
Manuscript prepared for Geosci. Model Dev.
with version 2015/04/24 7.83 Copernicus papers of the LATEX class copernicus.cls.
Date: 6 July 2018

GemPy 1.0: open-source stochastic geological
modeling and inversion
Miguel de la Varga, Alexander Schaaf, and Florian Wellmann
Institute for Computational Geoscience and Reservoir Engineering

Correspondence to: varga@aices.rwth-aachen.de

Abstract. The representation of subsurface structures is an essential aspect of a wide variety of geo-

scientific investigations and applications: ranging from geofluid reservoir studies, over raw material

investigations, to geosequestration, as well as many branches of geoscientific research studies and

applications in geological surveys. A wide range of methods exists to generate geological models.

However, especially the powerful methods are behind a paywall in expensive commercial packages.5

We present here a full open-source geomodeling method, based on an implicit potential-field in-

terpolation approach. The interpolation algorithm is comparable to implementations in commercial

packages and capable of constructing complex full 3-D geological models, including fault networks,

fault-surface interactions, unconformities, and dome structures. This algorithm is implemented in

the programming language Python, making use of a highly efficient underlying library for efficient10

code generation (theano) that enables a direct execution on GPU’s. The functionality can be sep-

arated into the core aspects required to generate 3-D geological models and additional assets for

advanced scientific investigations. These assets provide the full power behind our approach, as they

enable the link to Machine Learning and Bayesian inference frameworks and thus a path to stochas-

tic geological modeling and inversions. In addition, we provide methods to analyse model topology15

and to compute gravity fields on the basis of the geological models and assigned density values. In

summary, we provide a basis for open scientific research using geological models, with the aim to

foster reproducible research in the field of geomodeling.

Contents

1 Introduction 220

2 CORE – Geological modeling with GemPy 5

2.1 Geological modeling and the potential-field approach 5

2.1.1 Concept of the potential-field method . 5

2.1.2 Adjustments to structural geological modeling 7

2.2 Geological model interpolation using GemPy . 925

2.2.1 From scalar field to geological block model 9

1

2.2.2 Combining scalar fields: Depositional series and faults 11

2.3 "Under the hood": The GemPy architecture . 14

2.3.1 The graph structure . 14

2.3.2 Theano . 1630

3 ASSETS – Model analysis and further use 18

3.1 Visualization . 19

3.2 Gravity forward modeling . 20

3.3 Topology . 22

3.4 Stochastic Geomodeling and probabilistic programming 2435

3.4.1 Uncertainty Quantification . 26

3.4.2 Geological inversion: Gravity and Topology 29

4 Discussion 33

Appendix A: GemPy package information 37

Appendix A1: Installation . 3740

Appendix A2: Documentation . 37

Appendix A3: Jupyter notebooks . 38

Appendix A4: Unit Tests . 38

Appendix B: Kriging system expansion 38

Appendix B1: Gradient Covariance-Matrix C∂Z/∂u . 3845

Appendix B2: Interface Covariance-Matrix . 41

Appendix B3: Cross-Covariance . 42

Appendix B4: Universal matrix . 43

Appendix C: Kriging Estimator 43

Appendix D: Example of covariance function: cubic 4450

Appendix E: Probabilistic Graphical Model
:::::::
checking

::::
and

::::::::::
diagnostics 45

Appendix F: Blender integration 47

1 Introduction

We commonly capture our knowledge about relevant geological features in the subsurface in the form

of geological models, as 3-D representations of the geometric structural setting. Computer-aided geo55

logical modeling methods have existed for decades, and many advanced and elaborate commercial

packages exist to generate these models (e.g. GoCAD, Petrel, GeoModeller). But even though these

2

packages partly enable an external access to the modeling functionality through implemented API’s

or scripting interfaces, it is a significant disadvantage that the source code is not accessible, and

therefore the true inner workings are not clear. More importantly still, the possibility to extend these60

methods is limited—and, especially in the current rapid development of highly efficient open-source

libraries for machine learning and computational inference (e.g. TensorFlow, Stan, pymc, PyTorch,

Infer.NET), the integration into other computational frameworks is limited.

Yet, there is to date no fully flexible open-source project which integrates state-of-the-art geo-

logical modeling methods. Conventional 3-D construction tools (CAD, e.g. pythonOCC, PyGem)65

are only useful to a limited extent, as they do not consider the specific aspects of subsurface struc-

tures and the inherent sparcity of data. Open source GIS tools exist (e.g. QGIS, gdal), but they are

typically limited to 2-D (or 2.5-D) structures and do not facilitate the modeling and representation

of fault networks, complex structures like overturned folds or dome structures), or combined strati-

graphic sequences.70

Figure 1. Example of models generated using GemPy. a) Synthetic model representing a reservoir trap, visual-

ized in Paraview (Stamm, 2017); b) Geological model of the Perth basin (Australia) rendered using GemPy on

the in-built Python in Blender (see appendix F for more details), spheres and cones represent the input data.

With the aim to close this gap, we present here GemPy, an open-source implementation of a

modern and powerful implicit geological modeling method based on a potential-field approach,

found, in turn, on a Universal CoKriginginterpolation (Lajaunie et al., 1997; Calcagno et al., 2008)
:
.

