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Abstract.

This study describes the numerical implementation, verification and validation of an Immersed Boundary Method (IBM)

in the atmospheric solver Meso-NH for applications to urban flow modelling. The IBM represents the fluid-solid interface by

means of a LevelSet Function and models the obstacles as part of the resolved scales.

The IBM is implemented by means of a three-steps procedure: first, an explicit-in-time forcing is developed based on a novel5

Ghost-Cell Technique that uses multiple image points instead of the classical single mirror point. The second step consists in

an implicit step projection where the right-hand side of the Poisson equation is modified by means of a Cut-Cell Technique to

satisfy the incompressibility constraint. The condition of non-permeability is achieved at the embedded fluid-solid interface by

an iterative procedure applied on the modified Poisson equation. In the final step, the turbulent fluxes and the wall model used

for Large-Eddy-Simulations (LES) are corrected and a wall model is proposed to ensure consistency of the subgrid scales with10

the IBM treatment.

In the second of part of the paper, the IBM is verified and validated for several analytical and benchmark test cases of flows

around single bluff bodies with increasing level of complexity. The analysis showed that MNH-IBM reproduces the expected

physical features of the flow, which are also found in the atmosphere at much larger scales. Finally the IBM is validated in the

LES mode against the Mock Urban Setting (MUST) field experiment, which is characterized by strong roughness caused by15

the presence of a set of obstacles placed in the atmospheric boundary layer in nearly-neutral stability conditions. The Meso-NH

IBM-LES reproduces with reasonable accuracy both the mean flow and turbulent fluctuations observed in this idealized urban

environment.

1 Introduction

Urbanization impacts the physical and dynamical structure of the atmospheric boundary layer, influencing both the local20

weather and the concentration and residence time of pollutants in the atmosphere, which in turn impact air quality. While the

physical mechanisms driving these interactions and their connections to climate change are well understood (the Urban Heat
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Island effect, anthropical effects), their precise quantification remains a major modelling challenge. Accurate predictions of

these interactions require modelling and simulating the underlying fluid mechanics processes to resolve the complex terrain

featured in large urban areas, including buildings of different sizes, street canyons, parks, etc. For example, it is well known

that pollution originates from traffic and industry in and around cities, but the actual dispersion mechanisms are driven by

the local weather. Furthermore, fine-scale flow fluctuations influence nonlinear physicochemical processes. The present study5

addresses these issues focusing on the numerical aspects of the problem.

With the progress in metrology, it is now possible to obtain reliable measurements of the atmospheric conditions over a city.

For example, during the Joint Urban experiment (JU2003), scalar dispersion was measured experimentally over the streets

of Oklahoma City (Clawson et al., 2005; Liu et al., 2006). Similarly, the CAPITOUL experiment (2004-2005) conducted

in Toulouse, analyzed the turbulent boundary layer developed over the urban topography and evaluated the energy exchanges10

between surface and atmosphere (Masson et al., 2008; Hidalgo et al., 2008). More recently, the multiscale field study by Allwine

et al. (2012) provided meteorological observations and tracer concentrations data in Salt Lake City. Other studies analyzed

reduced-scale and/or idealized models to understand urban climate features as in the COSMO (Comprehensive Outdoor Scale

Model Experiment for Urban Climate) and Kugahara projects (Moriwaki and Kanda, 2004). For example, Kanda et al. (2007)

and Wang et al. (2015) used, respectively, an array of cubic bodies and stones fields as small-scale models.15

In order to use in the future these experimental data for model validation, the numerical models need first to be verified for

academic test cases and simplified scenarios representative of atmospheric turbulent boundary layer flows. In particular, the

flow interaction with buildings or any generic obstacles plays a crucial role in urban flow modelling. The range of scales of

objects acting as obstacles is huge in urban setting, encompassing large buildings and small vegetation scales and so is the

range of the corresponding flow-obstacles interactions. Covering all possible cases is obviously impossible but we can rely on20

the invariance of certain flow characteristics at different scales. For example, the von Kármán streets are observed in the wake

of a centimeter-scale cylinder as well as in the cloud layout behind an island. Following this, a wide selection of benchmark

flows can be analyzed to verify and validate the numerical treatment of fluid-obstacle interaction with a view to atmospheric

applications.

The physical application considered in this work is the atmospheric mesoscale reaction to perturbations induced by urban25

areas and the more the obstacles are considered as a part of the scales numerically resolved the more the results accuracy

is. To access this resolution, this study presents the development, implementation, verification and validation of an Immersed

Boundary Method IBM (Mittal and Iaccarino, 2005) in the Meso-NH model MNH (Lafore et al., 1998; Lac et al., 2018) for

applications to urban flow modelling1. This choice was dictated by the fact that numerical solvers in MNH enforce conservation

on structured grids and hence cannot handle body fitted grids with steep topological gradients. The main idea behind IBM is30

the detection of an interface separating a fluid region (where conservations laws hold) from a solid region (corresponding

to the obstacle volume) using different techniques (e.g. markers, LevelSet functions, local volume fraction, etc). Two main

classes of IBM exist based on the continuous and discrete forcing approaches, respectively. The continuous forcing approach

was developed by Peskin (1972) for biomechanics applications and consists in the addition of a continuous artificial force

1Meso-NH scientific documentation: http://mesonh.aero.obs-mip.fr/mesonh52/BooksAndGuides
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(acceleration indeed) in the momentum conservation equation that mimic the effect of the obstacles (heart linings) and drive

the flow to relax to no-slip conditions at the wall of the obstacles. This approach and its variant developed by Goldstein et al.

(1993) for a rigid interface can suffer from the lack of stiffness (fluid-solid interface is generally spread over few cells) and the

time step restriction (spring and damper model with large natural frequency). Nevertheless, the continuous forcing approaches

are very successful in many applications (penalization method as in Angot et al. (1999), fictitious domain method, etc). In the5

second IBM class, the discrete approach, the boundary conditions are specified at the immersed interface. To simulate flows

around non moving and rigid bodies, two sub-classes of discrete approaches can be defined as in Mittal and Iaccarino (2005):

direct or indirect approaches, depending on the forcing location (Pierson, 2015). Many types of discrete forcing exist, e.g.

direct forcing in the fluid region near the interface as in Mohd-Yusof (1997), immersed interface method (Leveque and Li,

1994), Cartesian grid method (Clarke et al., 1986). Depending on how to resolve the partial differential equations, Cartesian10

grid methods (Ye et al., 1999) are written for finite-volume discretizations (Cut-Cell Technique, CCT) and for finite-difference

discretizations (Ghost-Cell Technique, GCT) as in Tseng and Ferziger (2003). CCT reshapes the cell cut by the interface to

preserve mass, momentum and energy. Using GCT, the local spatial reconstruction is done inside the solid region. Note that

the latter technique has been successfully implemented in Weather Research and Forecasting WRF model (Lundquist et al.,

2010, 2012).15

In this study, a discrete forcing approach is adopted where the fluid-solid interface is modelled by means of a LevelSet

function (Sussman et al., 1994). The motivation behind this choice is that we are primality interested in modelling explicitly

rigid and non-moving bodies in a turbulent flow, and with sufficiently fine resolution to avoid the large dissipation inherent

to the presumed spread interface. The GCT does not introduce source terms in the conservation equations modelling the fluid

region so that boundary conditions are imposed at the interface and/or in the solid region. The only corrections to the physical20

model in the fluid region come from subgrid turbulent parameterizations. The idea is that in future mesoscale applications,

IBM will be used to resolve large obstacles (in the solid region) such as buildings but also mountains, whereas a subgrid drag

model will be used to handle unresolved obstacles such as vegetation (Aumond et al., 2013).

The paper is organized as follows. Section 2 briefly describes the general features of MNH. Section 3 details the numerical

implementation of the IBM. Inspired by the works of Bredberg (2000), Piomelli and Balaras (2002), Craft et al. (2002) and to25

close the turbulence problem, an immersed wall model is proposed in Section 3.3. Sections 4.1 and 4.2 describe the validation

of the method for academic flows, respectively potential (Lamb, 1932; Batchelor, 2000) and viscous flows. Finally, Sections 5.1

and 5.2 discuss the results of turbulent flows simulations and comparisons with data from field experiments. Conclusions are

drawn in Section 6. Additional tests and validations on potential and inviscid flows are respectively documented in the Appendix

A and B. The study of a viscous and thermodynamic case (Straka et al., 1993) is given in supplementary materials.30

2 The Meso-NH code at a glance

MNH is an atmospheric non hydrostatic research model. Its spatio-temporal resolution ranges from the large meso-alpha scale

(hundred of kilometers and days) down to the micro-scale (meters and seconds). It is massively parallel on nested and structured
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grids, adapted on most of international hosting computer platforms. Several parametrizations are available: radiation, turbu-

lence, microphysics, moist convection with phase change, chemical reactions, electric scheme, externalized surface scheme. In

the present study, only two subgrid parametrizations are approached: turbulence and surface schemes.

2.1 The conservation laws

The spatial discretization x is based on the terrain-following coordinates (Gal-Chen and Somerville, 1975). The staggered5

mesh is regular ∆x=∆y =∆ in the horizontal directions and a transformation of the vertical one is available in order to fit

a non-plane surface. The release of the vertical space step is available where a fine resolution is unnecessary. In the current

study, only flat problems are considered with a ∆z =∆ restriction for altitudes in presence of immersed obstacles.

