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Abstract. Predicting future changes in ecosystem services is not only highly desirable but also 26 

becomes feasible as several forces (e.g., available big data, developed data assimilation (DA) 27 

techniques, and advanced cyberinfrastructure) are converging to transform ecological research to 28 

quantitative forecasting. To realize ecological forecasting, we have developed an Ecological 29 

Platform for Assimilating Data (EcoPAD) into models. EcoPAD (v1.0) is a web-based software 30 

system that automates data transfer and processesprocessing from sensor networks to ecological 31 

forecasting through data management, model simulation, data assimilation, forecasting and 32 

visualization. It facilitates interactive data-model integration from which model is recursively 33 

improved through updated data while data is systematically refined under the guidance of model. 34 

EcoPAD (v1.0) relies on data from observations, process-oriented models, DA techniques, and 35 

the web-based workflow.  36 

We applied EcoPAD (v1.0) to the Spruce and Peatland Responses Under Climatic and 37 

Environmental change (SPRUCE) experiment at North Minnesota. The EcoPAD-SPRUCE 38 

realizes fully automated data transfer, feeds meteorological data to drive model simulations, 39 

assimilates both manually measured and automated sensor data into Terrestrial ECOsystem 40 

(TECO) model, and recursively forecast responses of various biophysical and biogeochemical 41 

processes to five temperature and two CO2 treatments in near real-time (weekly). The near real-42 

time forecastingForecasting with EcoPAD-SPRUCE has revealed that uncertainties or 43 

mismatches in forecasting carbon pool dynamics are more related to model (e.g., model 44 

structure, parameter, and initial value) than forcing variables, opposite to forecasting flux 45 

variables. EcoPAD-SPRUCE quantified acclimations of methane production in response to 46 

warming treatments through shifted posterior distributions of the CH4:CO2 ratio and temperature 47 

sensitivity (Q10) of methane production towards lower values. Different case studies indicated 48 
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that realistic forecasting of carbon dynamics relies on appropriate model structure, correct 49 

parameterization and accurate external forcing. Moreover, EcoPAD-SPRUCE stimulated active 50 

feedbacks between experimenters and modelers so asmodellers to identify model components to 51 

be improved and additional measurements to be made. It becomes the first interactive model-52 

experiment (ModEx) system and opens a novel avenue for interactive dialogue between 53 

modelers and experimenters.modellers and experimenters. Altogether, EcoPAD (v1.0) acts to 54 

integrate multiple sources of information and knowledge to best inform ecological forecasting.      55 

EcoPAD also has the potential to become an interactive tool for resource management, to 56 

stimulate citizen science in ecology, and transform environmental education with its easily 57 

accessible web interface.          58 

                59 
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1. Introduction  63 

One ambitious goal of ecology as onea science discipline is to forecast future states and 64 

services of ecological systems. Forecasting futures in ecology is not only desirable for scientific 65 

advances in this discipline but also has practical values to guide resource management and 66 

decision-making toward a sustainable planet earth. The practical need for ecological forecasting 67 

is particularly urgent in this rapidly changing world, which is experiencing unprecedented 68 

natural resource depletion, increasing food demand, serious biodiversity crisis, accelerated 69 

climate changes, and widespread pollutions in the air, waters, and soils [Clark et al., 2001; 70 

Mouquet et al., 2015][Clark et al., 2001; Mouquet et al., 2015]. As a result, a growing number of 71 

studies have been reported in the last several decades on forecasting of, e.g., phenology [Diez et 72 

al., 2012][Diez et al., 2012], carbon dynamics [Gao et al., 2011; Luo et al., 2016; Thomas et al., 73 

2017][Gao et al., 2011; Luo et al., 2016; Thomas et al., 2017], species dynamics [Clark et al., 74 

2003; Kearney et al., 2010][Clark et al., 2003; Kearney et al., 2010], pollinator 75 

performance[Corbet et al., 1995][Corbet et al., 1995], epidemics [Ong et al., 2010][Ong et al., 76 

2010], fishery [Hare et al., 2010][Hare et al., 2010], algal bloom [Stumpf et al., 2009][Stumpf et 77 

al., 2009], crop yield [Bastiaanssen and Ali, 2003][Bastiaanssen and Ali, 2003], biodiversity 78 

[Botkin et al., 2007][Botkin et al., 2007], plant extinction risk [Fordham et al., 2012][Fordham et 79 

al., 2012], and ecosystem service [Craft et al., 2009][Craft et al., 2009]. Despite its broad 80 

applications, ecological forecasting is still sporadically practiced and lags far behind demand due 81 

to the lack of infrastructure that enables timely integration of models with data. This paper 82 

introduces the fully interactive infrastructure, the Ecological Platform for Assimilating Data 83 

(EcoPAD) into models, to inform near-time ecological forecasting with iterative data-model 84 

integration. 85 
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Ecological forecasting relies on both models and data. However, currently the ecology 86 

research community has not yet adequately integrated observations with models to inform best 87 

forecast. Forecasts generated from scenario approaches are qualitative and scenarios are often 88 

not based on ecological knowledge [Coreau et al., 2009; Coreau et al., 2010][Coreau et al., 89 

2009; Coreau et al., 2010]. Data-driven forecasts using statistical methods are generally limited 90 

for extrapolation and sometimes contaminated by confounding factors [Schindler and Hilborn, 91 

2015][Schindler and Hilborn, 2015]. Recent emergent mechanism-free non-parametric approach, 92 

which depends on the statistical pattern extracted from data, is reported to be promising for 93 

short-term forecast [Sugihara et al., 2012; Perretti et al., 2013; Ward et al., 2014][Sugihara et 94 

al., 2012; Perretti et al., 2013; Ward et al., 2014], but has limited capability in long-term 95 

prediction due to the lack of relevant ecological mechanisms. Process-based models provide the 96 

capacity in long -term prediction and the flexibility in capturing short -term dynamics on the 97 

basis of mechanistic understanding [Coreau et al., 2009; Purves et al., 2013][Coreau et al., 98 

2009; Purves et al., 2013]. Wide applications and tests of process-based models are limited by 99 

their often complicated numerical structure and sometimes unrealistic parameterization 100 

[Moorcroft, 2006][Moorcroft, 2006]. The complex and uncertain nature of ecology precludes 101 

practice of incorporating as many processes as possible into mechanistic models. Our current 102 

incomplete knowledge about ecological systems or unrepresented processes under novel 103 

conditions is partly reflected in model parameters which are associated with large 104 

uncertainty.uncertainties. Good forecasting therefore requires effective communication between 105 

process-based models and data to estimate realistic model parameters and capture context-106 

dependent ecological phenomena.  107 
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Data-model fusion, or data-model integration, is an important step to communicate 108 

modelcombine models with data. But previous data-model integration actvitiesactivities have 109 

mostly been done in an ad hoc manner instead of being interactive. For example, data from a 110 

network of eddy covariance flux tower sites across United States and Canada was compared with 111 

gross primary productivity (GPP) estimatesestimated from different models [Schaefer et al., 112 

2012][Schaefer et al., 2012]. Luo and Reynolds [1999]. Luo and Reynolds [1999] used a model 113 

to examine ecosystem responses to gradual as in the real world vs. step increases in CO2 114 

concentration as in elevated CO2 experiments. Parton et al. [2007]Parton et al. [2007] 115 

parameterized CO2 impacts in an ecosystem model with data from a CO2 experiment in 116 

Colorado. Such model-experiment interactions encounter a few issues: 1) Models are not always 117 

calibrated for individual sites and, therefore, not accurate; 2) It is not very effective because it is 118 

usually one-time practice without many iterative processes between experimenters and 119 

modelersmodellers [Dietze et al., 2013; Lebauer et al., 2013][Dietze et al., 2013; Lebauer et al., 120 

2013]; 3) It is usually one-directionaryunidirectional as data is normally used to train models 121 

while the guidance of model for efficient data collection is limited; and 4) It is not streamlined 122 

and could not be disseminated with common practices among the research community [Dietze et 123 

al., 2013; Lebauer et al., 2013; Walker et al., 2014][Dietze et al., 2013; Lebauer et al., 2013; 124 

Walker et al., 2014]. 125 

A few research groups have developed data assimilation systems to faciliatefacilitate 126 

data-model integration in a systematic way. For example, data-model integration systems, such 127 

as the Data Assimilation Research Testbed - DART [Anderson et al., 2009], the General 128 

Ensemble Biogeochemical Modeling System - GEMS [Tan et al., 2005] and the Carbon Cycle 129 

Data Assimilation Systems - CCDAS [Scholze et al., 2007; Peylin et al., 2016][Scholze et al., 130 
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2007; Peylin et al., 2016], combine various data streams (e.g., FLUXNET data, satellite data and 131 

inventory data) with process-based models through data assimilation algorithms such as the 132 

Kalman filter [Anderson et al., 2009] and variational methods [Peylin et al., 2016][Peylin et al., 133 

2016]. These data assimilaitonassimilation systems automate model parameterization and 134 

provided an avenue to systematically improve models through combining as much data as 135 

possible. Model Data-informed model improvements normally happen after the ending of ana 136 

field experiment and the interactive data-model intergrationintegration is limited as feedbacks 137 

from models to ongoing experimetalexperimental studies are not adequately realizedrealised. In 138 

addtionaddition, wide applications of these data assimilation systems in ecological forecasting 139 

are constrained by limited user interactions with its steep learning curve to understand these 140 

systems, especially for exmperimentersexperimenters who have limited training in 141 

modelingmodelling.         142 

Realizing interactive ecological forecasting requiresThe web-based technology facilitates 143 

interactions. Web-based modelling, which provides user-friendly interfaces to faciliaterun 144 

models in the background, is usually supported by the scientific workflow, the sequence of 145 

processes through which a piece of work passes from initiation to completion. Web-based 146 

modeling, which provides user-friendly interfaces to run models in the background, is uaully 147 

supported by scientific workflow. For example, TreeWatch.Net has recently been developed to 148 

make use of  high precision individual tree monitoring data to parameterize process -based tree 149 

models in real-time and to assess instant tree hydraulics and carbon status with online result 150 

visualization [Steppe et al., 2016][Steppe et al., 2016]. Although the web portal of 151 

TreeWatch.Net is currently limited to the purpose of visualization purposes, it largely broadens 152 

the application of data-model integration and strengthens the interaction of modeling results 153 
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withbetween modelling researches and the general public. The Predictive Ecosystem Analyzer 154 

(PEcAn) is a scientific workflow that wraps around different ecosystem models and manages the 155 

flows of information coming in and out of the model [Lebauer et al., 2013][Lebauer et al., 156 