:::
The

:::::::
method

::::
was

::::
first

::::::::
introduce

:::
by

:::::::::::::::::::::
Lajaunie et al. (1997) and

::
it

::
is

::::::::
grounded

:::
on

:::
the

::::::::::::
mathematical

::::::::
principles

::
of

:::::::::
Universal

:::::::::
CoKriging. In distinction to surface-based modeling approaches (see Cau-75

mon et al., 2009, for a good overview), these approaches allow the direct interpolation of multiple

conformal sequences in a single scalar field, and the consideration of discontinuities (e.g. metamor-

phic contacts, unconformities) through the interaction of multiple sequences (Lajaunie et al., 1997;

Mallet, 2004; Calcagno et al., 2008; Caumon, 2010; Hillier et al., 2014). Also, these methods allow

the construction of complex fault networks and enable, in addition, a direct global interpolation of80

all available geological data in a single step. This last aspect is relevant, as it facilitates the integra-

3

tion of these methods into diverse other workflows. Most importantly, we show here how we can

integrate the method into novel and advanced machine learning and Bayesian inference frameworks

(Salvatier et al., 2016) for stochastic geomodeling and Bayesian inversion. Recent developments

in this field have seen a surge in new methods and frameworks, for example using gradient-based85

Monte Carlo methods (Duane et al., 1987; Hoffman and Gelman, 2014) or variational inferences

(Kucukelbir et al., 2016), making use of efficient implementations of automatic differentiation (Rall,

1981) in novel machine learning frameworks. For this reason, GemPy is built on top of Theano,

which provides not only the mentioned capacity to compute gradients efficiently, but also provides

optimized compiled code (for more details see Section 2.3.2). In addition, we utilize pandas for90

data storage and manipulation (McKinney, 2011), Visualization Toolkit (vtk) Python-bindings for

interactive 3-D visualization (Schroeder et al., 2004), the de facto standard 2-D visualization library

Matplotlib (Hunter, 2007) and NumPy for efficient numerical computations (Walt et al., 2011). Our

implementation is specifically intended for combination with other packages, to harvest efficient

implementations in the best possible way.95

Especially in this current time of rapid developments of open-source scientific software packages

and powerful machine learning frameworks, we consider an open-source implementation of a geo-

logical modeling tool as essential. We therefore aim to open up this possibility to a wide community,

by combining state-of-the-art implicit geological modeling techniques with additional sophisticated

Python packages for scientific programming and data analysis in an open-source ecosystem. The100

aim is explicitly not to rival the existing commercial packages with well-designed graphical user

interfaces, underlying databases, and highly advanced workflows for specific tasks in subsurface en-

gineering, but to provide
:
an

:::::::::::
environment

::
to

:::::::
enhance

:::::::
existing

:::::::::::::
methodologies

::
as

::::
well

::
as

::::
give

:
access

to an advanced modeling algorithm for scientific experiments in the field of geomodeling.

In the following, we will present the implementation of our code in the form of core modules,105

related to the task of geological modeling itself, and additional assets, which provide the link to ex-

ternal libraries, for example to facilitate stochastic geomodeling and the inversion of structural data.

Each part is supported/ supplemented with Jupyter Notebooks that are available as additional online

material and part of the package documentation, which enable the direct testing of our methods (see

Section A3). These notebooks can also be executed directly in an online environment (Binder). We110

encourage the reader to use these tutorial Jupyter Notebooks to follow along the steps explained in

the following. We encourage the reader to use these tutorial Jupyter Notebooks to follow along the

steps explained in the following. Finally, we discuss our approach, specifically also with respect to

alternative modeling approaches in the field, and provide an outlook to our planned future work for

this project.115

4

2 CORE – Geological modeling with GemPy

In this section, we describe the core functionality of GemPy: the construction of 3-D geological

models from geological input data (surface contact points and orientation measurements) and defined

topological relationships (stratigraphic sequences and fault networks). We begin with a brief review

of the theory underlying the implemented interpolation algorithm. We then describe the translation120

of this algorithm and the subsequent model generation and visualisation using the Python front-end

of GemPy and how an entire model can be constructed by calling only a few functions. Across the

text, we include code snippets with minimal working examples to demonstrate the use of the library.

After describing the simple functionality required to construct models, we go deeper into the

underlying architecture of GemPy. This part is not only relevant for advanced users and potential125

developers, but also highlights a key aspect: the link to Theano (Theano Development Team, 2016),

a highly evolved Python library for efficient vector algebra and machine learning, which is an es-

sential aspect required for making use of the more advanced aspects of stochastic geomodeling and

Bayesian inversion, which will also be explained in the subsequent sections.

2.1 Geological modeling and the potential-field approach130

2.1.1 Concept of the potential-field method

The potential-field method developed by Lajaunie et al. (1997) is the central method to generate the

3D geological models in GemPy, which has already been successfully deployed in the modeling soft-

ware GeoModeller 3-D (see Calcagno et al., 2008). The general idea is to construct an interpolation

function Z(x0) where x is any point in the continuous three-dimensional space (x,y,z) ∈ R3 which135

describes the domain D as a scalar field. The gradient of the scalar field will follow the direction

of the anisotropy
:::::
planar

:::::::::
orientation

:
of the stratigraphic structure

:::::::::
throughout

:::
the

::::::
volume

:
or, in other

words, every possible isosurface of the scalar field will represent every synchronal deposition of the

layer (see figure 2).

Let’s break down what we actually mean by this: Imagine that a geological setting is formed by a140

perfect sequence of horizontal layers piled one above the other. If we know the exact timing of when

one of these surfaces was deposited, we would know that any layer above had to occur afterwards

while any layer below had to be deposited earlier in time. Obviously, we cannot have data for each of

these infinitesimal synchronal layers, but we can interpolate the "date" between them. In reality, the

exact year of the synchronal deposition is meaningless—since the related uncertainty would be out of145

proportion
::::::::::::::
meaningless—as

::
it

::
is

:::
not

:::::::
possible

::
to

:::::
obtain

::::::::
remotely

:::::::
accurate

::::::::
estimates. What has value

to generate a 3D geomodel is the location of those synchronal layers and especially the lithological

interfaces where the change of physical properties are notable. Due to this, instead interpolating time,

we use a simple dimensionless parameter—that we simply refer to as scalar field value.

5

Scalar �eld

Figure 2. Example of scalar field. The input data is formed by six points distributed in two layers (x1
αi and x2

αi)

and and two orientations (xβ j). A isosurface connect the interface points and the scalar field is perpendicular

to the foliation gradient.

The advantages of using a global interpolator instead of interpolating each layer of interest in-150

dependently are twofold: (i) the location of one layer affects the location of others in the same

depositional environment, making impossible for two layers in the same potential field to cross; and

(ii) it enables the use of data in-between the interfaces of interest, opening the range of possible

measurements that can be used in the interpolation.

