
Final answer regarding "faSavageHutterFOAM 1.0: Depth-integrated simulation of dense snow avalanches on natural
terrain with OpenFOAM"

The main suggestions for improvement of all three referees were related to the description of the model. We adapted the
manuscript by extending the respective explanations (pages 5-6, lines 21++) and added an appendix to clarify the use of pro-
jections in surface partial differential equations (pages 19-21).5

Referee 1

We addressed all comments by referee 1 in the revised manuscript to the best of our ability. In particular, we focused on im-
proving the comprehensibility of model equations by clarifying and extending the respective explanations. While we share the10
reviewers concerns regarding the friction and entrainment models, we hope we gave a satisfying explanation as to why these
topics are out of the scope of this paper.

Specific changes following referee comments:
15

1) Entrainment term in momentum conservation equation:
page 5, lines 23-24: We state that the conservative form shows no entrainment term in the momentum conservation equation
and that this may be different for the non-conservative form.

2-4) Validity of entrainment model20
We agree with the referee that the entrainment model should be improved and validated carefully. However, this is out of the
scope of this paper.

5) Stopping of the avalanche
page 7, lines 2-4: We explained how the method allows the avalanche to stop and the effect of the parameter u0. page 6, line25
27: We report the value chosen for the parameter u0. page 14, line 2: We explain that the creeping velocity is lower than the
solver tolerance.

6) Name of the Solver
page 3, lines 18-19: The solver name is explained in the introduction now. For the discussed reasons, we can not change the30
solver name but will consider it in the future.

7-10) Model equations
page 3, lines 18-19: The discussion of model equations has been extended. pages 19-21: The projections are now explained in
depth in appendix A.35

11) Validity of friction model
We agree with the reviewer that the classic Voellmy friction model shows some issues. However, it is widely used in practice
and therefore fitting into this work, where no focus lies on the friction models.

40
12) Are oscillation suppressed by numerical schemes?

We answered this question in the answer to the review.

13) Scales in figures are missing.
We added missing scales and labels where the software allowed us to do so, however, Paraview is limited in this regard. page45
16, figure 7: Labels have been added to contour lines.
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14) Modulus signs are missing.
page 14, line 3: Modulus signs have been added.

15) Comparisons of simulation to deposition
We agree with the referee that more comparisons would be appropriate, however this is out of the scope of this paper for5
reasons discussed in the answer to the review.

Referee 2

We addressed all remarks by referee 2 in the revised manuscript. Mainly we worked on clarifying the explanation of the model10
equations, as suggested by the reviewer. .

Specific changes following referee comments:

1-2) Understanding of model equations.15
pages 5-6, lines 21++: Explanation has been extended. pages 19-21: The projections are now explained in depth in appendix A.

3) Effect of u0

page 6, line 27: The chosen value for u0 is reported now. pages 7, lines 2-4: The effect of the parameter u0 is explained in
detail.20

4) Regularisation of entrainment
page 7, lines 17-18: We report how the regularisation of entrainment is implemented.

Referee 325

We addressed all remarks by referee 2 in the revised manuscript. Mainly we worked on clarifying the explanation of the model
equations, as suggested by the reviewer. .

Specific changes following referee comments:30

1-5) Comments on paper concept, open source, data availability
Nothing to address.

6) Title seems odd35
page 3, lines 18-19: The solver name is explained in the introduction now. For the discussed reasons, we can not change the
solver name but will consider it in the future.

7) Distinction mechanical model - process model
page 2, lines 14-17: The footnote has been moved into the text and split into multiple sentences to increase readability.40

8) Structure of model section
page 5, line 1; page 6, line 21; page 7, line 19: Introduced sub-sub-sections 2.1.1, 2.1.2, 2.1.3.
pages 5-6, lines 21++: Explanation extended.
page 5, line 6: Removed typo in equation.45
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9) Elevation vs. coordinate
page 7, line 15: Made clear that z is the altitude and in our case also the coordinate.

10) Code snippet with tangential or a normal operator
We stick to the simple scalar operator because others are too complex to show them without extensive explanation. However,5
on page 7, line 15, we refer to Rauter and Tukovic (2018), where all code of all equations is listed.

11) ’Mildly curved’
page 2, lines 1-2: We state what we mean with mildly curved terrain. page 19, lines 17-18: We state that the limitation to
mildly curved terrain should be eliminated in the future.10

12) Meshing tools
page 9, lines 16-17: We added a note with a hint on mesh conversion tools.

13) Numerical uncertainty15
page 15, lines 18-19: Misleading text changed according to referee comment.

14) Choice of software for comparison
We explained the choice for SamosAT in author answers.
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Abstract.

Numerical models for dense snow avalanches have become a central part in hazard zone mapping and mitigation. Several

commercial and free applications, which are used on a regular basis, implement such models. In this study we present a tool

based on the open-source toolkit OpenFOAM® as an alternative to the established solutions. The proposed tool implements

a depth-integrated shallow flow model in accordance to current practice. The solver combines advantages of the extensive5

OpenFOAM infrastructure with popular models from the avalanche community. OpenFOAM allows assembling of custom

physical models with build-in primitives and implements the numerical solution at a high level. OpenFOAM supports an

extendable solver structure, making the tool well-suited for future developments and rapid prototyping. We introduce the

basic solver, implementing an incompressible, single-phase model for natural terrain, including entrainment. The respective

workflow, consisting of meshing, pre-processing, numerical solution and post-processing, is presented. We demonstrate data10

transfer from and to a geographic information system (GIS), to allow a simple application in practice. The tool-chain is based

entirely on open-source applications and libraries and can be easily customized and extended. Simulation results for a well

documented avalanche event are presented and compared to previous numerical studies and historical data.

1 Introduction

Numerical avalanche modelling has become an important and well-accepted ingredient to hazard zone mapping. All popular15

tools rely on depth-integrated flow models (Pudasaini and Hutter, 2007) and only a few academic exceptions are known

(Domnik et al., 2013; Kröner, 2013; von Boetticher et al., 2016, 2017; Barker and Gray, 2017). Depth-integrated flow models,

widely known as Shallow Water Equations, have a long tradition in hydraulic modelling (e.g., Vreugdenhil, 1994), dating

back to Barré de Saint-Venant (1871). This approach is commonly applied in academia and practice because it reduces the

computational effort to a level, where physical simulations of realistic flows are feasible. The first application to gravitational20

mass flows is attributed to Grigorian et al. (1967), the first formal derivation and analysis of the underlying model to Savage

and Hutter (1989, 1991). Since then, the mechanical model has been continuously improved and extended to e.g., simple,

two-dimensional surfaces (Greve et al., 1994), complex, shallow surfaces (Gray et al., 1999) or curved and twisted flow paths

(Pudasaini et al., 2005a, b). Finally, respective models have been adapted to natural, i.e. arbitrary but mildly curved terrain,
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making simulations of real case avalanches possible.
:::
The

:::::::::
limitation

::
to

::::::
mildly

::::::
curved

::::::
terrain

:::::::
requires

:::
the

::::
flow

::::::::
thickness

:::
to

::
be

:::::
small

::
in

:::::::
relation

::
to

:::
the

::::::::
curvature

::::::
radius

::
of

:::
the

:::::::
surface.

:
Denlinger and Iverson (2004) proposed a model embedded in an

ordinary Cartesian coordinate system as an alternative to the complex curvilinear coordinate system used by Savage and Hutter

(1989, 1991). Bouchut and Westdickenberg (2004), Hergarten and Robl (2015) and recently Rauter and Tuković (2018) follow

a similar approach. Christen et al. (2010) apply a non-orthogonal local coordinate system (Fischer et al., 2012), however,5

without incorporating the respective correction terms (Hergarten and Robl, 2015). A Lagrangian solution, which has some

advantages for natural terrain, has been presented by Hungr (1995) and later on by Sampl and Zwinger (2004) and Sampl and

Granig (2009).

