and the Ecological Platform for Assimilation of Data (EcoPAD) (bottom 

panel). The common practice makes use of observations to develop or calibrate models to make 

predictions while the EcoPAD approach advances the common practice through its fully 

interactive platform. EcoPAD consists of four major components: experiment/data, model, data 

assimilation and the scientific workflow. (green arrows or lines). Data and model are iteratively 

integrated through its data assimilation systems to improve forecasting. And its near-real time 

forecasting results are shared among research groups through its web interface to guide new data 

collections. The scientific workflow enables web-based data transfer from sensors, model 

simulation, data assimilation, forecasting, result analysis, visualization and reporting, 

encouraging broad user-model interactions especially for the experimenters and the general 

public with limited background in modeling.modelling. Images from the SPRUCE field 

experiments (https://mnspruce.ornl.gov/) are used to represent data collection and the flowchart 

of TECO model is used to delegate ecological models.           

Figure 2  The data assimilation system inside the Ecological Platform for Assimilation of Data 

(EcoPAD) towards better forecasting of terrestrial carbon dynamics   

Figure 3  The scientific workflow of EcoPAD. The workflow wraps ecological models and data 

assimilation algorithms with the docker containerization platform. Users trigger different tasks 

through the Representational State Transfer (i.e., RESTful) application-programming interface 

(API). Tasks are managed through the asynchronous task queue, Celery. Tasks can be executed 

concurrently on a single or more worker servers across different scalable IT infrastructures. 

https://mnspruce.ornl.gov/
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MongoDB is a database software that takes charge of data management in EcoPAD and 

RabbitMQ is a message broker.   

 

Figure 4. Near time forecasting of EcoPAD-SPRUCE. EcoPAD automatically synchronizes real 

time observations from environmental sensors managed by the SPRUCE experimental 

communities. Data from observations are assimilated and used to update forecasting. Weekly 

forecasting results are displayed in the EcoPAD-SPRUCE web portal 

(http://ecolab.cybercommons.org/ecopad_portal/) as well as sent back to the experimental groups 

to guide future experimental design and sampling. 

Figure 5. Schema of interactive communication between modelersmodellers and experimenters 

through the prediction-question-discussion-adjustment-prediction cycle to improve ecological 

forecasting. The schema is inspired by an episode of experimenter-modelermodeller 

communication stimulated by the EcoPAD-SPRUCE platform. The initial methane model 

constrained by static chamber methane measurements was used to predict relative contributions 

of three methane emission pathways (i.e., ebullition, plant mediated transportation (PMT) and 

diffusion) to the overall methane fluxes under different warming treatments (+ 0 °C, +2.25 °C, 

+4.5 °C, +6.75 °C and +9 °C). The initial results indicated a dominant contribution from 

ebullition especially under +9 °C which was doubted by experimenters. The discrepancy 

stimulated communications between modelersmodellers and experimenters with detailed 

information listed in Table 1. After extensive discussion, the model structure was adjusted and 

field observations were reevaluatedre-evaluated. And a second round of forecasting yielded more 

reliable predictions.   
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Figure 65. Posterior distribution of the ratio of CH4:CO2 (panel a) and the temperature 

sensitivity of methane production (Q10_CH4, panel b) under 5 warming treatments.   

Figure 7. Realized6. Updated vs. unrealizedun-updated forecasting of gross primary production 

(GPP, panels a,c) and soil organic C content (SoilC, panels b,d). The upper panels show 3 series 

of forecasting with differentupdated vs. stochastically generated weather forcing. Cyan indicates 

forecasting with 100 stochastically generated weather forcing from January 2015 to December 

2024 (S1); red corresponds to realizedupdated forecasting with two stages, that is, updating with 

measured weather forcing from January 2015 to July 2016 followed by forecasting with 100 

stochastically generated weather forcing from August 2016 to December 2024 (S2); and blue 

shows realizedupdated forecasting with measured weather forcing from January 2015 to 

December 2016 followed by forecasting with 100 stochastically generated weather forcing from 

January 2017 to December 2024 (S3). The bottom panels display mismatches between 

realizedupdated forecasting (S2,3) and the original unrealizedun-updated forecasting (S1). Red 

displays the difference between S2 and S1 (S2-S1) and blue shows discrepancy between S3 and 

S1 (S3-S1). Dashed green lines indicatesindicate the start of forecasting with stochastically 

generated weather forcing. Note that the left 2 panels are plotted on yearly time-scale and the 

right 2 panels show results on monthly time-scale.               
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