The interpolation function is obtained as a weighted interpolation based on Universal CoKriging155

(Chiles and Delfiner, 2009). Kriging or Gaussian process regression (Matheron, 1981) is a spatial

interpolation that treats each input as a random variable, aiming to minimize the covariance function

to obtain the best linear unbiased predictor (for a detailed description see Chapter 3 in Wackernagel,

2013). Furthermore, it is possible to combine more than one type of data—i.e. a multivariate case

or CoKriging—to increase the amount of information in the interpolator, as long as we capture160

their relation using a cross-covariance. The main advantage in our case is to be able to utilize data

sampled from different locations in space for the estimation. Simple Kriging, as a regression, only

minimizes the second moment of the data (or variances). However in most geological settings, we

can expect linear trends in our data—i.e. the mean thickness of a layer varies across the region

linearly. This trend is captured using polynomial drift functions to the system of equations in what165

is called Universal Kriging.

6

2.1.2 Adjustments to structural geological modeling

So far we have shown what we want to obtain and how Universal CoKriging is a suitable interpola-

tion method to get there. In the following, we will describe the concrete steps from taking our input

data to the final interpolation function Z(x0), which describes the domain
:::::
where

:::
x0:::::

refers
:::
to

:::
the170

::::::::
estimated

:::::::
quantity

:::
for

:::::
some

::::::::
integrable

::::::::
measure

::
p0. Much of the complexity of the method comes

from the difficulty of keeping highly nested nomenclature consistent across literature. For this rea-

son, we will try to be especially verbose regarding the mathematical terminology
:::::
based

::::::::
primarily

::
on

::::::::::::::::
Chiles et al. (2004). The terms of potential field (original coined by Lajaunie et al., 1997) and

scalar field (preferred by the authors) are used interchangeably across the paper. The result of a175

Kriging interpolation is a random function and hence both interpolation function and random func-

tion are used to refer the function of interest Z(x0). The CoKriging nomenclature quickly grows

complicated
:::::::::
convoluted, since it has to consider p random functions Zi , with p being the number

of distinct parameters involved in the interpolation, sampled at different points x of the three-

dimensional domain R3. Two types of parameters are used to characterize the scalar field in the180

interpolation: (i) layer interface points xα describing the respective isosurfaces of interest—usually

the interface between two layers; and (ii) the gradients of the scalar field, xβ—or in geological

terms: poles of the layer, i.e. normal vectors to the dip plane. Therefore gradients will be oriented

perpendicular to the isosurfaces and can be located anywhere in space. We will refer to the main

random function—the scalar field itself—Zα simply as Z, and its set of samples as xα while the185

second random function Zβ—the gradient of the scalar field—will be referred to as ∂Z/∂u
::::
with

::
u

::::
being

::::
any

:::
unit

::::::
vector and its samples as xβ , so that we .

:::
We

:
can capture the relationship between the

potential
:::::
scalar

:
field Z and its gradient as

∂Z

∂u
(x) = limp→0

Z(x+ pu)−Z(x)

p
ρ→0

Z(x+u)−Z(x)

ρ
:::::::::::::::::

(1)

It is also important to keep the values of every individual synchronal layer identified since they have190

the same scalar field value. Therefore, samples that belong to a single layer k will be expressed as a

subset denoted using superscript as xk
α and every individual point by a subscript, xk

αi (see figure 2).

Note that in this context data does not have any meaningful physical parameter associated with

it that we want to interpolate as long as stratigraphic depositionfollows gradient direction
::
the

::::::
scalar

::::
field

:::::::
property

::
α

:
is
:::::::::::::
dimensionless.

:::
The

::::
only

:::::::::
limitation

:
is
::::
that

:::
the

:::::
value

::::
must

:::::::
increase

::
in

:::
the

::::::::
direction195

::
of

:::
the

:::::::
gradient

:::::
which

::
in

::::
turn

:::::::
describes

:::
the

:::::::::::
stratigraphic

:::::::::
deposition. Therefore the two constraints we

want to conserve in the interpolated scalar field are: (i) all points belonging to a determined interface

xk
αi must have the same scalar field value (i.e. there is an isosurface connecting all data points)

Z(x
k
α i)−Z(xk

α 0) = 0 (2)

7

where xk
α 0 is a reference point of the interface and (ii) the scalar field will be perpendicular to200

the poles
::::::
gradient

::::::
(poles

::
in

:::::::::
geological

::::::::::::
nomenclature)

:
xβ anywhere in 3-D space.

:
It
::
is
:::::::::
important

::
to

:::::::
mention

:::
that

:::
the

::::::
choice

::
of

:::
the

::::::::
reference

:::::
points

::::
xk
α 0:::

has
:::
no

:::::
effect

::
on

:::
the

::::::
results.

:

Considering equation 2, we do not care about the exact value at Z(xk
α i) as long as it is constant

at all points xk
α i. Therefore, the random function Z in the CoKriging system (equation 4) can be

substituted by equation 2. This formulation entails that the specific scalar field values will depend205

only on the gradients and hence at least one gradient is necessary to keep the system of equations

defined. The
::::::::
advantage

::
of

::::
this

:::::::::::
mathematical

:::::::::::
construction

::
is

::::
that

::
by

::::
not

:::::
fixing

:::
the

::::::
values

::
of

:::::
each

:::::::
interface

::::::
Z(x

k
α),:::

the
:::::::::::
compression

::
of

::::::::::
layers—i.e.

:::
the

:::
rate

::
of
:::::::

change
::
of

:::
the

:::::
scalar

:::::::::
field—will

:::
be

::::
only

::::::
defined

:::
by

:::
the

::::::::
gradients

:::::::
∂Z/∂u.

::::
This

::::::
allows

::
to

:::::::::
propagate

:::
the

:::::
effect

::
of

:::::
each

:::::::
gradient

:::::::
beyond

:::
the

::::::::::
surrounding

::::::::
interfaces

:::::::
creating

::::::::
smoother

:::::::::
formations.

:
210

:::
The

:
reason for this formulation rest on that by not fixing the values of each interface Z(x

k
α),

the compression of layers—which is derived by the gradients—can propagate smoother beyond the

given interfaces. Otherwise, the gradients will only have effect in the area within the boundaries of

the two interfaces that contains the variable.