Beside improvement of the underlying mechanical model1
:
, various physical processes have been added to governing equa-

tions, such as multiple phases (e.g., Pudasaini, 2012; Kowalski and McElwaine, 2013; Iverson and George, 2016), entrainment10

(e.g., Issler, 2014), improved basal friction relations (e.g., Voellmy, 1955; Norem et al., 1987; Pouliquen and Forterre, 2002;

Bartelt et al., 2006; Issler and Gauer, 2008; Baker et al., 2016; Rauter et al., 2016), (for a review see Ancey, 2007), compress-

ibility (e.g., Iverson and George, 2014; Bartelt et al., 2015) or thermodynamic processes (e.g., Vera Valero et al., 2015).

::
In

:::
this

:::::
work,

:::
we

::::::
strictly

:::::::::
distinguish

:::::::
between

::::::::::
mechanical

:::::
model

::::
and

::::::
process

:::::::
models.

:::
The

::::::::::
mechanical

:::::
model

:::::::
consists

::
of

:::::
basic

::::::::::
conservation

::::::::
equations

::::
and

::::
their

::::::::::::
reformulation,

:::
e.g.

::
in

:::::
terms

::
of

:::::::::::::::
depth-integration.

:::::::
Process

:::::::
models,

::
on

:::
the

:::::
other

:::::
hand,

:::::::
describe15

::::::
closure

::
of

:::::::::
governing

::::::::
equations

::::
with

::::
e.g.

::::::::::
constitutive

:::::::
models.

::::
The

::::::::::
combination

:::
of

:::
the

::::::::::
mechanical

:::::
model

::::
and

::
all

::::::::
closures

::
is

:::::
called

::::
flow

:::::
model

::
or

::::::::
physical

:::::
model

:::::::::
throughout

::::
this

:::::
work.

There are several numerical methods to solve the respective mathematical equations. Basically, most methods can be classi-

fied as finite difference method (e.g., Wang et al., 2004), finite element method (e.g., Hanert et al., 2005), finite volume method

(e.g., Christen et al., 2010) or as Lagrangian particle method (e.g., Sampl and Granig, 2009). Specialised differencing schemes20

(e.g., upwind, TVD, NVD) prevent oscillations (e.g., Jasak et al., 1999).

Shallow granular flow models have been carefully validated over the last few decades. This includes back-calculations of

small scale experiments (for a review see Pudasaini and Hutter, 2007), large scale experiments (e.g., Christen et al., 2010),

historic snow avalanches (e.g, Fischer et al., 2015) and rock avalanches (e.g., Mergili et al., 2017). Shallow flow models

have various weaknesses, such as the limitation to mildly curved terrain or the missing resolution in surface normal direction.25

However, they have proven to be a good trade-off between accuracy and computing time and thus useful for many applications.

Shallow flow models gained popularity through commercial software packages: DAN (Hungr, 1995), SamosAT (Sampl and

Zwinger, 2004), FLATModel (Medina et al., 2008) and RAMMS (Christen et al., 2010) implement such models and are used

regularly in practice. Open-source alternatives include TITAN2D (Pitman et al., 2003; Patra et al., 2005), r.avaflow (Mergili

et al., 2012, 2017) and an extension to the CFD-toolkit (computation fluid dynamics) GERRIS (Hergarten and Robl, 2015).30

From an academic viewpoint, open-source applications have various advantages over their commercial counterparts; e.g. users

1We distinguish between mechanical model, in the sense of basic conservation equations and their reformulation, e.g. in terms of depth-integration and

process models, in the sense of closure of governing equations with e.g. constitutive models. The combination of the mechanical model and all closures is

called flow model or physical model throughout this work.
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can view and modify the source code to gain a better understanding of the software and adapt the flow model without re-

implementing basic models and numerical methods from scratch.

Geographic Information Systems (GIS) are commonly applied in hazard zone mapping. Therefore numerical simulation

tools are usually incorporated or linked to these systems to streamline the respective workflow. GIS allows user friendly data

input, post-processing and production of publication quality maps.5

Recently, Rauter and Tuković (2018) proposed a shallow granular flow model, expressed in terms of surface partial differen-

tial equations (Deckelnick et al., 2005; Tuković and Jasak, 2012) and presented an open-source implementation based on the

CFD-toolkit OpenFOAM® (OpenCFD Ltd., 2004). The underlying mechanical model is widely similar to the classic Savage

and Hutter (1989, 1991) model and its derivations.

One particular advantage of an OpenFOAM solver is the well-designed, object-oriented source code. This makes the code10

cleaner than comparable solutions as it hides implementation details, such as numerical schemes, I/O or inter-process commu-

nication, behind well defined interfaces. The top-level solver mimics the tensorial notation of partial differential equations and

specific implementations of e.g., interpolation schemes, are exchangeable without changing the top-level source code. This en-

ables separation of physical models and numerical solution, which allows a streamlined interdisciplinary development process.

Process models, e.g. entrainment and basal friction can be incorporated similarly, keeping the source code clean and easy to15

extend.

The OpenFOAM solver, presented in here, implements an incompressible single-phase model including various basal fric-

tion and entrainment closures.
:::
The

::::::
solver

::
is

:::::
called

:::::::::::::::::
faSavageHutterFoam

:
,
:::::::::
indicating

:::
that

:::
the

:::::::::
underlying

::::::::::
mechanical

::::::
model

::
is

::::::
similar

::
to

:::
the

:::
one

::
of

:::::::::::::::::::::::::::
Savage and Hutter (1989, 1991),

:::::::
however

::::
with

::::::::::::
exchangeable

::::::
closure

:::::::
models. This model is, to some ex-

tent, suitable for dense snow avalanches and constitutes the baseline for complex flow models, as employed by e.g. Bartelt20

et al. (2015) or Mergili et al. (2017). Moreover, the underlying method has been developed to simplify coupling with three-

dimensional ambient flows (Tuković and Jasak, 2012; Marschall et al., 2014; Dieter-Kissling et al., 2015a, b; Pesci et al., 2015),

which enables development of models for mixed snow avalanches (e.g., Sampl and Zwinger, 2004) and turbidity currents (e.g.,

Huang et al., 2005).

The purpose of this paper is to present the capability of the new OpenFOAM solver and the Rauter and Tuković (2018)25

model. The solver is evaluated and validated for snow avalanches on natural terrain. We present the basic flow model, as

well as methods and tools to incorporate natural terrain and GIS data in OpenFOAM simulations. Also export of OpenFOAM

results to a GIS for post-processing and visualisation is demonstrated. Results for a well documented avalanche event are

presented and compared to historical records and results of SamosAT. All underlying source code (except SamosAT) and data

are available for free to encourage reproduction, improvement and cross validation.30
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Figure 1. Definition of velocity u, flow thickness h and basal pressure pb on a control volume. A hydrostatic and linear pressure distribution

is assumed. The shape of the velocity profile is commonly ignored in governing equations (Baker et al., 2016). Flow thickness h is measured

normal on the basal surface Γ. The curvature radius of the surface Γ is assumed to be much bigger than the flow thickness.