The core of the MNH dynamic in its dry version is based on the resolution of the Euler and thermodynamic equations (energy

preserving). The anelastic approximation (Lipps and Hemler, 1982; Durran, 1989) is assumed; the reference state is stratified10

and the density deviation to the hydrostatic case in the buoyancy term is considered. The system can be simplified into the

Boussinesq approximation when considering an uniform reference state. The tendencies of each prognostic variable ψ satis-

fying the usual conservation laws in MHN are expressed as ∂ψ
∂t

∣∣
csl

where subscript csl is used to distinguish these tendencies

from those arising from the application of the IBM procedure (Sect. 3.1). The prognostic variables are the resolved momentum,

the potential temperature and if necessary an arbitrary passive scalar. The prognostic variable is decomposed into a resolved15

component, ψ, and an unresolved component, ψ′ (ψ′ = 0 in a Direct Numerical Simulation, DNS). An additional prognostic

equation on the subgrid turbulent kinetic energy is solved for a Large Eddy Simulation (LES, Sect. 2.3). The potential temper-

ature is defined through the Exner function Π and the absolute temperature T = P/(ρrRd) = θ(P/Pr0)
Rd/Cp = θΠ where ρr

is the density of the reference state, P is the local pressure, Pr0 the reference ground level pressure, Rd the gas constant and

Cp the specific heat capacity at pressure constant for dry air. The thermodynamic equations and an additional passive scalar20

equation are:

∂(ρrθ)

∂t

∣∣∣∣
csl

=−∇(ρrθu)−∇.(ρrθ′u′)+ ρrF
Π

θ (1)

∂(ρrs)

∂t

∣∣∣∣
csl

=−∇.(ρrsu)−∇.(ρrs′u′) (2)

25
where F

Π
corresponds to pressure effects. The transport of each prognostic scalar in Equations (1), (2) and (6) is made by a

Piecewise-Parabolic Method (PPM) with undershoots and overshoots limitation (Colella and Woodward, 1984; Lin and Rood,

1996). The temporal algorithm of the advection term in these scalar transport is a forward-in-time scheme (noted FT). The

momentum equations are:

∂(ρru)

∂t

∣∣∣∣
csl

=−∇.(ρru⊗u)+∇.(µf∇u)−∇.(ρru′ ⊗u′)+ ρrF
Π

u + ρrg
θ− θr
θr

(3)30
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where u is the resolved wind, g the acceleration due to the gravity appearing in the buoyancy term, θr is the potential

temperature of the reference state, µf the dynamic viscosity, ∇.(ρru′ ⊗u′) the Reynolds stresses. The spatial discretization of

∇.(ρru⊗u) in Equation (3) can be done by either second- or fourth-order centered schemes, third- or fifth-order Weighted-

Essentially-Non-Oscillatory schemes (Jiang and Shu, 1996). The temporal evolution of the resolved wind is achieved by a

fourth-order ERK Explicit Runge-Kutta algorithm (Shu and Osher, 1989; Lunet et al., 2017). In the present study ∆t is fixed5

to respect the Courant number |un|∆t
∆ < 1 (n, the time step index) and no additional time splitting is implied. The temporal

viscous stability condition O(νf/∆
2) (νf the kinematic viscosity) imposes an additional restriction when viscous term is

explicitly resolved in time.

The bottom, lateral wall and top surfaces take a free-slip, impermeable and adiabatic behaviours without the call of an

externalized surface scheme. The open boundary condition is a Sommerfeld equation defined as a wave-radiation (Carpenter,10

1982) to enforce the large scales and allow the reflection wave damping.

2.2 The incompressibility condition

The wind of the resolved scales has to satisfy the continuity equation ∇.(ρrun+1) = 0. The method consists in the projection of

the predicted velocity field u∗ (solution of Eq. (3) without the pressure term) into the null-divergence subspace. This projection

estimates the irrotational correction to apply to u∗ through a potential scalar Ψ∗:15

un+1 = u∗ − ∆t

ρr
∇Ψ∗ (4)

Ψ∗ is obtained with the resolution of the pseudo-Poisson equation written as:

∇.(ρ−1
r ∇Ψ∗) = ∆t−1∇.u∗ (5)

20
The horizontal part of the operator to invert in the elliptic problem is treated in the Fourier space (Schumann and Sweet,

1988) and its vertical part brings to the classical tridiagonal matrix. The mathematical operator to invert ∇.(∇) is exact for flat

problems (Bernadet, 1995). When the mesh is built with a terrain-following coordinates over a flat surface, the solution of the

pressure problem becomes inaccurate. In this orography-presence case, an iterative procedure is employed such as a Richard-

son, a Conjugate-Gradient (Young and Jea, 1980) or a Residual Conjugate-Gradient (Skamarock et al., 1997) algorithms.25

2.3 The turbulent subgrid scales

To execute LES, the Reynolds stresses ∇.(ρru′ ⊗u′) appearing in Equation (3) are estimated. The LES closure is done by

an eddy-diffusivity approach called 1.5TKE with a 1.5 order closure scheme (Cuxart et al., 2000). The isotropic part of the

subgrid turbulence is given by the prognosis of the subgrid turbulent kinetic energy e= 1
2 (u

′2 + v′2 +w′2):

∂(ρre)

∂t

∣∣∣∣
csl

=−∇(ρreu)− ρrg
θ′u′

θ
− ρru′ ⊗u′.∇u+∇.(ρrKelm

√
e∇e)− ρrKϵe

3/2/lϵ (6)30
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where Ke and Kϵ are constants prescribed in the turbulence scheme, lm and lϵ the length scales defining the turbulent

viscosity. The dissipation term is directly estimated from e and lϵ (the left-hand term in Equation 6). The anisotropic part of

the subgrid turbulence is diagnosed from the ψ gradient and e. The diagnosis of the anisotropic part of the subgrid turbulence

is obtained using ψ and e:5

u′iu
′
j =+(2/3)δije− (1/15)lm

√
e(
∂ui
∂xj

+
∂uj
∂xi

− (2/3)δij
∂um
∂xm

) (7)

θ′u′i =−(1/6)lm
√
e
∂θ

∂xi
Φi (8)

θ′2 =+(5/36)l2m
∂θ

∂xm

∂θ

∂xm
Φm (9)10

where Einstein summation convention is applied and Φi,m are atmospheric stability functions (Redelsperger and Sommeria,

1981). The ground condition can be modelled by the externalized surface scheme SURFEX (Masson et al., 2013). In the dry-

version of MNH and with the hypothesis of a zero thermal flux at the ground and buildings, only the turbulent friction is used.

To compute the non-zero values of u′iu
′
j at the ground, the SURFEX call employed in this paper consists in a simple activation15

of a dynamic wall model related to the Prandtl theory (eddy viscosity concept). The form of the surface turbulent fluxes are

u′iu
′
j

∣∣
surf

≈−l2m | dui

dxj
| dui

dxj
. Defining a friction velocity u∗ proportional to the turbulent wall shear and a roughness length z0,

the vertical gradient of u is recovered by specifying a logarithmic profile (Kármán, 1930) as u(z) = u∗

k ln(1+
z
z0
) (note that

the atmospheric stability conditions are neutral or near-neutral in this manuscript, therefore the additional Monin and Obukhov

(1954) term is neglected and Businger et al. (1971) functions do not appear in the previous formulation). SURFEX is employed20

in Sect. 5.2.

3 The IBM forcing in the Meso-NH code

The numerical domain is divided in two regions: the equations of continuum mechanics hold and a solid region embedding the

obstacle where they do not. After comparing the methods (Fig. 1-a) based on a local volume fraction function and the (LSF)

LevelSet Function (Sussman et al., 1994; Kempe and Fröhlich, 2012), it was decided to use the LSF as it was able to capture25

the interface between the fluid and solid regions more accurately : The | ϕ | distance informs about the minimal distance to the

fluid-solid interface and the ϕ-sign about the region nature: sgn(ϕ)> 0 for the solid one; otherwise sgn(ϕ)< 0. The vector n

normal to the interface and its local curvature σ are defined such as n= ∇ϕ
|∇ϕ| and σ =−∇.n. Fig. 1-a illustrates the continuous

variation of LSF for an arbitrary bell shape interface. The LSF is estimated at the seven available points type per cell to limit

the discretization errors (Fig. 1-b): at the mass point P where prognostic scalar variables are localized, at the three velocity30
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(a) (b)

Figure 1. (a) Illustration of two ways to model a fluid-solid interface: the color code indicates the isocontours of the presence function C

and the LevelSet function ϕ; (b) Definition of the points type per cell: M the geometric/mesh point, P the mass point, U/V/W the velocity

nodes and A/B/C the vorticity nodes.

nodes U/V/W where are characterized each projection u, at the A/B/C vorticity nodes employed by turbulent variables. The

points of the solid region acts as external points of the computational grid (as acts external points in a boundary-fitted method

at the grid limit). An intensive study had been done to estimate the well-modelling of the vector normal to the interface and

the local curvature using LSF. The forcing based on a GCT Ghost-Cell Technique (resp. CCT Cut-Cell Technique) is applied

to the explicit-in-time schemes (resp. the pressure solver) and detailed in Sect. 3.1 (resp. Sect. 3.2).5

3.1 Ghost-Cell Technique and explicit-in-time schemes

The ψn value is estimated at the time n∆t (∆t, the time step). The tendencies of the prognostic variables ψ = [u,θ,s,(e)]

(Sect. 2.1) can not be deduced from the conservation laws in the solid region. Expecting a correction due to IBM where ϕ≥ 0,

a general formulation of the tendencies is written as:

∂

∂t
=
∂

∂t

∣∣∣∣
csl

+
∂

∂t

∣∣∣∣
ibm

(10)10

The RHS first term of Equation (10) is given by the conservation laws (Sect. 2.1). The ∂
∂t

∣∣
ibm

tendency is the correction due

to the GCT in the solid region and near the immersed interface satisfying the ψ desired boundary conditions at ϕ= 0:

∂ψ

∂t

∣∣∣∣
ibm

=−∂ψ
∂t

∣∣∣∣
csl

+
ψ
n+1 −ψ

n

∆t
(11)

15
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Note that ∂u∂t
∣∣
ibm

is taken into account in the Explicit-Runge-Kutta (ERK) temporal algorithm. The freeze of the immersed

wind conditions in the ERK algorithm had also been implemented; it had shown a more unstable behaviour for large Courant

number.

(a) (b) (c)

Figure 2. (a) Node definitions acting in the Ghost-Cell Technique : the ghost (G), interface (B), normal vector (n), mirror (I) and images

(I1, I2). (b resp. c) Illustration of the classical (resp. new) GCT using the mirror (resp. images). Triangles correspond to one of the node

types (see Fig. 1-b).