The algebraic dependency between Z and ∂Z/∂u (equation 1) gives a mathematical definition of215

the relation between the two variables avoiding the need of an empirical cross-variogram, enabling

instead the use of the derivation of the covariance function. This dependency must be taken into

consideration in the computation of the drift of the first moment as well having a different function

for each of the variables

λF1 +λF2 = f10 (3)220

where F1 is a the polynomial of degree nand
:
, F2 its derivative

:::::::
between

:::
the

:::::
input

:::
data

:::
xα::::

and
:::
xβ

::::::::::
respectively

:::
and

:::
f10::::::::::

correspond
::
to

:::
the

::::
same

::::::::::
polynomial

::
to

:::
the

:::::::
objective

:::::
point

:::
x0. Having taken this

into consideration, the resulting CoKriging system takes the form of: C∂Z/∂u, ∂Z/∂v C∂Z/∂u,Z U∂Z/∂u

CZ, ∂Z/∂u CZ,Z UZ

U′
∂Z/∂u

U′
Z 0


 λ∂Z/∂u,∂Z/∂v λ∂Z/∂u,Z

λZ,∂Z/∂u λZ,Z

µ∂u µu

=

 c∂Z/∂u, ∂Z/∂v c∂Z/∂u,Z

cZ, ∂Z/∂u cZ,Z

f10 f20


(4)

where, C∂Z/∂u is the gradient covariance-matrix; CZ,Z the covariance-matrix of the differences225

between each interface points to reference points in each layer

Cxr
α i,x

s
α j

= Cxr
α, i x

s
α, j

−Cxr
α, 0 xs

α, j
−Cxr

α, i x
s
α, 0

+Cxr
α, 0 xs

α, 0
(5)

(see Appendix B2 for further analysis); CZ, ∂Z/∂u encapsulates the cross-covariance function; and

UZ and U′
∂Z/∂u are the drift functions and their gradient, respectively. On the right hand side we

find the vector of the matrix system of equations
::::::
matrix

::
of

::::::::::
independent

:::::
terms, being c∂Z/∂u, ∂Z/∂v230

the gradient of the covariance function to the point x of interest; cZ, ∂Z/∂u the cross-covariance;

8

cZ,Z the actual covariance function; and f10 and f20 the gradient of the drift functions and the drift

functions themselves. Lastly, the unknown vectors are formed by the corresponding weights, λ, and

constants of the drift functions, µ. A more detail inspection of this system of equations is carried out

in Appendix B.235

As we can see in equation 4, it is possible to solve the Kriging system for the scalar field Z (second

column in the weights vector), as well as its derivative ∂Z/∂u (first column in the weights vector).

Even though the main goal is the segmentation of the layers, which is done using the value of Z (see

Section 2.2.1), the gradient of the scalar field can be used for further mathematical applications, such

as meshing, geophysical forward calculations or locating geological structures of interest (e.g. spill240

points of a hydrocarbon trap).

Furthermore, since the choice of covariance parameters is ad hoc (Appendix D show the used

covariance function in GemPy), the uncertainty derived by the Kriging interpolation does not bear

any physical meaning. This fact promotes the idea of only using the mean value of the Kriging

solution. For this reason it is recommended to solve the Kriging system (equation 4) in its dual form245

(Matheron, 1981, see Appendix C).

2.2 Geological model interpolation using GemPy

2.2.1 From scalar field to geological block model

In most scenarios the goal of structural modeling is to define the spatial distribution of geological

structures, such as layers interfaces and faults. In practice, this segmentation usually is done either250

by using a volumetric discretization or by depicting the interfaces as surfaces.

The result of the Kriging interpolation is the random function Z(x) (and its gradient ∂Z/∂u(x),

which we will omit in the following), which allows the evaluation of the value of the scalar field

at any given point x in space. From this point on, the easiest way to segment the domains is to

discretize the 3-D space (e.g. we use a regular grid in figure 3). First, we need to calculate the scalar255

value at every interface by computing Z(x
k
α,i) for every interface ki. Once we know the value of

the scalar field at the interfaces, we evaluate every point of the mesh and compare their value to

those at the interfaces, identifying every point of the mesh with a topological volume. Each of these

compartmentalizations will represent each individual domain, this is, each lithology of interest (see

figure 3a).260

At the time of this manuscript preparation, GemPy only provides rectilinear grids but it is im-

portant to notice that the computation of the scalar field happens in continuous space, and therefore

allows the use of any type of mesh. The result of this type of segmentation is referred in GemPy as

a lithology block.

The second segmentation alternative consist on locating the layer isosurfaces. GemPy makes use265

of the marching cube algorithm (Lorensen and Cline, 1987) provided by the scikit-image library

9

(van der Walt et al., 2014). The basics of the marching cube algorithm are quite intuitive: (i) First,

we discretize the volume in 3-D voxels and by comparison we look if the value of the isosurface we

want to extract falls within the boundary of every single voxel; (ii) if so, for each edge of the voxel,

we interpolate the values at the corners of the cube to obtain the coordinates of the intersection270

between the edges of the voxels and the isosurface of interest, commonly referred to as vertices;

(iii) those intersections are analyzed and compared against all possible configurations to define the

simplices (i.e. the vertices which form an individual polygon) of the triangles. Once we obtain the

coordinates of vertices and their correspondent simplices, we can use them for visualization (see

Section 3.1) or any sub-sequential computation that may make use of them (e.g. weighted voxels).275

For more information on meshing algorithms refer to (Geuzaine and Remacle, 2009).

