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Abstract. Computer models are ubiquitous tools used to represent systems across many scientific and engineering domains. For

any given system, many computer models exist, each built on different assumptions and demonstrating variability in the ways in

which these systems can be represented. This variability is known as epistemic uncertainty, i.e. uncertainty in our knowledge of

how these systems operate. Two primary sources of epistemic uncertainty are: 1) uncertain parameter values, and 2) uncertain

mathematical representations of the processes that comprise the system. Many formal methods exist to analyse parameter-5

based epistemic uncertainty, while process-representation based epistemic uncertainty is often analysed post-hoc, incompletely,

informally, or is ignored. In this model description paper we present the Multi-Assumption Architecture and Testbed (MAAT

v1.0) designed to formally and completely analyse process-representation based epistemic uncertainty. MAAT is a modular

modelling code that can simply and efficiently vary model structure (process representation), allowing generation and running

of large model ensembles that vary in process representation, parameters, parameter values, and environmental conditions10

during a single execution of the code. MAAT v1.0 approaches epistemic uncertainty through sensitivity anlaysis, assigning

variability in model output to processes (process representation and parameters) or to individual parameters. In this model

description paper we describe MAAT and by using a simple groundwater model example, verify that the sensitivity analysis

algorithms have been correctly implemented. The main system model currently coded in MAAT is a unified, leaf-scale enzyme

kinetic model of C3 photosynthesis. We describe the photosynthesis model and the unification of multiple representations of15

photosynthetic processes. The numerical solution to leaf-scale photosynthesis is verified and examples of process variability in

temperature response functions are provided. For rapid application to new systems, the MAAT algorithms for efficient variation

of model structure and sensitivity analysis are agnostic of the specifc system model employed. Therefore MAAT provides a

tool for development of novel or ‘toy’ models in many domains, i.e. not only photosynthesis, facilitating rapid informal and

formal comparison of alternative modelling approaches.20
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1 Introduction

Systems are composed of multiple interacting components and processes, and can exhibit complex behaviour. Mathematical

computer models are a valuable tool in the study of systems behavior, providing a quantitative approximation of the main fea-

tures and processes of a system. Computer models are used widely across many scientific and industrial domains, for example

to: explore hypotheses on ecosystem processes (e.g. Comins and McMurtrie, 1993), identify the biophysical factors controlling5

biological activity (e.g. Walker et al., 2017a), interpolate sparse observations (e.g. Compo et al., 2011), project responses of

the Earth System to anthropogenic activity (e.g. Friedlingstein et al., 2014), predict aerodynamic flow over new wing designs

(e.g. Jameson et al., 1998), and forecast the weather (e.g. Molteni et al., 1996). Real-world processes (often how two or more

variables are related) are included in models using mathematical representations of mechanistic hypotheses or conceptual,

simplifying, or empirical assumptions (see Table 1 for our definition of terms). When multiple plausible assumptions exist for10

a particular process, a model developer is faced with the choice of which assumption to use in their model (Fig. 1). For a single

process, the consequences of this choice can be assessed in a relatively simple way. However, when multiple assumptions exist

for multiple processes (e.g. Fig. 1) the options combine in factorial to generate a large number of plausible system models.

This large number of plausible system models characterises process representation uncertainty and poses a challenge to under-

standing and interpreting predictions for the modelled systems (e.g., Medlyn et al., 2015; Friedlingstein et al., 2014; Beven,15

2006).

Process representation uncertainty, a component of epistemic uncertainty (Beven, 2016), is often referred to as model struc-

tural uncertainty (e.g., Gupta et al., 2012; Beven, 2016), or conceptual model uncertainty (e.g., Rojas et al., 2008; Dai et al.,

2017). While model structural uncertainty is a broadly encompassing term (see Gupta et al., 2012, for an in depth discussion

of the multiple facets of model structural uncertainty), in this paper we use the term process representation uncertainty as it20

implies hypotheses and assumptions and therefore connects more directly with the language of experiment and observation.

Often process representation uncertainty is assessed by analysing the cross-model variability in the ensembles of model inter-

comparison projects (MIPs) (Refsgaard et al., 2007; Friedlingstein et al., 2014; Herger et al., 2018). These ensembles can be

thought of as ensembles of opportunity and capability (Tebaldi and Knutti, 2007), the ensemble members are determined by

the opportunity and the capability of the modelling teams to contribute results. A large body of literature has developed and25

employed formal statistical techniques for post-hoc analysis of these ensembles of opportunity (e.g., Refsgaard et al., 2006;

Herger et al., 2018; Knutti et al., 2009). These formal analyses account for non-independence of models in the ensemble (e.g.,

Masson and Knutti, 2011), can weight models based on how well they reproduce observed data (e.g., Fang and Li, 2015),

and subset the ensemble for improved performance and reduced unsertainty (e.g., Herger et al., 2018); yielding a more robust

estimate of the process representation uncertainty of the ensemble. However, these ensembles do not represent an a priori30

assessment of process representation uncertainty. A full a priori assessment of process representation uncertainty involving

clear delination of which representations to employ for each modelled process and a factorial combination of these options to

create an ensemble of all possible models is rarely, if ever, done. Moreover, reduction of uncertainty (i.e. increased certainty)

requires that researchers identify the processes responsible for cross-model variability in MIPs, which is challenging and time
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consuming (e.g. see De Kauwe et al., 2013; Medlyn et al., 2015). Incomplete or out-of-date model documentation, modeller

specific code, incomplete information for how a particular simulation has been executed, and superficial knowledge of how a

model works all contribute to the difficulty of process level analysis in MIPs. A primary reason for this failure is that adequate

tools to assess model sensitivities to variability in process representation are not available.

Figure 1. Schematic to illustrate a real world system (yellow box) comprised of three-processes (red shapes). Multiple hypotheses or as-

sumptions exist for each process, three for process A, two for process B, and three for process C. When a modeller is building a conventional

model of the system (blue box) they are faced with the choice of which hypothesis or assumption to for each process in their model. In this

illustration, the model is composed of hypothesis A1 for process A, hypothesis B2 for process B, and hypothesis C3 for process C. MAAT

allows a modeller to use all available hypotheses for each process, and compare them using formal and informal methods. In this illustration,

a total of 18 possible models exist. The addition of one more process with three alternative representations would increase the number of

possible models to 54.

Variability in numerical model output comes from multiple sources, not solely from uncertain process knowledge. Other5

sources of model variability are variable or uncertain parameter values, input scenarios (boundary conditions), and initial

conditions (Beven, 2016, 2006; Vrugt et al., 2009). Sensitivity analysis (SA) tests the response of model outputs to pre-defined

variation in any of the above-mentioned sources of model variability (Razavi and Gupta, 2015; Song et al., 2015). Parametric

uncertainty in models has many established methods for its assessment and quantification. These methods are often based on

Monte-Carlo (MC) techniques that run large ensembles of model simulations that sample parameter space, boundary condition10

space, and initial condition space (Saltelli et al., 2010; Song et al., 2015; Dai and Ye, 2015). Some formal SA methods exist for

assessment of model output sensitivity to variable process representation (e.g. Dai et al., 2017), and are based on similar MC

techniques combined with model averaging. However, methods to assess model sensitivity to variable process representation

are few and less extensively used.
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To apply parametric SA methods requires a model of the system of interest, a wrapper to sample parameter space and run

the model, and an interface to pass information (often both ways) between the wrapper and the model. As with parametric

SA methods, application of process representation SA methods requires a model of the system of interest, a wrapper that

samples the configuration of the ensemble member, and an interface to pass information between the wrapper and the model.

The practical challenge in developing these methods is to design an interface that enables the model to accept information on5

which process representations to use, and to configure the model in a way that is computationally efficient. Selecting among

alternative assumptions can be achieved using switches and case (i.e. ‘if’) statements. However, many large case statements

that would be required for extensive process representation variability complicate readability and increase the runtime of the

code. The challenge is to represent an assumption simply, as a character string for example, that the system model can interpret

to directly access the code that represents the assumption. This also requires a highly modular modelling code. Most models10

are not built in this way, though thanks to recent efforts in hydrology we have begun to see models with these capabilities

emerge (Downer and Ogden, 2004; Sierra et al., 2012; Clark et al., 2015; Coon et al., 2016).

In this study we build on previous efforts and present a modular modelling code designed explicitly to be system model

agnostic and for the generation of large model ensembles that differ in how each process within a system is represented. We

describe the multi-assumption architecture and testbed (MAAT v1.0); a modelling framework that can formally, systematically,15

and rigorously analyse variability in system model output caused by variability in process representation, as well as parameters

and boundary conditions. MAAT allows users to specify multiple process representations for multiple processes and can con-

figure the ensemble of all possible combinations of these choices during a single execution. The main components of MAAT

are a software wrapper to generate and run the ensemble, an interface to pass assumptions to a system model, and a system

model. All of these components are coded in R (R Core Team, 2017). The system model is highly modular by design, allowing20

flexible model structure according to information passed from the interface. Algorithms to analyse the sensitivity of model out-

puts to variation in process representations and parameters are contained within the wrapper. While the ensemble generation

code is system model agnostic, allowing the analysis of any system model coded in the MAAT formalism, our primary domain

of research is biogeosciences and ecosystem ecology. Therefore MAAT v1.0 comes packaged with a unified multi-assumption

leaf-scale photosynthesis model as its primary system model.25

2 The Multi-Assumption Architecture and Testbed (MAAT)

MAAT is designed to automate the configuration and implementation of model ensembles with a high degree of flexibility. The

ensembles can vary in assumptions and hypotheses (model structure), parameters (functional traits), and boundary conditions

(environmental conditions). MAAT is written in R (R Core Team, 2017), which has functions that allow simple and efficient30

operation of the code. The prototype style of object-oriented programming, specifically the ‘proto’ package in R (Kates, Louis

et al., 2018), is used to code the model and the wrapper objects. The ‘apply’ family of functions are used to execute the

emsemble and the ‘get’ function is used to parse and call R objects from a character string. For anyone wishing to debvelop
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Table 1. Table of definitions employed in this paper.

System A complex of interconnected and interacting processes.

Process A biological, chemical, or physical mechanism.

Hypothesis A mechanistic description of how a particular process operates. A statement of cause and effect.

Model Hypothesis A mathematical description of a hypothesis (also referred to as representation, process representation, or assumption).

Assumption Anything encoded in a model to represent part of the real world. Used synonymously with process representation.

Can include hypotheses, empirical observations of relationships to represent a process that is not fully understood,

or a simplification of more detailed mechanism.

models in MAAT we encourage them to become familiar with the syntax of the R functions ‘proto’, ‘apply’ family, and ‘get’.

With knowledge of this syntax a MAAT developer will be able to follow and modify the code.

Flexibility and generality is achieved by code modularity. As described in the Introduction, MAAT is composed of a wrapper,

an interface, a system model, and alternative process representation functions. The wrapper interprets input data and gener-

ates the model ensemble from those data. Through the interface, the wrapper sequentially passes information for a particular5

ensemble member to the system model and then runs the model (Fig. 2). The wrapper is a separate object, the system model

is a separate object, and the process representations are individual R functions. Each process is a separate function call in the

system model code, allowing multiple functions (i.e. hypotheses or assumptions) to represent each process. Different ways to

represent the overall system are also separated from the system model object, allowing alternative system conceptualisations

to be incorporated (e.g. light use efficiency versus enzyme kinetic models of photosynthesis). The alternative system functions10

and process representation functions are called during model runtime using character strings, avoiding the use of case state-

ments and parameters that act as switches. The avoidance of case statements in process specification increases code readability

and is especially useful when adding new assumptions for a process, or new processes (by defining new system functions).