2 Method

2.1 Flow model

Historically, shallow granular flow models have been set up in surface aligned, curvilinear coordinates, leading to a two-

dimensional system of partial differential equations (e.g., Savage and Hutter, 1989, 1991). Rauter and Tuković (2018) follow

a different approach (see also, e.g., Denlinger and Iverson, 2004; Bouchut and Westdickenberg, 2004; Hergarten and Robl,5

2015) and formulate the mechanical model in terms of surface partial differential equations (SPDEs, e.g., Deckelnick et al.,

2005). Respective SPDEs are defined on a surface Γ, embedded in three-dimensional space, which represents the mountain

topography. This approach, popular in the thin liquid film community (e.g., Craster and Matar, 2009), avoids transforma-

tions into the surface aligned coordinate system and thus complex metric tensors. Considering the relative shallowness of the

avalanche, it can be treated as thin layer flowing along the mountain surface. The governing equations describe the motion10

of the avalanche in three-dimensional space along this surface. Consequently, velocity is a three-dimensional vector field and

contains all information on flow direction and respective effects, such as centrifugal forces. Resulting SPDEs can be solved

with various methods, e.g. finite element method (e.g., Olshanskii et al., 2009) or finite area method, a modified finite volume

method (Tuković and Jasak, 2012).
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2.1.1
::::::::::
Mechanical

::::::
model

A basic shallow granular flow model can be written in terms of surface partial differential equations as1

∂h

∂t
+∇· (hu) =

q̇

ρ
,

∂ (hu)

∂t
+∇s · (huu) =−1

ρ
τ b +hgs−

1

2ρ
∇s (hepb) ,

∇n · (huu) = hgn−
1

2ρ
∇n (hpb)− 1

ρ
nb pb.5

∂h

∂t
+∇· (hu) =

q̇

ρ
,

::::::::::::::::

(1)

∂ (hu)

∂t
+∇s · (huu) =−1

ρ
τ b +hgs−

1

2ρ
∇s (hpb) ,

:::::::::::::::::::::::::::::::::::::::::::::

(2)

∇n · (huu) = hgn−
1

2ρ
∇n (hpb)− 1

ρ
nb pb.

:::::::::::::::::::::::::::::::::::::

(3)

Variables and mathematical operators are explained below. Equations (1) to (3) are equivalent to a Savage-Hutter like10

system, consistently extended to complex but mildly curved terrain and entrainment. Note that the earth pressure theory

(e.g., Savage and Hutter, 1989, 1991) has been replaced with the hydrostatic pressure assumption, as in most practical applications

(e.g., Christen et al., 2010). The notation as SPDE makes extension to complex terrain straight-forward and implementation

into SPDE environments, e.g. OpenFOAM, possible. A formal derivation is given by Rauter and Tuković (2018). Here, we aim

to deliver a short and descriptive introduction.15

Equation (1) represents the depth-integrated continuity equation, Eq. (2) the surface tangential momentum conservation

equation and Eq. (3) its surface normal counter part, defined in all points xb on the surface Γ⊂ R3, representing the mountain

surface. The time is denoted as t. The unknown fields are the surface normal flow thickness h(xb) (see Fig. 1), the depth-

averaged flow velocity u(xb) ∈ R3, defined as

u(xb) =
1

h(xb)

h(xb)∫
0

u(xb−nb z
′)dz′, (4)20

and the basal pressure pb(xb).
:::
The

:::::::
density

:
ρ
::
is

:::::::
assumed

::
to

::
be

::::::::
constant.

::::
Note

:::
that

:::
the

:::::
earth

:::::::
pressure

:::::
theory

:::::::::::::::::::::::::::::::::
(e.g., Savage and Hutter, 1989, 1991) has

::::
been

:::::::
replaced

::::
with

:::
the

:::::::::
hydrostatic

:::::::
pressure

::::::::::
assumption,

::
as

::
in

::::
most

::::::::
practical

::::::::::
applications

::::::::::::::::::::::
(e.g., Christen et al., 2010).

:::::::::
Moreover,

::::
Eqs.

:
(1)

::
to (3)

:::
are

::::::
written

::
in

:::::::::::
conservative

:::::
form.

:::::::::
Therefore,

::::
there

::
is

:::
no

::::::::::
entrainment

::::
term

::
in

::::
Eq. (2),

::::::
which

:::::
would

:::::
show

:::
up

::
in

:
a
::::::::::::::
non-conservative

:::::::::::
formulation.

::::
The

::::
first

:::::
terms

::
in

::::
Eqs.

:
(1)

:::
and

:
(2)

:::::::
represent

:::
the

::::::::
temporal

:::::::::
derivative,

::::
i.e.

:::
the

::::
local

:::::::
change

::
of

::::
mass

::::
and

::::::::::
momentum,

:::::::::::
respectively.

::::
The

::::::
second

::::::
terms

::
in

::::
Eqs.

:
(1)

:::
and

:
(2)

::
are

:::
the

:::::::::
respective

:::::::::
advection

:::::
terms.

::::
The

:::::
right25

1Multiplications between vectors represent the outer product uv = u⊗v
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::::
hand

::::
side

::
of

::::
Eq.

:
(1)

::::::::
represents

::::
mass

:::::::
growth

::::
due

::
to

:::::::::::
entrainment.

::::
The

::::
first,

::::::
second

::::
and

::::
third

::::::
terms

::
on

::::
the

::::
right

:::::
hand

::::
side

::
of

:::
Eq.

:
(2)

:::::::
represent

::::::
surface

:::::::::
tangential

::::::::::
components

:::
of

::::
basal

:::::::
friction,

:::::::::::
gravitational

::::::::::
acceleration

::::
and

::::::
lateral

:::::::
pressure

::::::::
gradient,

::::::::::
respectively.

::::
The

::::::
surface

::::::
normal

:::::::::::
components

::
of

:::::
these

:::::
terms

::::::
appear

::
in

:::
the

::::::
surface

:::::::
normal

:::::::::
momentum

:::::::::::
conservation

::::::::
equation

(3)
:
.
::::
This

:::::::
equation

::
is

::::
used

::
to

::::::::
calculate

:::
the

::::
basal

::::::::
pressure,

::::::::::
represented

::
by

:::
the

::::
last

::::
term.

:

In the framework of SPDEs, the normal vector field nb(xb) ∈ R3 of the surface Γ is sufficient to describe all major curvature5

effects. The density ρ is assumed to be constant
:::
This

::
is
:::::::
realised

::
by

::::::::::
calculating

::
all

:::::::::::
contributions

::
to

:::::::::::
conservation

::::::::
equations

::
in

:::
the

:::::
global

:::::::::
coordinate

::::::
system

::::
and

::::::::
projecting

::::::
results

:::
on

:::
the

::::::
surface

::::
and

:::
the

::::::
surface

::::::
normal

::::::
vector,

:::::::::::
respectively.

:::::
These

::::::::::
projections

::
are

:::::::::
explained

::
in

:::::
detail

::
in
::::::::

appendix
:::

A.
:::::::
Surface

::::::::
tangential

::::
and

::::::
normal

:::::::::::
components

::::::::
contribute

:::
to

::::
local

::::::::::
acceleration

::::
and

:::::
basal

:::::::
pressure,

:::::::::::
respectively.

::::
This

:::::::
follows

:::::
from

:::
the

::::::::::
assumption

:::
that

:::::::::
movement

:::
is

::::::::::
constrained

::
in

::::::
surface

:::::::
normal

::::::::
direction,

::::::
which

:
is
::::::::

enforced
:::
by

:
a
::::::::::

mechanical
::::::
force,

::::::
namely

:::
the

:::::
basal

::::::::
pressure. The gravitational acceleration g,

:::::
e.g., is split into a surface10

tangential component,

gs = (I−nbnb) ·g, (5)

and surface normal component,

gn = (nbnb) ·g. (6)

The gradient operator∇ denotes the three-dimensional derivative along the surface (Deckelnick et al., 2005). If the responding15

result is a three-dimensional vector field (e.g. gradient of a scalar field or divergence of a tensor field), it can be split, similar to

the gravitational acceleration, into a surface tangential component,

∇s = (I−nbnb) ·∇, (7)

and surface normal component,

∇n = (nbnb) ·∇. (8)20

Surface tangential and normal components contribute to local acceleration and basal pressure, respectively. This follows from

the assumption that movement is constrained in surface normal direction, which is enforced by a mechanical force, namely the

basal pressure. For simply curved surfaces, the given relation matches the model of Greve et al. (1994), as shown by Rauter

and Tuković (2018).