Listing 1. Code to generate a single scalar field model (as seen in figure 2) and plotting a section of a regular

grid (figure 3a) and extracting surfaces points at the interfaces.
import gempy as gp

Main data management object containing280
geo_data = gp.create_data(extent=[0, 20, 0, 10, -10, 0],

resolution=[100, 10, 100],

path_o="paper_Foliations.csv",

path_i="paper_Points.csv")

285
Creating object with data prepared for interpolation and compiling

interp_data = gp.InterpolatorData(geo_data)

Computing result

lith, fault = gp.compute_model(interp_data)290

Plotting result: scalar field

gp.plot_scalar_field(geo_data, lith[1], 5, plot_data=True)

Plotting result: lithology block295
gp.plot_section(geo_data, lith[0], 5, plot_data=True)

Getting vertices and faces

vertices, simpleces = gp.get_surfaces(interp_data, lith[1], [fault[1]], original_scale=True)300

10

(c) Fault

(b) Unconformity

(a) Single stratigraphic group

Interface data

Orientation data

Fault

Basement

Layer 1

Layer 2

Layer 3

Sequential Pile
Series Formations

Legend

Fault

Unconf.

Stratigr.{(a)
(b){(c)

[k
m

]
[k

m
]

[k
m

]

Figure 3. Example of different lithological units and their relation to scalar fields. a) Simple stratigraphic se-

quence generated from a scalar field as product of the interpolation of interface points and orientation gradients.

b) Addition of an unconformity horizon from which the unconformity layer behaves independently from the

older layers by overlying a second scalar field. c) Combination of unconformity and faulting using three scalar

fields.

2.2.2 Combining scalar fields: Depositional series and faults

In reality, most geological settings are formed by a concatenation of depositional phases partitioned

by unconformity boundaries and subjected to tectonic stresses which displace and deform the layers.

While the interpolation is able to represent realistic folding—given enough data—the method fails

to describe discontinuities. To overcome this limitation, it is possible to combine several scalar fields305

to recreate the desired result.

So far the implemented discontinuities in GemPy are unconformities and infinite faults. Both types

are computed by specific combinations of independent scalar fields. We call these independent scalar

fields series (from stratigraphic series in accordance to the use in GeoModeller 3-D Calcagno et al.,

2008) and in essence, they represent a subset of grouped interfaces—either layers or fault planes—310

11

that are interpolated together and therefore their spatial location affect each other. To handle and

visualize these relationships, we use a so called sequential pile; representing the order—from the

first scalar field to the last—and the grouping of the layers (see figure 3).
:
It
::
is
:::::::::
interesting

::
to

:::::
point

:::
out

:::
that

:::
the

:::
the

:::::::::
sequential

:::
pile

::::
only

:::::::
controls

:::
the

:::::
order

::
of

:::::
each

::::::::
individual

::::::
series.

::::::
Within

::::
each

::::::
series,

:::
the

::::::::::
stratigraphic

::::::::
sequence

::
is

::::::
strictly

:::::::::
determined

:::
by

:::
the

::::::::
geometry

:::
and

:::
the

:::::::::::
interpolation

:::::::::
algorithm.315

Modeling unconformities is rather straightforward. Once we have grouped the layers into their

respective series, younger series will overlay older ones beyond the unconformity. The scalar fields

themselves, computed for each of these series, could be seen as a continuous depositional sequence

in the absence of an unconformity.

Listing 2. Extension of the code in Listing 1 to generate an unconformity by using two scalar fields. The

corresponding model is shown in figure 3b)320
import gempy as gp

Main data management object containing

geo_data = gp.create_data(extent=[0, 20, 0, 10, -10, 0],

resolution=[100, 10, 100],325
path_o="paper_Foliations.csv",

path_i="paper_Points.csv")

Defining the series of the sequential pile

gp.set_series(geo_data,330
{’younger_serie’ : ’Unconformity’, ’older_serie’: (’Layer1’, ’Layer2’)},

order_formations= [’Unconformity’, ’Layer2’, ’Layer1’])

Creating object with data prepared for interpolation and compiling

interp_data = gp.InterpolatorData(geo_data)335

Computing result

lith, fault = gp.compute_model(interp_data)

Plotting result340
gp.plot_section(geo_data, lith[0], 5, plot_data=True)

Faults are modeled by the inclusion of an extra drift term into the kriging system (Marechal,

1984):
C∂Z/∂u, ∂Z/∂v C∂Z/∂u,Z U∂Z/∂u F∂Z/∂u

CZ, ∂Z/∂u CZ,Z UZ FZ

U′
∂Z/∂u

U′
Z 0 0

F′
∂Z/∂u

F′
Z 0 0




λ∂Z/∂u,∂Z/∂v λ∂Z/∂u,Z

λZ,∂Z/∂u λZ,Z

µ∂u µu

µ∂f µf

=


c∂Z/∂u, ∂Z/∂v c∂Z/∂u,Z

cZ, ∂Z/∂u cZ,Z

f10 f20

f10 f20


(6)345

which is a function of the faulting structure. This means that for every location x0 the drift func-

tion will take a value depending on the fault compartment—i.e. a segmented domain of the fault

network—and other geometrical constrains such as spatial influence of a fault or variability of the

offset. To obtain the offset effect of a fault, the value of the drift function has to be different at each

12

of its sides. The level of complexity of the drift functions will determine the quality of the character-350

ization as well as its robustness. Furthermore, finite or localize faults can be recreated by selecting

an adequate function that describe those specific trends.

Listing 3. Code to generate an model with an unconformity and a fault using three scalar fields model (as seen

in figure 3c) and the visualization 3D using vtk (see figure 5).
import gempy as gp

355
Main data management object containing \DIFaddbegin \DIFadd{the location of all interfaces

and orientations parameters as well as the formation/fault to which belong

}\DIFaddend geo_data = gp.create_data(extent=[0,20,0,10,-10,0],

resolution=[100,10,100],

path_o = "paper_Foliations.csv",360
path_i = "paper_Points.csv")

Defining the series of the sequential pile\DIFaddbegin \DIFadd{. This is done by

categorizing interfaces and orientations by its formation label

}\DIFaddend gp.set_series(geo_data, series_distribution={’fault_serie1’: ’fault1’,365
’younger_serie’ : ’Unconformity’,

’older_serie’: (’Layer1’, ’Layer2’)},

order_formations= [’fault1’, ’Unconformity’, ’Layer2’, ’Layer1’])

Creating object with data prepared for interpolation and compiling370
interp_data = gp.InterpolatorData(geo_data)

Computing result

lith, fault = gp.compute_model(interp_data)

375
Plotting result

gp.plot_section(geo_data, lith[0], 5, plot_data=True)

Getting vertices and faces and pltting

vertices, simpleces = gp.get_surfaces(interp_data,lith[1], [fault[1]], original_scale=True)380
gp.plot_surfaces_3D(geo_data, ver_s, sim_s)

The computation of the segmentation of fault compartments (called fault block in GemPy)—prior

to the inclusion of the fault drift functions which depends on this segmentation—can be performed

with the potential-field method itself. In the case of multiple faults, individual drift functions have to385

be included in the kriging system for each fault, representing the subdivision of space that they pro-

duce. Naturally, younger faults may offset older tectonic events. This behavoir
:::::::
behavior is replicated

by recursively adding drift functions of younger faults to the computation of the older fault blocks.