To add a new assumption, all that must be coded is the function (i.e. no modification of case statements is necessary). This

simplicity facilitates rapid model development and testing of new hypotheses and assumptions.15

The modularity of MAAT is such that the wrapper code contains no information that is specific to a particular system model.

All information specific to a particular system model is contained with the system model and the input files. Thus the wrapper

is completely agnostic to the particularities of the system model. This separation of information allows the development of new

system models without the need to alter the wrapper, and with only slight modificiation of the interface.

The MAAT source code is available on GitHub (https://github.com/walkeranthonyp/MAAT) and READMEs that come with20

the source code provide: guidance on how to set up and run MAAT; some examples of using MAAT to generate the data and

some of the figures presented in this paper; and details of the MAAT formalism and how to code a new model object. How to

develop a new system model in MAAT is detailed in these READMEs as well as how to integrate new process representations

in an existing system model. We recommend starting with the README in the highest level directory of the source code as this

provides the very initial guidance needed to set up MAAT and points to the other READMEs for more advanced information.25
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2.1 Wrapper object

The wrapper object generates and executes an ensemble specified by the user. The wrapper object can execute an ensemble

for a model object that describes any system, provided that the system model is written in the MAAT code formalism. Thus

the bottleneck for application to models of different systems is that the model object and associated process functions must be

coded in R using the MAAT formalism and ’proto’ syntax. This coding is required due to the high degree of modularity of5

the code, which is not common in existing models. Assuming a model is coded in another language with hyper modularity, R

functions could be written to call these modules written in other laguages from within MAAT.

The wrapper object contains a data structure, a function that generates the ensemble and then calls a cascade of ’apply’ style

functions that execute the ensemble, and output integrating functions. The wrapper is built and called by a script that also reads

user specified command line arguments and input file(s), interprets this information, and passes it to the wrapper. According10

to the type of ensemble and analysis specified, the wrapper integrates input information to generate the ensemble, and then

executes the ensemble.

An ensemble is characterised by two things: the variables that vary across an ensemble (called ‘dynamic’ variables) and

the type of ensemble (e.g. factorial, process sensitivity analysis). Variables that do not vary across the entire ensemble are

referred to as ‘static’ variables. Defining the ensemble requires definition of static variables, dynamic variables, their values,15

and the ensemble type. Static variables and their values are read from a default values file, or specified by the user in the

input file. A user need only provide the static variable values that differ from the defaults and a complete list of all static

variable values is not required. Dynamic variables and their multiple values are simply specified by the user in the input file.

According to the ensemble type, the wrapper generates the ensemble by combining the dynamic variables into matrices that

describe the ensemble with variables in columns and values in rows. These matrices are separate for process representations,20

parameters, and environment. Finally, and according to ensemble type, the wrapper calls the appropriate ensemble execution

cascade (algorithm) that executes the specified ensemble type.

The ensemble execution cascade is a set of functions with a nested call structure that are designed to be called by the ‘apply’

family of R functions. Each function in the execution cascade passes a line of its associated variable matrix to the model

configuration function, then calls the next function in the cascade. The final function in the cascade runs the model by calling25

the model object run function.

2.1.1 HPC

Due to the large ensembles needed to run global sensitivity analyses, MAAT has been designed to run on High Performance

Computing (HPC) systems using the ‘mclapply’ function from the ‘parallel’ R package. This package uses the forking method

of parallel computing, which relies on shared memory. Therefore MAAT ensembles are currently limited to a single node of30

multiple cores with shared memory. With the current generation of HPC systems that have a large number of cores per node,

parallel processing in MAAT can yield substantial increases in speed compared with serial processing. For example, a leaf

photosynthesis ensemble with 100 million members runs in around 5 hours on 32 cores with a combined CPU time of around
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(a) (b)

Figure 2. Schematic representing the basic software structure and execution process of MAAT. Panel a) represents the operation of the first

two steps of a MAAT execution: 1) reading user input data from initialisation files; and 2) generating ensemble matrices from dynamic

variables. Panel b) represents a single iteration of the ‘execution cascade‘ which forms the third step of a MAAT execution. ‘Proto’ objects

(light blue boxes) contain data structures (dark blue shapes) and functions (white rectangles). Blue arrows represent the transfer of data via

a read (dashed) or write (solid), and red arrows represent a function call. During the execution of the execution cascade, each execution

function is associated with a particular variable type (process representation, parameter, environment) and reads a line of the variable type

matrix and calls the model object configure function with the line from the matrix as an argument. The configure function writes the variable

values to the model object data structure, then the function calls the next function in the execution cascade. The final function in the cascade

is the model run function which runs the model and writes output to the output data structure in the wrapper object.

172 hours. However, the current requirement for shared memory precludes scalability across nodes of an HPC system and we

will return to this in the Discussion.

2.2 Model object

This section details the model object and how it is structured, outlining the MAAT formalism to describe how to approach

coding a model object in MAAT. The model object is an R ’proto’ object composed of a data structure, a configuration function5

(the interface), a run function, an output function, unit testing functions, and process representation functions (these are external

to the ’proto’ object and are individual R functions). The data structure contains multiple lists of named variables. Three lists

contain the details of the ensemble member, these are: a list of character string values representing each process within the

system (labelled ‘fnames’ in MAAT code), a list of numerical values representing model parameters (labelled ‘pars’), and a list

of numerical values representing model boundary conditions (labelled ‘env’). These three ensemble member description lists10

do not vary throughout a single model run. Two additional lists describe the model state at each timestep. These two lists are

both of numeric values and are a list of state variables (labelled ‘state’) and secondary state variables that can be thought of
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as dynamic parameters (labelled ‘state_pars’). A useful way of thinking about the distinction is that a secondary state variable

could be assumed a fixed parameter (though functions to simulate it dynamically are available). The primary state variables are

the primary variables intended to be predicted by the model.

The configure function acts as the interface between the wrapper and the model. The ‘configure’ function is passed values for

the three ensemble member description lists by the ensemble execution cascade in the wrapper object. The configure function is5

also model agnostic and does not require additional coding for a new system model. Each ensemble execution function passes

the configure function a vector of named values and the configure function searches the either the ’fnames’, ’pars’, or ’env’ list

for named elements and assigns values when the named elements are found. The object-oriented method and assignment by

variable name provides flexibility in input specification by allowing variable assignment of only the variables that are varied

in the ensemble (called dynamic variables). Variables that do not vary across all ensemble members (called static variables)10

are assigned by the configure function at the very beginning of an ensemble execution. Thus static variable specifications are

over-written by dynamic variable specifications. Once the configure function has been called by each of the functions in the

ensemble execution cascade and values assigned to the three ensemble member description lists, the ensemble member has

been completely defined. The final function in the ensemble execution cascade then calls the model run function.

The model ‘run’ function in the model object runs a single instance of the model by calling the model system function15

(written as a separate R function in the same way as other process representation functions) and then the model output function.

If a meteorological dataset exists, a function is called that ‘applies’ the run function sequentially to each timepoint in the

meteorological dataset. The model system function represents the structure of the system, primarily the order in which the

system processes are called and executed. A key component of MAAT’s flexibility, and advantage over most other models and

modelling frameworks, is that all system functions and process hypotheses are written as separate R functions. The assumption20

to use for a particular ensemble member is specified using a character string that is the name of the R function that represents

that specific hypothesis or assumption. These function name character strings allow the functions to be called using the ‘get’

function in R, avoiding the need for case statements to select the code to be used to represent a process. All of the process

hypothesis functions have an object as their first argument, i.e. the model object that contains parameter and boundary condition

values that the function may need to access. Passing the model object to the function allows for simple argument passing to the25

functions and relatively clear coding of the system framework.

The output function is written into the model object to allow different combinations of model state and other variables to

be output based on an input character string. Unit testing functions are designed to test the operation of the run function under

specific conditions and to compare alternative hypotheses for various process.

2.3 Initialisation30

An initialisation script is executed from the command line and command line arguments can be passed to select various

options defining the ensemble. The model to run can be specified as a command line argument; currently only a leaf-scale

photosynthesis model and a simple ground water model are available. Any model object coded in the correct R format could

be provided. The initialisation script loads the wrapper object and the model object.
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The specifics of the model ensemble are then read by the initialisation script from either standardised R scripts or XML

files, specified on the command line. These initialisation files mimic the three lists in the model object data structure: ‘fnames’,

‘pars’, and ‘env’, described in the above section. A minimum of two initialisation files are required and read by the initialisation

script. The first is the default variable values, an XML file that exactly mimics the three model object lists. This default XML

comes packaged with the source code. The other initialisation file(s) are user defined and contain the static and dynamic5

variable values for the ensemble. Values to be passed to the wrapper object are specified in these initialisation files and must

be named exactly as they appear in the model object data structure.

For the dynamic file, variables can be assigned snippets of R code as a character string, and these will be parsed by the

wrapper and the variable assigned the output value of the R code snippet. The use of R code snippets allows variables to

be assigned values that are samples drawn from various distributions of dynamic parameters, with a user defined sample10

number. The initialisation script also allows some flexibility in the specification of dynamic boundary conditions, such as a

time series of meterological data, though the files must currently be in comma separated ASCII format. The column names of

the dynamic boundary condition file are assigned the model object boundary condition names using an XML file similar to the

above described files. These dynamic boundary conditions are applied for each ensemble member and are different from the

boundary conditions that are varied as part of the ensemble.15

3 Ensemble types

The following Section details the ensemble types that can be generated within MAAT, as well as showing results that verify

that the sensitivity analysis algorithm is working as intended.

3.1 Factorial combination

The simplest type of ensemble is a complete factorial combination of options. In this case, processes with multiple represen-20

tations, parameters with multiple values, and environment variables with multiple values are specified in the input file. From

these inputs three matrices are configured representing process, parameter, and environment combinations. Each of these ma-

trices is a factorial combination of the values specified for each variable, with variables arranged in columns and their values

on the rows. The run cascade in the wrapper object is then called. Each run function in the run cascade passes a row of its

associated matrix to the model object configure function and calls the next function in the run cascade (Fig. 2b). The model25

object configure function places the variable values in the model object data structure. For a factorial simulation the process

run function is called first, which then calls the parameter run function, which then calls the environment run function, which

then executes the model. On completion of the model execution, the environment run function then passes the next row of the

environment matrix to the model and executes the model. This repeats until the last row of the environment matrix is reached,

then the parameter run function passes the next row of the parameter matrix to the model object configure function and calls the30

environment run function again. This is the nested nature of the run cascade and the model is executed for every combination

of the lines of the process matrix, parameter matrix, and the environment matrix.
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3.2 Sensitivity analysis algorithms and verification

Global variance-based sensitivity indices quantify the proportion of variance in model output caused by variability in param-

eters and processes. Specific algorithms (model ensembles) allow the calculation of global parameter sensitivity indices and

global process sensitivity indices within MAAT. For global parameter sensitivity analysis the algorithm developed by Saltelli

et al. (2010) is employed. As with the parameter sensitivity index, the global process sensitivity index (Dai et al., 2017) ac-5

counts for variability in parameters while also accounting for variability caused by different model structures and assumptions,

i.e. the different ways in which processes can be represented. The process sensitivity index calculates the proportion of model

output variance caused by variation in all of the parameters that feature in a process and by variation in ways in which to

represent a process. As an example, in the simplest case one may have two models. Parameter sensitivity can account for the

variance in output within each model, but not the variance in model output caused by the two different models themselves (i.e.10

the difference between the means of the output from the two models). These different components of model output variance

can be thought of as within and between individual model variance. The parameter sensitivity index accounts for within model

variance only, while the process sensitivity index accounts for both within and between model variance.