2.1.2
::::::
Process

:::::::
models25

There are various user-selectable models, describing basal friction τ b(xb) and entrainment rate q̇(xb), to close the system of

equations. To reassemble the traditional model (often called Voellmy or Voellmy-Salm model, Christen et al., 2010), as applied

by e.g. Fischer et al. (2015), the basal friction is described following Voellmy (1955),

τ b = µpb
u

|u|+u0
+
ρg

ξ
|u|u. (9)
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Therein µ and ξ are constant parameters, although they may depend on avalanche size and surface roughness (Salm et al.,

1990) or flow regime (Köhler et al., 2016). The small value u0 ::::::::::
(10−7 ms−1

::
in

:::::
here) avoids divisions by zero and regularizes

the relation near still-stand, where the original function is discontinuous. This regularisation, combined with the employed time

integration scheme (implicit three-level second-order, Ferziger and Peric, 2002), leads to a well-defined behaviour in the runout

zone, where the velocity is nearly zero (Rauter and Tuković, 2018).
::::
This

:::::
allows

:::
the

:::::::::
avalanche

::
to

:::::
reach

::::
very

:::
low

:::::::::
velocities

::
in5

::
the

::::::
runout

:::::
zone,

:::::
which

:::
are

:::::
lower

::::
than

:::
the

::::::::
tolerance

::
of

:::
the

:::::
solver

:::
and

::::
thus

:::::::
virtually

:::::
zero.

:::
For

:::::::::::
characteristic

::::::::
avalanche

:::::::::
velocities,

::::::::::::::
i.e. |u|> 100u0,

:::
this

:::::
value

:::
has

:::
no

:::::::
relevant

:::::
effect

:::
on

:::
the

:::::::
dynamic

:::::::::
behaviour.

:
Previously, this issue has been addressed with

operator splitting and explicit stress reduction (e.g., Mangeney-Castelnau et al., 2003; Zhai et al., 2015; Mergili et al., 2017),

which is not required in the proposed scheme.

The entrainment rate is calculated, based on an empirical erosive entrainment model, as10

q̇ =


τ b ·u
eb

for hmsc > 0,

0 for hmsc = 0,
(10)

where eb is the specific erosion energy (Fischer et al., 2015). Entrainment is restricted by the available mountain snow cover

thickness hmsc. The initial mountain snow cover thickness is calculated following Fischer et al. (2015), using a linear approach,

hmsc(z) =

(
Hmsc(z0) +

∂Hmsc

∂z
(z− z0)

)
cos(ζ), (11)15

where z is the surface elevation
:::::::::::::
(corresponding

::
to

:::
the

::::::
vertical

:::::::::
coordinate

:::
in

:::
the

::::::::
numerical

:::::::
model),

:
and z0 the elevation of a

reference station, which has to be provided by the user, alongside with the base value Hmsc(z0) and the growth rate ∂Hmsc

∂z .

ζ is the angle between the gravitational acceleration and the surface normal vector. Its further evolution is described by the

conservation equation

∂ hmsc

∂t
=− q̇

ρ
. (12)20

Undershoots, i.e. hmsc < 0, are prevented with a regularisation similar to Eq. (9).
::::
This

:::
can

:::
be

:::::::
realised

::
by

:::::::::::
multiplying

:::
the

::::::::::
entrainment

:::
rate

::̇
q

::::
with

:::::::

hmsc

hmsc+h0
,
::::::
where

::
h0::

is
:
a
:::::
small

::::::
value,

::::::
similar

::
to

:::
u0.

2.1.3
:::::::::
Numerical

:::::::
solution

The governing equations are solved with an implicit, conservative, finite area method (Rauter and Tuković, 2018), using the

respective OpenFOAM library (Tuković and Jasak, 2012). The finite area method is similar to the well-known finite volume25

method (e.g. Jasak, 1996), however with appropriate differential operators for SPDEs, Eqs. (7) and (8). We apply first- (upwind

scheme) and second-order accurate spatial differencing schemes. First-order schemes converge slower in terms of mesh refine-

ment due to their high numerical diffusivity. However, numerical diffusivity effectively prevents oscillations and increases
::::
they

::::::::
effectively

:::::::
prevent

::::::::::
oscillations

:::
and

:::::::
increase

:
the stability of the solver. Oscillations in second-order accurate simulations are

7



prevented with a normalised variable diagram (NVD) scheme for unstructured meshes, known as Gamma scheme (Jasak et al.,

1999). NVD schemes blend upwind and a higher order scheme to combine advantages of both methods.

As mentioned before, OpenFOAM utilises capabilities of C++ to make top-level source code appear similar to the tensor

notation of partial differential equations. The conservation equation (1), e.g., can be solved with the following lines of code

using OpenFOAM:5

faScalarMatrix hEqn

(

fam::ddt(h)

+ fam::div(phis, h)

==10

dqdt/rho

);

hEqn.solve();

phis is the velocity edge field (see Rauter and Tuković, 2018, for details) and dqdt the source term incorporating entrainment.

Momentum conservation equations (2) and (3) look similar
:::::::::::::::::::::::::
(see Rauter and Tuković, 2018) and conservation equations for15

arbitrary fields (e.g. random kinetic energy, Bartelt et al., 2015) can be added with the same syntax.

2.2 Simulation evaluation

We use an established implementation of the same flow model, SamosAT (version 2017_07_05) (Sampl and Zwinger, 2004;

Sampl and Granig, 2009), for comparison. The main difference between SamosAT and the presented OpenFOAM solver is

the solution method. SamosAT solves similar governing equations, slightly adapted to fit into the respective framework, with20

smoothed-particle hydrodynamics (SPH). This approach follows a Lagrangian description, making handling of complex terrain

simpler (Sampl and Zwinger, 2004). Therefore, SamosAT provides an excellent reference to validate avalanche models for

complex terrain. The second term on the right hand side of Eq. (3) was deactivated in OpenFOAM computations to reassemble

the mechanical model as implemented in SamosAT. This term is usually small and can be safely neglected (Rauter and Tuković,

2018). However, it is shown in equations to preserve the similarity between Eqs. (2) and (3).25

We compare simulations using the 1kPa-isoline of the dynamic peak pressure, defined as

pdyn(xb) = max
t

(
ρ |u(xb, t)|2

)
. (13)

Definitions of hazard zones are based on this threshold in many European countries (Jóhannesson et al., 2009) and therefore

often used for evaluation of respective models (e.g., Fischer et al., 2015; Rauter et al., 2016).

In addition to the comparison with a reference implementation, we present a comparison with historical records from a30

catastrophic event. A common method to document avalanches is the delineation of deposition. This information is also avail-

able for the presented case study. Deposition processes are not explicitly included in the flow model due to depth-integration.

8



However, the general form and size of the deposition should be reproduced by the model to be useful for hazard zone mapping.

This is problematic in some implementations, e.g., SamosAT, due to missing regularisation of the friction term, but possible

with the proposed method.

We apply model parameters (µ, ξ, eb) optimised for SamosAT (Fischer et al., 2015) and the comparison is conducted on a

qualitative level.5

Finally, we evaluate OpenFOAM simulations with regard to convergence during mesh refinement to give a quantitative

estimation of numerical uncertainties as recommended by Roache (1997). The numerical solution should converge to the

unknown analytical solution with increasing grid resolution and the numerical uncertainty should decay with the order of the

applied method. Richardson extrapolation allows to estimate the numerical uncertainty, using results of three different meshes.

This way, the expected convergence can be verified and the numerical uncertainty quantified.10

2.3 Simulation setup

The precondition to conduct simulations in OpenFOAM is a mesh, describing the geometry of the problem. For SPDEs,

e.g. shallow flow models, a surface mesh, matching the slope topography, is sufficient and no volume mesh is required. In

practice, however, three-dimensional meshing tools can be used to create a volume mesh, the boundary of which can be used

as surface mesh.15

Topography is usually available as digital elevation model (DEM) in GIS formats, yielding elevation on a regular two-

dimensional grid. The relevant part of the topography is re-sampled with cubic splines, triangulated and stored as STL file

(e.g., Kai et al., 1997) to prepare it for meshing. We chose the meshing application cfMesh (Juretić, 2015), because of its good

integration in OpenFOAM and its clean boundary meshes. cfMesh requires a closed triangulated surface to create a volume

mesh. This is the case for all general purpose meshing tools and cfMesh can be easily replaced in our tool-chain, for example20

with Netgen (Schöberl, 1997) (see Rauter and Tuković, 2018, for an application).
::::::
Various

:::::
other

:::::::
meshing

:::::
tools

:::
can

::
be

:::::::
applied

:::
and

:::::::::::
OpenFOAM

:::::::
provides

:
a
:::::

large
:::::
range

::
of

:::::
mesh

:::::::::
conversion

:::::
tools.