2013]. PEcAn enables web-based model similationssimulations. Such a workflow has 157 

advantages, for exmapleexample, making ecological modelingmodelling and analysis 158 

convenient, transparent, reproducible and adaptable to new questions [Lebauer et al., 159 

2013][Lebauer et al., 2013], and encouraging user-model interactions. PEcAn uses the Bayesian 160 

meta-analysis to synthesize plant trait data to estimate model parameters and associated 161 

uncertanties.uncertainties, i.e., the prior information for process-based models. Parameter 162 

uncertainties are propogatedpropagated to model uncertantiesuncertainties and displayed as 163 

outputs. It is still not fully interactive in the way that states are not updated iteractivelyiteratively 164 

according to observations and the web-based data assimilation and then ecoloicalecological 165 

forecasting have not yet been fully realizedrealised.   166 

The iterative model-data intergration integration provides an approach to constantly 167 

improve ecological forecasting and is an important step to realize real orespecially for realizing 168 

near real-time ecological forecasting. Instead of projecting into future only one time through 169 

assimulating availableassimilating observations, interactive only once, the iterative forecasting 170 

constantly updates forecasting as soon asalong with ongoing new data stream arrivesstreams 171 

or/and model is modifiedimproved models. Forecasting is likely to be improved unidirectionally 172 

in which either only models are constantly updated through observations, or only data 173 

collections/field experimentations are regularly improved according to theoretical/model 174 

information., but not both. Ecological forecasting can also be bidirectionally improved so that 175 

both models and field experimetationsexperimentations are optimized hand in hand over time. 176 

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

Formatted: English (Canada)



 9 

Although the bidirctionalbidirectional case is rare in ecological forecasting, the unidirectional 177 

iterative forecasting has been reported. One excellent example of forecasting through 178 

dynamically and repeatedly integrating data with models is from infectious disease studies [Ong 179 

et al., 2010; Niu et al., 2014][Ong et al., 2010; Niu et al., 2014]. Dynamics of infectious diseases 180 

are tranditionalytraditionally captured by Susceptible-Infected-Removed (SIR) models. In the 181 

forecasting of the Singapore H1N1-2009 infections, SIR model parameters and the number of 182 

individuals in each state were updated daily, combining data renewed from local clinical reports. 183 

The evolving of the epidemic related parameters and states were captured through iteratively 184 

assimilating observations to inform forecasting. As a result, the model correctly forecasted the 185 

timing of the peak and declining of the infection ahead of time. Iterative forecasting dynamically 186 

integrates data with model and makes best use of both data and theoretical understandings of 187 

ecological processes.  188 

The aim of this paper is to present a fully interactive platform, a web-based Ecological 189 

Platform for Assimilating Data into models (EcoPAD, v1.0), to best inform ecological 190 

forecasting. The interactive feature of EcoPAD (v1.0) is reflected in the iterative model updating 191 

and forecasting through dynamically integrating models with new observations, bidirectional 192 

feedbacks between experimenters and modelersmodellers, and flexible user-model 193 

communication through web-based simulation, data assimilation and forecasting. Such an 194 

interactive platform provides the infrastructure to effectively integrate available resources, from 195 

both models and data, modelersmodellers and experimenters, scientists and the general public, to 196 

improve scientific understanding of ecological processes, to boost ecological forecasting practice 197 

and transform ecology towards qualitativequantitative forecasting.           198 
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In the following sections, we first describe the system design, major components and 199 

functionality of EcoPAD. (v1.0). We then use the Spruce and Peatland Responses Under 200 

Climatic and Environmental change (SPRUCE) experiment [Hanson et al., 2017][Hanson et al., 201 

2017] as a testbed to elaborate new opportunities brought by the platform. We finally discuss 202 

implications of EcoPAD (v1.0) for better ecological forecasting.  203 

 204 

2 EcoPAD: system design, components, and functionality 205 

2.1 General description: web-based data assimilation and forecast  206 

EcoPAD ((v1.0, https://ecolab.nau.edu/ecopad_portal/) focuses on linking ecological 207 

experiments/data with models and allows easily accessible and reproducible data-model 208 

integration with interactive web-based simulation, data assimilation and forecast capabilities. 209 

Specially, EcoPAD (v1.0) enables the automated near time ecological forecasting which works 210 

hand-in-hand between modelersmodellers and experimenters and updates periodically in a 211 

manner similar to the weather forecasting. The system is designed to streamline web request-212 

response, data management, modelingmodelling, prediction and visualization to boost the overall 213 

throughput of observational data, promote data-model communication, inform ecological 214 

forecasting and improve scientific understanding of ecological processes.  215 

To realize such data-informed ecological forecasting, the essential components of 216 

EcoPAD (v1.0) include experiments/data, process-based models, data assimilation techniques 217 

and the scientific workflow (Figures 1-3). The scientific workflow of EcoPAD (v1.0) that wraps 218 

around ecological models and data assimilation algorithms acts to move datasets in and out of 219 

structured and catalogedcatalogued data collections (metadata catalog) while leaving the logic of 220 

the ecological models and data assimilation algorithms untouched (Figures 1, 3). Once a user 221 

https://ecolab.nau.edu/ecopad_portal/
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makes a request through the web browser or command line utilities, the scientific workflow takes 222 

charge of triggering and executing corresponding tasks, be it pulling data from a remote server, 223 

running a particular ecological model, automating forecasting or making the result easily 224 

understandable to users (Figures 1, 3). With the workflow, the system is agnostic to operation 225 

system, environment and programming language and is built to horizontally scale to meet the 226 

demands of the model and the end user community.  227 

 228 

2.2 Components 229 

2.2.1 Data  230 

Data is an important component of EcoPAD (v1.0) and EcoPAD (v1.0) offers systematic data 231 

management to digest diverse data streams. The ‘big data’ ecology generates plethoraa large 232 

volume of very different datasets across various scales [Hampton et al., 2013; Mouquet et al., 233 

2015][Hampton et al., 2013; Mouquet et al., 2015]. These datasets might have high temporal 234 

resolutions, such as those from real time ecological sensors, or the display of spatial information 235 

from remote sensing sources and data stored in the geographic information system (GIS). These 236 

datasets may also include, but are not limited to, inventory data, laboratory measurements, 237 

FLUXNET databases or from long term ecological networks.-term ecological networks 238 

[Baldocchi et al., 2001; Johnson et al., 2010; Robertson et al., 2012] . Such data contain 239 

information related to environmental forcing (e.g., precipitation, temperature and radiative 240 

forcing), site characteristics (includinge.g., soil texture, and species composition) and 241 

biogeochemical information. Datasets in EcoPAD (v1.0) are derived from other research projects 242 

in comma separated value files or other loosely structured data formats. These datasets are first 243 

described and stored with appropriate metadata via either manual operation or scheduled 244 
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automation from sensors. Each project has a separate folder where data are stored. Data are 245 

generally separated into two categories. One is used as boundary conditions for modelling and 246 

the other category is related to observations that are used for data assimilation. Scheduled sensor 247 

data are appended to existing data files with prescribed frequency. Attention is then spent on how 248 

the particular dataset varies over space (x, y) and time (t). When the spatiotemporal variability is 249 

understood, it is then placed in metadata records that allow for query through its scientific 250 

workflow.     251 

2.2.2 Ecological models  252 

Process-based ecological model is another essential component of EcoPAD (Figure 1). In 253 

this paper, the Terrestrial ECOsystem (TECO) model is applied as a general ecological model for 254 

demonstration purposepurposes since the workflow and data assimilation system of EcoPAD 255 

(v1.0) are relatively independent on the specific ecological model. Linkages among the 256 

workflow, data assimilation system and ecological model are based on messaging. For example, 257 

the data assimilation system generates parameters that are passed to ecological models. The state 258 

variables simulated from ecological models are passed back to the data assimilation system. 259 

Models may have different formulations. As long as they take in the same parameters and 260 

generate the same state variables, they are functionally identical from the “eye” of the data 261 

assimilation system.     262 

TECO simulates ecosystem carbon, nitrogen, water and energy dynamics [Weng and Luo, 263 

2008; Shi et al., 2016][Weng and Luo, 2008; Shi et al., 2016]. The original TECO model has 4 264 

major submodules (canopy, soil water, vegetation dynamics and soil carbon/nitrogen) and is 265 

further extended to incorporate methane biogeochemistry and snow dynamics [Huang et al., 266 

2017; Ma et al., 2017][Huang et al., 2017; Ma et al., 2017]. As in the global land surface model 267 
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CABLE [Wang and Leuning, 1998; Wang et al., 2010][Wang and Leuning, 1998; Wang et al., 268 

2010], canopy photosynthesis that couples surface energy, water and carbon fluxes is based on  a 269 

two-big-leaf model [Wang and Leuning, 1998][Wang and Leuning, 1998]. Leaf photosynthesis 270 

and stomatal conductance are based on the common scheme from Farquhar et al. 271 

[1980]Farquhar et al. [1980] and Ball et al. [1987]Ball et al. [1987] respectively. Transpiration 272 

and associated latent heat losses are controlled by stomatal conductance, soil water content and 273 

the rooting profile. Evaporation losses of water are balanced between the soil water supply and 274 

the atmospheric demand which is based on the difference between saturation vapor pressure at 275 

the temperature of the soil and the actual atmospheric vapor pressure. Soil moisture in different 276 

soil layers is regulated by water influxes (e.g., precipitation and percolation) and effluxes (e.g., 277 

transpiration and runoff). Vegetation dynamic tracks processes such as growth, allocation and 278 

phenology. Soil carbon/nitrogen module tracks carbon and nitrogen through processes such as 279 

litterfall, soil organic matter (SOM) decomposition and mineralization. SOM decomposition 280 

modelingmodelling follows the general form of the Century model [Parton et al., 1988][Parton 281 

et al., 1988] as in most earthEarth system models in which. SOM is divided into pools with 282 

different turnover times (the inverse of decomposition rates) which are modified by 283 

environmental factors such as the soil temperature and moisture. 284 

2.2.3 Data assimilation  285 

Data assimilation is a cutting-edge statistical approach that integrates data with model in 286 

a systematicalsystematic way (Figure 2). Data assimilation is growing in importance as the 287 

process -based ecological models, despite largely simplifying the real systems, are in great need 288 

to be complex enough to address sophisticate ecological issues that. These ecological issues are 289 

composed of an enormous number of biotic and abiotic factors interacting with each other. Data 290 
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assimilation techniques provide a framework to combine models with data to estimate model 291 

parameters [Shi et al., 2016][Shi et al., 2016], test alternative ecological hypotheses through 292 

different model structures [Liang et al., 2015][Liang et al., 2015], assess information content of 293 

datasets [Weng and Luo, 2011][Weng and Luo, 2011], quantify uncertainties [Weng et al., 2011; 294 