The algorithms for the parameter and the process sensitivity indices are not simply factorial combinations of process rep-

resentations and parameters (Dai et al., 2017). Therefore the configuration of the ‘fnames’ and ‘pars’ matrices and the run15

cascade is different for each of the algorithms. The algorithms are described in detail in Saltelli et al. (2010) and Dai et al.

(2017) so we do not go into great detail here.

For the parameter sensitivity algorithm (Jansen, 1999; Saltelli et al., 2010), two parameter sample matrices are constructed,

A and B, both with n rows and np columns, where n and np are the number of samples and the number of parameters in the

sensitivity analysis. Each row of these matrices contains a sample from the distributions of each parameter (columns) in the20

analysis. A further np parameter matrices, A(i)
B , are constructed by copying the A matrix and replacing the parameter samples

in column i of matrix A
(i)
B with column i from the B matrix. For a single model, the model is run once for each row of the 2 +

np parameter sample matrices ( A, B, and A
(i)
B ) using the parameter values in the row. The first order, Si, and total sensitivity,

STi, indices are calculated after Jansen (1999), see Table 2 (Saltelli et al., 2010):

Si =
V {Y }− 1

2n

∑n
j=1(f(Bj)− f(A

(i)
B j))

2

V {Y }
(1)25

STi =
1
2n

∑n
j=1(f(A)j − f(A

(i)
B )j)

2

V {Y }
(2)

where V {} is the variance function, f() is the model, and Y = f(A,B) is the model output when evaluated across all rows of

matrices A and B.

When multiple models are available, the parameter sensitvity indices are calculated for each model combination. Each model30

combination is run over matrices A, B, and A
(i)
B . As MAAT is designed to switch in alternative assumptions (hypotheses,

representations, or structures) for each process in the analysis, the number of all possible models is
nk∏
k=1

φk where nk is the
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number of processes in the sensitivty analysis and φk is the number of representations of process k. With both variable processes

and parameters, the total number of individual model runs in this algorithm is: (2 +np)n

nk∏
k=1

φk.

The process sensitivity algorithm (Dai et al., 2017) is a set of five nested loops. The outer (first) loop iterates over each of

the nk processes in the sensitivity analysis. The second loop iterates over each of the φk representations of process k. The

third loop iterates over a parameter matrix A(k) of n rows and npk columns where n is the number of samples and npk is the5

number of parameters in process k. The fourth loop iterates over the factorial combination of the φ∼k representations of all the

other processes in the analysis. The fifth (inner) loop iterates over parameter matrix A∼k of n rows and np∼k columns, where

np∼k is the number of parameters in all other processes∼k. The total number of iterations in the process senstivity analysis is:

nkn
2

nk∏
k=1

φk. The function to evaluate the first order process sensitivity index is as follows (Dai et al., 2017):

Sk = V {Y }k/V {Y } (3a)10

where Y is the array of model output evaluated across all model combinations and parameter samples; and V {Y }k is the partial

variance in model output caused by variation in process k:

V {Y }k =

φk∑
l=1

Pk,l
(
EEk,l−Ek,l2

)
(3b)

where Pk,l is the probability of representation l of process k (assumed equal across all representations), and:

EEk,l =
1

n

n∑
j=1

Ek,l,j
2 (3c)

Ek,l =
1

n

n∑
j=1

Ek,l,j (3d)15

and:

Ek,l,j =
1

n

∏
φ∼k∑

m=1

P∼k,m

n∑
o=1

fk,lf∼k,m
(
A(k)

j,A
(∼k)

o

)
(3e)

whereEk,l,j is an array of model output averaged across dimension o (parameter samples from matrix A(∼k)). fk,lf∼k,m
(
A(k)

j,A
(∼k)

o

)
represents a single model run using representation l of process k and the combination of representations m of processes ∼ k
evaluated with the parameter samples A(k)

j and A(∼k)
o. P∼k,m is the probability of the combination of representation m of20

process ∼ k (assumed equal across all combinations).

To verify that the algorithms are working correctly in MAAT we employ the simple groundwater hydrology model presented

in Dai et al. (2017). The simple groundwater model calculates hydraulic head across a vertical cross-section of a geographical

domain. The model was encoded in MAAT and consists of two processes: recharge and parameterisation of hydraulic conduc-

tivity through the underlying geology. Each of these two processes is given two possible representations. For recharge a power25
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law (R1):

R1 = 5.04a(p− 355.6)0.5 (4)

and a linear model (R2):

R2 = b(p− 399.8) (5)

were used, where a and b are scaling parameters and p is precipitation in mm. The second process, parameterisation of hydraulic5

conductivity through the underlying geology, used a single homogeneous zone representation and a two-zone representation.

The parameters varied were a single value of hydrological conductivity (K) for the single zone representation and two values

of hydrological conductivity (K1 and K2) for the two-zone model. The study of Dai et al. (2017) ran a parameter and process

sensitivity analysis of this simple model assuming that a followed the normal distribution, N(3.35,1) (where 3.35 is the mean

and 1 the standard deviation), b the uniform distribution, U(0.1,0.2), K the normal distribution, N(15,1), and K1 and K2 the10

normal distributions N(20,1) and N(10,1), respectively. Clearly there are other parameters that could have been varied in this

sensitivity analysis, but the analysis was run for illustrative purposes comparing the parameter and process sensitivity indices.

The parameter sensitivity indices (Table 2) and process sensitivity indices (Table 3) calculated by Dai et al. (2017) and in this

study demonstrate that the MAAT algorithms are operating correctly. Convergence of the calculated process sensitivity index

is achieved with an n of around 200 (Fig. 3). Moreover, the large differences in parameter sensitivities depending on model15

combination clearly demonstrates the need for multi-assumption modelling and tools like MAAT.

Table 2. Global first order parameter sensitivity index (Si) for hydraulic head calculted by the hydrology model described in Dai et al. (2017),

calculated using Saltelli’s algorithm. Results are presented from Dai and using MAAT in this study, demonstrating the correct implementation

of Saltelli’s algorithm in MAAT. The slight differences are caused by random sampling.

R1G1 R1G2 R2G1 R2G2

Si a K a K1K2 b K b K1K2

Head (Dai et al. 2017) 94.8 4.8 61.5 37.8 88.7 10.6 6.5 93.2

Head (This study) 94.8 4.9 61.5 38.3 88.7 10.8 6.6 93.4

4 Multi-assumption photosynthesis code & verification

Photosynthesis is a central process of the biosphere. At the heart of many Terrestrial Ecosystem and Biosphere Models (TBMs)

lie the mathematical hypotheses describing the enzyme kinetics of photosynthesis and the hypotheses and assumptions de-

scribing associated processes, e.g. stomatal conductance. Enzyme kinetic models lie at the core of TBMs in order to accurately20

simulate the ecophysiological interaction of terrestrial ecosystems with the interrelated carbon, water, and energy cycles of the
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Table 3. Global first order process sensitivity index (Sk) for hydraulic head calculated by the hydrology model, calculated using the algorithm

described in Dai et al. (2017). Results are presented from Dai and using MAAT in this study, demonstrating the correct implementation of

the algorithm in MAAT. As above, the small differences are caused by random sampling.

Sk Recharge Geology

Head (Dai et al. 2017) 28.4 67.9

Head (This study) 29.1 71.6
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Figure 3. Standard deviation of calculated Sk showing convergence characteristics as a function of sample size. Calculated by resampling

and subsampling a single ensemble 10 times for each subsample n. Decreasing standard deviation demonstrates convergence on a solution.

Dashed lines represent a standard deviation in Sk of 0.01 and 0.001.

Earth System. Many studies have demonstrated the sensitivity of TBM predictions to variation in parameters and assumptions

used to represent these core model processes (e.g. Zaehle et al., 2005; Rogers et al., 2017; Anav et al., 2015; Bonan et al., 2011;

Walker et al., 2017b).

In Appendix A we describe in detail the unified, multi-assumption model of leaf-scale photosynthesis. The current focus is on

enzyme kinetic models of photosynthesis (Farquhar et al., 1980; von Caemmerer, 2000) rather than light use efficiency models.5
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Enzyme kinetic and light use efficiency models can be thought of as alternative conceptualisations of the leaf photosynthesis

system (Fig. 1). Enzyme kinetic models were the first photosynthesis conceptualisation to be built into MAAT as they are the

most commonly employed photosyntheis model employed by TBMs. Alternative representations for individual processes are

listed in Table 4.

In this section we present the results from some simulations with MAAT. The purpose of these simulations is to verify that the5

photosynthesis code is working as intended, not to test various implementations against data which we will save for extensive

evaluations in future research. The use of both numerical and analytical solutions to the system of simulataneous equations for

photosynthesis, as well as multiple instances of stomatal conductance equations (with some designed for analytical solution),

provides a testbed for code verification. We also demonstrate a simple comparison among the temperature response functions.

4.1 Verification of photosynthesis solver10

Using both the numerical solution and the simple analytical solution should provide the exact same solutions for carbon

assimilation when g0, rb, and ri are assumed zero. For stomatal conductance hypotheses that include a g0 term, the numerical

solution should provide carbon assimilation rates slightly higher than the simple analytical solution because a non-zero g0

slighly decreases resistance to CO2 transport and increases the Ci:Ca ratio. Using both the numerical solution and the quadratic

analytical solution should provide the exact same solutions when only rb, and ri are assumed zero.15

Fig. 4 shows net carbon assimilation against atmospheric CO2 partial pressure (A-Ca curves) calculated using the analytical

approximation and full numerical solution with five different representations of stomatal conductance and two values of g0. As

described above, when g0 is zero the analytical approximations and the numerical solution should yield the same results. The

top row of panels in Fig. 4a demonstrates this to be the case. When g0 equals 0.01 molH2Om−2s−1 the stomatal conductance

representations developed to provide a simple analytical solution (Prentice et al., 1993; Cox et al., 1998) again demonstrate20

equivalence between the analytical approximation and the numerical solution (Fig. 4a). The quadratic solution and numerical

solution for the semi-empirical or derived from optimality stomatal conductance representations (Ball et al., 1987; Leuning,

1990; Medlyn et al., 2011) both show a slight increase in A compared with the simple analytical solution because stomatal

conductance is higher when g0 is greater than zero.

MAAT also includes some additional diagnostic tools that can be used to verify the results of the photosynthesis code, and25

to analyse photosynthesis more broadly. These tools include calculation of the transition point, the value of Cc at which Ac,g

and Aj,g are equal. Plotting the transition point (Cc,tran), which can be calculated analytically by:

Cc,tran =
8Γ∗Vcmax/Jmax−Km

1− 4Vcmax/Jmax
(6)

on the curves (Fig. 4b) also demonstrates that the analytical and numerical solutions are finding the correct transition point.