To date, the fault relations—i.e. which faults offset others—is described by the user in a boolean

matrix. An easy to use implementation to generate fault networks is being worked on at the time of390

manuscript preparation.

An important detail to consider is that drift functions will bend the isosurfaces according to the

given rules but they will conserve their continuity. This differs from the intuitive idea of offset,

where the interface presents a sharp jump. This fact has direct impact in the geometry of the final

model, and can, for example, affect certain meshing algorithms. Furthermore, in the ideal case of395

13

choosing the perfect drift function, the isosurface would bend exactly along the faulting plane. At

the current state GemPy only includes the addition of an arbitrary integer to each segmented volume.

This limits the quality to a constant offset, decreasing the sharpness of the offset as data deviates

from that constrain. Any deviation from this theoretical concept, results in a bending of the layers as

they approximate the fault plane to accommodate to the data, potentially leading to overly smooth400

transitions around the discontinuity.

2.3 "Under the hood": The GemPy architecture

2.3.1 The graph structure

The architecture of GemPy follows the Python Software Foundation recommendations of modularity

and reusability (van Rossum et al., 2001). The aim is to divide all functionality into independent405

small logical units in order to avoid duplication, facilitate readability and make changes to the code

base easier.

The design of GemPyrevolves around
:
’s
::::::::::
architecture

::::
was

:::::
design

::::
from

:::
the

::::::
ground

:::
up

::
to

:::::::::::
accommodate

an automatic differentiation (AD) scheme
::::::
library. The main constraint is that the mathematical func-

tions need to be continuous from the input parameters
:::::::
variables

:
(in probabilistic jargon priors) to the410

cost function (or likelihoods), and therefore the code must be written in the same language (or at the

very least compatible) to automatically compute the derivatives. In practice, this entails that any oper-

ation involved in the AD must be coded symbolically using the library Theano (see Section 2.3.2 for

further details). One of the constrains of writing symbolically is the
:::::::
Writing

:::::::::::
symbolically

:::::::
requires

a priori declaration of the possible input parameters of the graph
::
all

:::::::
algebra,

::::
from

::::::::
variables

:
which415

will behave as latent variables—i
::::::::::::
parameters—i.e. the parameters we try to tune for optimization

or uncertainty quantification—while leaving others involved parameters constant either due to their

nature or because of the relative slight impact of their variability. This rigidity
:::::::::::::::
quantification—to

::
all

::::::::
involved

::::::::
constants

:::
and

::::
the

::::::
specific

::::::::::::
mathematical

::::::::
functions

::::
that

::::::
relates

:::::
them.

::::
This

::::::::::
statements

:::::::
generate

:
a
:::

so
::::::
called

:::::
graph

::::
that

:::::::::::
encapsulates

:::::::::::
symbolically

:::
all

:::
the

:::::
logic

::::
what

:::::::
enables

::
to
::::::::

perform420

:::::
further

:::::::
analysis

:::
on

:::
the

:::::
logic

::::
itself

::::
(e.g.

::::::::::::
differentiation

:::
or

:::::::::::
optimization).

::::::::
However

:::
the

:::::::
rigidity

:::::
when

::::::::::
constructing

:::
the

:::::
graph

:
dictates the whole design of input data managementthat needs to revolved

around the preexistent symbolic graph. .
:

GemPy encapsulates this creation of the symbolic graph in its the module theanograph. Due

to the significant complexity to program symbolically, features shipped in GemPy that rely heavily425

in external libraries are not written in Theano
:::
yet. The current functionality written in Theano can be

seen in the figure 4 and essentially it encompasses all the interpolation of the geological modeling

(section 2.1) as well as forward calculation of the gravity (section 3.2).

Regarding data structure, we make use of the Python package pandas (McKinney, 2011) to store

and prepare the input data for the symbolic graph (red nodes in figure 4) or other processes, such as430

14

Figure 4. Graph of the logical structure of GemPy logic. There are several levels of abstraction represented.

(i) The first division is between the implicit interpolation of the geological modeling (dark gray) and other

subsequent operations for different objectives (light gray). (ii) All the logic required to perform automatic

differentiation is presented under the “Theano” label (in purple) (iii) The parts under labels “Looping pile”

(green) and “Single potential field” (gray), divide the logic to control the input data of each necessary scalar

field and the operations within one of them. (iv) Finally, each superset of parameters is color coded according

to their probabilistic nature and behavior in the graph: in blue, stochastic variables (priors or likelihoods);

in yellow, deterministic functions; and in red the inputs of the graph, which are either stochastic or constant

depending on the problem.

15

visualization. All the methodology to create, export and manipulate the original data is encapsulated

in the class DataManagement. This class has several child classes to facilitate specific precom-

putation manipulations of data structures (e.g. for meshing). The aim is to have all constant data

prepared before any inference or optimization is carried out to minimize the computational overhead

of each iteration as much as possible.435

It is important to keep in mind that, in this structure, once data enters the part of the symbolic

graph, only algebraic operations are allowed. This limits the use of many high-level coding structures

(e.g. dictionaries or undefined loops) and external dependencies. As a result of that, the preparation

of data must be exhaustive before starting the computation. This includes ordering the data within

the arrays, passing the exact lengths of the subsets we will need later on during the interpolation or440

the calculation of many necessary constant parameters. The preprocessing of data is done within the

sub-classes of DataManagement, the InterpolatorData class–of which an instance is used

to call the Theano graph—and InterpolatorClass—which creates the the Theano variables

and compiles the symbolic graph.