:
The closed surface can be assembled from a triangulation

of the mountain surface, sidewalls and the respective top boundary. The resulting surface and volume mesh are presented in

Figs. 3b and 3c. Refinement near the mountain surface reduces the amount of required volume cells, while keeping the number

of surface cells high. The resulting mesh is also valid for three-dimensional simulations with e.g. Navier Stokes Equations, as25

conducted by e.g. Sampl and Zwinger (2004); Dutykh et al. (2011); Kröner (2013); von Boetticher et al. (2016, 2017); Huang

et al. (2005). The boundary mesh, describing the mountain surface, is shown in Fig. 3d. The shallow flow model is solved on this

surface mesh. We used polygonal-dominated (volumetric polyhedral-dominated, respectively) meshes for simulations because

of stability and accuracy reasons (Juretić, 2005). Triangular (volumetric tetrahedral, respectively) meshes have been evaluated

as well. However, second-order accurate simulations on triangular meshes failed, while first-order accurate simulations are30

virtually identical to the respective simulations on polygonal-dominated meshes.

The release area, acting as initial condition, is provided as a polygon in ESRI shapefile format (ESRI, 1998). To find all

surface cells within the given polygon, the Hormann and Agathos (2001) algorithm as implemented in OpenFOAM is applied.

The mountain snow cover hmsc of respective cells is then transferred to the flow thickness h to create a suitable initial condition.

9



Parameter Mesh tool-chain

Solver

Initial condition tool-chain

User selectable submodels

Results and
postprocessing

Legend:

dem.txt release.shp

txt2mesh.py shape2dict.py

dem.stl constant/releaseArea

cfMeshsystem/meshDict releaseAreaMapping

constant/polyMesh

Initial conditions

0/h 0/hmscmakeFaMeshconstant/faMeshDefinition

constant/faMesh

faSavageHutterFoam

constant/transportProperties

system/controlDict

system/faSchemes

system/faSolution

friction.so

entrainment.so

functionObjects.so

Results 1/h 1/Us 1/hmsc 2/h 2/Us 2/hmsc

foam2shp.py paraView

exportShapefile.py

points.shp cells.shp contour.shp

Ascii grid file

ESRI shape file

STL file

OpenFOAM dictionary

OpenFOAM field

OpenFOAM FV mesh

OpenFOAM FA mesh

python script

OpenFOAM application

Figure 2. Simulation setup and tool-chain. The tool-chain consists exclusively of open-source applications. Individual applications and

process models can be replaced with custom ones. Parameters for python scripts are provided via command line interface. Parameters for

OpenFOAM applications are provided through OpenFOAM dictionaries. Domain decomposition and reconstruction, which is handled by

separate applications, is not shown. OpenFOAM reads initial conditions from the folder "0" and writes results to folders, named after the

respective timestep ("1", "2", etc.). Details on OpenFOAM formats can be found in OpenCFD Ltd. (2004).
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(a) (b)

(c) (d)

Figure 3. Meshing tool-chain: The terrain data is usually available as raster data (a). Triangulation of the relevant area and adding walls and

a top boundary yields a closed triangulated surface (b, sharp edges are highlighted black). This surface can be processed by most meshing

tools, here we apply cfMesh to get a polyhedral-dominated finite volume mesh (c). The bottom boundary surface of the finite volume mesh

builds the foundation for the finite area mesh used for simulations (d). Note that we show a very coarse mesh for the sake of visibility of

edges. Terrain data: Amt der Tiroler Landesregierung (AdTLR). EPSG: 31254.

The release area for our case study, taken from Fischer et al. (2015), is shown in Fig. 7a as polygon and as set of surface cells

in Fig. 3d.
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The solver reads the surface mesh and initial conditions, as well as physical models, numerical schemes and constants to

initialise the simulation (see Fig. 2). The respective entries can be found in the designated locations, according to usual practice

in OpenFOAM (OpenCFD Ltd., 2004). The solver can run on multiple processors using domain decomposition (Weller et al.,

1998) and message passing interface (MPI).

User defined friction and entrainment models can be loaded at run-time, meaning that the user does not have to recompile the5

solver to add a custom friction or entrainment model. The same is the case for general purpose functions which are triggered

at the end of every time-step. Here, we used this interface to calculate and record the dynamic peak pressure at run-time,

without the necessity to save multiple time-steps or to change solver source code. Similar functions can be used to check

mass, momentum or energy conservation, record specific data (e.g. time-line at a certain point) or to manipulate fields during

run-time, e.g. to trigger secondary slabs.10

Simulation results are written to hard disk in the usual OpenFOAM file format (OpenCFD Ltd., 2004) for post-processing,

evaluation and simulation restart. The simulation setup, all involved applications and all intermediate and final files are pre-

sented in Fig. 2. The tool-chain is modularly assembled from various open-source applications. Single modules, such as mesher,

solver or friction model, can be easily replaced.

2.4 Post-processing and visualisation15

Post-processing and visualisation of OpenFOAM simulations is commonly performed using ParaView® (Ahrens et al., 2005;

Ayachit, 2015) (see Figs. 3, 4 and 5). ParaView is an open-source data analysis and visualisation application. It can read and

visualise OpenFOAM files and they can be used for further operations, such as the calculation of contour lines. To integrate

GIS applications in post-processing, results can be exported to common GIS file formats. Contour lines can be exported to

ESRI shapefile format with a custom python extension based on the library pyshp (Figs. 6c, 7 and 9). Alternatively, individual20

cells and respective field values, can be exported as polygons (Fig. 6a) or points (Fig. 6b) to ESRI shapefiles.

To generate regular raster files, the unstructured OpenFOAM mesh and associated fields have to be mapped to a structured

Cartesian grid (Figs. 6d and 9). These and other approaches allow an almost seamless integration into general purpose GIS

applications, as shown in the following case study. Here, we utilise foam-extend 4.0 with a custom solver, python 2.7.12 with

numpy 1.11.0, scipy 0.17.0 and pyshp 1.2.3 for shapefile export, ParaView 5.0.1 and QGis 2.8.6.25

3 Case study

In this work we focus on the Wolfsgruben avalanche. The event from the 13th March 1988, when the avalanche struck inhabited

areas has been repeatedly used as benchmark for avalanche simulations, latest by Fischer et al. (2015). We chose this example

because the respective data is freely available, making reproduction and cross validation possible.

The mountain snow cover thickness for the specific event can be described with parameters Hmsc(z0) = 1.61m, z0 =30

1289m, ∂Hmsc

∂z = 8 · 10−4. Physical parameters to reassemble the runout properly are µ= 0.26, ξ = 8650ms−2 and eb =

11500Jkg−1. These parameters have been optimised in a previous study using SamosAT (Fischer et al., 2015).
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t= 0s t= 10s t= 20s t= 30s t= 40s

t= 50s t= 60s t= 70s t= 80s t= 150s

Figure 4. Time series of an OpenFOAM simulation with mean cell size ∆ = 7.45m and first-order interpolations in ParaView. The colour

scale represent
:::::::
represents

:
flow thickness, which is clipped at 0.5m. Terrain data: AdTLR.

t= 40s

Figure 5. Perspective view on the OpenFOAM simulation with mean cell size ∆ = 7.45m and first-order interpolations in ParaView. The

colour scale represent
:::::::
represents

:
flow thickness, which is clipped at 0.5m. Terrain data: AdTLR.
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(a) (b)

(c) (d)

Figure 6. The flow thickness field h at time t= 40s for a simulation with mean cell size ∆ = 7.45m, first-order interpolations. The figure

shows four methods to export and analyse results in GIS: Export of cells as polygons (a). Export of cell centres as points (b). Export of

contour lines as polygons (c). Remapping of the unstructured finite area mesh to regular raster (d). The raster has been created by converting

point data to raster file in QGIS. The resolution of the DEM is 10m, results have been mapped to a 5m grid. Terrain data: AdTLR.