Another tool can be used to calculate photosynthesis assuming zero total resistance to CO2 transport, r, or assuming zero30

stomatal resistance to CO2 transport, rs. Fig. 5 showsA-Ca curves calculated with the numerical solution and g0 equal to 0.01.

It is clear from these plots that resistance to CO2 diffusion to the site of carboxylation has a much larger influence on A when

the carboxylation rate is limiting compared with when the electron transport rate is limiting.
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Table 4. Table of processes and representations

Process Assumption / Hypothesis Citation

RuBP saturated potential gross carbon assimilation rate Michaelis-Menten enzyme kinetics Farquhar et al. (1980) Eqs. A3

RuBP limited potential gross carbon assimilation rate Michaelis-Menten enzyme kinetics Farquhar et al. (1980) Eqs. A4

TPU limited potential gross carbon assimilation rate Michaelis-Menten enzyme kinetics Farquhar et al. (1980) Eqs. A5

Limiting rate selection Minimum rate Farquhar et al. (1980) Eq. A2a

Non-rectangular hyperbolic (quadratic)

smoothing

Collatz et al. (1991) Eq. A2b&c

Photorespiration rate at Tl Function of RuBisCO kinetic constants Farquhar et al. (1980) Eq. A6

Constant multiplied by Tl scalar Collatz et al. (1991) Eq. A22a

Electron transport rate Asymptotic Harley et al. (1992) Eq. A8a

Quadratic smoothing Farquhar and Wong (1984) Eq. A8b

Linear, no maximum Collatz et al. (1991) Eq. A8c

Resistance to CO2 diffusion Fick’s Law Collatz et al. (1991) Eq. A9

Stomatal resistance Semi-empirical f(hr), inc. min. Ball et al. (1987) Eq. A12b

Semi-empirical f(D), inc. min. Leuning (1990) Eq. A12c

Optimisation f(D), inc. min. Medlyn et al. (2011) Eq. A12d

Constant Ci : Ca, no min. Prentice et al. (1993) Eq. A12e

Based on Eq. A12b, no min. Cox et al. (1998) Eq. A12g

Leaf boundary layer resistance Leaf width and wind speed Oleson et al. (2010) Eq. A13

Maximum carboxylation rate at Tr Linear function of leaf N Harley et al. (1992) Eq. A17a

Power function of leaf N Walker et al. (2014) Eq. A17b

Linear function of leaf N with biochem-

ical parameters

Oleson et al. (2010) Eq. A17c

Maximum electron transport rate at Tr Linear function of Vcmax Wullschleger (1993) Eq. A18a

Power function of Vcmax Walker et al. (2014) Eq. A18b

TPU rate at Tr Linear function of Vcmax Collatz et al. (1991) Eq. A19

Dark adapted (night) respiration rate at Tr Linear function of Vcmax Collatz et al. (1991) Eq. A20a

Linear function of leaf N - Eq. A17b

Non-photo (day) respiration rate at Tr Equal to dark adapted respiration

Constant ratio to dark adapted respira-

tion

- Eq. A21a

Ratio to dark adapted respiration is a

function of incident light

Brooks and Farquhar (1985) Eq. A21b
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Table 4. Continued.

Process Assumption / Hypothesis Citation

Biochemical rate scaling, increasing with Tl Arrhenius Medlyn et al. (2002) Eq. A23a

Q10 exponential Medlyn et al. (2002) Eq. A23b

Biochemical rate scaling, decreasing with Tl Modified Arrhenius Medlyn et al. (2002) Eq. A24a

Simplified modified Arrhenius Collatz et al. (1991) Eq. A24b

Simplified modified Arrhenius Cox et al. (1998) Eq. A24c

4.2 Temperature response functions

Here we show the various temperature scaling assumptions as an illustration of the decomposition into ascending and descend-

ing components and as a simple illustration of MAAT’s capability. It is not our intention here to rigorously investigate the effect

of parameters and modelling assumptions on the scalar. The ascending and descending components of temperature response

functions tend not to be presented separately. However, for a clear demonstration of the difference among the various assump-5

tions, we present the ascending (Fig. 6a), descending (Fig. 6b), and combined (Fig. 6c) temperature response functions over the

range 0-45 ◦C. Some of the assumptions share parameters while others do not. Ha and Topt parameter values were manually

adjusted to make the curves as similar as possible and highlight primarily structural differences among the assumptions. This

calibration aligned the ascending curves and the peak (maximum) of the temperature response.

Fig. 6a shows that the Q10 and Arrhenius relationships can be made to match pretty well, though the Arrhenius relationship10

gives slightly higher values at the extremes of the temperature range due to the slighly higher base. The descending component

of the temperature response shows some slight differences. Collatz et al. (1991) and Cox et al. (1998) preserve the scalar at a

value of one for the majority of temperatures below the nominal or reference temperature. However, they also do not preserve

fd at one at the nominal temperature, they both give lower values; 0.95 and 0.96 respectively. The modified Arrhenius equation

is the only function that preserves fd at one at the nominal temperature. However, it does this by having values of fd above one15

for temperatures below the nominal temperature; 1.06 at 0 ◦C. This effect is known and is why activation energy is often given

the notation Ea in the Arhhenius equation but is given the notation Ha in the modified Arrhenius equation. Ha is related to the

activation energy but is not strictly the activation energy. Not shown in Fig. 6b is that at low temperatures the Cox et al. (1998)

assumption can allow a substantial decrease in the scalar (e.g. when Tlow is 0◦C; for this simulation Tlow was set to -20 ◦C).

Above the reference temperature, the three assumptions show similar declines with the Cox et al. (1998) formulation declining20

at slightly greater rate.

The differences in the ascending and descending components are reflected in the composite temperature responses (Fig.

6c). The modified Arrhenius assumption has higher values at intermediate temperatures while the the Cox et al. (1998) values

are lower at high temperature. The scalar from the Collatz et al. (1991) assumption shows the lowest peak value. While

some differences in the scalar are apparently caused by different assumptions, the similarity between the curves suggests25
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Figure 4. Comparison of carbon assimilation against (a) atmospheric CO2 (A-Ca) curves and (b) internal CO2 (A-Ci) curves, produced by

the simple analytical solution (blue points and lines), the quadratic analytical solution (red points and lines), and the numerical solution (black

crosses); for five different representations of stomatal conductance Eqs. A12b–g and two values of g0 (0.00 and 0.01 molH2Om−2s−1).

that parameter values are likely to be more influential than the specific formulation chosen. However, it is also apparant that

parameter values are not entirely interchangeable across assumptions, and that by chosing different assumptions without proper

calibration of parameters is likely to lead to substantial differences in the value of the scalar.
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Figure 5. Comparison of A-Ca curves with and without stomatal resistance (limitation) to carbon assimilation forthe five representations of

stomatal conductance. g0 equal to 0.01.
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Figure 6. Biochemical rate scalars for instantaneous temperature responses, for (a) the ascending component of the response, (b) the de-

scending component of the response, and (c) the combined response. Arrhenius shown as blue squares (a) and on the left panel (c). Q10

shown as red circles (a) and on the right panel (c). Descending components (b & c) Collatz et al. (1991) shown as yellow squares, Cox et al.

(1998) as green circles, and the modified Arrhenius relationship as blue triangles.

5 Discussion

Mathematical computer models are used widely across many scientific domains and industries, primarily for two general

purposes: 1) interpreting observations and, 2) making predictions about the piece of the real-world that the model is intended

to represent. These two modelling purposes are succinctly summarized by Rastetter (2017) as modelling for understanding

and modelling for numbers (i.e. prediction). With the aim of deepening our understanding of competing assumptions and5
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targeting uncertainty reduction in model predictions, we have developed and built a set of software codes, the Multi-Assumption

Architecture and Testbed (MAAT v1.0). MAAT facilitates the building and detailed analysis of systems models when there are

multiple assumptions (mechanistic hypotheses and empirical or simplfying assumptions) to represent multiple processes. The

component of MAAT that is somewhat unique is a system model wrapper. The wrapper is agnostic to the details of the system

model, yet can interpret system-model specific input data to set up and run ensembles of models that vary in their process5

representation, parameter values, and boundary conditions. These ensembles can be set up to perform formal and informal

sensitivity analyses of model output with variable model assumptions.

A number of existing modelling codes in the domain of hydrology have similar, multi-assumption capabilities (Downer

and Ogden, 2004; Clark et al., 2015; Coon et al., 2016). These different hydrological codes have various purposes and thus

different strengths, but are all built to allow flexible model structure within a single overall code structure. The Gridded Surface10

Subsurface Hydrologic Analysis (GSSHA) code (Downer and Ogden, 2004) is designed for predictive application to specific

watersheds. The structural flexibility in GSSHA is primarily intended to allow the tailoring of model structure to suit specific

applications and specific watersheds that can differ in their dominant processes. The Structure for Unifying Multiple Modeling

Alternatives (SUMMA) (Clark et al., 2015) is designed as a unifying system to organise and compare alternative modelling

approaches. Three main areas of model struture can be altered and compared within SUMMA: 1) alternative modelling domains15

and their discretisation, 2) alternative process representations, and 3) numerical solutions to the system of process equations

across the domain. The Advanced Terrestrial Simulator (ATS) (Coon et al., 2016) is similar to SUMMA but provides an

additional capability in that the system model need not be prespecified. ATS has the capacity to build alternative system models,

that differ in complexity, based solely on the particular representation of process that are selected. MAAT complements these

other multi-assumption modelling systems by being designed to configure and run large ensembles for process-level sensitivity20

analyses.

We previously identified process-level sensitivity analysis methods that account for process representation variability were

not available and so developed a suitable method (Dai et al., 2017). This sensitivity analysis method is incorporated in MAAT

but is computationally expensive (see Section 3) with a single sensitivity analysis requiring millions of simulations for con-

vergence. For example, a sensitivity analysis of three processes in the photosynthesis model required 100 million simulations,25

taking five hours on a single computer node of 32 cores. We are pleased to have a 100 million ensemble runtime down to

five hours, especially in a scripting language such as R. However, with the current HPC method employed in MAAT we are

at the limit of computational scalability. A single instance of the photosynthesis model runs quickly, and models of increased

complexity will require both longer run times for a single ensemble member and more iterations due to larger numbers of

processes under investigation (ensemble number is proportional to the number of processes in the analysis). We are currently30

working to both increase the computational efficiency (reduce the ensemble number) of the sensitivity analysis algorithm, as

well as expand the capability of MAAT to operate across multiple compute nodes of an HPC system.

Beven (2006) argues that equifinality in both parameters and process representations is pervasive in models of complex

natural systems and must be embraced by shifting focus from a search for a single optimal model to determining suites of

“behavioural” models. Beven (2006) contends that sets of models should be compared against data to determine which models35
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are behavioural depending on certain criteria that scores model output relative to the data, accounting for uncertainty in the

data. Models not behavioural should be rejected, while all models that are behavioural should be considered when making

predictions about a system. The MAAT modelling system provides a tool to incoporate equifinality in day-to-day modelling

activities. However, work remains to be done to develop tools to facilitate the equifinality approach in MAAT.