The forced points are called ghost points and merely renamed ghosts. To estimate the variable ψ and for each ghost, the

physical information is extracted near the interface and from the fluid region. The extension (grid stencil) of the forcing zone5

depends on the spatial accuracy of the numerical scheme. For example, Figures 2b-c show the case of a two-layers stencil in

a two-dimensional grid. The characterization of the layer is done by a conditional loop applied direction by direction on the

LSF. For a 2D case, the sign of ϕ(i, j).ϕ(i, [j− kl : j+ kl]) and ϕ(i, j).ϕ([i− kl : i+ kl], j) is estimated. The integer value kl

determines the cells truncated by the interface: kl = 1 (resp. kl = 2) defines the first (resp. second) layer. The calculation of

these ghost layers has a computational overhead due to data exchange among processors in parallel simulations. The stencil10

of the numerical schemes modelling the interface defines the kl value. In order to limit this overhead, a low-order version of

centered explicit-in-time scheme (Sect. 2.1) is employed when ϕ >−∆. The CPU cost of the ’hybrid’ advection scheme is

largely compensated by the decrease of the ghosts number and parallel exchanges. Appendix B reports a comparison analysis

between third-order WENO and second-order centered schemes used in the vicinity of the interface; the studied case is the

inviscid flow around a circular cylinder.15

In the classical GCT (Tseng and Ferziger, 2003) the fluid information is obtained at a mirror point (noted I , merely renamed

mirror) found in the normal direction to the interface in such a way that the interface node B is equidistant to I and G. Fig-

ure 2-a shows the characterization of one ghostG (of LSF value ϕG), its associated mirror I (of LSF value ϕI ) and the interface

node B (GI= 2ϕGn). Figure 2-b illustrates several ghosts and mirrors. The |IB| distance depends on the forcing stencil and

a problematic case regularly met in the mirror interpolation is the vicinity of ghosts with the interface (ϕG =−ϕI <<∆, with20
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∆ the space step) leading to a not well-posed condition.

The new GCT. To overcome this problem, we define image points (noted I1 and I2 in Fig. 2-a, merely renamed images)

having a distance to the interface that depends only on the grid spacing: GIl = l∆+ϕGn with l = (1;2). Figure 2-a shows the

images for one ghost. The new approach enforces a large enough value of the |IlB| distance. Figure 2-b (resp. c) illustrates the5

classical (resp. new) GCT for several ghosts. Figure 2-b shows some mirror points associated with ghosts of the first layer in

the vicinity of the interface. Figure 2-c shows the new approach ensures the image points are always located in the fluid region,

irrespective of the ghost location. The definition of several images per ghost allows to build a profile of the ψ fluid information

normal to the interface. ψ(I) is therefore recovered by a quadratic reconstruction f using the (B,I1, I2) points. Two distinct

calculations of f(ψ(B),ψ(I1),ψ(I2)) noted PLIa and PLIb are tested to build the Lagrange interpolation:10

ψ
a
(I) = [2LaG(I)ψ(B)+LaI1(I)ψ(I1)+LaI2(I)ψ(I2)][1+LaG(I)]

−1 (12)

ψ
b
(I) = LbB(I)ψ(B)+LbI1(I)ψ(I1)+LbI2(I)ψ(I2) (13)

where La(I) and Lb(I) are the Lagrange polynomials:15

LaI1(I) =

(
2∆−ϕ

∆

)(
2ϕ

∆+ϕ

)
; LaI2(I) =

(
ϕ−∆

∆

)(
2ϕ

2∆+ϕ

)
; LaG(I) =

(
ϕ−∆

ϕ+∆

)(
ϕ− 2∆

ϕ+2∆

)
(14)

LbI1(I) =

(
2∆−ϕ

∆

)(
ϕ

∆

)
; LbI2(I) =

(
ϕ−∆

∆

)(
ϕ

2∆

)
; LbB(I) =

(
ϕ

∆

)(
ϕ− 2∆

2∆

)
(15)

The accuracy of an interpolation depends on the ψ-profile. For example, a logarithmic evolution of the tangent velocity is20

expected in LES. Otherwise when the viscous layer is modelled, a linear evolution is expected. To compare the ability of each

quadratic interpolation to approach a wide variety of profiles, the recover of power laws such as ψ = ϕ3/2 (Figure 3-a) and

ψ = ϕ1/4 (Fig. 3-b) is studied. As it illustrates, PLIa fits better the two analytical solutions and is therefore adopted. The

classical and new GCTs have been compared thoroughly and part of this analysis is deferred to the Appendix. The interpolated

field of the potential flow around a single cylinder or a sphere was compared to the theoretical solution; the sensitivity of the25

inviscid flow around the same bodies (Appendix B) to the type of GCTs had been studied. The new GCT had given the best

results, especially in the symmetry preservation in the inviscid flow cases. Note that these results are also dependent to the

3D interpolations choice detailed in a following paragraph. The proposed GCT is employed in the rest of this study. The GCT

implementation is divided in four main steps: the fluid information recovery, the interface basis change, the interface condition

and the ghost value.30

The fluid information recovery. ψIl for the images contained in a pure fluid cell (all corner nodes are in the fluid region)

is recovered by a trilinear interpolation based on Lagrange Polynomials (LP):

9



(a) (b)

Figure 3. Quadratic interpolations of two analytical profiles ψ = ϕn (red lines) using two images points at ϕ=−[1;2]∆ and the interface

node. Green (resp. blue) color corresponds to La (resp. Lb) polynomials results.

LLPi (xl) =

N∏
p=1,p̸=i

xl−xp
xi−xp

; LLPj (yl) =

N∏
p=1,p̸=j

yl− yp
yj − yp

; LLPk (zl) =

N∏
p=1,p̸=k

zl− zp
zk − zp

(16)

ψ(xl,yl,zl) =

N∑
i=1

N∑
j=1

N∑
k=1

LLPi (xl)L
LP
j (yl)L

LP
k (zl).ψ(xi,yj ,zk) (17)

For truncated cells (at least one corner node is in the solid region), ψIl is recovered using an inverse Distance Weighting5

(DW) interpolation:

ψ(xl) =

N∑
i=1

LDWi (xl).ψ(xi)

N∑
i=1

LDWi (xl)

; | xl −xi |=
√

(xl−xi)2 +(yl− yi)2 +(zl− zi)2 (18)

where LDWi (x) =| xl−xi |−α (α= 1). This formulation diverges when xi → xl and it is commonly adopted to impose

ψ(xl) = ψ(xi) when ∃(xi−xl)≤ ϵ (ϵ is an arbitrary parameter depending on the mesh discretization, ϵ <<∆). The 3D ex-10

tension is direct with | xl −xi |=
√
(xl−xi)2 +(yl− yi)2 +(zl− zi)2. The use of these interpolations was decided after

comparisons with Barycentric Lagrange and Modified Distance Weighting interpolations (Franke, 1982) and tests on the α

coefficient. As the boundary condition is expressed in the interface frame and the grid is staggered, the non-collocation of the

u components implies firstly to interpolate three different classes of cells (with U/V/W corners, Fig. 1-b) for each U/V/W

ghosts, secondly to build the change of frame matrix for which the proposed GCT presents an interest during the characteriza-15

tion of the direction tangent to the interface.
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The interface basis change. Velocity vector u known in the Cartesian mesh basis at the images Il (∆n1 =∆ and ∆n2 = 2∆

in Fig. 2-a) is projected in the basis of the interface (n(B),t(B),c(B)) in which the boundary conditions on each vector

component are imposed. Computing the LSF gradient, the normal direction is defined. Otherwise, (t,c) are two arbitrary

tangent directions. The tangent direction t is considered as the predominant tangent direction of the flow along the fluid-solid

interface depending on the images values and defining the velocity vector such as u(Il) = un(Il)n+ut(Il)t(Il). The cotangent5

direction is defined such as:

c(Il) =
n⊗u(Il)

|| n⊗u(Il) ||
; t(Il) = c(Il)⊗n (19)

The (n,t,c) basis at the interface is defined by considering or not the rotation of the tangent velocity with the distance to

the interface:10

t(B) = t(I1) if no rotation ; et(B) = 2et(I1)− et(I2) if linear evolution (20)

Finally, the third component is c(B) = n⊗ et(B) and (inverse) projection is known.

The interface condition. Let ψB and ∆∂ψ
∂n

∣∣
B

the Dirichlet and Neumann conditions on ψ. The general formulation of the15

boundary condition ψ(ϕ= 0) is written as a Robin condition: ψ(ϕ= 0) = krψB +(1− kr).(ψ(ϕ=−l∆)− l∆∂ψ
∂n

∣∣
B

). The

switch between the Dirichlet condition and the Neumann condition is done through the coefficient kr ∈ [0 : 1]. To give some

examples of Dirichlet condition, (kr;ψB) = (1;0) is imposed: on the u.n velocity component normal to the interface arising

from the impermeability hypothesis, on the u.t component tangent to the interface for a no-slip hypothesis. To give some

examples of Neumann condition imposed by (kr;
∂ψ
∂n

∣∣
B
) = (0;0): no flux condition on the potential temperature (as well on a20

passive scalar, subgrid kinetic energy), free-slip case applied to u.t. Note the lϕ
2 -approximation in the location of the derivative

term and the Neumann condition depending on the chosen image (in practice the selected image Il is the closest one to the

interface).

An interface condition depending on the characteristics of the surrounding fluid such as ψ(ϕ= 0) = F (ψIl ;
∂ψ
∂n

∣∣
Il
) is a wall

model. Using two (resp. three) images, simple wall models such as the constant (resp. linear) extrapolation of the ψ gradient is25

reached by the ∂2ψ
∂n2

∣∣
Il
= 0 (resp. ∂

3ψ
∂n3

∣∣
Il
= 0) computation. The consistency between the tangent component to the interface of

the resolved wind and the subgrid turbulence is the subject of Section 2.3.

The ghost value. Knowing ψ(ϕ= 0) and ψIl = ψ(ϕ=−l∆), ψ(G) for a Dirichlet (resp. Neumann) condition is written

such as :30

ψ(G) = 2ψ(B)−ψ(I) (Dirichlet) ; ψ(G) = 2ϕ
dψ

dn

∣∣∣∣
B

+ψ(I) (Neuman) (21)

11



Figure 4. Profile normal to the interface of two fluid informations ψ: analytical solution (red lines), quadratic interpolation QI1 using

ψ−ϕ=[1/2;1]∆ (green symbols), QI2 using ψ−ϕ=[1;2]∆ (blue symbols), QIC as a combination of QI1 and QI2 (purple lines).