Numerical parameters for OpenFOAM (see Rauter and Tuković, 2018) have been chosen such, that they do not influence

the results, while keeping the solver as stable as possible. The appropriate mesh resolution for OpenFOAM has been identified

using a mesh refinement study, which is presented alongside the results. The simulation duration has been set to 150s. This

duration is sufficient to reach still-stand
:::
(i.e.

:::::::
velocity

:::::
lower

:::::
than

:::
the

:::::
solver

:::::::::
tolerance,

:::::::::::::::
|u|< 10−5 ms−1)

:
in the runout zone

(u< 10−5 ms−1) and thus virtually unchanging deposition. We decomposed the simulation domain into four parts for Open-5

FOAM and all simulations have been conducted on a Quadcore Intel Core i7-7700K @ 4.20GHz and 32GB DDR4 Ram @

2.667GHz.

SamosAT utilises a grid with 5m resolution and we follow recommendations in terms of appropriate particle numbers

and other numerical parameters. The interpolation method has been varied between interpolation on grid (SPH-mode 0) and

interpolation on particles (SPH-mode 1) to get an insight into the numerical uncertainty.10

ParaView renderings are presented in Fig. 4 for multiple time-steps, showing the dynamic behaviour of the avalanche. A

perspective ParaView rendering is shown in Fig. 5. The avalanche follows the narrow channel directly beneath the release area.
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Table 1. Mesh size, runout, error estimation and execution time for different OpenFOAM simulations. Base cell size and refinements refer

to parameters of cfMesh.

interpolation base cell size refinements number of cells mean cell size runout num. uncertainty exec. time

1st-order 40m 2 40899 7.45m 2145m 173s

1st-order 30m 2 72166 5.61m 2137m 46m 396s

1st-order 20m 2 161364 3.75m 2112m 6m 1261s

1st-order 15m 2 285892 2.82m 2107m 3051s

2nd-order 40m 2 40899 7.45m 2156m 353s

2nd-order 30m 2 72166 5.61m 2142m 66m 810s

2nd-order 20m 2 161364 3.75m 2109m 2m 2737s

2nd-order 15m 2 285892 2.82m 2107m 6952s

Small portions of the avalanche overflow the left and right humps in some simulations, which can be seen in the peak dynamic

pressure, Fig. 7.

The results at time-step t= 40s have been exported to QGIS using various methods, see Fig. 6. Affected areas (i.e. 1kPa-

isolines), as predicted by OpenFOAM and SamosAT are shown in Fig. 7. Variations due to different interpolation schemes are

shown for both implementations, to give an insight into the numerical uncertainty.5

The influence of the mesh resolution on the affected area is shown in Fig. 8 for the OpenFOAM solver. Respective mean

cell sizes, an estimation of the numerical uncertainty following Roache (1997) and execution times (excluding time for mesh

generation, which may take several minutes) are presented in Tab. 1. Here, the runout is defined as the length of the central

avalanche path (see Fig. 8) within the affected area. The central avalanche path has been taken from Fischer et al. (2015).

The mean cell size is defined as the square root of the mean cell area. For comparison, execution times for SamosAT are 98s10

(SPH-mode 0) and 368s (SPH-mode 1), respectively. One should keep in mind that SamosAT utilises solely a single processor

core while OpenFOAM utilises all available cores. Moreover, execution times should be seen as rough estimations because

they depend on various factors, such as the number of saved time-steps, debug messages and compile options.

Deposition (i.e. flow thickness field h in the last time-step) of the OpenFOAM solution is shown in Fig. 9 alongside with the

documentation.15

4 Discussion and conclusion

Results of the new OpenFOAM solver are widely similar to SamosAT. Differences between SamosAT and OpenFOAM are

in the range of numerical uncertainty and differences between interpolation methods are of comparable size. This uncertainty

has to be expected; in fact, it is well known in the CFD community, that numerical schemes and implementation details

influence resultsdramatically, even for physically simple models (e.g., Sod, 1978),
::
if
::::
they

:::
are

:::
not

:::::::::
converged

::
to

:::
the

:::::::::
analytical20

::::::
solution

::::::::::::::::::::::::::
(e.g., Ferziger and Peric, 2002). In the case of gravitational mass flows, numerical uncertainty plays a minor role, since
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Figure 7. Comparison of OpenFOAM first-order (blue,
::::::

dashed), OpenFOAM second-order (blue, dashed), SamosAT SPH 0 (red, dashed)

and SamosAT SPH 1 (red) in terms of 1kPa-isolines (affected area). OpenFOAM results are based on the mesh with cell size ∆ = 7.45m.

The documented release area (orange area) and documented deposition area (blue area) are shown for orientation. The shape and reach of

the main avalanche branch are similar in all simulations, secondary branches differ to some extend. Overview (left) and focus on the runout

zone (right). Terrain data: AdTLR.

underlying models, parameters, terrain and snow cover data are afflicted with substantially higher uncertainty. This is shown

by comparison of the documented deposition with the result of an OpenFOAM simulation in Fig. 9. Although parameters have

been optimised to the specific event, all simulations differ significantly from documentation. Especially the large bulge on the

orographic right side of the deposition area is not matched by any simulation. However, some details, such as the form of the

tail and the position where the deposition expands, are accurately simulated by the OpenFOAM solver. Significant differences5

between simulation and documentation are not limited to the presented case and have been observed before by e.g. Rauter

et al. (2016). We deduce that numerical errors are much smaller than the expected model error. Under these circumstances, a

quantitative comparison between implementations (as by e.g. Rauter et al., 2016, for basal friction models) is not appropriate.

The refinement study shows that in the presented case, the simulated runout reduces with increasing mesh refinement (Fig. 8).

Simulations on fine meshes are stopped by the first embankment, simulations on coarser grids overflow it and reach the next10

embankment. This is reasonable, considering the higher diffusivity and lower curvature of coarser meshes. However, this

trend should not be taken for granted for other cases and a refinement study should always be conducted to get an insight

into the numerical uncertainty. Results indicate that a cell size of approximately 3.75m is required in OpenFOAM to achieve
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Figure 8. Mesh refinement and convergence study for the OpenFOAM solver. Four mesh sizes and both interpolation schemes, first-order

upwind (dashed line) and second-order Gamma (solid line) have been evaluated. The central avalanche path from Fischer et al. (2015) is

shown in black. Terrain data: AdTLR.

convergence with respect to practical applications. The numerical uncertainty can not be calculated for the coarsest and finest

mesh, since three simulations are required to conduct a Richardson extrapolation. It has to be noted that all simulations are

based on the same DEM with a grid size of 10m. The influence of terrain model quality (see, e.g., Bühler et al., 2011) on

simulation results is not investigated.

The execution time of the OpenFOAM solver is acceptable for coarse meshes but increases with the square of the number5

of cells, because the time-step duration has to be reduced similarly to cell size. The OpenFOAM solver is noticeably slower

than SamosAT, especially when considering OpenFOAMs multiprocessing capabilities. For applications where fast execution

is imperative, such as parameter studies, SamosAT may be the appropriate choice. There is potential for future optimisation in

OpenFOAM, especially the implicit time integration scheme is expensive and should be replaced with a simpler explicit one.