From a practical standpoint, parameter estimation methods and model selection/hypothesis rejection methods are central5

to the equfinality thesis and assessment of model structural adequacy (Gupta et al., 2012). Moreover, when multiple process

representations are available for a given process, parameters common to more than one represenation can often have different

values depending on the particular representation. This difference in values of common parameters is illustrated by the ex-

plicitly different labelling of the g1 parameter in Eqs. A12b, c, and d; and also in the unification of the temperature response

curves shown in Fig. 6. MAAT currently does not contain parameter estimation algorithms, nor model or hypothesis rejection10

algorithms. We plan to include these methods as a priority development. Markov chain Monte Carlo (MCMC) is a powerful

Bayesian technique to estimate parameters and that can be used to select models, incorporating multiple sources of uncertainty

(e.g. Vrugt et al., 2009; Green, 1995; Beven and Freer, 2001).

An additional practical limitation of MAAT is that models must be coded in R in the MAAT formalism, which comes at

a cost. Currently, there is no interface for MAAT to interact with existing model code though we are investigating a possible15

C and FORTRAN interface. However, even if MAAT could call existing model code, very often existing code is nowhere

near sufficiently modular to extract individual process representations. This level of modularity is necessary to fully explore

process representation uncertainty, thus existing code very often (in our experience in the vast majority of cases) would require

substantial recoding to acheive the required level of modularity. We suggest that in many cases, the time invested in recoding

models into R in the MAAT formalism is scientifically worthwhile. Once a system model has been coded in MAAT, novel20

conceptualisations of processes and hypotheses are very simple to incorporate and examine in the systems context. New mod-

els and modelling architectures are being developed all the time and we argue that this agile and flexible style of software

development will help to rapidly and robustly develop and assess new process representations. Currently MAAT can only be

applied to photosynthesis code, which runs relatively rapidly and requires no spin-up of state-variables. Eventually we en-

vision an ecosystem scale model coded within MAAT. An ecosystem scale model with many, many processes and requiring25

spin-up of state variables will increase model runtime and MAAT may need to interface with compiled languages to maximise

computational efficiency.

More conceptually, MAAT cannot address all elements of epistemic uncertainty in process knowledge and the equifinality

thesis. Epistemic uncertainty in process knowledge is necessarily restricted in MAAT to those hypotheses and assumptions that

are coded into the modelling system. Alternative hypotheses may exist that have not been discovered by MAAT developers, and30

MAAT certainly cannot generate hypotheses that may better describe the real-world process or phenomenon than any currently

existing hypothesis. Therefore the full space of epistemic uncertainty can not be explored (Beven, 2016).

Scale and the multiple levels of organisation in biological systems adds a further dimension of complexity. What can be

considered a system at one level of organisation can often be represented as a single process at the level of organisition above.

For example, the network of interactions that cause an up-regulation of gene transcription in response to an external stimuli35
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to modify a phenotype can often be considered in terms of the environmental stimuli eliciting a phenotypic response without

explicitely modelling the system of genes which effect the change in phenotype. Different levels of complexity in the system

model itself is also worth noting, e.g. enzyme kinetic vs light use efficiency, or energy balance and representation of leaf

boundary layer. This is dealt with in MAAT by specifying the overarching system model as a variable assumption and allows

the rapid development of alternative conceptualisations of the system as a whole.5

Additional work and conceptual limitations notwithstanding, MAAT is a powerful new tool that can be used to understand

the sensitivities of photosynthesis to variation in assumptions and mechanistic hypotheses made to represent photosynthetic

processes. More broadly, the agnosticism of the wrapper allows rapid incorporation of new assumptions and development of

new system models, without any overhead in development of the wrapper. This model-system agnostic wrapper forms the core

of MAAT and over time we hope it will be used to facilitate the development and analysis of models in many different scientific10

domains. Once a few simple rules are learned on how to write a system model in the MAAT formalism, MAAT provides an

ideal testbed for novel model development and for developing stand-alone components of more complex models, allowing

a full analysis of internal model dynamics and response to boundary conditions. Should researchers wish to develop system

models, ‘toy’ models, and stand-alone components of larger models we encourage them to download the code and resources.

6 Summary15

The MAAT modelling system embraces the equifinality thesis, “the potential for multiple acceptable models as representations

of hydrological and other environmental systems” (Beven, 2006). We also contend that no matter which side of the debate one

tends to sit (the quest for a single optimal model vs use of suites of behavioural models) there are currently, and most likely

will be for many years to come, many different models used to simulate almost any given system. So long as this multiplicity

is the norm we need better tools to understand the causes of differences among models and to understand the consequences20

of adding new processes or different process representations to a model. The multi-assumption architecture and testbed has

been developed as a tool to facilitate and formalise this approach to modelling. We hope that MAAT and other tools like it will

enable researchers in the environmental sciences to gain a deeper and more quantitative understanding of their study system.

7 Code availability

Code is available on GitHub (https://github.com/walkeranthonyp/MAAT.25

8 Data availability

Data used in this publication can be recreated using the code examples provided in the repository.

Author contributions. APW conceived of and wrote MAAT, wrote the paper and ran the analysis. MY and DL provided code to implement

the sensitivity analysis ensembles and calculate the sensitivity indices. MDK provided guidance on object oriented programming. MDK,

21



LG, BM, AR, and SS all provided feedback on the development of the unified multi-assumption model of leaf-scale C3 photosynthesis. All

authors provided feedback on the manuscript during drafting.

Competing interests. None.

Acknowledgements. The MAAT modelling framework and sensitivity analysis component of this research was supported as part of the

ORNL Terrestrial Ecosystem Science, Science Focus Area, funded by the U.S. Department of Energy, Office of Science, Office of Biological5

and Environmental Research. The multi-assumption leaf-scale photosynthesis model component of this research was supported as part of

the Next Generation Ecosystem Experiments-Tropics, funded by the U.S. Department of Energy, Office of Science, Office of Biological

and Environmental Research. Oak Ridge National Laboratory is operated by UT-Battelle, LLC, under contract DE-AC05-00OR22725 to the

United States Department of Energy. Brookhaven National Laboratory is managed under contract No. DE-SC0012704 to the United States

Department of Energy. We thank Lisa Jansson (BNL) for assistance with graphic design.10

Appendix A: Unified multi-assumption model of leaf-scale photosynthesis

In this Appendix we describe the unified, multi-assumption model of leaf-scale photosynthesis, focusing on enzyme kinetic models of

photosynthesis (Farquhar et al., 1980; von Caemmerer, 2000). Our intention is to provide a comprehensive review of the various processes and

their associated assumptions key to simulating leaf-scale photosynthesis. The inclusion of assumptions is based primarily on the methods used

to simulate leaf-scale photosynthesis in TBMs, with some augmentation from common or more recently defined hypotheses and assumptions.15

In drawing together in a single place and unifying the various hypotheses and assumptions commonly used in physiological models and

TBMs, we aim to provide a useful resource for researchers and students alike, in addition to providing a guide to how these processes are

simulated in MAAT. In this review and unification we draw upon Farquhar et al. (1980); Collatz et al. (1991); von Caemmerer (2000); Medlyn

et al. (2002); Gu et al. (2010), as well as many other references. At times we may introduce notation that is different from the notation in

the original papers. In the few cases where we do change notation, the aim is an attempt to integrate some of the disparate notation in the20

literature by using the same symbol to refer to common variables. The following sections are arranged by each process within leaf-scale

enzyme kinetic models of photosynthesis. Within each section the various competing hypotheses and assumptions are presented in unified

definitions and units.

A1 Carbon assimilation

Enzyme kinetic models of leaf photosynthesis (Farquhar et al., 1980; Collatz et al., 1991; von Caemmerer, 2000) simulate net CO2 as-25

similation (A, µmol CO2 m−2s−1) as the gross carboxylation rate (Ag , µmol CO2 m−2s−1) scaled to account for the photorespiratory

compensation point (Γ∗, Pa; the chloroplast CO2 partial pressure at which the carboxylation rate is equal to the rate of CO2 release from

oxygenation), minus non-photorespiratory (‘day’) respiration (Rd, µmol CO2 m−2s−1):

A=Ag(1−Γ∗/Cc)−Rd (A1)

where Cc is the chloroplast CO2 partial pressure (Pa). Ag is a function of three potentially limiting gross carboxylation rates: the RuBisCO30

limited rate (Ac,g); the electron transport limited rate (Aj,g); and the triose phosphate use limited rate (Ap,g). We introduce this notation,
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using A to always refer to carbon assimilation and subscripts as classifiers, in an attempt to integrate some of the disparate notation in the

literature. To select the limiting rate, Farquhar et al. (1980) used simply the minimum rate:

Ag =min{Ac,g,Aj,g,Ap,g} (A2a)

To be precise, Farquhar et al. (1980) described only the first two limiting rates, but their method can be used to include the third. Collatz et al.

(1991) introduced two quadratics to apply non-rectangular hyperbolic smoothing among the potentially limiting rates:

0 = θcjpA
2
g − (Acj,g +Ap,g)Ag +Acj,gAp,g (A2b)5

and

0 = θcjA
2
cj,g − (Ac,g +Aj,g)Acj,g +Ac,gAj,g (A2c)

where Acj,g is a latent variable, and θcjp and θcj are smoothing parameters (β and θ in Collatz’s original notation). We change the original

notation to use θ for any smoothing parameter with subscripts as classifiers. Simply selecting the minimum rate is a special case of the Collatz

et al. (1991) method where θcjp and θcj are both equal to one.10

All potential gross carboxylation rates, Ac,g , Aj,g , and Ap,g , are modelled as Michaelis-Menten functions of Cc. For Ac,g , Vcmax

(µmol CO2 m−2s−1) determines the asymptote:

Ac,g =
VcmaxCc

Cc +Kc(1 +O/Ko)
(A3)

where O is the chloroplast O2 partial pressure (kPa; assumed to be atmospheric O2 partial pressure); Kc and Ko are the Michaelis-Menten

constants of RuBisCO for CO2 (Pa) and O2 (kPa). For Aj,g , the asymptote is the electron transport rate (J ; µmol m-2 s−1) divided by four15

to represent the four electrons needed to reduce the NADP required for one carboxylation reaction:

Aj,g =
J

4

Cc
Cc + 2Γ∗

(A4)

For Ap,g , the asymptote is proportional to the rate of triose phosphate utilisation (TPU ; µmol m-2 s−1):

Ap,g =
3TPUCc

Cc + (1 + 3αT )Γ∗
(A5)

where αT represents the fraction of triose phosphate exported from the chloroplast that is not returned. Theoretically, αT can take values20

between 0 and 1. In practice, values >1 have been observed (Gu, unpublished), suggesting that αT may also be accounting for processes yet

to be fully described.