Keenan et al., 2012; Zhou et al., 2012][Weng et al., 2011; Keenan et al., 2012; Zhou et al., 295 

2012], derive emergent ecological relationships [Bloom et al., 2016], identify model errors and 296 

improve ecological predictions [Luo et al., 2011b][Luo et al., 2011b]. Under the Bayesian 297 

paradigm, data assimilation techniques treat the model structure, initial and parameter values as 298 

priors that represent our current understanding of the system. As new information from 299 

observations or data becomes available, model parameters and state variables can be updated 300 

accordingly. The posterior distributions of estimated parameters or state variables are imprinted 301 

with information from both the model and the observation/data as the chosen parameters act to 302 

reduce mismatches between observations and model simulations. Future predictions benefit from 303 

such constrained posterior distributions through forward modelingmodelling (Figure A1). As a 304 

result, the probability density function of predicted future states through data assimilation 305 

normally has a narrower spread than that without data assimilation when everything else is equal 306 

[Luo et al., 2011bLuo et al., 2011b; Weng and Luo, 2011Weng and Luo, 2011; Niu et al., 2014].           307 

EcoPAD (v1.0) is open to different data assimilation techniques depending on the 308 

ecological questions under study since the scientific workflow of EcoPAD is(v1.0) is relatively 309 

independent on the specific data assimilation algorithm. For demonstration, the Markov chain 310 

Monte Carlo (MCMC) [Xu et al., 2006][Xu et al., 2006] is described in this study.  311 

MCMC is a class of sampling algorithms to draw samples from a probability distribution 312 

obtained through constructed Markov Chain to approximate the equilibrium distribution, which 313 

Field Code Changed
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makes Bayesian inference, especially these with multi-dimensional integrals, workable.. The 314 

Bayesian based MCMC method is advantageous for better ecological forecasting as it takes into 315 

account various uncertainty sources which are crucial in interpreting and delivering forecasting 316 

results [Clark et al., 2001][Clark et al., 2001]. In the application of MCMC, the posterior 317 

distribution of parameters for given observations is proportional to the prior distribution of 318 

parameters and the likelihood function which is linked to the fit/match (or cost function) between 319 

model simulations and observations. EcoPAD (v1.0) currently adopts a batch mode, that is, the 320 

cost function is treated as a single function to be minimized and different observations are 321 

standardized by their corresponding standard deviations [Xu et al., 2006][Xu et al., 2006]. For 322 

simplicity, we assume uniform distributions in priors, and Gaussian or multivariate Gaussian 323 

distributions in observational errors, which can be easilyoperationally expanded to other specific 324 

distribution forms depending on the available information. Detailed description is available in Xu 325 

et al. [2006]Xu et al. [2006]. 326 

2.2.4 Scientific workflow  327 

EcoPAD (v1.0) relies on its scientific workflow to interface ecological models and data 328 

assimilation algorithms, managing diverse data streams, automates iterative ecological 329 

forecasting in response to various user requests. Workflow is a relatively new concept in the 330 

ecology literature but essential to realize real or near-real time forecasting. Thus, we describe it 331 

in detailsdetail below. The essential components of a scientific workflow of EcoPAD (v1.0) 332 

include the metadata catalog, web application-programming interface (API), the asynchronous 333 

task/job queue (Celery) and the container-based virtualization platform (Docker). The workflow 334 

system of EcoPAD (v1.0) also provides structured result access and visualization. 335 

2.2.4.1 Metadata catalog and data management      336 

Formatted: Font: Times New Roman
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Datasets can be placed and queried in EcoPAD (v1.0) via a common metadata catalog 337 

which allows for effective management of diverse data streams. Calls are common for good 338 

management of current large and heterogeneous ecological datasets [Ellison, 2010; Michener 339 

and Jones, 2012; Vitolo et al., 2015][Ellison, 2010; Michener and Jones, 2012; Vitolo et al., 340 

2015]. Kepler [Ludascher et al., 2006][Ludascher et al., 2006] and the Analytic Web [Osterweil 341 

et al., 2010][Osterweil et al., 2010] are two example systems that endeavorendeavour to provide 342 

efficient data management through storage of metadata including clear documentation of data 343 

provenance. Similarly to these systems, EcoPAD (v1.0) takes advantage of modern information 344 

technology, especially the metadata catalog, to manage diverse data streams. The EcoPAD (v1.0) 345 

metadata schema includes description of the data product, security, access pattern, and 346 

timestamp of last metadata update etc. We use MongDBMongoDB (https://www.mongodb.com/ 347 

), a NoSQL database technology, to manage heterogeneous datasets to make the documentation, 348 

query and storage fast and convenient. Through MongDBMongoDB, measured datasets can be 349 

easily fed into ecological models for various purposes such as to initialize the model, calibrate 350 

model parameters, evaluate model structure and drive model forecast. For datasets from real time 351 

ecological sensors that are constantly updating, EcoPAD (v1.0) is set to automatically fetch new 352 

data streams with adjustable frequency depending on research needs.               353 

2.2.4.2 Web API, asynchronous task queue and docker    354 

The RESTful application-programming interface (API) which can deliver data to a wide 355 

variety of applications is the gateway of EcoPAD (v1.0) and enables a wide array of user-356 

interfaces and data-dissemination activities. Once a user makes a request, such as through 357 

clicking on relevant buttons from a web browser, the request is passed through the 358 

Representational State Transfer (i.e., RESTful) API to trigger specific tasks. The RESTful API 359 
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bridges the talk between the client (e.g., a web browser or command line terminal) and the server 360 

(Figure 3). The API exploits the full functionality and flexibility of the HyperText Transfer 361 

Protocol (HTTP), such that data can be retrieved and ingested from the EcoPAD (v1.0) through 362 

the use of simple HTTP headers and verbs (e.g., GET, PUT, POST, etc.). Hence, a user can 363 

incorporate summary data from EcoPAD (v1.0) into a website with a single line of html code. 364 

Users will also be able to access data directly through programming environments like R, Python 365 

and Matlab. Simplicity, ease of use and interoperability are among the main advantages of this 366 

API which enables web-based modelingmodelling.  367 

Celery (https://github.com/celery/celery ) is an asynchronous task/job queue that run 368 

atruns in the background (Figure 3). The task queue (i.e., Celery) is a mechanism used to 369 

distribute work across work units such as threads or machines. Celery communicates through 370 

messages, and EcoPAD (v1.0) takes advantage of the RabbitMQ (https://www.rabbitmq.com/) to 371 

manage messaging. After the user submitsubmits a command, the request or message is passed to 372 

Celery via the RESTful API. These messages may trigger different tasks, which include, but not 373 

limited to, pull data from a remote server where original measurements are located, access data 374 

through metadata catalog, run model simulation with user specified parameters, conduct data 375 

assimilation which recursively updates model parameters, forecast future ecosystem status and 376 

post-process of model results for visualization. The broker inside Celery receives task messages 377 

and handles out tasks to available Celery workers which perform the actual tasks (Figure 3). 378 

Celery workers are in charge of receiving messages from the broker, executing tasks and 379 

returning task results. The worker can be a local or remote computation resource (e.g., the cloud) 380 

that has connectivity to the metadata catalog. Workers can be distributed into different 381 

information technology (IT) infrastructures, which makes EcoPAD (v1.0) workflow easily 382 

https://github.com/celery/celery
https://www.rabbitmq.com/
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expandable. Each worker can perform different tasks depending on tools installed in each 383 

worker. And one task can also be distributed into different workers. In such a way, EcoPAD 384 

(v1.0) workflow enables parallelization and distributed computation of actual 385 

modelingmodelling tasks across various IT infrastructures, and is flexible in implementing 386 

additional computational resources by connecting additional workers.    387 

Another key feature that makes EcoPAD (v1.0) easily portable and scalable among 388 

different operation systems is the utilization of the container-based virtualization platform, the 389 

docker. (https://www.docker.com/). Docker can run many applications which rely on different 390 

libraries and environments on a single kernel with its lightweight containerization. Tasks that 391 

execute TECO in different ways are wrapped inside different docker containers that can “talk” 392 

with each other. Each docker container embeds the ecosystem model into a complete filesystem 393 

that contains everything needed to run an ecosystem model: the source code, model input, run 394 

time, system tools and libraries. Docker containers are both hardware-agnostic and platform-395 

agnostic, and they are not confined to a particular language, framework or packaging system. 396 

Docker containers can be run from a laptop, workstation, virtual machine, or any cloud compute 397 

instance. This is done to support the widely varied number of ecological models running in 398 

various languages (e.g., Matlab, Python, Fortran, C and C++) and environments. In addition to 399 

wrap the ecosystem model into a docker container, software applied in the workflow, such as the 400 

Celery, Rabbitmq and MongoDB, are all lightweight and portable encapsulations through docker 401 

containers. Therefore, the entire EcoPAD (v1.0) is readily portable and applicable in different 402 

environments.     403 

2.2.4.3 Structured result access and visualization 404 
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EcoPAD (v1.0) enables structured result storage, access and visualization to track and 405 

analyzeanalyse data-model fusion practice. Upon the completion of the model task completion, 406 

the model wrapper code calls a post processing callbackcall-back function. This callbackcall-407 

back function allows for model specific data requirements to be added to the model result 408 

repository. Each task is associated with a unique task ID and model results are stored within the 409 

local repository that can be queried by the unique task ID. The easy store and query of model 410 

results are realizedrealised via the MongoDB and RESTful API (Figure 3). Researchers are 411 

authorized to review and download model results and parameters submitted for each model run 412 

through a web accessible URL (link). EcoPAD (v1.0) webpage also displays a list of historical 413 

tasks (with URL) performed by each user. All current and historical model inputs and outputs are 414 

available to download, including the aggregated results produced for the graphical web 415 

applications. In addition, EcoPAD (v1.0) also provides a task report that contains all-inclusive 416 

recap of parameters submitted, task status, and model outputs with links to all data and graphical 417 

results for each task. Such structured result storage and access make sharing, tracking and 418 

referring to modelingmodelling studies instant and clear.      419 

2.3 Scientific functionality 420 

Scientific functionality of EcoPAD (v1.0) includes web-based model simulation, 421 

estimating model parameters or state variables, quantifying uncertainty of estimated parameters 422 

and projected states of ecosystems, evaluating model structures, assessing sampling strategies, 423 

and conducting ecological forecasting. ThoseThese functions can be organized to answer various 424 

scientific questions. In addition to the general description in this section, the scientific 425 

functionality of EcoPAD (v1.0) is also illustrated through a few case studies in the following 426 

sections.  427 
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EcoPAD (v1.0) is designed to perform web-based model simulation, which greatly 428 

reduces the workload of traditional model simulation through manual code compilation and 429 

execution. This functionality opens various new opportunities for modelersmodellers, 430 

experimenters and the general public. Model simulation and result analysis are automatically 431 

triggered after a simple click on the web-embedded button (Appendices Figures A2, A3 A6). 432 