However, the implicit solution strategy, in combination with the regularised friction relation, leads to a satisfying behaviour10

in the runout zone. In contrast, the simple explicit solution strategy from e.g. SamosAT leads to a continuous creeping of the

deposition, meaning that the final flow thickness can not be compared with the deposition, as noticed by Fischer et al. (2015)

and Rauter et al. (2016).
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Figure 9. Flow thickness field h at t= 150s of the second-order OpenFOAM simulation (∆ = 3.75m) and the documented deposition area.

The flow thickness field in the last time step should roughly replicate the deposition. The bulge on the orographic right side of the deposition

area is not matched by any simulation. However, some interesting details, such as the tail of the avalanche are represented well in OpenFOAM

simulations. Map data: basemap.at.

Stability of the OpenFOAM solver is strongly influenced by mesh quality. Simulations with polygonal-dominated surface

meshes showed an acceptable stability for first- and second-order interpolations. The high influence of the three-dimensional

mesh on stability and its computationally expensive creation is the main drawback of the proposed method. This is, however,

also a big advantage, allowing simple coupling with three-dimensional ambient flows, as conducted by Sampl and Zwinger

(2004).5

5 Summary and Outlook

This paper shows the application of a finite area scheme for shallow granular flows (Rauter and Tuković, 2018) to snow

avalanches on natural terrain. Specific processes, such as entrainment, have been added to the basic model to replicate the

traditional model as implemented in SamosAT (Fischer et al., 2015).

Various simulations with the new OpenFOAM solver have been conducted. Methods and tools to incorporate the OpenFOAM10

solver in GIS have been presented. These tools allow integration of OpenFOAM in hazard mapping workflows and thus to

validate the OpenFOAM solver with a reference implementation, herein SamosAT.
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Application of three-dimensional Cartesian coordinates allows simple coupling with GIS applications because no coordinate

transformations are required. Unstructured meshes, on the other hand, require re-sampling to structured meshes or data transfer

in form of polygons. This incorporates an additional effort compared to simulations on structured meshes, as conducted by

e.g. Christen et al. (2010).

The OpenFOAM solver roughly reproduces results of SamosAT. Differences are within the expected numerical uncertainty.5

A comparison of numerical results to a documented event suggests that model uncertainty is substantially higher than numerical

uncertainties.

The major advantage of OpenFOAM is the object-oriented open-source code, which can be easily extended. The flexible

code structure allows fast application of new models to real case examples. This especially qualifies the proposed method

perfectly for model development and academic purposes. Moreover, the vast majority of source code is shared within the10

OpenFOAM community, leading to faster development of core features and higher code quality.

The finite area scheme allows a description in terms of surface partial differential equations (Deckelnick et al., 2005), which

leads to simple and expressive governing equations. However, this comes at the cost of a complex three-dimensional surface

mesh. Projection of the governing equations on a plane surface following e.g. Bouchut and Westdickenberg (2004) may be

beneficial for some applications. The three-dimensional surface mesh can also be an advantage, allowing a simple coupling15

with three-dimensional ambient two-phase models for powder clouds (Sampl and Zwinger, 2004). The presented meshing

method, creating a finite volume and the corresponding finite area mesh, is viable for such simulations as well.

Future steps will incorporate optimisation of the solver in terms of stability and execution time. Mesh generation and the

integration of geographic information systems will be further streamlined.
:::
The

::::::::
limitation

:::
to

:::::
mildly

::::::
curved

::::::
terrain

::::::
should

:::
be

:::::::::
eliminated,

::
as

::::
this

:::::::::
assumption

::
is
::::::::

violated
::
in

:::::
many

:::::::
practical

::::::
cases. We aim to implement more complex models, suitable for20

mixed snow avalanches (e.g., Bartelt et al., 2015; Issler et al., 2017) and debris flow (e.g., Iverson and George, 2014; Mergili

et al., 2017) in the near future. Coupling of the here proposed dense flow model with three-dimensional two-phase models for

the powder cloud regime (e.g. Cheng et al., 2017; Chauchat et al., 2017) is planned as well.

Code and data availability. The OpenFOAM solver, core utilities and the presented case study are available in the OpenFOAM community

repository (https://develop.openfoam.com/Community/avalanche) and integrated as a module within OpenFOAM-v1712. The complete code25

(based on foam-extend-4.0) including python scripts for GIS integration and the simulation setup including the underlying raw data is

included in the supplementary material and available at https://bitbucket.org/matti2/fasavagehutterfoam.

Appendix A:
:::::::::::::
Understanding

::::::::::
projections

::
in

:::::::
surface

::::::
partial

::::::::::
differential

:::::::::
equations

::::
Here

:::
we

::::::
shortly

:::::::
explain

:::
the

:::::::
concept

:::
of

::::::::::
projections

::::::
within

:::
the

:::::::::
framework

:::
of

:::::::
surface

:::::
partial

::::::::::
differential

:::::::::
equations.

::::::
These

:::::::::
projections

:::
are

::::::
widely

::::
used

::
in

::::::::::::
computational

::::
fluid

:::::::::
dynamics,

::::::
usually

:::::
when

:::::::
surfaces

::
in

::::
three

::::::::::
dimensional

:::::
space

:::
are

::::::::::
considered.30

:::
We

::
do

:::
not

:::::
focus

::
on

:::::::::::
mathematical

:::::::::
formalities

:::
and

::::
this

::::::
section

:::
can

:::
not

::::::
replace

:::
the

::::::
formal

::::::::
derivation

::
of

::::::::::::::::::::::
Rauter and Tuković (2018).
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:::
We

::::
want

::
to

:::::::::
emphasize

::::
that

:::
no

::::::
surface

::::::
aligned

::::::::::
coordinate

::::::
system

::
is

:::::::
required

:::::::::
throughout

:::
the

::::::
whole

:::::::
process

:::
and

:::
the

::::::
reader

::
is

:::::::::
encouraged

::
to
:::::

stick
::
to

::::::
global

::::::::
Cartesian

::::::::::
coordinates.

::::
For

::::::::
simplicity

:::
we

:::::::
present

:
a
::::::::::

discretised
::::
finite

::::
area

::::
cell,

::::::
which

:::
has

:::::
been

:::::::
extruded

::
by

::::
flow

::::::::
thickness

::
h
::
to

::::::
present

:::
the

:::::::
flowing

:::::
mass,

:::
see

::::
Fig.

:::
A1.

:

g

gs

gn

nb

x

z

Figure A1.
::::::

Splitting
:::::::::
gravitational

:::::::::
acceleration

:::
into

::
a
:::::
surface

::::::::
tangential

:::
and

:::::
surface

::::::
normal

:::
part

::::
with

:::::
simple

::::::::
projections

::
to

:::
the

:::::
surface

::::::
normal

::::
vector

:::
nb.

:::
We

:::::
begin

:::
by

:::::::
splitting

:
a
::::::

simple
::::::::

vectorial
::::::
entity,

:::
the

:::::::::::
gravitational

::::::::::
acceleration

:::::::
g ∈ R3,

::::
into

::
a
::::::
surface

:::::::
normal

::::::::::
component,

:::::::
gn ∈ R3,

::::
and

:
a
::::::
surface

:::::::::
tangential

::::::::::
component,

:::::::
gs ∈ R3,

::
as

::::::
shown

::
in

::::
Fig.

:::
A1.

::::
The

:::::::::
magnitude

::
of

:::
the

::::::
surface

::::::
normal

::::::::::
component5

:::
can

::
be

:::::::::
calculated

:::::
using

:::
the

:::::::::::
scalar-product

::::
and

:::
the

::::::
surface

::::::
normal

::::::
vector,

:

‖gn‖= nb ·g,
:::::::::::

(A1)

:::::
which

::::::::::
corresponds

::
to

:
a
:::::::::
projection

::
of

::
g

::
on

:::
nb.

::::
The

::::::
surface

::::::
normal

:::::::::
component

::::::
points

::
in

::
the

:::::
same

:::::::
direction

:::
as

::
the

:::::::
surface

::::::
normal

:::::
vector,

::::::
which

::::::
allows

:::::::::
calculation

::
of

:::
the

::::::::
vectorial

::::::
surface

::::::
normal

::::::::::
component.