Photorespiration releases a molecule of CO2 for every two oxygenation reactions (catalysis of O2 and ribulose 1,5-bisphosphate by

RuBisCO) (Farquhar et al., 1980), therefore oxygenation reduces the net carbon assimilation rate. The Cc partial pressure at which carbon

assimilation equals CO2 release from photorespiration is known as the photorespiratory compensation point, Γ∗, described above. Γ∗ can25

be described by the kinetic properties of RuBisCO (Farquhar et al., 1980):

Γ∗ =
KcOko
2Kokc

(A6)

where kc and ko are the respective turnover rates (s−1) of RuBisCO for carboxylation and oxygenation. As described by Eq. A6, Γ∗

is determined by the ratio of these two parameters, ko : kc, the ratio of RuBisCO’s Michaelis-Menten constants, and the oxygen partial

pressure. Collatz et al. (1991) used:30

Γ∗ =
O

2τ
(A7)
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where τ is the CO2-O2 specificity ratio of RuBisCO and is equal to Kokc
Kcko

. Therefore ko : kc = Ko
τKc

. Bernacchi et al. (2001) introduced an

independent Γ∗, and simply set Γ∗ as a constant nominal or base rate at a reference temperature.

Many of the biochemical rates described above are determined by enzymes and are therefore sensitive to temperature. Commonly, to

model these parameters the rates are determined at a reference temperature and are then scaled using a temperature response function. We

return to these in Sections A4 and A5 below.5

A1.1 Electron transport

The electron transport rate (J) is a function of incident photosynthetically active radiation (I; µmol m-2 s−1). A number of formulations to

represent J exist, and the most commonly used are the following three representations. Following Smith (1937), two representations of J

saturate at a maximum rate of electron transport rate (Jmax). One, formulated by Harley et al. (1992):

J =
aαiI[

1 +
(
aαiI
Jmax

)2
]0.5 (A8a)10

and the other by Farquhar and Wong (1984):

0 = θjJ
2 + aαiIJmaxJ + aαiIJmax (A8b)

where θj is the non-rectangular hyperbola smoothing parameter. Collatz et al. (1991) proposed a linear light response model with no maxi-

mum rate:

J = aαiI (A8c)

where a is the leaf absorptance and αi is the intrinsic quantum efficiency of electron transport (the product of a and αi gives the apparent15

quantum efficiency of electron transport). α has been used with various meaning in the three original papers describing these three electron

transport models. Farquhar et al. (1980) did not use α, instead they used 0.5(1− f) where f is the "fraction of light not absorbed by

chloroplasts", defining I as the "absorbed photon flux", and 0.5 accounts for the two photons needed to fully transport a single electron to

the thylakoid membrane bound NADP reductase. This is the intrinsic quantum efficiency and equivalent to αi in our notation. Harley et al.

(1992) defined α as the "... efficiency of light energy conversion on an incident light basis" which is equivalent to the apparent quantum20

efficiency, or a0.5(1− f) using Farquhar et al. (1980) notation. Collatz et al. (1991) defined α as the "... intrinsic quantum efficiency for

CO2 uptake" which is equivalent to 0.5(1− f)/4 using Farquhar et al. (1980) notation, and is more correctly referred to as the intrinsic

quantum yield.

Our choice of notation lends itself to consistent notation when modelling photosynthesis across leaf and canopy scales because leaf

absorptance, a, is equivalent to 1−σ, where σ is defined as the leaf scattering coefficient (the sum of light reflection and transmission) in many25

canopy radiative transfer schemes (Spitters, 1986; Wang, 2003). However, our notation is at odds with measuring leaf scale photosynthesis

as measurements combine a and αi into a single term, i.e. the apparent quantum efficiency, because leaf light absorptance or reflection and

transmission is not quantified. This inconsistency motivates our use of the subscript i on αi. For the unified photosynthesis model in MAAT

we avoid confusion over the definition of α and use f as the parameter which determines intrinsic quantum efficiency (αi = 0.5(1− f)).

Specifically, f is the fraction of absorbed light not absorbed by the light harvesting complexes, and accounts for light spectral quality and30

light absorbtion by cell walls etc.

24



A2 CO2 diffusion and resistance

The partial pressure of CO2 at the site of carboxylation (Cc) is simulated as a function of the rate of CO2 assimilation (A), the atmospheric

CO2 partial pressure (Ca, Pa), and the resistance of the pathway to CO2 diffusion from the atmosphere to the site of carboxylation (r;

m2s mol−1 CO2). This is simulated by Fick’s Law, an analogue of Ohm’s Law for electrical circuits:

Cc = Ca− rAp (A9)5

where p is atmospheric pressure (MPa). Often resistance is presented in terms of its inverse, conductance (g). We opt to use resistance as it

linearises Eq A9, and the total resistance of a set of resistors in series is simply their sum. r can be broken down into a number of different

components to the resistance pathway—leaf boundary layer resistance (rb; m2s mol−1 H2O), stomatal resistance (rs; m2s mol−1 H2O),

and internal or mesophyll resistance (ri; m2s mol−1 CO2):

r = 1.4rb + 1.6rs + ri (A10)10

Note that by convention rb and rs are in H2O units as they also determine plant water loss and are used in soil-vegetation-atmosphere water

transport models which are often built from analogous equations. The scalars, 1.4 and 1.6, represent the ratios of CO2 to H2O diffusion

resistance. Eq. A9 can be broken out for each of the resistance terms:

Cb = Ca− 1.4rbAp (A11a)

Ci = Cb− 1.6rsAp (A11b)15

Cc = Ci− riAp (A11c)

where Ci (Pa) is the CO2 partial pressure in the mesophyll airspaces of the leaf; Cb (Pa) is the leaf boundary layer CO2 partial pressure.

A2.1 Stomatal conductance

Stomatal resistance is the key process in the diffusion of CO2 from the atmosphere to the site of carboxylation, though in recent years

internal resistance has also been the focus of much research. For consistency with the physiological literature (where most stomatal research20

originates) we present the following stomatal subsection in conductance, noting that the MAAT code uses resistance by convention. By

adjusting stomatal conductance, gs (gs = 1/rs), a plant can regulate the combined functions of water diffusion out of the leaf and CO2

diffusion into the leaf. Thus, physiological regulation of stomatal conductance is a key process that couples carbon and water cycles from

local to global scales (e.g., Medlyn et al., 2011; De Kauwe et al., 2013; Swann et al., 2016). Carbon gain is of benefit to a plant while water

loss is a cost in water limited environments, which has led to a large body of research and multiple equations that describe how plants might25

adjust gs to balance this conflict. In this section we focus primarily on equations derived from optimisation theory and empirical data that

are used in TBMs, recognising that this is not a complete list of all hypotheses on stomatal conductance in the literature (e.g. Buckley et al.,

2016; Wolf et al., 2016).

A general form for many stomatal conductance equations, especially those commonly used in TBMs, is:

gs = g0 + f(e)
A

Cb,m
(A12a)30
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where A is net carbon assimilation; f(e) is a function of various environmental variables, often a metric of atmospheric dryness and a slope

parameter (g1) describing the change in stomatal conductance in response to a change in e; and g0 is the minimum gs primarily due to

cuticular conductance. Cb,m is Cb in molar units (µmol mol-1; Cb,m = Cb/p).

A form of stomatal conductance, commonly used by TBMs, is that of Ball et al. (1987):

gs = g0 + g1,bhr
A

Cb,m
(A12b)

where hr is relative humidity (%) and g1,b is the g1 specific to this formulation. Due to different f(e) functions and environmental variable

used g1 does not take the same value for all gs formulations.

Also used by some TBMs is the formulation by Leuning (1990):

gs = g0 +
g1,l

(1−Γ/Cb)(1 +D/D0)

A

Cb,m
(A12c)

where Γ is the CO2 compensation point in the presence of both photo and non-photo respiration (Pa); D is vapour pressure deficit (kPa); D0

is D at which gs is reduced by half, and g1,l is the g1 specific to this formulation.

Based on the two above, semi-empirical models have been followed more recently with a function derived from optimisation theory

(Medlyn et al., 2011):5

gs = g0 +

(
1 +

g1,m√
D

)
A

Cb,m
(A12d)

We will present two more empirical assumptions related to stomatal conductance that are commonly employed in TBMs. These assumptions

are based on observations that the Ci:Ca ratio is often well conserved. These assumptions do not include a g0 term and assume zero leaf

boundary layer resistance, which allows an analytical solution to solving these equations (described in Section A3). The first of these

assumptions, presented in Prentice et al. (1993) and used in the Lund-Potsdam-Jena (LPJ) family of TBMs, is that Ci:Ca is constant, often

refered to as χ. Assuming that leaf boundary layer resistance of zero means Cb is equal to Ca and substituting χ into Eq. A11b gives:

gs =
1.6

1−χ
A

Cb,m
(A12e)

Cox et al. (1998) derived an alternative formulation from the Leuning model based on work of Jacobs (1994), and employed in the Joint

UK Land Environment Simulator (JULES):

Ci−Γ

Cb−Γ
= f0(1−D/D∗) (A12f)10

where f0 = 1− 1.6/g1,l and D∗ =D0(g1,l/1.6− 1). Rearranging and substituting Eq. A12f into Eq. A11b gives:

gs =
1.6

1−Γ/Cb− f0(1−Γ/Cb)(1−D/D∗)

A

Cb,m
(A12g)

A2.2 Boundary layer and internal resistance

While stomatal resistance is the process that receives the majority of attention from ecophysiologists, boundary layer resistance and internal

resistance are also important terms in the resistance pathway of CO2 into the leaf and H2O out of the leaf. rb determines the coupling of15

the leaf with the atmosphere in the canopy boundary layer, and influences the leaf energy balance. The strength of this coupling determines
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how different leaf temperatures can be from air temperature, with highly coupled leaves showing the smallest differences between leaf and

air temperatures. The magnitude of this coupling and its relationship to leaf heat or cold stress have been shown to be a driver of leaf size

globally (Wright et al., 2017). rb is commonly simulated as a function of leaf size and wind speed (Oleson et al., 2013):

rb = t−1
b (U/dl)

−0.5κr (A13)

where tb is the turbulent transfer coefficient between the leaf and the air (ms−0.5), U is wind speed across the plane of the leaf (ms−1), dl is5

the leaf dimension in the wind direction (m), and κr converts resistance expressed in sm−1 to m2smol−1 (RTl,kp
−110−6).

Internal resistance, often also referred to as mesophyll resistance, is a composite of multiple resistances (see Evans et al., 2009, for a

detailed description of these various components). The response of ri is under investigation and has been shown to respond to temperature

(von Caemmerer and Evans, 2014), light (Campany et al., 2016), and CO2 (Kolbe and Cousins, 2018). While ri and its environmental

responses are active areas of research, most TBMs do not explicitly include mesophyll resistance as a process. The absence of explicit10

inclusion is because ri is implicit in most measurements of biochemical rate parameters, especially Vcmax and Jmax. Explicit inclusion of

ri would also require these ‘apparent’ biochemical rates to be modified to their absolute rates. Given the large body of research on ‘apparent’

biochemical rates and the diversity of ri responses that are not yet fully understood, TBMs are likely to maintain the stauts quo and implicitely

account for ri in the near future. For this reason, we only include ri as a parameter which, by default, is set to zero. However, investigation

of the impact of ri is possible within MAAT and should researchers be interested in evaluating the impact of various relationships of ri to15

environment, they would be relatively trivial to incorporate.

A3 Numerical and analytical solution

Eqs A1, A9, and A12a are a system of simulataneous equations with three inter-dependent unknowns,A, rs, and Cc, that need solving forA.