In practice, three Il images are defined for which the location are ϕIl =−l∆ with l = [1/2;1;2]. The choice of the images

distance to the interface affects the results. To approach at best the expected solution, two quadratic interpolations depending

on the used images and one combination of this quadratic interpolations are tested. Figure 4-a and Figure 4-b illustrate these

interpolations by considering two analytical profiles (red lines): the quadratic interpolation QI1 (resp. QI2) is based on the5

images values located at ϕ= 1/2∆ and ϕ=∆ and plotted in green symbols (resp. at ϕ=∆ and ϕ= 2∆ plotted in blue

symbols). Depending on the analytical profile, Figure 4 shows the influence of the images location choice. As expected,

QI1 (resp. QI2) appears to be less accurate than QI2 (resp. QI1) for ψ(ϕ ∈ [−2∆ :−∆]) (resp. for ψ(ϕ ∈ [−∆ : 0])). QIC

is the combination of QI1 and QI2 (purple line). QIC preserves the advantage of each quadratic interpolation and when

ϕG <∆ (resp. ϕG >∆), QI1 (resp. QI2) is used in the rest of the study. Knowing ψ
n+1

(ϕ−) at the end of the MNH temporal10

loop with QIC , the ψ
n+1

(ϕ+) profile is extrapolated from the fluid region to the solid region by applying an anti-symmetry

ψ
n+1

(ϕ+) = 2ψ
n+1

(0)−ψ
n+1

(ϕ−). The ghost value is estimated and the ψ-gradient at the interface is also recovered.

3.2 Cut-Cell Technique and pressure solver

First looking at the RHS of (5), the ∂(ρru
∗)

∂t

∣∣
csl

coming from the resolution of the explicit-in-time schemes near the interface

and in the solid regions badly affects the ∇.u∗ computation (note that the GCT operates after the step projection). Therefore15

the fictive wind of the solid region can spread errors in the fluid region during the pressure resolution. To avoid it, a correction

of the pressure solver is proposed.

The elliptic problem (5) is re-written as a resolution of the linear system P.Ψ∗ =Q. In the standard MNH version, ∇.u∗ =Q
is estimated using a finite difference approach. To uncouple the solid region from the fluid region our revisited version enforces

a null-divergence for pure solid cells and estimates the balance of momentum fluxes by a finite volume approach for truncated20

cells (noted Qcct):

12



Figure 5. (a) Momentum fluxes balance for an arbitrary truncated cell of volume V where the ui
∗ velocities (Ui in the figure, i=

[e,w,n,s,b,f ]) are supported by the Si surfaces in grey colour; the transparent volume is a part of the solid body. (b) Segmentation of

the Sw arbitrary surface (red border) in eigth P ∗
p pieces of cake (the border of P ∗

3 is indicated in green).

V∇.u∗ =

∫
Vf

∇.u∗dV +

∫
Vs

∇u∗dV =
∑

±ui∗.Si =
∑

±∆̃2ui
∗ (22)

where V =∆3 is the cell volume, Vf (resp. Vs) the fluid (resp. solid) part of V , Si the cell surfaces where i is the index of

each surface orientation [e,w,n,s,b,f] as it illustrates in Figure 5-a.

According to the Green-Ostrogradski theorem, the ui∗Si calculation is the classical way of a CCT Cut-Cell Technique (Yang5

et al., 1997; Kim et al., 2001) to estimate the velocity divergence. A similar approach is here performed re-building the flux

∆̃2u∗ for truncated and solid cells.

The ±∆̃2ui
∗ calculation consists in a weighting of the out-fluxes and in-fluxes function of the fluid and cell surfaces ratio

(Fig. 5-a). Figure 5-b gives an example of the west surface (i= w, red border) where ∆̃2uw
∗(j,k) is calculated using the LSF

value ϕ= ϕw and the ones of the eight adjacent nodes ϕp(j± 1,k± 1). A disk of radius −1
√
π∆ is split in eight ’piece of10

cake’ segments P ∗
p (p= [1 : 8]). A LSF linear interpolation detects or not the interface location. In presence of an interface, its

distance from the studied node is 0< δp < −1
√
π∆. Knowing δp, the momentum fluxes balance is formulated for a non-moving

body as (p is the index of the ’piece of cake’ and i the index of the cell surface):

∆̃2ui
∗ =

∆2

8
[

8∑
p=1

H(−ϕp)H(−ϕi)ui
∗ +

8∑
p=1

H(−ϕpϕi).|H(−ϕp)−π(
δp
∆
)2|.(H(−ϕp)u∗

p+H(−ϕi)ui
∗)] (23)
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Figure 6. (a,b,c,d) ±∆̃2ui
∗ calculations depending on the signs of ϕi = (ϕ) and ϕp on an arbitrary piece of cake. The white (resp. grey)

region corresponds to the solid (resp. fluid) one of P ∗
p (same colour code as in Fig. 5).

The four encountered cases correspond to a pure fluid cell ∆̃2ui
∗ = ∆2

8

8∑
p=1

ui
∗ when ϕp < 0 and ϕi < 0 (Fig. 6-a); a pure

solid cell ∆̃2ui
∗ = 0 when ϕp > 0 and ϕi > 0 (Fig. 6-b); two types of truncated cells depending on the fluid/solid nature of the

main node for which ϕp.ϕi < 0 (Fig. 6-c/d). Using Eq. (23), Equations (22) are solved and lead to the RHS computation of (5).

Knowing Qcct, the reflection concerns now the P matrix to invert. The classical interface condition on the potential Ψ∗ is a5

homogeneous Neumann condition ∂Ψ∗

∂ϕ = 0. Using a Boundary Fitted Method (BFM), the interface condition of the moving or

non-moving body (Auguste, 2010) appears only on the border of a numerical domain. Using an IBM and without any impact

of this interface condition on the P-coefficients, the impermeability character of solid obstacles is not achieved. Due to the

inversion of the horizontal part of P by a Fast Fourier Transform (Schumann and Sweet, 1988), the solution of calculating Pcct
appears to be problematic. The adopted solution consists in an iterative procedure as used in MNH for non-flat problems. The10

non-respect of the Ψ∗-condition in P leads to a not well-posed system and the iterative procedure goes to spread to the entire
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fluid domain the enforcement of the null-divergence imposed on solid cells. The resolution of the pseudo-Poisson equation

(5) brings to Ψ∗ →Ψ∗M =
M∑
m=1

P−1.Qm
cct where M is the number of iterations. This number is limited by a convergence

criterion (compromise between incompressibility satisfaction and CPU cost). Many iterative procedures are available in MNH

and originally developed for non Cartesian grids. A Richardson and a Preconditioned Conjugate-Residual algorithms had been

here adapted to the obstacles immersion. The newly modified pressure solver is tested and validated in Sect. 4.1.5

3.3 Consistency with the turbulence scheme

It is known that the lm
lϵ

→ 1 is a reasonable approximation in non-homogeneous, non-isotropic turbulence such as in the near-

wall region. This approximation is indeed retained in the present IBM implementation, which assumes lm = lϵ (hereafter noted

lm and called the mixing length). The Redelsperger et al. (2001) corrections near the ground is to match the similarity laws

and the free-stream models constants are not activated. lm is equal to the numerical cut-off space scale sufficiently far from10

the ground bringing to a ∆
√
e turbulent viscosity. Near the ground and following the Prandtl idea consisting in the assumption

of the linear variation of lm in the near-wall region, the upper limit of the mixing length is min(kz,∆) (k is the von Kármán

constant and z is the altitude).

Figure 7. Illustration of the unresolved physical processes near a non-idealized solid wall (black line) in an atmospheric context: the length

scale based on the viscous effects (grey line) is drastically smaller than the roughness length. The roughness length approaches the scale of

smallest eddies and governs the log-law profile.

The turbulent characteristics are highly affected by a surface interaction. As a consequence and for LES, the subgrid tur-

bulence scheme (Sect. 2.3) is modified in presence of immersed obstacles on the subgrid turbulent kinetic energy equation15

(Eq. (6)), mixing length computation and Reynolds stresses diagnosis (Eq. (7), (8) and (9)).

The Subgrid Turbulent Kinetic Energy condition. The explicit-in-time resolution of Eq.(6) claims a GCT forcing and an

interface condition on the STKE e. Commonly, the STKE profile is considered parabolically in the viscous sublayer (Craft et

15



al., 2002; Bredberg, 2000) and constant in the inertial and wake/outer layers (Kalitzin et al., 2005; Capizzano, 2011). Due to

the high turbulent Reynolds number Ret ≈O(104 − 105) encountered, a homogeneous Neumann condition is applied at the

immersed interface. The equilibrium between production and dissipation of STKE could be discussed and controverted; this

choice acts as a first stage in the IBM development.