Users are freed from repeatedly compiling code, running code and writing programs to 433 

analyzeanalyse and display model results. Such ease of use has great potential to popularize 434 

complex modelingmodelling studies that are difficult or inaccessible for experimenters and the 435 

general public. As illustrated through the outreach activities from the TreeWatch.Net [Steppe et 436 

al., 2016][Steppe et al., 2016], the potential functionality of such web-based model simulation 437 

goes beyond its scientific value as its societal and educational impacts are critical in solving 438 

ecological issues. The web -based model simulation also frees users from model running 439 

environment, platform and software. Users can conduct model simulation and do analysis as long 440 

as they have internet access. For example, ecologists can conduct model simulation and diagnose 441 

the underlying reasons for a sudden increase in methane fluxes while they are making 442 

measurements in the field. YoungstersNon-ecologists, such as youngsters, can study ecological 443 

dynamics through their phones or tablets while they are waiting for the bus. Resource managers 444 

can make timely assessment of different resource utilization strategies on spot of a meeting.       445 

EcoPAD (v1.0) is backed up by data assimilation techniques, which facilitate inference of 446 

model parameters and states based on observations. Ecology have witnessed a growing number 447 

of studies focusing on parameter estimation using inverse modelingmodelling or data 448 

assimilation as large volumes of ecological measurements become available. To satisfy the 449 

growing need of model parameterization through observations, EcoPAD (v1.0) streamlines 450 
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parameter estimations and updates. Researchers can easily review and download files that record 451 

parameter values from EcoPAD (v1.0) result repository. Since these parameters may have 452 

different scientific valuesbiological, physical or chemical meanings, the functionality of EcoPAD 453 

(v1.0) related to parameter estimations can potentially embrace diverse subareas in ecology. For 454 

example, soil scientists can study the acclimation of soil respiration to manipulative warming 455 

through shifts in the distribution of the decomposition rate parameter from EcoPAD. (v1.0). The 456 

threshold parameter beyond which further harvesting of fish might cause a crash of fish stocks 457 

can be easily extracted through fish stock assessment models and observations if mounted to 458 

EcoPAD. (v1.0).   459 

EcoPAD (v1.0) promotes uncertainty analysis, model structure evaluation and error 460 

identification. One of the advantages of the Bayesian statistics is its capacity in uncertainty 461 

analysis compared to other optimization techniques [Xu et al., 2006; Wang et al., 2009; Zhou et 462 

al., 2012][Xu et al., 2006; Wang et al., 2009; Zhou et al., 2012]. Bayesian data assimilation (e.g., 463 

MCMC) takes into account observation uncertainties (errors), generates distributions of model 464 

parameters and enables tracking of prediction uncertainties from different sources. [Ellison, 465 

2004; Bloom et al., 2016; Jiang et al., 2018]. Uncertainty analysis through data assimilation 466 

applied to areas such as ecosystem phenology, fish life cycle and species migration [Clark et al., 467 

2003; Cook et al., 2005; Crozier et al., 2008; Luo et al., 2011b][Clark et al., 2003; Cook et al., 468 

2005; Crozier et al., 2008; Luo et al., 2011b], can potentially take advantage of EcoPAD (v1.0) 469 

platform to provide critical information for well informed decisions in face of pressing global 470 

change challenges. In addition, the archive capacity of EcoPAD (v1.0) facilitates future inter-471 

comparisons among different models or different versions of the same model to evaluate model 472 

structures and to disentangle structure uncertainties and errors. 473 
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The realization of both the near -time and long -term ecological forecast is one of the key 474 

innovations of EcoPAD. (v1.0). Forecasting capability of EcoPAD (v1.0) is supported by process 475 

-based ecological models, multiple observational or experimental data, inverse parameter 476 

estimation and uncertainty quantification through data assimilation, and forward simulation 477 

under future external conditions. The systematically constrained forecast from EcoPAD (v1.0) is 478 

accompanied by uncertainty/confidence estimates to quantify the amount of information that can 479 

actually be utilized from a study. The automated near time forecast, which is constantly adjusted 480 

once new observational data streams are available, provides experimenters advanced and timely 481 

information to assess and adjust experimental plans. For example, with forecasted and displayed 482 

biophysical and biochemical variables, experimenters could know in advance what the most 483 

likely biophysical conditions are. Knowing if the water table may suddenly go aboveground in 484 

response to a high rainfall forecast in the coming week, could allow researcher to emphasize 485 

measurements associated with methane flux. In such a way, experimenters can not only rely on 486 

historical ecosystem dynamics, but also refer to future predictions. Experimenters will benefit 487 

especially from variables that are difficult to track in field due to situations such as harsh 488 

environment, shortage in man power or on instrument limitation.                     489 

Equally important, EcoPAD (v1.0) creates new avenues to answer classic and novel 490 

ecological questions, for example, the frequently reported acclimation phenomena in ecology. 491 

While growing evidence points to altered ecological functions as organisms adjust to the rapidly 492 

changing world [Medlyn et al., 1999; Luo et al., 2001; Wallenstein and Hall, 2012][Medlyn et 493 

al., 1999; Luo et al., 2001; Wallenstein and Hall, 2012], traditional ecological models treat 494 

ecological processes less dynamical, as the governing biological parameters or mechanisms fails 495 

to explain such biological shifts. EcoPAD (v1.0) facilitates the shift of research paradigm from a 496 
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fixed process representation to a more dynamic description of ecological mechanisms with 497 

constantly updated and archived parameters constrained by observations under different 498 

conditions. Specifically to acclimation, EcoPAD (v1.0)  promotes quantitatively evaluations 499 

while previous studies remain mostly qualitative [Wallenstein and Hall, 2012; Shi et al., 500 

2015][Wallenstein and Hall, 2012; Shi et al., 2015]. We will further illustrate how EcoPAD 501 

(v1.0) can be used to address different ecological questions in the case studies of the SPRUCE 502 

project.     503 

                       504 

3 EcoPAD performance at testbed - SPRUCE  505 

3.1 SPRUCE project overview  506 

EcoPAD (v1.0)  is being applied to the Spruce and Peatland Responses Under Climatic 507 

and Environmental change (SPRUCE) experiment located at the USDA Forest Service Marcell 508 

Experimental Forest (MEF, 47°30.476’ N, 93°27.162’ W) in northern Minnesota [Kolka et al., 509 

2011][Kolka et al., 2011]. SPRUCE is an ongoing project focuses on long-term responses of 510 

northern peatland to climate warming and increased atmospheric CO2 concentration [Hanson et 511 

al., 2017][Hanson et al., 2017]. At SPRUCE, ecologists measure various aspects of responses of 512 

organisms (from microbes to trees) and ecological functions (carbon, nutrient and water cycles) 513 

to a warming climate. One of the key features of the SPRUCE experiments is the manipulative 514 

deep soil/peat heating (0-3 m) and whole ecosystem warming treatments (peat + air warmings) 515 

which include tall trees (> 4 m) [Hanson et al., 2017][Hanson et al., 2017]. Together with 516 

elevated atmospheric CO2 treatments, SPRUCE provides a platform for exploring mechanisms 517 

controlling the vulnerability of organisms, biogeochemical processes and ecosystems in response 518 

to future novel climatic conditions. The SPRUCE peatland is especially sensitive to future 519 
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climate change and also plays an important role in feeding back to future climate change through 520 

greenhouse gas emissions as it stores a large amount of soil organic carbon. Vegetation in the 521 

SPRUCE site is dominated by Picea mariana (black spruce) and Sphagnum spp (peat moss). The 522 

studied peatland also has an understory which include ericaceous and woody shrubs. There are 523 

also a limited number of herbaceous species. The whole ecosystem warming treatments include a 524 

large range of both aboveground and belowground temperature manipulations (ambient, control 525 

plots of + 0 °C, +2.25 °C, +4.5 °C, +6.75 °C and +9 °C) in large 115 m2 open-topped enclosures 526 

with elevated CO2 manipulations (+0 or +500 ppm). The difference between ambient and +0 527 

treatment plots is the open-topped and controlled-environment enclosure.  528 

The SPRUCE project generates a large variety of observational datasets that reflect 529 

ecosystem dynamics from different scales and are available from the project webpage 530 

(https://mnspruce.ornl.gov/) and FTP site (ftp://sprucedata.ornl.gov/). These datasets come from 531 

multiple sources: half hourly automated sensor records, species surveys, laboratory 532 

measurements, laser scanning images etc. Involvements of both modelingmodelling and 533 

experimental studies in the SPRUCE project create the opportunity for data-model 534 

communication. Datasets are pulled from SPRUCE archives and stored in the EcoPAD (v1.0) 535 

metadata catalog for running the TECO model, conducting data-model fusion or forecasting. The 536 

TECO model has been applied to simulate and forecast carbon dynamics with productions of 537 

CO2 and CH4 from different carbon pools, soil temperature response, snow depth and freeze-538 

thaw cycles at the SRPUCE site [Huang et al., 2017; Ma et al., 2017; Jiang et al., 2018][Huang 539 

et al., 2017; Ma et al., 2017; Jiang et al., 2018].            540 

 541 

3.2 EcoPAD-SPRUCE web portal   542 

https://mnspruce.ornl.gov/
ftp://sprucedata.ornl.gov/


 25 

We assimilate multiple streams of data from the SPRUCE experiment to the TECO 543 

model using the MCMC algorithm, and forecast ecosystem dynamics in both near time and for 544 

the next 10 years. Our forecasting system for SPRUCE is available at 545 

https://ecolab.nau.edu/ecopad_portal/. From the web portal, users can check our current near- 546 

and long -term forecasting results, conduct model simulation, data assimilation and forecasting 547 

runs, and analyzeanalyse/visualize model results. Detailed information about the interactive web 548 

portal is provided in the Appendices.       549 

3.3 Near time ecosystem forecasting and feedback to experimenters   550 

As part of the forecasting functionality, EcoPAD-SPRUCE automates the near time 551 

(weekly) forecasting with continuously updated observations from SPRUCE experiments (Figure 552 