In MAAT, these equations are combined into a single function (called the solver function in MAAT, more formally this is a residual function

for which a numerical solver finds the root) and are solved using the ‘uniroot’ function in R’s base package, which is based on the Brent20

solver. The Brent solver has been shown to be robust in solving these simultaneous equations (Tang, unpublished). MAAT also contains a

solver function that assumes rs is zero, thus allowing a calculation of the magnitude of stomatal limitation on carbon assimilation.

A number of TBMs make three simplifying assumptions to the above described set of simultaneous equations such that A can be solved

using a simple analytical solution. The first and second simplifying assumptions are that rb and ri are zero (to be accurate, most TBMs assume

that ri is zero). These assumptions mean that Cb = Ca, Cc = Ci, and that Eq A10 collapses so that r = 1.6rs. With these assumptions, Eq25

A9 is identical to Eq A11b. The third simplifying assumption is that g0 is zero. Making these assumptions allows A to cancel when Eq A12a

is substituted into Eq A11b, yielding an equation for Cc that is independent of A:

Cc = Ca

(
1− 1.6

f(e)

)
(A14)

Eq. A14 and the unified expression of gs models in Section A2.1 allows the analysis of the impact of these simplifying assumptions across

all the stomatal conductance models presented in Section A2.1.30

An analytical solution that makes only the first and second assumptions can also be derived to form a quadratic equation:

0 = aA2 + bA+ c (A15)
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where:

a= p

[
1.6− f(e)

Cb,m
(Ca +K)

]
(A16a)

b=

[
− g0(Ca +K) + p

f(e)

Cb,m

(
V (Ca−Γ∗)−Rd(Ca +K)

)
+ 1.6p(Rd−V )

]
(A16b)

c= g0

[
V (Ca−Γ∗)−Rd(Ca +K)

]
(A16c)

where V andK are the asymptote and half-saturation parameters of Eqs. A3, A4, and A5 depending on which limiting rate is being calculated.5

We found that the larger root to the quadratic was the solution for A.

A cubic solution that requires no simplifying assumptions is also possible (Baldocchi, 1994; Yin and Struik, 2009). However, the cubic

solution is rarely employed by TBMs as it is not always clear which root provides the correct solution. For the sake of brevity we do not

include the cubic solution here.

A4 Nominal biochemical rates10

Many of the biochemical rates presented in Section A1 are enzymatically controlled and are therefore temperature sensitive. Commonly these

rates are presented normalised to a nominal rate at a common reference temperature often, but not always, 25 ◦C. In this section we describe

the methods used to set various nominal biochemical rates at a reference temperature. In Section A5 we present methods used to scale these

rates from reference temperatures to leaf temperature. The simplest method to set these nominal rates is to define them as input parameters

that do not vary during the course of the simulation, and this is possible in MAAT. Also included are a number of functions which describe15

relationships among the various biochemical traits, primarily with leaf nitrogen on an area basis (Na; g m-2) or in relation to (Vcmax). In the

following functions we use a and b to refer to the intercept and slope of a linear relationship and n and e to refer to the normalisation constant

and exponent in a power law relationship (i.e. the intercept and slope respectively of a linear relationship of log transformed variables). We

use subscripts to identify the relationships to which these parameters belong (see Table A1 for reference).

A4.1 Vcmax20

Vcmax is the maximum rate of carboxylation by the enzyme RuBisCO. The N content of RuBisCO in a leaf contributes a substantial

proportion of total leaf N (Evans, 1989). Therefore, Vcmax is often simulated as an empirical function of leaf N, either as a linear relationship

(e.g. Harley et al., 1992):

Vcmax,Tr = avn + bvnNa (A17a)

or a power law relationship that results from a linear regression of log transformed variables (e.g. Walker et al., 2014):25

Vcmax,Tr = nvnNa
evn (A17b)

or as a linear relationship with parameters that have more physiological meaning (e.g. Oleson et al., 2010):

Vcmax,Tr = flnrfnrRsaNa (A17c)

where flnr is the fraction of leaf N invested in RuBisCO; fnr is the fraction of RuBisCO that is N; and Rsa is the specific activity of

RuBisCO (i.e. the carboxylation rate per gram RuBisCO; µmol CO2 g-1 RuBisCO).30
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Alternative methods and hypotheses for predicting Vcmax exist, such as the co-ordination hypothesis (Chen et al., 1993; Maire et al.,

2012); optimisations constrained by co-ordination, leaf N partitioning, and empirical relationships (i.e. LUNA Ali et al., 2016); and empirical

relationships to environment (Verheijen et al., 2013). For a more in depth discussion and evaluation of these various methods see Walker

et al. (2017b). Currently MAAT only employs the Vcmax assumptions that are represented with explicit functions above.

A4.2 Jmax5

Commonly Jmax is simulated as an empirical function of Vcmax. This is because the relationship between these two photochemical rates is

tight (Wullschleger, 1993; Wohlfahrt et al., 1999; Walker et al., 2014), especially considering the common level of variation in other trait-trait

relationships. Commonly employed is the classic linear relationship of Wullschleger (1993):

Jmax,Tr = ajv + bjvVcmax,Tr (A18a)

often, though with a zero intercept (e.g. Medlyn et al., 2002). More recently, Walker et al. (2014) presented evidence that showed the

relationship may be better described by a power law:10

Jmax,Tr = njvVcmax,Tr

ejv (A18b)

A4.3 TPU

Triose phosphate utilisation is commonly set as a linear function of Vcmax:

TPUTr = atv + btvVcmax,Tr (A19)

with the intercept commonly set to zero and the slope to 1/6. Given Eq. A1, Eq. A5, and αT , the slope value of 1/6 is equivalent to the value15

of TPU given in Collatz et al. (1991).

A4.4 Rd

Commonly leaf daytime respiration is simulated as a linear function of either Vcmax:

Rd,Tr = arv + brvVcmax,Tr (A20a)

or leaf N:20

Rd,Tr = arn + brnNa (A20b)

As a function of Vcmax, respiration is commonly simulated with zero intercept. Also of interest is that Rd is often observed to be smaller

during the day, or in the light, when compared with Rd in dark conditions. The processes that result in the reduction of Rd in the light are

not clear and there is some discussion surronding potential bias in the measurement of how Rd changes when conditions go from light to

dark. For a comprehensive review of these discussions see Farquhar and Busch (2017) and Tcherkez et al. (2017). A fixed ratio of Rd to25

respiration in the dark Rdark can be selected:

Rd,Tr = brRdark,Tr (A21a)

29



br can be simulated as a function of incident light intensity following Brooks and Farquhar (1985) and popularised by Lloyd et al. (1995):

br = 1, 0≤ I ≤ 10

br = (0.5− 0.05ln{I}), 10< I (A21b)

A5 Temperature scaling

A number of hypotheses and assumptions exist to describe the instantaneous temperature scaling of the above-described biochemical rates.5

Rate increases with temperature are usually described with an exponential function. And commonly for respiration, a monotonic increase

with temperature is all that is considered. For the other three rates, a decrease with higher temperatures is often also observed. Often in the

literature the increase and decrease with temperature are presented as a single function. However, the terms that describe an increase with

temperature and a decrease with temperature can often be separated and some of the diversity of temperature scaling comes from mixing

separate assumptions on the increase and decrease with temperature.10

Instantaneous temperature scaling is an immediate metabolic response. Plants also respond to temperature variation over timescales of

days to weeks, commonly referred to as acclimation. These acclimatory temperature responses are commonly represented by describing some

of the parameters in the instantaneous response as a function of mean temperatures experienced by the leaf over a pre-defined period. In the

following sub-sections we first present hypotheses and assumptions for instantaneous temperatures scaling, then for longer-term acclimation

of the temperature response.15

A5.1 Instantaneous temperature scaling

All hypotheses and assumptions in this Section are presented as functions of leaf temperature (Tl, ◦C) and reference temperature (Tr , ◦C;

i.e. the temperature at which the nominal base rate is measured or calculated, decribed in Section A4 apply). The result of all the functions is

a scalar such that the product of the scalar and the rate at the nominal temperature (ρr) gives the rate at leaf temperature (ρl):

ρl = ρrf(Tl,Tr) (A22a)20

In many cases the function to calculate the scalar can be decomposed into a component that increases with temperature and a component that

decreases as temperature increases:

f(Tl,Tr) = fi(Tl,Tr)fd(Tl,Tr) (A22b)

The two commonly used scalar functions that increase with temperature are the Arrhenius equation:

fi(Tl,Tr) = exp

{
Ha(Tl,k −Tr,k)

RTl,kTr,k

}
(A23a)

and the Q10 function:25

fi(Tl,Tr) =Q
Tl−Tr

10
10 (A23b)

where Ha is the activation energy (J mol−1); exp is the exponential function; the subscript k refers to temperature in Kelvin (K); R is the

universal gas constant (8.31446, J mol−1K−1 ); and Q10 is the factor by which ρl increases for each 10 ◦C increase in Tl.

In some cases, and for some variables (e.g. Rd), simply increasing with temperature is often all that is assumed and f(Tl,Tr) is equal

to fi(Tl,Tr). However, for some rates there is a decrease associated with increasing temperatures once a temperature optimum has been30
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exceeded. A commonly used function for the decrease is a modification on the Arrhenius equation (Medlyn et al., 2002; Kattge and Knorr,

2007):

fd(Tl,Tr) =

1 + exp

{
Tr,k∆S−Hd)

RTr,k

}
1 + exp

{
Tl,k∆S−Hd)

RTl,k

} (A24a)

where Hd discribes the decrease with temperature (J mol−1), as does ∆S (J mol−1K−1) which is referred to as an entropy term (Medlyn

et al., 2002). ∆S and Hd are related to the optimum temperature (Topt) where ρl is at its maximum:

Topt =
Hd

∆S−Rln
{

Ha
Hd−Ha

} (A24b)5

A simplified form of Eq A24a was introduced in Collatz et al. (1991):

fd(Tl,Tr) =
1

1 + exp

{
Tl,k∆S−Hd)

RTl,k

} (A24c)

And another alternative was introduced in Cox et al. (1998):

fd(Tl,Tr) =
1

[1 + exp{σ(Tl−Tupp)}][1 + exp{σ(Tl−Tlow)}] (A24d)

where σ is a scaling exponent; and Tupp and Tlow represent high and low leaf temperatures that bound the temperature response.10

Brooks and Farquhar (1985) introduced a quadratic function for scaling Γ∗ with temperature, which we here modify to result in a scalar:

f(Tl,Tr) = 1 + bT (Tl−Tr) + aT (Tl−Tr)2/cT (A25)

The quadratic function combines both the ascending and descending component of the temperature response.

Tjoelker et al. (2001) demonstrated that the logarithm of respiration plotted against measurement temperature was not a linear function.

The inference was made that Q10 was a function of measurement temperature. This is somewhat confusing as the Q10 function describes15

the response to temperature. Our interpretation of the evidence presented in Tjoelker et al. (2001) is that the Rd temperature response was

not a true exponential function and therefore a Q10 function is not the correct representation of the Rd temperature response. We include

the Tjoelker et al. (2001) function that describes the parameter Q10 as a function of leaf temperature for completeness as it is used in some

TBMs.