5

The near-wall correction of the mixing length. The von Kármán limitation due to immersed walls acts through the LSF

and the upper limit on the mixing length lm near interface becomes min(kz,−ϕ,∆) with a banning of negative values in

the solid region. Whatever the production of Subgrid Turbulent Kinetic Energy e (STKE) and the turbulent shear, the lower

limit lm(−ϕ≤ 0) induces a null value of the diagnosed surface fluxes. In addition, a singularity appears in the dissipative

term ρrKϵe
3/2l−1

m . By a pragmatic reasoning, the singularity due to l−1
m (ϕ→ 0−)→∞ amounts to say that modelled length10

scales are smaller than the Kolmogorov scale (ν3ϵ−1)
1
4 . Considering the Kolmogorov scale as modeled, the turbulence should

vanish which is in contradiction with the dissipative term. In order to overcome this ill-posed problem, a lm lower limit has

to be specified. In the study of atmospheric flows around buildings, a characteristic thickness of the viscous layer H/
√
Re

can be defined around a H bluff body for a Reynolds number based on the obstacle scale: H ≈O(10m);Re≈O(107). This

thickness estimate is also proportional to Eν/u∗ (E ≈ 9.8 is commonly employed) where the friction velocity u∗ is about the15

centimeter per second. Following these estimates, the length scale due to the viscous effects zibν belongs to the millimetres

domain in the expected atmospheric cases. Looking after a building surface and its large heterogeneity (door, windows, surface

characteristics), its roughness length zib0 is at least in the decimeter domain and zib0 > zibν (Illustration in Fig. 7). For lowRe and

smooth surfaces, zibν > zib0 could be encountered. Therefore, we assume zib =max(zib0 ,z
ib
ν ) and that zib is related to the size

of smallest unresolved eddies near walls (i.e. dissipative scale). The mixing length near wall is zib < lm <min(kz,−ϕ,∆).20

The turbulent fluxes correction. The ψ-gradient and the turbulent diffusion O(zib
√
e) prescribe the turbulent fluxes at the

immersed interfaces (Eq. (7), (8) and (9)). As a first step in the MNH-IBM implementation, no-flux condition on the mean

potential temperature is imposed bringing to a zero-value of the sensible heat flux. Writing the mean velocity field at B such as

u= utt, ut(B) is needed to recover a gradient consistent with the turbulent shear. Considering the Prandtl (1925) or Kármán25

(1930) theories, the logarithmic profile is assumed in the vicinity of the wall according to ut(z) = u∗

k ln(1+
z
zib

). Considering

∆ as the limit of the resolved scales, most of the turbulent kinetic energy 1
2 (u

′2 + v′2 +w′2) is contained in the subgrid one

when −ϕ <∆ and such as Ktke
√
e with a constant Ktke ≳ 1. This assumption is reinforced by the homogeneous Neumann

condition applied on e. This approach derives from the RANS (Reynolds-Averaged Navier Stokes) approaches and the velocity

friction is formulated as u∗ =Ktke
4
√
Cµ

√
ewhereCµ is a constant evolving between 0.03 (atmospheric applications) and 0.0930

(fluid mechanics applications). Adding a damping function for the viscous cases (low turbulent Reynolds number, Ret < 20),

the tangent wall velocity at the interface is written such as:

ut(B) =
Ktke

4
√
Cµ

√
e(ϕ=−∆/2)

k
ln

(
1+

∆

zib

[
1− e−20zib∆−1

])
(24)
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Finally the pragmatic limitation ut(B)≤ ut(ϕ=−∆/2) operates if the STKE value is too high. The proposed dynamic

wall-model evolves between the no-slip and free-slip conditions. If the subgrid turbulence is weak or if the physical problem is

fully resolved, the viscous layer is well-modelled and ut(B)→ 0. Otherwise for an intense subgrid turbulence or a fully unre-

solved problem, the shear due to the wall presence is not perceived and dut

dn

∣∣
B
→ 0. The wall-model establishes an equilibrium

between the production of STKE and the mean parietal friction. Note that the use of a log-law model near a singularity such5

as sharp edges and corners could be called into question. Nevertheless, Sections 5.1 and 5.2 show LES results employing this

proposition. After numerical investigations done during the single cube study, Ktke
4
√
Cµ ≈ 1 appears as a suitable choice.

4 Flows around a circular cylinder

4.1 Potential flow

Isolated from the rest of the code, the resolution of the pseudo-Poisson equation (5) leads to potential solutions (Sect. 2.2).10

Theoretical ones are available for flow developed around a non-deformable obstacle such as an infinite cylinder or a sphere

(Milne-Thomson, 1968; Batchelor, 2000). The two bodies are here investigated. The flow around the infinite cylinder is pre-

dominantly presented.

Figure 8 illustrates the cylinder case. The fluid density is considered as constant in time and in space. The flow is initially15

imposed as spatially homogeneous with a constant module of velocityU∞ and parallel streamlines (Fig. 8-a). This initialization

does not respect the conservation of the momentum flux and the irrotationnal correction of the projection method goes to

recover this conservation. In the same time, the impermeability of the cylinder of diameter Dcyl = 2Rcyl is achieved. Figure 8-

b shows the streamlines obtained with the MNH pressure solver modified to take into account the presence of immersed

obstacles (Sect. 3.2). Defining x as the direction parallel to the initial streamlines and y as the perpendicular one, the expected20

solution is u.U−1
∞ = cosα(1− R2

cyl

r2 )x− sinα(1+
R2

cyl

r2 )y (single and non-confined body, (α;r) cylindrical coordinates). The

numerical confinement is comment hereafter, characterized by L= Lcyl/Rcyl where Lcyl is the distance separating the lateral

domain surfaces (Fig. 8-a).

The Richardson (RICH) and the Residual Conjugate Gradient iterative (RESI) methods are tested (Sect. 3.2). Figure 9-a plots

the evolution of the dimensionless residue R(k) (based on a characteristic divergence U∞/∆) with the iterations number k25

and obtained with the confinement L= 16. The two algorithms converge with a weak dependence to the spatial discretizations

(N = [4(red);8(green);16(blue);32(purple)] nodes per Rcyl). The slope coefficient dR(k)
dk (RESI)≲ 3dR(k)

dk (RICH), so

RESI demonstrates its highest velocity convergence. Even if RICH is about 20% faster per iteration than RESI, the global CPU

cost of the last one is lowest for a same solver residue R(k). For this reason and due to an a priori higher radius convergence,

RESI is adopted. Note that the momentum flux computed after the solver convergence at the xcyl location (Fig. 8-a) shows a30

good mass preserving with a relative error of [0.48%(N = 4);0.20%(N = 8);0.18%(N = 16);0.14%(N = 32)] in regard of

the incoming flux localized by its xinlet longitudinal coordinate. Similar results had been obtained with a spherical body (not
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Figure 8. Potential flow around a cylinder: (a) initial state around the body of diameter Dcyl = 2Rcyl; (b) streamlines obtained after the

Poisson equation resolution. The confinement is defined as L= Lcyl/Rcyl).

shown here).

(a) (b)

Figure 9. Potential flow around a cylinder: (a) Velocity convergence of two iterative methods (Residual Conjugate Gradient, Richardson) for

different spatial resolutionsN = [4 : 32](L= 16); (b) Evolution of the added mass coefficientA(N ;L) with the confinement L= Lcyl/Rcyl

(N = 16) and with the nodes number per radius cylinder N (L= 16). The confinement is defined in Fig. 9-a.

With a change of Galilean reference frame, this study corresponds to an uniform body acceleration ab in a fluid initially

at rest. However a possible viscous term, the hydrodynamic force exerted on the body, is reduced to the added mass effect
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Figure 10. Potential solution around a sphere: (a) kinetic energy in an arbitrary symmetry plane; (b) zoom.

Amfab =
∫
Vs

∂ρfu
∂t dV for ∆t→ 0. A is the dimensionless coefficient and mf the displaced fluid mass. Acyl theoretically

equals 1 in the non-confined cylinder case (Lamb, 1932). The red curve of Figure 9-b illustrates the effect of the confinement L

on Acyl for a N = 16 resolution. Unsurprisingly Acyl increases with the confinement (Brennen, 1982). The weak dependence

of Acyl with L > 16 allows to consider the body as isolated for L∼ 16. The green curve of Figure 9-b shows the impact of the

space resolution for L= 16. The numerical added mass coefficient is in good agreement with the theoretical one presenting a5

relative error of about 2% for N > 16. It induces a well-respect of the impermeability hypothesis at the immersed interface.

A similar study for a spherical body gives Asph =
1
2 +0.4%. Figure 10 illustrates the contours of the kinetic energy around

the sphere in an arbitrary symmetry plane. The green contours (numerical solutions) fit well with the red contours (theoretical

solutions). Convergence study of the pressure solver is discussed in Appendix A.

4.2 Viscous flow10

A pure dynamic and well-documented case which naturally follows the previous ones is studied here. This physical case is the

wake past a circular cylinder (non-stratified flow) at two moderate Reynolds numbers Re= (40;140). One of the forerunners

is Taneda (1956) who experimentally studied the nature of the eddies structure.

Taneda (1956) found a regular Hopf bifurcation at a critical Reynolds number Rec =
U∞Dcyl

νf
≈ 45. Below Rec and above

Re > 5, a boundary layer separation brings to a steady recirculating region in the near-wake (Fig. 11-c). Above Rec ≈ 45, an15

unsteady mode breaks the planar symmetry and the body wake presents an alternate vortex shedding (Fig. 11-d). The standing

eddy (resp. the von Kármán street) obtained by MNH-IBM at Re= 40 (resp. 140) is visualized in Figure 11-a (resp. b) by the

injection of a passive tracer on the body surface.

The standing eddies at Re < Rec are commonly described with a θd detachment angle, lr recirculating length and (a;b)

location of the vortex core (Fig. 12). The limit of the numerical domain is 10Dcyl upstream the obstacle for the inlet condi-20

tion (U∞, the uniform incoming velocity) and lateral condition (slip condition), 15Dcyl for the outlet condition allowing the
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Figure 11. Eddies structure in a viscous fluid: Steady (left, Re≈ 40) and unsteady (right, Re≈ 140) solutions obtained by the current

numerical investigation (top, MNH-IBM and 30pts/Dcyl) and by the Taneda (1956) experiments (bottom).

The visualization is due to the presence of passive tracer injected on the body surface and transported by the flow.

vorticity evacuation. As Cai et al. (2017) mention, this domain can induce a low numerical confinement effect. Three regular

Cartesian meshes are built with 10/20/30 nodes per Dcyl.

Figure 12. Recirculating region at Re= 40 (MNH-IBM, 20pts/Dcyl): definition of the θd (ř) separation angle, lr recirculating length and

(a;b) vortex core location. The distance are dimensionless by Dcyl.

The 20pts/Dcyl and 30pts/Dcyl meshes present a good spatial convergence and weak differences atRe= 40. θd ∼ 53◦±2◦

and the recirculation length lr/Dcyl ∼ 2.2 ±0.05. The 10pts/Dcyl mesh shows more discrepancies which are attributable to5

the non-ability of the coarsest resolution to capture the viscous boundary layer for which the thickness evolves in Dcyl
−1
√
Re.