54). We set up the system to automatically pull new data streams every Sunday from the 553 

SPRUCE FTP site that holds observational data and update the forecasting results based on new 554 

data streams. Updated forecasting results for the next week are customized for the SPRUCE 555 

experiments with different manipulative treatments and displayed in the EcoPAD-SPRUCE 556 

portal. At the same time, these results are sent back to SPRUCE communities and displayed 557 

together with near -term observations for experimenter’s reference.  558 

3.4 New approaches to ecological studies towards better forecasting     559 

3.4.1 Case 1: Interactive communications among modelersmodellers and experimenters      560 

EcoPAD-SPRUCE provides a platform to stimulate interactive communications between 561 

modelersmodellers and experimenters. Models require experimental data to constrain initial 562 

conditions and parameters, and to verify model performance. A reasonable model is built upon 563 

correct interpretation of information served by experimenters. Model simulations on the other 564 

hand can expand hypotheseshypothesis testing, and provide thorough or advanced information to 565 

https://ecolab.nau.edu/ecopad_portal/
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improve field experiments. Through recursively exchanging information between 566 

modelersmodellers and experimenters, both models and field experiments can be improved. As 567 

illustrated in Figure 54, through extensive communication between modelersmodellers and 568 

experimenters, modelersmodellers generate model predictions. Model predictions provide 569 

experimenters advanced information, help experimenters think, question and understand their 570 

experiments. Questions raised by experimenters stimulate further discussion and communication. 571 

Through communication, models or/and measurements are adjusted. With new measurements 572 

or/and strengthened models, a second round of prediction is highly likely to be improved. As the 573 

loop of prediction-question-discussion-adjustment-prediction goes on, forecasting is informed 574 

with best understandings from both data and model.        575 

We illustrate how the prediction-question-discussion-adjustment-prediction cycle and 576 

stimulation of modelermodeller-experimenter communication improves ecological predictions 577 

through one episode during the study of the relative contribution of different pathways to 578 

methane emissions. An initial methane model was built upon information (e.g., site 579 

characteristics and environmental conditions) provided by SPRUCE field scientists, taking into 580 

account important processes in methane dynamics, such as production, oxidation and emissions 581 

through three pathways (i.e., diffusion, ebullition and plant-mediated transportation). The model 582 

was used to predict relative contributions of different pathways to overall methane emissions 583 

under different warming treatments after being constrained by measured surface methane fluxes. 584 

Initial forecasting results which indicated a strong contribution from ebullition under high 585 

warming treatments were sent back to the SPRUCE group. Experimenters doubted about such a 586 

high contribution from the ebullition pathway and a discussion was stimulated. It is difficult to 587 

accurately distinguish the three pathways from field measurements. Field experimenters 588 
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provided potential avenues to extract measurement information related to these pathways, while 589 

modelersmodellers examined model structure and parameters that may not be well constrained 590 

by available field information. Detailed discussion is provided in Table 1. After extensive 591 

discussion, several adjustments were adopted as a first step to move forward. For example, the 592 

three-porosity model that was used to simulate the diffusion process was replaced by the 593 

Millington-Quirk model to more realistically represent methane diffusions in peat soil; the 594 

measured static chamber methane fluxes were also questioned and scrutinized more carefully to 595 

clarify that they did not capture the episodic ebullition events. Measurements such as these 596 

related to pore water gas data may provide additional inference related to ebullition. The updated 597 

forecasting is more reasonable than the initial results although more studies are in need to 598 

ultimately quantify methane fluxes from different pathways.    599 

3.4.2 Case 2: Acclimation of ecosystem carbon cycling to experimental manipulations   600 

As a first step, CH4 static chamber flux measurements were assimilated into TECO to 601 

assess potential acclimation phenomena during methane production under 5 warming treatments 602 

(+0, +2.25, +4.5, +6.75, +9 °C). Initial results indicated a reduction in both the CH4:CO2 ratio and 603 

the temperature sensitivity of methane production based on their posterior distributions (Figure 604 

65). The mean CH4:CO2 ratio decreased from 0.675 (control(+0 ˚C treatment) to 0.505 (+9 ˚C 605 

treatment), while the temperature sensitivity (Q10) for CH4 production decreased from 3.33 606 

(control(+0 ˚C) to 1.22 (+9 ˚C treatment). Such shifts quantify potential acclimation of methane 607 

production to warming and future climate warming is likely to have a smaller impact on emission 608 

than most of current predictions that do not take into account of acclimation.  609 

Despite these results are preliminary as more relevant datasets are under collection with 610 

current ongoing warming manipulation and measurements, assimilating observations through 611 
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EcoPAD (v1.0) provides a quantitative approach to timely assess acclimation through time. Melillo 612 

et al. [2017]Melillo et al. [2017] revealed that the thermal acclimation of the soil respiration in the 613 

Harvard Forest is likely to be phase (time) dependent during their 26-year soil warming experiment. 614 

EcoPAD (v1.0) provides the possibility in tracing the temporal path of acclimation with its 615 

streamlined structure and archive capacity. Shi et al. [2015]Shi et al. [2015] assimilated carbon 616 

related measurements in a tallgrass prairie into the TECO model to study acclimation after 9-years 617 

warming treatments. They revealed a reduction in the allocation of GPP to shoot, the turnover rates 618 

of the shoot and root carbon pools, and an increase in litter and fast carbon turnovers in response 619 

to warming treatments. Similarly, as time goes on, the SPRUCE experiment will generate more 620 

carbon cycling related datasets under different warming and CO2 treatments, which can be 621 

mounted to EcoPAD (v1.0) to systematically quantify acclimations in carbon cycling through time 622 

in the future.                     623 

3.4.3 Case 3: Partitioning of uncertainty sources   624 

Uncertainties in ecological studies can come from observations (include forcing that 625 

drives the model), different model structures to represent the real world and the specified model 626 

parameters [Luo et al., 2016][Luo et al., 2016]. Previous studies tended to focus on one aspect of 627 

the uncertainty sources instead of disentangling the contribution from different sources. For 628 

example, the model intercomparison projects (MIPs), such as TRENDY, focus on uncertainty 629 

caused by different model structures with prescribed external forcing [Sitch et al., 2008][Sitch et 630 

al., 2008]. Keenan et al. [2012]. Keenan et al. [2012] used data assimilation to constrain 631 

parameter uncertainties in projecting Harvard forest carbon dynamics. Ahlstrom et al. [2012] 632 

forced one particular vegetation model by 18 sets of forcings from climate models of the 633 
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Coupled Model Intercomparison Project Phase 5 (CMIP5), while the parameter or model 634 

structure uncertainty is not taken into account. 635 

EcoPAD (v1.0) is designed to provide a thorough picture of uncertainties from multiple 636 

sources especially in carbon cycling studies. Through focusing on multiple instead of one source 637 

of uncertainty, ecologists can allocate resources to areas that cause relative high uncertainty. 638 

Attribution of uncertainties in EcoPAD relies(v1.0) will rely on an ensemble of ecosystem 639 

models, the data assimilation system and climate forcing with quantified uncertainty. For 640 

example, Jiang et al. [2018]Jiang et al. [2018] focused specifically on the relative contribution 641 

of parameter uncertainty vs. climate forcing uncertainty in forecasting carbon dynamics at the 642 

SPRUCE site. Through assimilating the pre-treatment measurements (2011-2014) from the 643 

SPRUCE experiment, Jiang et al. [2018]Jiang et al. [2018] estimated uncertainties of key 644 

parameters that regulate the peatland carbon dynamics. Combined with the stochastically 645 

generated climate forcing (e.g., precipitation and temperature), Jiang et al. [2018]Jiang et al. 646 

[2018] found external forcing resulted in higher uncertainty than parameters in forecasting 647 

carbon fluxes, but caused lower uncertainty than parameters in forecasting carbon pools. 648 

Therefore, more efforts are required to improve forcing measurements for studies that focus on 649 

carbon fluxes (e.g., GPP), while reductions in parameter uncertainties are more important for 650 

studies in carbon pool dynamics. Such kind of uncertainty assessment benefits from EcoPAD 651 

with its systematically archived model simulation, data assimilation and forecasting. Despite 652 

Jiang et al. [2018] does not quantify model structure uncertainty, the project of incorporating 653 

multiple models inside EcoPAD (v1.0) is in progress, and future uncertainty assessment will 654 

benefit from EcoPAD (v1.0) with its systematically archived model simulation, data assimilation 655 

and forecasting.     656 
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3.4.4 Case 4: Improving biophysical estimation for better ecological prediction    657 

Carbon cycling studies can also benefit from EcoPAD (v1.0) through improvements in 658 

external forcingbiophysical estimation. Soil environmental condition is an important regulator of 659 

belowground biological activities and also feeds back to aboveground vegetation growth. 660 

Biophysical variables such as soil temperature, soil moisture, ice content and snow depth, are 661 

key predictors of ecosystem dynamics. After constraining the biophysical module by detailed 662 

monitoring data from the SPRUCE experiment through the data assimilation component of 663 

EcoPAD, Huang et al. [2017] (v1.0), Huang et al. [2017] forecasted the soil thermal dynamics 664 

under future conditions and studied the responses of soil temperature to hypothetical air 665 

warming. This study emphasized the importance of accurate climate forcing in providing robust 666 

thermal forecast. In addition, Huang et al. [2017]In addition, Huang et al. [2017] revealed non-667 

uniform responses of soil temperature to air warming. Soil temperature responded stronger to air 668 

warming during summer compared to winter. And soil temperature increased more in shallow 669 

soil layers compared to deep soils in summer in response to air warming. Therefore, 670 

extrapolating of manipulative experiments based on air warming alone may not reflect the real 671 

temperature sensitivity of SOM if soil temperature is not monitored. As robust quantification of 672 

environmental conditions is known to be a first step towards better understanding of ecological 673 

process, improvement in soil thermal predictions through EcoPAD (v1.0) data assimilation 674 

system is helpful in telling apart biogeochemical responses from environmental uncertainties and 675 

also in providing field ecologists beforehand key environmental conditions.  676 

3.4.5 Case 5: How do updated model and data contribute to reliable forecasting?     677 

Through constantly adjusted model and external forcing according to observations and 678 

weekly archived model parameter, model structure, external forcing and forecasting results, the 679 
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contribution of model and data updates can therefore be tracked through comparing forecasted 680 

vs. realizedrealised simulations. For example, Figure 76 illustrates how realizedupdated external 681 

forcing (compared to stochastically generated forcing) and shifts in ecosystem state variables 682 

shape ecological predictions. Similarly as in other EcoPAD-SPURCE case studies, TECO is 683 

trained through data assimilation with observations from 2011-2014 and is used to forecast GPP 684 

and total soil organic carbon content at the beginning of 2015. For demonstrating purpose, Figure 685 