The rest of the package is formed by—an always growing—series of modules that perform differ-445

ent tasks using the geological model as input (see Section 3 and the assets-area in figure 4).

2.3.2 Theano

Efficiently solving a large number of algebraic equations, and especially their derivatives, can easily

get unmanageable in terms of both time and memory. Up to this point we have referenced many

times Theano and its related terms such as automatic differentiation or symbolic programming. In450

this section we will motivate its use and why its capabilities make all the difference in making

implicit geological modeling available for uncertainty analysis.

Theano is a Python package that takes over many of the optimization tasks in order to create a com-

putationally feasible code implementation. Theano relies on the creation of symbolical graphs that

represent the mathematical expressions to compute. Most of the extended programming paradigms455

(e.g. procedural languages and object-oriented programming; see Normark, 2013) are executed se-

quentially without any interaction with the subsequent instructions. In other words, a later instruction

has access to the memory states but is clueless about the previous instructions that have modified

mentioned states. In contrast, symbolic programming define from the beginning to the end not only

the primary data structure but also the complete logic of a function , which in turn enables the opti-460

mization (e.g. redundancy) and manipulation (e.g. derivatives) of its logic.

Within the Python implementation, Theano create an acyclic network graph where the parameters

are represented by nodes, while the connections determine mathematical operators that relate them.

The creation of the graph is done in the class theanograph. Each individual method corresponds

to a piece of the graph starting from the input data all the way to the geological model or the forward465

gravity (see figure 4, purple Theano area).

16

The symbolic graph is later analyzed to perform the optimization, the symbolic differentiation

and the compilation to a faster language than Python (C or CUDA). This process is computational

demanding and therefore it must be avoided as much as possible.

Among the most outstanding optimizers shipped with Theano (for a detailed description see470

Theano Development Team, 2016), we can find : (i) the canonicalization of the operations to re-

duce the number of duplicated computations, (ii) specialization of operations to improve consecutive

element-wise operations, (iii) in-place operations to avoid duplications of memory or (iv) Open MP

parallelization for CPU computations. These optimizations and more can speed up the code an order

of magnitude.475

However, although Theano code optimization is useful, the real game-changer is its capability to

perform automatic differentiation. There is extensive literature explaining all the ins and outs and

intuitions of the method
::
in

:::::
detail

:::
the

:::::::
method

:::
and

:::
its

::::::
related

::::::::
intuitions

:
since it is a core algorithm

to train neural networks (e.g. a detailed explanation is given by Baydin et al., 2015). Here, we will

highlight the main differences with numerical approaches and how they can be used to improve the480

modeling process.

Many of the most advanced algorithms in computer science rely on an inverse framework i.e. the

result of a forward computation f(x) influences the value of one or many of the x latent variables (e.g.

neuronal networks, optimizations, inferences). The most emblematic example of this is the optimiza-

tion of a cost function. All these problems can be described as an exploration of a multidimensional485

manifold f : RN → R. Hence the gradient of the function ∇f =
(

∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

)
becomes key

for an efficient analysis. In case that the output is also multidimensional—i.e. f : RN → RM—the

entire manifold gradient can be expressed by the Jacobian matrix

Jf =


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fn
∂x1

. . . ∂fm
∂xn

 (7)

of dimension N ·M , where N is the number of variables and M the number of functions that de-490

pend on those variables. Now the question is how we compute the Jacobian matrix in a consistent

and efficient manner. The most straightforward methodology consists in approximating the derivate

by numerical differentiation applying finite differences approximations, for example a forward FD

scheme:

∂fi
∂xi

= lim
h→0

f(xi +h)− f(xi)

h
(8)495

where h is a discrete increment. The main advantage of numerical differentiation is that it only

computes f—evaluated for different values of x—which makes it very easy to implement it in any

available code. By contrast, a drawback is that for every element of the Jacobian we are introducing

an approximation error that eventually can lead to mathematical instabilities. But above all, the main

17

limitation is the need of 2 ·M ·N evaluations of the function f , which quickly becomes prohibitively500

expensive to compute in high-dimensional problems.

The alternative is to create the symbolic differentiation of f . This encompasses decomposing f

into its primal operators and applying the chain rule to the correspondent transformation by follow-

ing the rules of differentiation to obtain f ′. However, symbolic differentiation is not enough since

the application of the chain rule leads to exponentially large expressions of f ′ in what is known505

as "expression swell" (Cohen, 2003). Luckily, these large symbolic expressions have a high level

of redundancy in their terms. This allows to exploit this redundancy by storing the repeated inter-

mediate steps in memory and simply invoke them when necessary, instead of computing the whole

graph every time. This division of the program into sub-routines to store the intermediate results—

which are invoked several times—is called dynamic programming (Bellman, 2013). The simplified510

symbolic differentiation graph is ultimately what is called automatic differentiation (Baydin et al.,

2015). Additionally, in a multivariate/multi-objective case the benefits of using AD increase linearly

as the difference between the number of parameters N and the number of objective functions M get

larger. By applying the same principle of redundancy explained above—this time between interme-

diate steps shared across multiple variables or multiple objective function—it is possible to reduce515

the number of evaluations necessary to compute the Jacobian either to N in forward-propagation or

to M in back-propagation, plus a small overhead on the evaluations (for a more detailed description

of the two modes of AD see Cohen, 2003).

Theano provides a direct implementation of the back-propagation algorithm, which means in prac-

tice that a new graph of similar size is generated per cost function (or, in the probabilistic inference,520

per likelihood function,
:::
see

:::
3.4

:::
for

:::::
more

:::::
detail). Therefore, the computational time is independent

of the number of input parameters, opening the door to solving high-dimensional problems.