Note that the impact of the low-order (centered or WENO) modeling the advection at the immersed interface is weak for this
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Authors θd (◦) lr/Dcyl b/Dcyl a/Dcyl

Coutanceau and Bouard (1977) 53.8 2.13 0.76 0.59

Linnick and Fasel (2005) 53.6 2.28 0.72 0.60

Taira and Colonius (2007) 53.7 2.30 0.73 0.60

Bouchon et al. (2012) 53.4 2.26 0.71 0.60

Gautier et al. (2013) 53.6 2.24 0.71 0.59

Cai et al. (2017) 54.5 2.34 0.76 0.62

MNH-IBM 30pts/Dcyl ≈ 54 ≈ 2.2 ≈ 0.7 ≈ 0.6

Table 1. Description of the standing eddies in the wake of the solid cylinder (Re= 40): comparison of the separation angle θd (ř), recircu-

lating length lr (m) and vortex core location (a;b) between the literature and MNH-IBM.

viscous case (Sect. 3.1). Table 1 compares the 20pts/Dcyl results with a part of the results literature collected in Gautier et al.

(2013).

The focus is on the unsteady mode at Re= 140. The ratio between the characteristic time of inertial effects Dcyl/U∞ and

the one related to the vortex shedding 1/f defines the Strouhal number St= fD
U∞

. Brazza et al. (1986), Park et al. (1998) and

Stalberg et al. (2006) comfort the equation St(Re) =−3,3265/Re+0,1816+1,6.10−4/Re proposed by Williamson (1989).5

MNH-IBM obtains St(Re= 140) ∈ [0.177 : 0.179] and an absolute maximum relative error lower than 2% in regard of the

Williamson (1989) formulation with the two finer resolutions. Our results are in good agreement with the those presented in the

above mentioned and more extensive studies. Details of DNS validation in a viscous buoyancy-driven flow are also presented

in supplementary materials.

5 Turbulent flows around parallelepiped(s)10

This section is devoted to turbulent flows approaching our perspective: the simulation of an atmospheric flow over a city. The

turbulent flows around a cubic body vertically confined in a channel and over an urban-like roughness (set of obstacles) are

here described. MNH-IBM is explicitly compared to experimental investigations in the two cases. The comparisons to other

LES of the literature will be mentioned.

Common hypothesis and methods. The fluid is considered as neutrally stratified. The Coriolis term is negligible due to the15

addressed space and time scales. The turbulent diffusion is modelled by the subgrid TKE1.5 scheme transported by PPM

(Sect. 2.3). All surfaces are considered as non-permeable and the IBM wall-model (Sect. 3.3) is activated. A (x,y,z) reference

frame is defined (z, vertical direction) and the velocity vector is written as u(t) = u(t)x+v(t)y+w(t)z. A time simulation is

needed after to establish the turbulence state (not shown here). The over-line notation refers to the mean value in time in this

section.20
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5.1 Flow over a surface mounted-cube

Using static pressure measurements, laser-sheet and oil-film visualizations, Martinuzzi and Tropea (1993) and Hussein and

Martinuzzi (1996) generated a large data set for the study of flows around a cubic body placed in a channel (Fig. 13-a). RANS

and LES had explored in detail this physical case (Breuer et al., 1996; Shah and Ferziger, 1997; Rodi et al., 1997; Frank, 1999;

Krajnovic and Davidson, 2002; Farhadi and Rahnama, 2006).5

Physical details. A cube (H side) is placed in a channel of 2H height. The channel is sufficiently large in the span-wise

direction to consider the cube as single in that direction. Turbulent flow is generated in the channel upstream the cube with

a mean bulk velocity Ub. Defining the dimensionless wall coordinate z+ = u∗.z/νf , the stream-wise upstream velocity cor-

responds to a log-law for smooth walls u(z+).u∗−1 = 5.54+ 1
κ log(z

+) as described in Hussein and Martinuzzi (1996). The

Reynolds number defined by the mean bulk velocity, the cube height and the molecular diffusion is Re≈ 40000.10

The mean flow around the cube presents a set of five recirculating regions (Fig. 13-b). Each cube surface is associated with

one of these regions: the A/B vortex separations in front of the cube which spread laterally in a horseshoe D, two vortices

near side-walls E, one F on the roof and main arch vortex G downstream.

Figure 13. (a) Top visualization of the flow around a cube (Hussein and Martinuzzi, 1996); (b) Schematic representation of the time-average

vortex structure around a cube (Martinuzzi and Tropea, 1993) and index of the recirculating regions.

Numerical details. The top and bottom surfaces, the cubic body are modelled by the IBM. A small value of the roughness

length z0/H ≈ 10−6 is imposed (low value to model a smooth interface, viscous scale intervention in the z+ calculation). The15

stream-wise (resp. span-wise) direction is x (resp. y). The size of the grid is set as (x,y,z) = (−24H : 8H,−4H : 4H,0H :

2H) with a location of the cube center at (H2 ;
H
2 ;

H
2 ). Three regular Cartesian meshes are employed with a respective space step

H/∆= [10;20;40]. x/H ∈ [−24 :−4] is a region employed to model the fully turbulent character of the incoming flow. The

incoming turbulent state is obtained by the IBM and a pseudo-recycling method inspired from the works of Lund (1998), Mayor

et al. (2002) and Yang and Meneveau (2016) (not detailed here). The vertical profiles of the stream-wise velocity and turbulent20

intensity
√
u′2/U2

b ≈ 2.10−2 (Hussein and Martinuzzi, 1996) are recovered at x/H ∼−4. We mention that the turbulence

generation should deserve more details but we prefer only to concentrate our comments in the cube wake.
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Figure 14. Vertical symmetry plane of the mean flow: (a-b-c) MNH-IBM time-average streamlines; (d) Streamlines observed by (Martinuzzi

and Tropea, 1993); (e) MNH-IBM instantaneous visualization of the Q-criterion (Hunt et al., 1988).

Results. Figures 14-(a-b-c) show the time-average streamlines in the vertical symmetry plane of the cube obtained by MNH-

IBM for the three space resolutions. The streamlines of the coarse, medium and fine resolution are respectively in red, green

and blue colour. The discretization order of the fine resolution is close to that of most literature’s LES except Shah and Ferziger

(1997) who had used a far more precise grid near wall. The same figure obtained by the experimental investigation is given

in Figure 14-d. The size of the front (resp. rear) region is characterized by the recirculating length xf/H (resp . xr/H). The5

experiment gives xf/H ≈ [1.04 : 1.05] and xr/H ≈ [1.64 : 1.67]. The LES reference results give the ranges xf/H ∈ [0.81 :

1.28] and xr/H ∈ [1.38 : 2.25]. For the two finest resolutions (green and blue colour), the overall prediction of MNH-IBM

recovers a consistent mean topologic structure. MNH-IBM obtains for the two finest resolutions xf/H ∈ [0.99 : 1.21] and

xr/H ∈ [1.48 : 1.55]. MNH-IBM does not capture as most of LES the two dividing lines A/B commented by Martinuzzi and

Tropea (1993) but only captures a flattened vortex. However the bifurcation point near the rear edge and ground is not detected10

by MNH-IBM while this point was modelled in Rodi et al. (1997). This bifurcation point was also commented in Martinuzzi

and Tropea (1993) even if their experimental uncertainty did not allow to visualize it in Fig. 14-d.

Figure 14-e shows an MNH-IBM instantaneous flow field with the Q-criterion (Hunt et al., 1988) and as the LES reference

results mention, it presents a highly intermittent character clearly visible with the quasi-disappearance of the D horseshoe

and G arch. A frequency f of vortex shedding dominates the highly-intermittent activity in the body wake bringing to the15

experimental Strouhal number St= f.H
Ub

≈ 0.145. A MNH-IBM energy spectrum (Discrete Fourier Transform of w(t) in the
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body wake) find a peak St ∈ [0.10 : 0.12] for all the studied resolutions and a ∼−5/3 energetic cascade slope for larger wave

numbers (not shown). The St values obtained by MNH-IBM are slightly less than the experimental one but stays consistent

with the St ∈ [0.10 : 0.15] range of other LES.

Still in the vertical symmetry plane of the mean flow, Figure 15 plots at four longitudinal positions x/H = (1/2;1;2;4) the

vertical profiles of time-averaged quantities related to the steady (u, w) and unsteady (TKE, u′w′) parts of the solution. The5

colour code corresponds to the spatial resolution (10pts/H in red; 20pts/H in green; 40pts/H in blue). Note that the Ub bulk

velocity was set to the unity and therefore presented variables in Figure 15 are dimensionless. In most of the sub-figures, the

higher space resolution is the lower the gap with the experiment is. The top of Figure 15 brings to a similar conclusion with

that of the literature’s LES: the stream-wise velocity is well-recovered. The counterflow at the rear and roof of the cube near

(x/H;z/H)≈ (1;1) informs about the existence of the bifurcation point S1 (Fig. 15-b). An underestimation appears on the10

counterflow at (x/H;z/H)≈ (2;0) and is frequently observed in the literature (Fig. 15-c). Some discrepancies are found on

two w-profiles (Fig. 15-f/g). Note that Shah and Ferziger (1997) and Krajnovic and Davidson (2002) highlight the difficulty

to recover it. The turbulent kinetic energy and the Reynolds stress are correctly predicted at the cube roof (Fig. 15-i/j). The

vertical profiles of TKE and u′w′ downstream the cube show an overestimate tendency (Fig. 15-k/p/l). No experimental data

is available on TKE at x/H = 4 (Fig. 15-l) but using the u′2(x/H = 4) experimental value (not shown here) and the u′2/TKE15

ratio obtained by MNH-IBM, we suspect that TKE(x/H = 4) is still overestimated. This turbulence diagnosis are relatively

similar to those of Farhadi and Rahnama (2006).

Sensitivity study. Some tests have shown a sensitivity of the solution with both the incoming turbulence and constants in

the immersed wall-model. Indeed the existence of the small vortex near the saddle node S1 (Depardon et al., 2006) turns out

to be strongly dependent of the inlet turbulence (the less the turbulent intensity is the bigger the size of this vortex is); the20

reattachment or not of the roof vortex F with the main arch G is also observed. This sensitivity follows the observations of

Castro and Robins (1977) who studied the cube placed in a uniform or turbulent incoming flow. In the same way the existence

of the vortex near the saddle node S2 (Frank, 1999) is dependent of the ground boundary condition. The u∗ −1
√
e=Ktke

1/4
√
Cµ

ratio and the z0 roughness length fixed in the immersed wall-model (Sect. 3.3) impact the nature of the incoming turbulent

state for which the surface shear plays an important role. To give a significant example and if a null-value of Ktke is applied25

on the channel surfaces (non-slip condition), xf highly increases and the vortex at S2 appears. Otherwise Ktke and z0 do not

crucially affect the nature of the dynamic in the vicinity of the cube surfaces; the pressure gradient between front and back

faces governs.