76 only shows 3 series of forecasting results instead of updates from every week. Series 1 (S1) 686 

records forecasted GPP and soil carbon with stochastically generated weather forcing from 687 

January 2015-December 2024 (Figure 7a6a,b cyan). Series 2 (S2) records simulated GPP and 688 

soil carbon with observed climate forcing from January 2015 to July 2016 and forecasted GPP 689 

and soil carbon with stochastically generated forcing from August 2016 - December 2024 690 

(Figure 7a6a,b red). Similarly, the stochastically generated forcing in Series 3 (S3) starts from 691 

January 2017 (Figure 7a6a,b blue). For each series, predictions were conducted with randomly 692 

sampled parameters from the posterior distributions and stochastically generated forcing. We 693 

displayed 100 mean values (across an ensemble of forecasts with different parameters) 694 

corresponding to 100 forecasts with stochastically generated forcing.  695 

GPP is highly sensitive to climate forcing. The differences between the realizedupdated 696 

(S2, 3) and initial forecasts (S1) reach almost 800 gC m-2 year-1 (Figure 7c6c). The discrepancy 697 

is strongly dampened in the following 1-2 years. The impact of realizedupdated forecasts is close 698 

to 0 after approximately 5 years. However, soil carbon pool shows a different pattern. Soil 699 

carbon pool is increased by less than 150 gC m-2, which is relative small compared to the carbon 700 

pool size of ca. 62000 gC m-2. The impact of realizedupdated forecasts grows with time and 701 

reaches the highest at the end of the simulation year 2024. GPP is sensitive to the immediate 702 
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change in climate forcing while the updated ecosystem status (or initial value) has minimum 703 

impact in the long -term forecast of GPP. The impact of updated climate forcing is relatively 704 

small for soil carbon forecasts during our study period. Soil carbon is less sensitive to the 705 

immediate change of climate compared to GPP. However, the alteration of system status affects 706 

soil carbon forecast especially in a longer time scale.   707 

Since we are archiving realizedupdated forecasts every week, we can track the relative 708 

contribution of ecosystem status, forcing uncertainty and parameter distributions to the overall 709 

forecasting patterns of different ecological variables and how these patterns evolve in time. In 710 

addition, as growing observations of ecological variables (e.g., carbon fluxes and pool sizes) 711 

become available, it is feasible to diagnose key factors that promote robust ecological forecasting 712 

through comparing the archived forecasts vs. observation and analysing archives of model 713 

parameters, initial values and climate forcing etc.                                                        714 

 715 

4 Discussion 716 

4.1 The necessity of interactive infrastructure to realize ecological forecasting 717 

Substantial increases in data availability from observational and experimental networks, 718 

surges in computational capability, advancements in ecological models and sophisticated 719 

statistical methodologies and pressing societal need for best management of natural resources 720 

have shifted ecology to emphasis more on quantitative forecasts. However, quantitative 721 

ecological forecast is still young and our knowledge about ecological forecasting is relatively 722 

sparse, inconsistent and disconnected [Luo et al., 2011b; Petchey et al., 2015][Luo et al., 2011b; 723 

Petchey et al., 2015]. Therefore, both optimistic and pessimistic viewpoints exist on the 724 

predictability of ecology [Clark et al., 2001; Beckage et al., 2011; Purves et al., 2013; Petchey et 725 
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al., 2015; Schindler and Hilborn, 2015][Clark et al., 2001; Beckage et al., 2011; Purves et al., 726 

2013; Petchey et al., 2015; Schindler and Hilborn, 2015]. Ecological forecasting is complex and 727 

advantages in one single direction, for example, observations alone or statistical methodology 728 

alone, is less likely to lead to successful forecasting compared to approaches that effectively 729 

integrate improvements from multiple sectors. Unfortunately, realizedrealised ecological 730 

forecasting that integrates available resources is relative rare due to lack of relevant 731 

infrastructures.      732 

EcoPAD (v1.0) provides such effective infrastructure with its interactive platform that 733 

rigorously integrates merits from models, observations, statistical advance, information 734 

technology and human resources from experimenter, modeler as well as the general 735 

publicexperimenters and modellers to best inform ecological forecasting, boost forecasting 736 

practice and delivery of forecasting results. Interactions enable exchanging and extending of 737 

information so as to benefit from collective knowledge. For example, manipulative studies will 738 

have a much broader impact if the implications of their results can be extended from the 739 

regression between environmental variable and ecosystem response, such as be integrated into an 740 

ecosystem model through model-data communication. Such an approach will allow gaining 741 

information about the processes responsible for ecosystem’s response, constraining models, and 742 

making more reliable predictions. Going beyond common practice of model-data assimilation 743 

from which model updating lags far behind observations, EcoPAD (v1.0) enables iterative model 744 

updating and forecasting through dynamically integrating models with new observations in near 745 

real -time. This near real-time interactive capacity relies on its scientific workflow that automates 746 

data management, model simulation, data simulation and result visualization. The open, timely, 747 

convenient, transparent, flexible, reproducible and traceable characteristics of this platform, also 748 
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thanks to its scientific workflow, encouragedsystem design encourages thorough interactions 749 

between experimenters and modelersmodellers. Forecasting results from SPRUCE were timely 750 

shared among research groups with different background through the web interface. Expertise 751 

from different research groups was integrated to improve a second round of forecasting. Again, 752 

thanks to the workflow, new information or adjustment is relatively easy to 753 

incorporateincorporated into future forecasting efficiently, making the forecasting system fully 754 

interactive and dynamical.  755 

We also benefit from the interactive EcoPAD (v1.0) platform to broaden user-model 756 

interactions and to broadcast forecasting results. Learning about the ecosystem models and data-757 

model fusion techniques may lag one’s productivity and even discourage learning the 758 

modelingmodelling techniques because of their complexity and long learning curve. Because 759 

EcoPAD (v1.0) can be accessed from a web browser and does not require any coding from the 760 

user’s side, the time lag between learning the model structure and obtaining model-based results 761 

for one’s study is minimal, which opens the door for non-modelermodeller groups to “talk” with 762 

models. The online storage of one’s results lowers the risk of data loss. The results of each model 763 

run can be easily tracked and shared with its unique ID and web address. In addition, the web-764 

based workflow also saves time for experts with automated model running, data assimilation, 765 

forecasting, structured result access and instantaneous graphic outputs, bringing the possibility 766 

for thorough exploration of more essence part of the system. The simplicity in use of EcoPAD 767 

(v1.0) at the same time may limit their access to the code and lowers the flexibility. Flexibility 768 

for users with higher demands, for example, those who wanted to test alternative data 769 

assimilation methods, use a different carbon cycle model, change the number of calibrated 770 

parameters, include the observations for other variables, is provided through the GitHub 771 
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repository (https://github.com/ou-ecolab ). This GitHub repository contains code and instruction 772 

for installing, configuring and controlling the whole system, users can easily adapt the workflow 773 

to wrap their own model based on his or her needs.  774 

In addtion to benefit from its workflow, the advantage of EcoPAD is also reflected in its 775 

data assimilation capacity especially for land carbon studies. One focus of EcoPAD is to 776 

constrain parameters of terrestrial carbon models to predict long-term carbon dynamics (e.g., 100 777 

years) which are determined more by parameters than initial values of state variables [Weng and 778 

Luo, 2011]. EcoPAD incorporates the Bayesian framework, especially the MCMC method, to 779 

constrain parameters. In comparison, DART uses the Ensemble Kalman Filter to adjust model 780 

state variables, instead of parameters, to match observations over time. In the past, complex 781 

models could not assimilate pool-related data to constrain their parameter estimation due to 782 

insurmountable computational demand in large scale studies. For example, CCDAS normally 783 

only assimilates flux-based data [Peylin et al., 2016]. EcoPAD is flexible in assimilating both 784 

pool- and flux-based data into complex models so that both fluxes and turnover rates of pools 785 

can be constrained with its matrix representation [Hararuk et al., 2014; Luo, 2017] and its 786 

capability to wrap different models.  787 

4.2 Implications for better ecological forecasting   788 

Specifically to reliable forecasting of carbon dynamics, our initial exploration from 789 

EcoPAD-SPRUCE indicates that realistic model structure, correct parameterization and accurate 790 

external environmental conditions are essential. Model structure captures important known 791 

mechanisms that regulate ecosystem carbon dynamics. Adjustment in model structure is critical 792 

in our improvement in methane forecasting. Model parameters may vary between observation 793 

sites, change with time or environmental conditions [Medlyn et al., 1999; Luo et al., 794 

https://github.com/ou-ecolab
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2001][Medlyn et al., 1999; Luo et al., 2001]. A static or wrong parameterization misses 795 

important mechanisms (e.g., acclimation and adaptation) that regulate future carbon dynamics. 796 

Not well constrained parameters, for example, caused by lack of information from observational 797 

data, contribute to high forecasting uncertainty and low reliability of forecasting results. Correct 798 

parameterization is especially important for long -term carbon pool predictions as parameter 799 

uncertainty resulted in high forecasting uncertainty in our case study [Jiang et al., 2018][Jiang et 800 

al., 2018]. Although the picture about how neglecting of parameter shift affects carbon 801 

predictions has not yet been fully revealed from EcoPAD-SPRUCE as field measurements are 802 

still ongoing, our initial exploration indicates non-negligible acclimation of ecosystem methane 803 

production in response to warming.. Parameter values derived under the ambient condition was 804 

not applicable to the warming treatment in our methane case due to acclimation. External 805 

environmental condition is another important factor in carbon predictions. External 806 

environmental condition includes both the external climatic forcing that is used to drive 807 

ecosystem models and also the environmental condition that is simulated by ecosystem models. 808 

As we showed that air warming may not proportionally transfer to soil warming, realistic soil 809 

environmental information needs to be appropriately represented to predict soil carbon dynamics 810 

[Huang et al., 2017][Huang et al., 2017]. The impact of external forcing is especially obvious in 811 

short term carbon flux predictions. Forcing uncertainty resulted in higher forecasting uncertainty 812 

in carbon flux compared to that from parameter uncertainty [Jiang et al., 2018][Jiang et al., 813 