Q10 = aQ10t + bQ10tTl (A26)20

A5.2 Acclimation of instantaneous temperature scaling

To allow for acclimation to past temperatures, parameters in the above equations can be assumed as functions of mean past leaf temperature

Tl. and Kattge and Knorr (2007) showed that ∆S is also a linear function of past leaf temperature:

∆S = a∆St + b∆StTl (A27)

In both of these cases, the slope was negative and bothQ10 and ∆S decrease with temperature indicating that the sensitivity to instantaneous25

temperature increase is lower as plants experience higher temperatures. The decrease in ∆S with past temperature also indicates that Topt
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increases with temperature. In addition to modifying temperature scaling parameters, Kattge and Knorr (2007) noticed that temperature

acclimation also changed the slope of a linear Jmax to Vcmax relationship:

bjv = ajvt + bjvtTl (A28)

The slope of this function is also negative, indicating a decrease in Jmax relative to Vcmax at higher temperature. Currently in MAAT, Tl is

simply the leaf temperature, representing steady-state acclimation.5
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Table A1. Table of notation.

Symbol Unit Description

avn µmol CO2 m−2s−1 Intercept of Vcmax,Tr to leaf N relationship. Eq. A17a

bvn µmol CO2 m−2s−1g−1N Slope of Vcmax,Tr to leaf N relationship. Eq. A17a

nvn µmol CO2 m−2s−1g−1N Normalisation constant of Vcmax,Tr to leaf N power-law. Eq. A17b

evn - Exponent of Vcmax,Tr to leaf N power-law. Eq. A17b

ajv µmol e m−2s−1 Intercept of Jmax,Tr to Vcmax,Tr relationship. Eq. A18a

bjv e CO2
−1 Slope of Jmax,Tr to Vcmax,Tr relationship. Eq. A18a

njv e CO2
−1 Normalisation constant of Jmax,Tr to Vcmax,Tr power-law. Eq. A18b

ejv - Exponent of Jmax,Tr to Vcmax,Tr power-law. Eq. A18b

atv µmol CO2 m−2s−1 Intercept of TPUTr to Vcmax,Tr relationship. Eq. A19

btv - Slope of TPUTr to Vcmax,Tr relationship. Eq. A19

arv µmol CO2 m−2s−1 Intercept of Rd,Tr to Vcmax,Tr relationship. Eq. A20a

brv - Slope of Rd,Tr to Vcmax,Tr relationship. Eq. A20a

arn µmol CO2 m−2s−1 Intercept of Rd,Tr to leaf N relationship. Eq. A20b

brn µmol CO2 m−2s−1g−1N Slope of Rd,Tr to leaf N relationship. Eq. A20b

br - Slope of Rd,Tr to Rdark,Tr relationship. Eq. A21

aQ10t - Intercept of Q10 to leaf temperature relationship. Eq. A26

bQ10t
◦C−1 Slope of Q10 to leaf temperature relationship. Eq. A26

a∆St - Intercept of ∆S to previous leaf temperature relationship. Eq. A27

b∆St
◦C−1 Slope of ∆S to previous leaf temperature relationship. Eq. A27

ajvt - Intercept of bjv to previous leaf temperature relationship. Eq. A28

bjvt
◦C−1 Slope of bjv to previous leaf temperature relationship. Eq. A28

a - Leaf absorbtance, proportion of incident light absorbed by leaf. Eq. A8

aT
◦C−2 Coefficient of quadratic temperature scaling. Eq. A25

bT
◦C−1 Coefficient of quadratic temperature scaling. Eq. A25

cT - Coefficient of quadratic temperature scaling. Eq. A25

A µmol CO2 m−2s−1 Net carbon assimilation rate. Eq. A1

Ag µmol CO2 m−2s−1 Gross (of photo and non-photo respiration) carbon assimilation rate. Eqs. A1 & A2

Ac,g µmol CO2 m−2s−1 RuBP saturated potential gross carbon assimilation rate. Eqs. A2 & A3

Aj,g µmol CO2 m−2s−1 RuBP limited potential gross carbon assimilation rate Eqs. A2 & A4

Ap,g µmol CO2 m−2s−1 TPU limited potential gross carbon assimilation rate. Eqs. A2 & A5

Acj,g µmol CO2 m−2s−1 Potential gross carbon assimilation rate once RuBP limitation/saturation

has been accounted for.

Eq. A2c
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Table A1. Continued.

Symbol Unit Description

Ca Pa Atmospheric CO2 partial pressure. Eqs. A9, A11, A14, & A16

Cb Pa Leaf boundary layer CO2 partial pressure. Eq. A11

Cb,m µmol CO2 mol Leaf boundary layer CO2 molar mixing ratio. Eq. A12, A14, & A16

Ci Pa Internal leaf airspace CO2 partial pressure. Eq. A11

Cc Pa Leaf chloroplastic CO2 partial pressure. Eq. A1, A3, A4, A5, A9, A11, & A14

D kPa Leaf boundary layer H2O vapour pressure deficit. Eq. A12

D0 kPa Vapour pressure deficit scaling parameter. Eq. A12

D∗ kPa Vapour pressure deficit scaling parameter related to D0 and g1,l. Eq. A12

dl m is the leaf dimension perpendicular to the wind direction. Eq. A13

e - A vector of variables to which stomatal conductance responds. Eq. A12, & A16

f - Fraction of light absorbed by leaf not absorbed by photosystems. Eq. A8

f0 - Stomatal conductance parameter related to g1,l. Eq. A12

flnr - Fraction of leaf N in RuBisCO. Eq. A17c

fnr - Fraction of RuBisCO that is N. Eq. A17c

gs mol H2O m−2s−1 Stomatal conductance, inverse of rs. Eq. A12

g0 mol H2O m−2s−1 Minimum stomatal (and cuticular) conductance. Eq. A12

g1,b %−1 Stomatal conductance slope from Ball et al. (1987). Eq. A12

g1,l - Stomatal conductance slope from Leuning (1990). Eq. A12

g1,m kPa−0.5 Stomatal conductance slope from Medlyn et al. (2011). Eq. A12

hr - Leaf boundary layer relative humidity. Eq. A12

Ha J mol−1 Activation energy for biochemical rate. Eqs. A23a & A24c

Hd J mol−1 Parameter describing decrease of biochemical rate with temperature. Eq. A24

I µmol photons m−2s−1 Light incident on the leaf. Eq. A8

J µmol e m−2s−1 Electron transport rate. Eq. A4 & A8

Jmax µmol e m−2s−1 Maximum electron transport rate at Tl. Eq. A8

Jmax,Tr µmol e m−2s−1 Maximum electron transport rate at Tr . Eq. A18

K Pa Michaelis-Menten half-saturation parameter(s) from Eqs. A3, A4 & A5. Eq. A16

Kc Pa Michaelis-Menten half-saturation constant for RuBisCO carboxylation. Eqs. A3 & A6

Ko kPa Michaelis-Menten half-saturation constant for RuBisCO oxygenation. Eqs. A3 & A6

kc s−1 Turnover rate for RuBisCO CO2 carboxylation. Eq. A6

ko s−1 Turnover rate for RuBisCO O2 oxygenation. Eq. A6

O kPa Atmospheric O2 partial pressure. Eqs. A3, A6, & A7
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Table A1. Continued.

Symbol Unit Description

Na g m−2 Leaf N on an area basis. Eqs. A17 & A20b

p MPa Atmospheric pressure. Eqs. A9, A11, & A16

Q10 - Scalar on biochemical rate for a 10 ◦C increase in temperature. Eqs. A23b & A26

Rd µmol CO2 m−2s−1 Non-photo (day) respiration rate at Tl. Eq. A1

Rd,Tr µmol CO2 m−2s−1 Non-photo (day) respiration rate at Tr . Eqs. A20 & A21

Rdark,Tr µmol CO2 m−2s−1 Dark adapted (night) respiration rate at Tr . Eq. A21

Rsa µmol CO2 m−2s−1g−1 RuBisCO specific activity. Eq. A17c

R J K−1 mol−1 Universal gas constant. Eqs. A23 & A24

r m2s mol−1 CO2 Resistance to CO2 diffusion from the atmosphere to the site of carboxy-

lation.

Eqs. A9 & A10

rb m2s mol−1 H2O Leaf boundary layer resistance to H2O diffusion from the atmosphere

to the leaf boundary layer.

Eqs. A11 & A13

rs m2s mol−1 H2O Stomatal resistance to H2O diffusion from the leaf boundary layer to

the internal leaf air-space.

Eqs. A11 & A12

ri m2s mol−1 CO2 Internal/mesophyll resistance to CO2 diffusion from the leaf internal

air-space to the site of carboxylation.

Eq. A11

Tr
◦C Reference temperature for nominal biochemical rate. Eqs. A22, A23, & A24

Tl
◦C Leaf temperature. Eqs. A22, A23, & A24

Tr,k K Reference temperature for nominal biochemical rate. Eqs. A23a, A24a, & A24c

Tl,k K Leaf temperature. Eqs. A23a, A24a, & A24c

Topt
◦C Optimum temperature for biochemical rate. Eq. A24b

Tupp
◦C Upper temperature parameter for biochemical rate. Eq. A24d

Tlow
◦C Lower temperature parameter for biochemical rate. Eq. A24d

TPU µmol CO2 m−2s−1 Triose phosphate utilisation rate at Tl. Eq. A5

TPUTr µmol CO2 m−2s−1 Triose phosphate utilisation rate at Tr . Eq. A19

tb ms−0.5 Turbulent transfer coefficient between the leaf and the air. Eq. A13

U ms−1 Wind speed across the plane of the leaf. Eq. A13

Vcmax µmol CO2 m−2s−1 Maximum RuBisCO carboxylation rate at Tl. Eq. A3

Vcmax,Tr µmol CO2 m−2s−1 Maximum RuBisCO carboxylation rate at Tr . Eqs. A18, A19, & A20a

V µmol CO2 m−2s−1 Asymptote parameter(s) from Eqs. A3, A4 & A5 Eq. A16

35



Table A1. Continued.

Symbol Unit Description

αi e photon−1 Intrinsic quantum efficiency, number of electrons transported through

the electron transport chain per unit of absorbed light.

Eq. A8

αT - Fraction of exported Triose Phosphate not returned to chloroplast. Eq. A5

Γ∗ Pa Photorespiratory compensation point, Cc at which CO2 release from

photorespiration equals Ag .

Eqs. A1, A3–A7

Γ Pa Respiratory compensation point, Cc at which CO2 release from photo

and non-photo respiration equals Ag .

Eq. A12c, f, & g

∆S J mol−1K−1 Entropy parameter related to peak of biochemical rate response to tem-

perature.

Eqs. A24a–c

θcj - Non-rectangular hyperbolic smooting parameter for Ac,g and Aj,g . Eq. A2b

θcjp - Non-rectangular hyperbolic smooting parameter for Acj,g and Ap,g . Eq. A2c

θj - Non-rectangular hyperbolic smooting parameter for electron transport. Eq. A8b

κr m3mol−1 is a conversion factor for resistance expressed in sm−1 to m2smol−1. Eq. A13

ρr variable Nominal biochemical rate at reference temperature. Eq. A22

ρl variable Biochemical rate at leaf temperature. Eq. A22

σ - Scaling parameter for biochemical rate temperature response. Eq. A24d

τ - CO2-O2 specificity ratio of RuBisCO. Eq. A7

χ - Ci:Cb ratio. Eq. A12e
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