To conclude this section and despite the uncertainties of the inlet condition, MNH-IBM is in a good agreement with the

experiments of Martinuzzi and Tropea (1993), Hussein and Martinuzzi (1996) and other LES using a resolution of about forty30

points per cube length. Even if the coarsest resolution looses a part of the expected physics, it maintains a suitable modelling of

the largest structures of the flow. A parametric study on the inlet turbulence generation has led to fixKtke ≈ 2 in Equation (24).
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Figure 15. Mean vertical profiles of velocities (top), turbulent kinetic energy and Reynolds stress (bottom). The lines corresponds to the

MNH-IBM results. The symbols are the Martinuzzi and Tropea (1993) data except for TKE (Hussein and Martinuzzi, 1996). The profiles are

given at four longitudinal locations: (a-e-i-m) x/H = 1/2; (b-f-j-n) x/H = 1; (c-g-k-o) x/H = 2; (d-h-l-p) x/H = 4.
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5.2 The Mock Urban Setting Test experiment (MUST)

The MUST is an experimental campaign organized during the early Autumn 2001 in the Utah’s West desert (Biltoft, 2001,

2002). Its objective was to quantify the dispersion of a passive tracer (propylene) in a dry atmospheric context over a topography

reproducing a near-urban canopy. The main interest lies in the similitude between this experiment and a pollution episode due

to a toxic gas propagation over a city with high population densities. It provides extensive measurements of meteorological5

variables and scalar dispersion informations.

Physical details. The near-regular array is composed of 120 containers. Figure 16 gives a photograph and a picture of the

topography. The containers are equivalent in volume and shape. Their spatial dimensions are (Lx,Ly,Lz) =∼ (2.4,12.2,2.5)m

and the horizontal distance between containers is O(10)m. Following the table II in Yee and Biltoft (2004), the 2681829 case

(the 25/09/2001 at 18h29) is selected. The Monin-Obukhov length is Lmo ≈ 28000m and the stability condition is supposed10

neutral; the buoyancy effects and the sensible heat flux are negligible in regard of the inertia effects and the turbulent shear. The

incoming flow shows a mean horizontal angle with the containers layout (green arrow, Fig. 16-b). The MNH-IBM results are

compared to the experimental measurements reachable at several altitudes (4m, 8m, 16m) at a S (South) tower and at the main

T tower placed in the array centre. The locations of the towers are indicated in Fig. 16-b. A roughness length z0 = 0.045m is

given by the experience and related to the surrounding desert vegetation.15

Figure 16. (a) Photograph of the MUST containers in the Utah’s West desert; (b) Schematic representation of the containers layout. The

location of the concentration (detectors) and wind sensors (S and T towers) are indicated, as well as the position (red cross) of the pollutant

release and the direction of the incoming flow (green arrow) of the case 2681829. Source: Biltoft (2001) and Yee and Biltoft (2004).
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Numerical details. The externalized scheme SURFEX (Masson et al., 2013) models the ground friction. LSF is generated to

represent the topography and IBM is used to model the containers. The smallest characteristic container length is discretized

by O(10) cells. The mesh is a Cartesian and regular grid for z < 10m with a space step ∆= 0.2m. Above ten meters, the

vertical space step is released in geometric progression of 1.08 ratio. The altitude of the numerical domain top is about 8 times

the container height.5

The distance between the horizontal limit of the computational domain and the array is about 20 times the container height.

The large scale flow is forced by an open boundary condition. A mean horizontal angle of -41◦ with the x direction is fixed for

all altitudes; note that the low angle deviation and the turbulence observed upstream the containers in the experiment are not

numerically considered. Following the experimental data given at the S tower (Fig. 17-a, blue symbols) and assuming a log-law

|u|= u∗

κ log(1.+z/z0), a least-square regression estimates a friction velocity u∗ = 0.71m.s−1 and allows to build the vertical10

profile of the mean incoming flow (Fig. 17-a, blue line). This u∗ value is close to the experimental one u∗exp = 0.68m.s−1

found by a sonic anemometer at the feet of the S tower. The same inlet condition is used in the numerical studies of Hanna

et al. (2004), Milliez and Carissimo (2007) and Donnelly et al. (2009). Note that an additional term O(L−1
mo) appears in their

formulation but is negligible in the 2681829 case.

(a) (b)

Figure 17. Mean vertical profiles in the MUST experiment: (a) |u| horizontal velocity; (b) atan(v/u) wind direction at the S (blue) and T

(black) towers. The symbols (resp. lines) are the Yee and Biltoft (2004) experimental measurements (resp. MNH-IBM results).

Results. The black line (MNH-IBM) and symbols (Yee and Biltoft, 2004) of Figure 17-a (resp -b) show the impact of the15

near-urban canopy on the vertical profile of the |u| (resp. wind angle) in the core of the array (T tower). Not surprisingly the

canopy induces a global slowdown of |u| near the ground and up to z ≲ 8m. A decrease of the mean horizontal wind angle

is found at the same altitudes. This deviation is related to the containers orientation which tends the flow to be aligned with

the y direction. The same pattern is discussed in Milliez and Carissimo (2007). A wind acceleration and an increase of the
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wind angle are observed by MNH-IBM for z ≳ 8m as in LES results of Konig (2013) and Dejoan et al. (2010) on similar

MUST cases. This few degrees deviation is observed by the experiment but not the acceleration. A part of this acceleration

may be explained by a Venturi effect and a too closed top limit of the computational domain (numerical confinement, under

investigation).

Figure 18. Wind at the horizontal cut at z = 1.6m: (a) Time-averaged on 200s; (b) Instantaneous at t= 200s. The black squares indicate

the location of the T and S towers (MNH-IBM results)

Figure 18-a (resp. Fig. 18-b) illustrates the time-averaged horizontal wind field |u| (resp. |u| at t= 200s) at the 1.6m5

altitude. These figures highlight the fact that the incoming flow is not turbulent in the simulation. This assumed gap constitutes

a perspective (Camelli et al., 2005) not directly linked to IBM. It allows also to introduce here some comments on the turbulence

state. The atmospheric turbulence is dependent of the roughness length (z0 considered as constant due to the homogeneous

and flat desert over few miles upstream). The first container rows are the scene of the boundary layer transition and act as a

region of strong roughness change. The turbulence observed in the urban-like canopy has two origins: the incoming turbulence10

and that of induced by the containers presence. The contribution of both turbulence types varies in function of the altitude and

distance to the first row.

The mean kinetic energyEk = 1
2 (u

2+v2+w2), friction velocity u∗ =
4

√
u′w′2 + v′w′2 and turbulent kinetic energy TKE =

1
2 (u

′2 + v′2 +w′2) are estimated at the T tower and indicated in Table 2. All the variables are in good agreement with the

experiment at z = 4m (about two times the container height). The friction velocity at z(T ) = 4m is at least two times larger15

than u∗exp(S) = 0.68m s−1 observed at the S tower feet. That increase is the signature of the turbulence developed by the

urban-like canopy. Looking after the results at z(T ) = 8m and z(T ) = 16m, the higher the altitude is the more discrepancies

appear between the experimental and numerical results. The experimental measurement of the friction velocity at z = 16m is

closed to the upstream value.

20
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Ek(m
2.s2) TKE(m2.s2) u∗(m.s−1)

MNH-IBM Yee and Biltoft (2004) MNH-IBM Yee and Biltoft (2004) MNH-IBM Yee and Biltoft (2004)

z=04m 15.3 14.1 3.33 3.78 1.14 1.08

z=08m 36.7 29.7 1.70 3.28 0.68 0.83

z=16m 65.8 48.5 0.02 1.75 0.02 0.60

Table 2. Kinetic energy, turbulent kinetic energy and friction velocity obtained by the experimental (Yee and Biltoft, 2004) and numerical

(MNH-IBM) investigations at three altitudes of the tower T.

The Discrete Fourier Transform of the u temporal evolution (Fig. 19) at z(T ) = (4;8)m shows the coherence between the

energetic cascade of the experimental investigations and that of the numerical ones. At z(T ) = 16m, MNH-IBM underestimates

the unsteady part of the solution for all wave numbers. The same behaviour is observed on v and w (not shown here).

Figure 19. Spectrum of the measured (blue line) and modelled (green line) u wind component at the T tower at z = (4;8;16)m. f∗ is

dimensionless as a Strouhal number using |u|inlet(z = 2.5m) and z = 2.5m the container length.

The MNH-IBM results are consistent with the experimental observations below z(T )≲ 10m. This well-modelling induces

that the turbulence is mostly due to the container wakes upstream the T tower and not to the incoming turbulence (not modelled5

in the simulation). The influence of the atmospheric turbulence grows with the altitude and MNH-IBM diverges with the

experiment. This divergence for z(T )≳ 10m leads to think that the thickness of containers influence is about 4-5 times the

height of the urban-like canopy.
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6 Conclusions and perspectives

This study details the first implementation of an immersed boundary method (IBM) in the atmospheric Meso-NH (MNH)

model currently based on mathematical formulations written for structured grids. The MNH-IBM aim is to explicitly model

the fluid-solid interaction in the surface boundary layer developed over grounds presenting complex topographies such as cities

or industrial sites.5

A LevelSet function (Sussman et al., 1994) characterizes the geometric properties of the fluid-solid interface. Two original

approaches of the (GCT) Ghost-Cell (Tseng and Ferziger, 2003) and (CCT) Cut-Cell Techniques (Udaykumar and Shyy,

1995) are implemented to correct the MNH numerical schemes. A newly proposed GCT recovers the fluid information in

several image points presenting a distance to the interface independent of the ghost’s distance. The CCT consists of a new finite

volume approach of fluxes balance near the immersed interface. The GCT is applied to the numerical schemes based on explicit10

time-integration and the CCT is employed in the implicit resolution of the Poisson equation satisfying the incompressibility

hypothesis. The adaptation and use of iterative procedures solve the pressure problem without any modification to the inverted

matrix. The turbulence problem is closed at the fluid-solid interface by a pragmatic LES-RANS formulation based on the

subgrid turbulent kinetic energy and the length of the smallest energetic eddies.