2018]. Mismatches in forecasted vs. realizedrealised forcing greatly increased simulated GPP 814 

and the discrepancy diminished in the long run. Reliable external environmental condition, to 815 

some extent, reduces the complexity in diagnosing modeledmodelled carbon dynamics. 816 
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Pool-based vs. flux-based predictions are regulated differently by external forcing and 817 

initial states, which indicates that differentiated efforts are required to improve short vs. long -818 

term predictions. External forcing, which has not been well emphasized in previous carbon 819 

studies, has strong impact on short term forecasting. The large response of GPP to forecasted vs. 820 

realizedrealised forcing as well the stronger forcing-caused uncertainty in GPP predictions 821 

indicate correct forcing information is a key step in short term flux predictions. In this study, we 822 

stochastically generated the climate forcing based on local climatic conditions (1961-2014), 823 

which is not sufficient in capturing local short -term climate variability. As a result, 824 

realizedupdated GPP went outside our ensemble forecasting. On the other hand, parameters and 825 

historical information about pool status are more important in long -term pool predictions. 826 

Therefore, improvement in long -term pool size predictions cannot be reached by accurate 827 

climatic information alone. Instead, it requires accumulation in knowledge related to site history 828 

and processes that regulate pool dynamics.         829 

Furthermore, reliable forecasting needs understanding of uncertainty sources in addition 830 

to the future mean states. Uncertainty and complexity are major reasons that lead to the belief in 831 

“computationally irreducible” and low intrinsic predictability of ecological systems [Coreau et 832 

al., 2010; Beckage et al., 2011; Schindler and Hilborn, 2015][Coreau et al., 2010; Beckage et 833 

al., 2011; Schindler and Hilborn, 2015]. Recent advance in computational statistical methods 834 

offers a way to formally accounting for various uncertainty sources in ecology [Clark et al., 835 

2001; Cressie et al., 2009][Clark et al., 2001; Cressie et al., 2009]. And the Bayesian approach 836 

embedded in EcoPAD (v1.0) brings the opportunity to understand and communicate forecasting 837 

uncertainty. Our case study revealed that forcing uncertainty is more important in flux-based 838 

predictions while parameter uncertainty is more critical in pool-based predictions. Actually, how 839 
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forecasting uncertainty in carbon forecasting changes with time, what are the dominate 840 

sourcescontributor of forecasting uncertainty (e.g., parameter, initial condition, model structure, 841 

observation errors, forcing etc.) under different conditions,.), how uncertainty sources interact 842 

among different components, or to what extent unconstrained parameters affect forecasting 843 

uncertainty are all valuable questions that can be explored through EcoPAD. (v1.0).  844 

4.3 Applications of EcoPAD to manipulative experiments and observation sites 845 

Broadly speaking, data-model integration stands to increase the overall precision and 846 

accuracy of model-based experimentation [Luo et al., 2011b; Niu et al., 2014][Luo et al., 2011b; 847 

Niu et al., 2014]. Systems for which data have been collected in the field and which are well 848 

represented by ecological models therefore have the capacity to receive the highest benefits from 849 

EcoPAD (v1.0) to improve forecasts. In a global change context, experimental manipulations 850 

including ecosystem responses to changes in precipitation regimes, carbon dioxide 851 

concentrations, temperatures, season lengths, and species compositional shifts can now be 852 

assimilated into ecosystem models [Xu et al., 2006; Gao et al., 2011; Lebauer et al., 2013; Shi et 853 

al., 2016][Xu et al., 2006; Gao et al., 2011; Lebauer et al., 2013; Shi et al., 2016]. Impacts of 854 

these global change factors on carbon cycling and ecosystem functioning can now be measured 855 

in a scientifically transparent and verifiable manner. This leads to ecosystem modelingmodelling 856 

of systems and processes that can obtain levels of confidence that lend credibility with the public 857 

to the science’s forward progress toward forecasting and predicting [Clark et al., 2001][Clark et 858 

al., 2001]. These are the strengths of a widely-available interface devoted to data-model 859 

integration towards better forecasting.   860 

The data-model integration framework of EcoPAD (v1.0) creates a smart interactive 861 

model-experiment (ModEx) system. ModEx has the capacity to form a feedback loop in which 862 
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field experiment guides modelingmodelling and modelingmodelling influences experimental 863 

focus [Luo et al., 2011a][Luo et al., 2011a]. We demonstrated how EcoPAD (v1.0) works hand-864 

in-hand between modelersmodellers and experimenters in the life-cycle of the SPRUCE project. 865 

Field experiment from SPRUCE community provides basic data to set up the ecosystem model 866 

and update model parameters recursively, while the forecasting from ecosystem 867 

modelingmodelling informs experimenters the potential key mechanisms that regulate ecosystem 868 

dynamics and help experimenters to question and understand their measurements. The EcoPAD-869 

SPRUCE system operates while experimenters are making measurements or planning for future 870 

researches. Information is constantly fed back between modelersmodellers and experimenters, 871 

and simultaneous efforts from both parties illustrate how communications between model and 872 

data advance and shape our understanding towards better forecasts during the lifecycle of a 873 

scientific project. ModEx can be easily extended to other experimental systems to: 1, predict 874 

what might be an ecosystem’s  response to treatments once experimenter selected a site and 875 

decided the experimental plan; 2, assimilate data experimenters are collecting along the 876 

experiment to constrain model predictions; 3, project what an ecosystem’s  responses may likely 877 

be in the rest of the experiment; 4, tell experimenters what are those important datasets 878 

experimenters may want to collect in order to understand the system; 5, periodically updates the 879 

projections; and 6, improve the models, the data assimilation system, and field experiments 880 

during the process.  881 

In addition to the manipulative experimental, the data assimilation system of EcoPAD 882 

(v1.0)  can be used for automated model calibration for FLUXNET sites or other observation 883 

networks, such as the NEON and LTER [Johnson et al., 2010; Robertson et al., 2012][Johnson 884 

et al., 2010; Robertson et al., 2012]. The application of EcoPAD (v1.0) at FLUXNET, NEON or 885 Formatted: Font color: Auto
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LTER sites includes three steps in general. First, build the climate forcing in the suitable formats 886 

of EcoPAD (v1.0) from the database of each site; Second, collect the prior information (include 887 

observations of state variables) in the data assimilation system from FLUXNET, NEON or 888 

LTER sites; Third, incorporate the forcing and prior information into EcoPAD, (v1.0), and then 889 

run the EcoPAD (v1.0) with the dynamic data assimilation system. Furthermore, facing the 890 

proposed continental scale ecology study [Schimel, 2011][Schimel, 2011], EcoPAD (v1.0) once 891 

properly applied could also help evaluate and optimize field deployment of environmental 892 

sensors and supporting cyberinfrastructure, that will be necessary for larger, more complex 893 

environmental observing systems being planned in the US and across different continents.  894 

Altogether, with its milestone concept, EcoPAD (v1.0) benefits from observation and 895 

modelingmodelling and at the same time advances both observation and modelingmodelling of 896 

ecological studies.                       897 

4.4 Future developments 898 

As we indicated, EcoPAD (v1.0) will expand as time goes on. The system is designed to 899 

incorporate multiple biogeochemicalprocess-based models, diverse data assimilation techniques 900 

and various ecosystemecological state variables. for different ecosystems. Case studies presented 901 

in earlier sections are based primarily on one model. A multiple (or ensemble) model approach is 902 

helpful in tracking uncertainty sources from our process understanding. With rapid evolving 903 

ecological knowledge, emerging models with different hypotheses, such as the microbial-enzyme 904 

model [Wieder et al., 2013][Wieder et al., 2013], enhance our capacity in ecological prediction 905 

but can also benefit from rapid tests against data if incorporated into EcoPAD. (v1.0). In addition 906 

to MCMC [Braswell et al., 2005; Xu et al., 2006][Braswell et al., 2005; Xu et al., 2006], a 907 

variety of data assimilation techniques have been recently applied to improve models for 908 
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ecological forecasting, such as the EnKF [Gao et al., 2011][Gao et al., 2011], Genetic Algorithm 909 

[Zhou and Luo, 2008][Zhou and Luo, 2008] and 4-d variational assimilation [Peylin et al., 910 

2016][Peylin et al., 2016]. Future development will incorporate different optimization techniques 911 

to offer users the option to search for the best model parameters by selecting and comparing the 912 

possibly best method for their specific studystudies. We focus mostly on carbon related state 913 

variables in the SPRUCE example, and the data assimilation system in EcoPAD (v1.0) needs to 914 

include more observed variables for constraining model parameters. For example, the NEON 915 

sites not only provide measured ecosystem CO2 fluxes and soil carbon stocks, but also resources 916 

(e.g., GPP/Transpiration for water and GPP/intercepted PAR for light) use efficiency [Johnson et 917 

al., 2010][Johnson et al., 2010].  918 

With these improvements, one goal of the EcoPAD (v1.0) is to enable the research 919 

community to run modelsunderstand and reduce forecasting uncertainties from different sources 920 

and forecast various aspects of future biogeochemical and ecological changes as data 921 

becomesbecome available. The example of Jiang et al. [2018] partitioned forecasting uncertainty 922 

from forcings and parameters. An exhaustive understanding of forecasting uncertainty in ecology 923 

need to also consider model structures, data assimilation schemes as well as different ecological 924 

state variables. Researchers interested in creating their own multiple model and/or multiple 925 

assimilation scheme version of EcoPAD (v1.0) can start from the GitHub repository 926 

(https://github.com/ou-ecolab ) where the source code of the EcoPAD (v1.0) workflow is 927 

archived. To add a new variable that is not forecasted in the EcoPAD-SPRUCE example, it 928 

requires modellers and experimenters to work together to understand their process-based model, 929 

their observations and how messaging works in the workflow of EcoPAD (v1.0) following the 930 

example of EcoPAD-SPRUCE. To add a new model or a new data assimilation scheme for 931 
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variables that are forecasted in EcoPAD-SPRUCE, researchers need to create additional dockers 932 

and mount them to the existing workflow with the knowledge of how information are passed 933 

within the workflow.                   934 

The power of EcoPAD (v1.0) not only lies in its scientific values, but also in the potential 935 

service it can bring to the society. Forecasting with carefully quantified uncertainty is helpful in 936 

providing support for natural resource manager and policy maker [Clark et al., 2001][Clark et 937 

al., 2001]. It is always difficult to bring the complex mathematical ecosystem models to the 938 

general public, which creates a gap between current scientific advance and public awareness. 939 