:::::::::::
Rearranging

::
of

::::::
vector

::::::::::::
multiplications

::::::
yields

:::
the

:::::
known

:::::
form,

:
10

gn = nb ‖gn‖= nb (nb ·g) = (nbnb) ·g.
::::::::::::::::::::::::::::::::::

(A2)

:::
The

::::::
surface

:::::::::
tangential

:::::::::
component

:::::::
follows

::
by

:::::::::
subtracting

:::
the

:::::::
surface

::::::
normal

:::::::::
component

:::::
from

::::
total

::::::::::
gravitational

:::::::::::
acceleration,

gs = g−gn = g− (nbnb) ·g = (I−nbnb) ·g.
:::::::::::::::::::::::::::::::::::::::

(A3)

:::::::::
Movement

::
in

::::::
surface

:::::::
normal

::::::::
direction

::
is

::::::::::
constrained

::
by

::::
the

::::
basal

:::::::::::
topography,

:::::
which

::::::
yields

:::
the

:::::
basal

::::::::
pressure.

:::::::::
Therefore,

::
the

:::::::
surface

::::::
normal

::::::::::
component

::
gn::::

has
::
to

:::::::::
contribute

::
to

:::::
basal

:::::::
pressure

:::
pb ::::

(Eq.
::
3),

::::
and

::::
only

:::
the

:::::::
surface

::::::::
tangential

::::::::::
component15

:::::::::
contributes

::
to

:::::
local

::::::::::
acceleration

::::

∂hu
∂t ::::

(Eq.
:::
2).

::::
The

::::
total

:::::::::::
gravitational

::::::::::
acceleration

:::
can

:::
be

:::::::::::
reconstructed

:::
by

::::::::
summing

:::
up

::::
both

::::::::::
components,

:

g = gn +gs = (nbnb) ·g+ (I−nbnb) ·g = I ·g = g,
::::::::::::::::::::::::::::::::::::::::::::

(A4)
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Figure A2.
::::::
Splitting

:::
the

::::::::
divergence

::
of

:
a
::::
flux

::::
tensor

::::::
∇ ·M

:::
into

::
a

:::::
surface

::::::::
tangential

:::
and

::::::
surface

:::::
normal

::::
part

:::
with

::::::
simple

::::::::
projections

::
to

:::
the

:::::
surface

::::::
normal

:::::
vector

:::
nb.

::::::::
reassuring

::::::
perfect

:::::::::::
conservation

::
of

:::::
three

::::::::::
dimensional

::::::::::
momentum.

:::
The

:::::
same

:::::::
concept

:::
can

:::
be

::::::
applied

::
to

::::::
fluxes

::::::
through

::::
the

::::::::
boundary

::
of

:::
the

::::::
control

:::::::
volume,

:::::::
leading

::
to

:::
the

:::::::
concept

::
of

:::::::
surface

:::::
partial

:::::::::
differential

:::::::::
operators,

:::
∇s :::

and
::::
∇n.

::::::
Figure

::
A2

::::::
shows

:::
the

:::::::::
divergence

::
of

:
a
::::::
tensor,

::::::
∇ ·M,

:::::
which

:::::
could

::::::::
represent

:::::::::
convective

:::::::::
momentum

::::::::
transport

:::::::::
∇ · (huu)

::
or

:::::
lateral

:::::::
pressure

:::::::
gradient

:::::::::::::::::::::::::

1
2ρ∇ (pbh) = 1

2ρ∇ · (Ipbh).
:::::
Using

::::::
Gauss’

:::::::
theorem,

:::
the

:::::::::
divergence

:::
can

::
be

:::::::::::
reformulated

::
in

:::::
terms

::
of

:::
the

::::::
surface

:::::::
integral

::
of

::::
face

::::::
fluxes,

:::::
which

:::
are

::::::
defined

::
as

:::
the

:::::
scalar

:::::::
product

::
of

:::
the

::::
flux

:::::
tensor

:::
M5

::::
with

:::
the

::::::
normal

:::::
vector

:::
on

:::
the

::::
face

::::::::::::::::::::::
(Ferziger and Peric, 2002).

::
In

::::
the

:::::::::
discretized

:::::
form,

:::::::
integrals

:::
are

::::::::
replaced

::::
with

:::::
sums

::::
over

::::
faces

:::
and

::
in
:::
the

::::
case

::
of

:::::::
SPDEs,

:::::::
volumes

:::::::
collapse

::
to

::::::::
surfaces,

::::
faces

::
to

:::::
edges

::::
and

:::
face

::::::
fluxes

::
to

::::
edge

:::::
fluxes.

::::
For

:::
the

:::::
simple

:::::
case,

::
as

:::::
shown

::
in
::::
Fig.

::::
A2,

::
we

::::
can

:::::
write,

∇ ·M =
1

Sb
(mout−min) ,

::::::::::::::::::::::

(A5)

::::
with

:::
area

:::
of

::
the

::::
cell

:::
Sb :::

and
::::
edge

:::::
fluxes

::::
min::::

and
:::::
mout.:::

For
:::
the

:::::
exact

::::::::::
formulation

::
in

:::::
terms

::
of

::::
finite

:::::
areas,

:::
the

::::::
reader

::
is

:::::::
refereed10

::
to

::::::::::::::::::::::
Rauter and Tuković (2018).

:::::
Note

:::
that

::::::
∇ ·M

::
is

:
a
:::::
three

::::::::::
dimensional

:::::
vector

:::::::
without

:::
any

::::::::
particular

::::::::
direction

::
in

:::::::
relation

::
to

:::
the

::::
basal

:::::::
surface.

::::::
Hence,

::
it

:::
has

:
a
:::::::
surface

::::::::
tangential

:::
and

::
a
::::::
surface

::::::
normal

::::::::::
component

:::::
which

::::
can

::
be

::::::
treated

::::::
similar

::
to

:::::::::::
gravitational

::::::::::
acceleration,

:::::::
yielding

:::
the

::::::
surface

:::::::
normal

:::::::::
component

∇n ·M = nb ‖∇n ·M‖= nb (nb ·∇ ·M) = (nbnb) ·∇ ·M,
::::::::::::::::::::::::::::::::::::::::::::::::::

(A6)

:::
and

:::
the

::::::
surface

::::::::
tangential

::::::::::
component15

∇s ·M =∇ ·M−∇n ·M =∇ ·M− (nbnb) ·∇ ·M = (I−nbnb) ·∇ ·M.
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(A7)

::::::
Surface

::::::
normal

::::
and

::::::::
tangential

::::::::::
components

:::::::::
contribute

::
to

::::
local

::::::::::
acceleration

::::
and

::::
basal

:::::::
pressure

:::
for

:::::::
reasons

::::::::
discussed

::
in

:::::
terms

::
of

::::::::::
gravitational

:::::::::::
acceleration.

:::::
Three

::::::::::
dimensional

:::::::::::
conservation

:
is
::::::::
reassured

:::
for

:::::
fluxes

::
as

:::::
well,

:
if
::::::
∇ ·M

::
is

::::::::
calculated

:::::::::::::
conservatively.

21



::::::
Finally,

:::
we

::::
want

::
to

::::
note

:::
that

:::::::
velocity

::
is

:
a
:::::::::::::::
three-dimensional

::::::
vector

::::
field

:::
and

::
its

::::::::
direction

::
is

:::
not

::::
fixed

:
a
::::::
priori.

::::::::
However,

:::::::
velocity

:::
will

::::::
always

:::
be

::::::
aligned

::::
with

:::
the

::::::
surface

:::::::
because

::::
only

:::::::
surface

::::::::
tangential

::::::::::
components

:::
are

::::::
present

:::
in

::
the

:::::::::
respective

:::::::::::
conservation

:::::::
equation.

:
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