The pressure solver, adapted to the IBM and isolated from the rest of MNH, is used to model potential flows around several15

obstacles. Compared to analytical and theoretical solutions, the numerical results demonstrate the ability of the IBM adaptation

to ensure that the momentum is preserved and the continuity equation is respected. Non-dissipative flows are simulated to test

the IBM forcing of the wind advection scheme (the impact of interpolations collected in Franke (1982), classical and novel

GCT comparison and numerical diffusion near interface). These tests validate the proposed GCT ’three images/ghost points’

using an inverse distance weighting (resp. trilinear) interpolation near (resp. far from) the interface. The modelling of the20

advection term near the fluid-solid interface is ensured by a 2nd-order centered scheme associated with an artificial viscosity.

The artificial viscosity is calibrated after comparisons with a 3rd-order WENO scheme. With these numerical choices, MNH-

IBM demonstrates its ability to model wake instabilities past a circular cylinder placed in a viscous fluid. Then Large-Eddy-

Simulations of turbulent flows around bodies with sharp edges and corners are executed (i.e. a cube placed in a channel

(Martinuzzi and Tropea, 1993) and a near-neutral atmospheric application over an array of containers (Biltoft, 2001)). These25

two LES validate the proposed immersed wall-model, switching the characteristic space scale defining the turbulent Reynolds

number between one obtained by either a viscous length scale (the cube case) or a roughness length (the containers case).

Future work. This study constitutes a first robust step towards a better understanding of the interactions between ’Weather

and Cities’ and better predictions of such interactions. The idealized character of the physical cases approached here offers

some insights. One improvement would consist of a generalization of the IBM writing to terrain-following coordinates (Gal-30

Chen and Somerville, 1975) allowing for the simulation of high-curvature bodies in the presence of non-flat ground. In the

run-up of the resolution of multi-scales problems, the consistency with grid nesting (Stein et al., 2000) would be pertinent

as well as the coupling to a drag model (Aumond et al., 2013). In the current paper, ’simple’ bodies are investigated; the

modelling of real houses and buildings with arbitrary shape in close proximity to each other is ongoing with work dedicated
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to a brief and intense pollutant episode due to a factory explosion in 2001 over Toulouse assuming a dry neutral case with a

non-reactive gas dispersion. Such hypotheses involve a broad range of physical phenomena requiring numerical compliance

with IBM including the chemical reactions, phase changes and radiative effects. Such compliance would allow the access to a

large variety of atmospheric situations.

7 Code availability5

The immersed boundary method has been implemented in the 5.2 version of the Meso-NH code. This reference version is

under the CeCILL-C license agreement and freely available at http://mesonh.aero.obs-mip.fr/mesonh52.

The source files dedicated to IBM and the input files for the simulations of Sections 4 and 5 are accessible on a CERFACS

server: https://cerfacs.fr/MNHIBM/Auguste-GMD-2019. The immersed boundary method will be integrated in a future Meso-

NH version.10
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Figure 20. Taylor vortices around a cylinder: (a) illustration; (b) L∞, L1 and L2 norms function of the space resolution.

Appendix A: Space convergence of the pressure solver

Array of vortices. A Poisson equation solution is investigated (Fig. 20-a) imposing in the RHS of Equation (5) the diver-

gence ∇.(u∗) =−π(l2 +m2)cos(πlx)sin(πmy) where l =m= cste. The error norms (Lp = p
√∑

|Pn−Pt|p where Pn is

the numerical pressure and Pt the theoretical one) are estimated in presence or not of an immersed cylindrical body (Fig. 20).

The space second-order of the pressure solver is recovered without IBM. The order decreases with IBM and stays consistent5

regarding the Lp=(∞;1;2) slopes. Note that an immersed square or sphere give similar results.

Agnesi hill. The irrotationnal solution around two 2D bell shape interfaces is investigated with IBM and the Boundary-Fitted

Method (BFM, terrain-following coordinates). The topography is characterized by a height ha and a shape h(x) = ha

1+( ka.x
ha

)2

(ka = 4, bell 1; ka = 8, bell 2). The bells slope is here arbitrarily and respectively described as gentle or steep. Figure 2110

shows the pressure contours obtained with IBM (left) and BFM (right) for a gentle (top) and a steep (bottom) shape. The

minimal pressure value is localized at the top of each bell and goes to zero far from this location. The reference BFM and IBM

simulations with the fine resolution (N = 160 nodes per ha, red colour) show a good agreement for each hill. The blue (resp.

green) colour corresponds to a coarser mesh employing N/3 (resp. N/9) nodes per ha. Weak differences appear between the

N and N/3 meshes for both IBM and BFM revealing a good space convergence (Fig. 21-a/b). Numerical errors are visible15

with IBM near the interface but the Venturi effect is well-modelled. Differences become more significant with the N/9 mesh

especially with the BFM-BELL2 presenting the highest curvature value (Fig. 21-d). IBM appears less accurate than BFM when

the ground presents low curvature in regard of the space resolution. Otherwise, IBM seems more pertinent than BFM to model

high interfaces such as sharp edges or corners. The minimum pressure which could reach to −∞ is smoothed by IBM and

allows the pressure solver not to diverge. Note that Lundquist et al. (2010, 2012) using compressible WRF model observe20

similar behaviors.
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Figure 21. Potential flow function of the space resolution (colour code) plotting the pressure contours around two bells (top: BELL1, gentle

slope; bottom: BELL2, steep slope) and obtained with IBM (left) and the boundary-fitted method (right).

Advection scheme Space order Intervention location Artificial diffusion

CEN4 centered 4 far from the interface no

CEN2 centered 2 near the interface yes

WEN3 WENO 3 near the interface no

Table 3. Summary of the used mean wind advection scheme (WENO = Weight-Essential-Non-Oscillatory).

Appendix B: Inviscid flow around a circular cylinder

For most atmospheric applications, the region size where the fluid molecular viscosity νf influences the dynamic is suffi-

ciently small to be considered as negligible (Sect. 2.3). Solving the Euler equations, the impact of the numerical diffusion could

be significant especially near the fluid-solid interface. The adopted strategy with IBM is to model the advection term with a5

low-order scheme near the interface (Sect. 3). The order decrease in IBM is not essential but allows to limit the number of
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ghosts in the solid region, limit the communications during a parallel computation. Indeed, the chosen implementation implies

that the associated images and ghosts points have to be localized in the integration volume of each processor. The WEN3

third-order Weight-Essential-Non-Oscillatory and CEN2 second-order centered schemes are available in MNH. Far from the

interface a CEN4 fourth-order centered scheme is employed. Table 3 summarizes the advection scheme nomenclature.

The vorticity equation for a 2D inviscid flow reveals no production in time. The numerical vorticity production at the5

immersed surface of a cylindrical body is here studied initializing the simulation with the potential solution. To fit as well

the potential solution, a non-trivial condition is employed on the tangent velocity ∂3ut

∂n3 = 0. Expecting a numerical vorticity

sufficiently controlled to avoid the flow separation, the effect of the artificial diffusion νart∆u injected with CEN2 is compared

to the WEN3 intrinsically diffusive behaviour. Furthermore this study had estimated the 3D interpolations impact (not detailed

here).10

(a) (b)

Figure 22. Solving the Euler equations: (a) Vorticity production E
∗
s(t

∗) influenced by the Courant number (CFL=0.8, line; CFL=0.2,

symbol) and by the νart artificial viscosity ([red; green; blue; purple; cyan] respectively νart = νrefart [1;2;4;16;256]
−1) using an advection

CEN2 second-order centered scheme near the interface; (b) Velocity magnitude field obtained with a WEN3 third-order Weight-Essential-

Non-Oscillatory scheme (top) and CEN2+νrefart 256
−1 (bottom). CEN4 is the advection scheme used far from the interface. The mesh is the

coarser one (MESH1).

Figure 22-a plots the evolution in time of the enstrophy E
∗
s(t

∗) =
Dcyl

U∞Vf

∫
Vf

|∇×u|dV depending on the ∆t time step and

νart using CEN2 near the interface (U∞ the velocity of the incoming flow, Vf the integration volume in the fluid region). The

enstrophy increases in time and reaches a mean value when the produced vorticity near the interface is evacuated from the

numerical domain and in the body wake. Except the simulations with low artificial diffusion (symbols/curves in cyan/purple

colours), the vorticity production is weakly dependent of the physical time and CFL Courant number (symbols/curves in15

red/green/blue colours). It induces νart proportional to U∞∆x≈O(∆x
2CFL
∆t ). A reference value of the artificial viscosity is

also defined as νrefart =
∆x2

∆t CFL.
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(a) (b)

Figure 23. Solving the Euler equations: (a) Influence of the space resolution (red: MESH1; green: MESH2; blue: MESH3) on the vorticity

production E
∗
s(t

∗) when the near-interface advection is modelled by WEN3 (line) and CEN2+νrefart (symbol); (b) Vorticity magnitude field

obtained by WEN3 (top) and CEN2+νrefart (bottom).

Figure 22-b illustrates the vorticity field in the vicinity of the interface between the intrinsically diffusive WEN3 and

CEN2+νart with νart = νrefart 256
−1. The streamlines are maintained without detachment near the interface with WEN3. Oth-

erwise the CEN2 solution with low artificial diffusion presents numerical instabilities and vortex shedding.

Figure 23-a plots the enstrophy evolution for three meshes (colour code) for WEN3 (lines) and CEN2+νart with νart = νrefart

(symbols). MESH1 (10 nodes per Dcyl), MESH2 (20 nodes per Dcyl) and MESH3 (40 nodes per Dcyl) are respectively the5

coarse, intermediate and fine mesh. The border of the numerical domain is always distant from the cylinder of more than

10Rcyl. The CEN2+νrefart vorticity production appears fairly close to the WEN3’s one for the three space resolutions. Figure 23-

b corroborates the last comment presenting the vorticity contours dimensionless by D
U∞

. A suitable νart combined with CEN2

choice is also in the range of the too diffusive WEN3 results and the growth of numerical instabilities. CEN2+νrefart 4
−1 is

retained as the advection scheme of the mean wind near an immersed interface.10
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