The web-based interface from EcoPAD (v1.0) makes modelingmodelling as easy as possible 940 

without losing the connection to the mathematics behind the models. It will greatly transform 941 

environmental education and encourage citizen science [Miller-Rushing et al., 2012; Kobori et 942 

al., 2016][Miller-Rushing et al., 2012; Kobori et al., 2016] in ecology and climate change with 943 

future outreach activities to broadcast the EcoPAD (v1.0) platform.    944 

5 Conclusion  945 

The fully interactive web-based Ecological Platform for Assimilating Data (EcoPAD) 946 

into models aims to promote data-model integration towards predictive ecology through bringing 947 

the complex ecosystem model and data assimilation techniques easily accessible to different 948 

audience. It is supported by meta-databases of biogeochemical variables, libraries of modules of 949 

process models, toolbox of inversion techniques and easilythe scalable scientific workflow. 950 

Through these components, it automates data management, model simulation, data assimilation, 951 

ecological forecasting, and result visualization, providing an open, convenient, transparent, 952 

flexible, scalable, traceable and readily portable platform to systematically conduct data-model 953 

integration towards better ecological forecasting. 954 
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We illustrated several of its functionalities through the Spruce and Peatland Responses 955 

Under Climatic and Environmental change (SPRUCE) experiment. The iterative forecasting 956 

approach from EcoPAD-SPRUCE through the prediction-question-discussion-adjustment-957 

prediction cycle and extensive communication between model and data creates a new paradigm 958 

to best inform forecasting. In addition to forecasting, EcoPAD enables interactive web-based 959 

approach to conduct model simulation, estimate model parameters or state variables, quantify 960 

uncertainty of estimated parameters and projected states of ecosystems, evaluate model 961 

structures, and assess sampling strategies. Altogether, EcoPAD-SPRUCE creates a smart 962 

interactive model-experiment (ModEx) system from which experimenters can know what an 963 

ecosystem’s response might be at the beginning of their experiments, constrain models through 964 

collected measurements, predict ecosystem’s response in the rest of the experiments, adjust 965 

measurements to better understand their system, periodically update projections and improve 966 

models, the data assimilation system, and field experiments.  967 

Specifically to forecasting carbon dynamics, EcoPAD-SPRUCE revealed that better 968 

forecasting relies on improvements in model structure, parameterization and accurate external 969 

forcing. Accurate external forcing is critical for short-term flux-based carbon predictions while 970 

right process understanding, parameterization and historical information are essential for long -971 

term pool -based predictions. In addition, EcoPAD provides an avenue to disentangle different 972 

sources of uncertainties in carbon cycling studies and to provide reliable forecasts with 973 

accountable uncertainties.      974 

 975 

Code availability:  976 
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Tables  1300 

Table 1. Discussion stimulated by EcoPAD-SPRUCE forecasting among modelersmodellers and 1301 

experimenters on how to improve predictions of the relative contribution of different pathways 1302 

of methane emissions   1303 

 Discussion  
1 No strong bubbles are noted at field and a non-observation constrained modelingmodelling study at a similar 

site from another project concluded minor ebullition contribution, which are at odds with TECO result.  
2 CH4:CO2 ratio might explain the discrepancy. The other modelingmodelling study assumed that 

decomposed C is mainly turned into CO2 and a smaller fraction is turned into CH4. The large CH4:CO2 ratio 
at this site may result in higher CH4 flux. It seems that the most “flexible” term is ebullition because any 
"excess" (above saturation) CH4 is immediately released to ebullition, while the plant transport term is 
constrained by vegetation data. 

3 Experimental researches on the relative contribution to methane emission from three different pathways are 
rare.  

4 Current available observations include net surface flux of methane from the large collars, incubation data 
that should represent methane sources within the profile, and gas/DOC profile data that can indicate active 
zones within the peat profile. What are additional data needed to constrain relative contribution of different 
pathways? 

5 I had always thought that peatlands don’t bubble much, but the super-sensitive GPS measurements found 
movements of the surface of the GLAP peatlands consistent with degassing events, and subsurface radar 
images did show layers that were interpreted as bubble-layers. 

6 Pore water gas data, perhaps N2 or Ar may shed some light on the relative importance of ebullition. 
7 It is really hard to accurately distinguish the three pathways. It has to rely on multiple approaches. 

Particularly for the SPRUCE site, the vegetation cover varies, vegetation species varies. How many 
channels each species has affect the transport? Meanwhile, the presence of plant (even not vascular plant) 
will lead to more gas transport, but as bubbles, rather than plant-mediated transport. 

8 It depends on model structure and algorithm to simulate diffusion, vascular, and ebullition. Most models 
assume a threshold to allow ebullition. Diffusion is treated in similar ways as ebullition in some models 
(most one layer or two layers models). For the multiple layers models, the diffusion occurs from bottom to 
top mm by mm, layer by layer, therefore, the gas diffusion from top layer to atmosphere is considered the 
diffusion flux. If that is the case, the time step and wind speed and pressure matter (most models do not 
consider wind and pressure impacts). Plant transport is really dependent on the parameter for plant species, 
aerenchyma, etc. The gas transportability of plant is associated with biomass, NPP, or root biomass, 
seasonality of plant growth, etc. in models. All these differences might cause biases in the final flux. 

9 With only the CH4 emission data cannot constrain the relative contribution of three pathways. Concentration 
data in different soil layers may help constrain. 

10 Diffusion coefficient calculation in TECO adopts the "three-porosity-model" which is ideal for mineral soil, 
but may not fit the organic soil. "Millington-Quirk model" for should be a better choice for peat soil. 

11 The boundary condition should be taken care of, but it brings in more uncertainties including the wind speed 
and piston velocity, etc., 

12 CH4 emissions captured in static chambers does not include the episodic ebullition events. So (1) the static 
chambers underestimate the total methane emission and (2) might need to exclude the ebullition pathway 
when using the observation data to constrain the CH4 emission. But this point seems haven't been paid 
attention to in other models. 

  1304 
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Figure Legends  1305 

Figure 1 Schema of approaches to forecast future ecological responses from common practice 1306 

(the upper panel) and the Ecological Platform for Assimilation of Data (EcoPAD) (bottom 1307 

panel). The common practice makes use of observations to develop or calibrate models to make 1308 

predictions while the EcoPAD approach advances the common practice through its fully 1309 

interactive platform. EcoPAD consists of four major components: experiment/data, model, data 1310 

assimilation and the scientific workflow. (green arrows or lines). Data and model are iteratively 1311 

integrated through its data assimilation systems to improve forecasting. And its near-real time 1312 

forecasting results are shared among research groups through its web interface to guide new data 1313 

collections. The scientific workflow enables web-based data transfer from sensors, model 1314 

simulation, data assimilation, forecasting, result analysis, visualization and reporting, 1315 

encouraging broad user-model interactions especially for the experimenters and the general 1316 

public with limited background in modeling.modelling. Images from the SPRUCE field 1317 

experiments (https://mnspruce.ornl.gov/) are used to represent data collection and the flowchart 1318 

of TECO model is used to delegate ecological models.           1319 

Figure 2  The data assimilation system inside the Ecological Platform for Assimilation of Data 1320 

(EcoPAD) towards better forecasting of terrestrial carbon dynamics   1321 

Figure 3  The scientific workflow of EcoPAD. The workflow wraps ecological models and data 1322 

assimilation algorithms with the docker containerization platform. Users trigger different tasks 1323 

through the Representational State Transfer (i.e., RESTful) application-programming interface 1324 

(API). Tasks are managed through the asynchronous task queue, Celery. Tasks can be executed 1325 

concurrently on a single or more worker servers across different scalable IT infrastructures. 1326 

https://mnspruce.ornl.gov/
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MongoDB is a database software that takes charge of data management in EcoPAD and 1327 

RabbitMQ is a message broker.   1328 

 1329 

Figure 4. Near time forecasting of EcoPAD-SPRUCE. EcoPAD automatically synchronizes real 1330 

time observations from environmental sensors managed by the SPRUCE experimental 1331 

communities. Data from observations are assimilated and used to update forecasting. Weekly 1332 

forecasting results are displayed in the EcoPAD-SPRUCE web portal 1333 

(http://ecolab.cybercommons.org/ecopad_portal/) as well as sent back to the experimental groups 1334 

to guide future experimental design and sampling. 1335 

Figure 5. Schema of interactive communication between modelersmodellers and experimenters 1336 

through the prediction-question-discussion-adjustment-prediction cycle to improve ecological 1337 

forecasting. The schema is inspired by an episode of experimenter-modelermodeller 1338 

communication stimulated by the EcoPAD-SPRUCE platform. The initial methane model 1339 

constrained by static chamber methane measurements was used to predict relative contributions 1340 

of three methane emission pathways (i.e., ebullition, plant mediated transportation (PMT) and 1341 

diffusion) to the overall methane fluxes under different warming treatments (+ 0 °C, +2.25 °C, 1342 

+4.5 °C, +6.75 °C and +9 °C). The initial results indicated a dominant contribution from 1343 

ebullition especially under +9 °C which was doubted by experimenters. The discrepancy 1344 

stimulated communications between modelersmodellers and experimenters with detailed 1345 

information listed in Table 1. After extensive discussion, the model structure was adjusted and 1346 

field observations were reevaluatedre-evaluated. And a second round of forecasting yielded more 1347 

reliable predictions.   1348 
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Figure 65. Posterior distribution of the ratio of CH4:CO2 (panel a) and the temperature 1349 

sensitivity of methane production (Q10_CH4, panel b) under 5 warming treatments.   1350 

Figure 7. Realized6. Updated vs. unrealizedun-updated forecasting of gross primary production 1351 

(GPP, panels a,c) and soil organic C content (SoilC, panels b,d). The upper panels show 3 series 1352 

of forecasting with differentupdated vs. stochastically generated weather forcing. Cyan indicates 1353 

forecasting with 100 stochastically generated weather forcing from January 2015 to December 1354 

2024 (S1); red corresponds to realizedupdated forecasting with two stages, that is, updating with 1355 

measured weather forcing from January 2015 to July 2016 followed by forecasting with 100 1356 

stochastically generated weather forcing from August 2016 to December 2024 (S2); and blue 1357 

shows realizedupdated forecasting with measured weather forcing from January 2015 to 1358 

December 2016 followed by forecasting with 100 stochastically generated weather forcing from 1359 

January 2017 to December 2024 (S3). The bottom panels display mismatches between 1360 

realizedupdated forecasting (S2,3) and the original unrealizedun-updated forecasting (S1). Red 1361 

displays the difference between S2 and S1 (S2-S1) and blue shows discrepancy between S3 and 1362 

S1 (S3-S1). Dashed green lines indicatesindicate the start of forecasting with stochastically 1363 

generated weather forcing. Note that the left 2 panels are plotted on yearly time-scale and the 1364 

right 2 panels show results on monthly time-scale.               1365 

 1366 

          1367 
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Figure 1  1369 
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Figure 2 1374 
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Figure 3 1381 
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