3 ASSETS – Model analysis and further use

In this second half of the paper we will explore different features that complement and expand the

construction of the geological model itself. These extensions are just some examples of how GemPy525

can be used as geological modeling engine for diverse research projects. The numerous libraries in

the open-source ecosystem allow to choose the best narrow purpose tool for very specific tasks. Con-

sidering the visualization of GemPy, for instance: matplotlib (Hunter, 2007) for 2-D visualization, vtk

for fast and interactive 3-D visualization, steno3D for sharing block models visualizations online—

or even the open-source 3-D modeling software Blender (Blender Online Community, 2017) for530

creating high quality renderings and Virtual Reality, are only some examples of the flexibility that

the combination of GemPy with other open-source packages offers. In the same fashion we can use

the geological model as basis for the subsequent geophysical simulations and process simulations.

Due to Python’s modularity, combining distinct modules to extend the scope of a project to include

18

Figure 5. In-built vtk 3-D visualization of GemPy provides an interactive visualization of the geological model

(left) and three additional orthogonal viewpoints (right) from different directions.

the geological modeling process into a specific environment is effortless. In the next sections we535

will dive into some of the built-in functionality implemented to date on top of the geological mod-

eling core. Current assets are: (i) 2-D and 3-D visualizations, (ii) forward calculation of gravity, (iii)

topology analysis, (iv) uncertainty quantification (UQ) as well as (v) full Bayesian inference.

3.1 Visualization

The segmentation of meaningful units is the central task of geological modelling. It is often a prereq-540

uisite for engineering projects or process simulations. An intuitive 3-D visualization of a geological

model is therefore a fundamntal requirement.

For its data and model visualization, GemPy makes use of freely available tools in the Python

module ecosystem to allow the user to inspect data and modeling results from all possible angles. The

fundamental plotting library matplotlib (Hunter, 2007), enhanced by the statistical data visualization545

library seaborn (Waskom et al., 2017), provides the 2-D graphical interface to visualize input data

and 2-D sections of scalar fields and geological models. In addition, making use of the capacities of

pyqt implemented with matplotlib, we can generate interactive sequence piles, where the user can

not only visualize the temporal relation of the different unconformities and faulting events, but also

modify it using intuitive drag and drop functionality (see figure 5).550

On top of these features, GemPy offers in-built 3-D visualization based on the the open-source

Visualization Toolkit (VTK Schroeder et al., 2004). It provides users with an interactive 3-D view

of the geological model, as well as three additional orthogonal viewpoints (see figure 5). The user

can decide to plot just the data, the geological surfaces, or both. In addition to just visualizing the

19

data in 3-D, GemPy makes use of the interaction capabilities provided by vtk to allow the user to555

move input data points on the fly via drag-and-drop. Combined with GemPy’s optimized modeling

process (and the ability to use GPUs for efficient model calculation), this feature allows for data

modification with real-time updating of the geological model (in the order of milliseconds per scalar

field). This functionality can not only improve the understanding of the model but can also help

the user to obtain the desired outcome by working directly in 3-D space while getting direct visual560

feedback on the modeling results. Yet, due to the exponential increase of computational time with

respect to the number of input data and the model resolution), very large and complex models may

have difficulties to render fast enough to perceive continuity on conventional computer systems.

For additional high quality visualization, we can generate vtk files using pyevtk. These files can

later be loaded into external VTK viewer as Paraview (Ayachit, 2015) in order to take advantage of565

its intuitive interface and powerful visualization options. Another natural compatibility exists with

Blender (Blender Online Community, 2017) due to its use of Python as front-end. Using the Python

distribution shipped within a Blender installation, it is possible to import, run and automatically

represent GemPy’s data and results (figure 1, see appendix F for code extension). This not only

allow to render high quality images and videos but also to visualize the models in Virtual Reality,570

making use of the Blender Game engine and some of the plug-ins that enable this functionality.

For sharing models, GemPy also includes functionality to upload discretized models to the Steno

3D platform (a freemium business model). Here, it is possible to visualize manipulate and shared the

model with any number of people effortless by simple invitations or the distribution of a link.

In short, Gempy is not limited to a unique visualization library. Currently Gempy gives support to575

many of the available visualization options to fulfill the different needs of the developers accordingly.

However, these are not by all means the only possible alternatives and in the future we expect that

GemPy to be employed as backend of other further projects.

3.2 Gravity forward modeling

In recent years gravity measurements has increased in quality (Nabighian et al., 2005) and is by now580

a valuable additional geophysical data source to support geological modeling. There are different

ways to include the new information into the modeling workflow, and one of the most common is

via inversions (Tarantola, 2005). Geophysics can validate the quality of the model in a probabilis-

tic or optimization framework but also by back-propagating information, geophysics can improve

automatically the modeling process itself. As a drawback, simulating forward geophysics adds a585

significant computational cost and increases the uncertainty to the parametrization of the model.

However, due to the amount of uncorrelated information—often continuous in space—the inclusion

of geophysical data in the modeling process usually becomes significant to evaluate the quality of a

given model.

20

la
G

m [
yti

va
rg

 r
eu

gu
oB

]

0 20000X [m]

0

-10000

Z [m]

Forward gravity

Figure 6. Forward gravity response overlayed on top of a XY cross section of the
::
3-D

:
lithology block

::::
bock

::::
sliced

::
on

:::
the

::
Y

:::::::
direction..

GemPy includes built-in functionality to compute forward gravity conserving the automatic dif-590

ferentiation of the package. It is calculated from the discretized block model applying the method of

Nagy (1966) for rectangular prisms in the z direction,

Fz =Gρ|||x ln(y+ r)+ y ln(x+ r)− z arctan
(xy
zr

)
|x2
x1
|y2
y1
|z2z1 (9)

where x, y, and z are the Cartesian components from the measuring point of the prism, r the eu-

clidean distance and Gρ the average gravity pull of the prism. This integration provides the gravi-595

tational pull of every voxel for a given density and distance in the component z. Taking advantage

of the immutability of the involved parameters with the exception of density allow us to precompute

the decomposition of tz , leaving
::::
—i.e.

:::
the

::::::::
distance

::::::::
dependent

::::
side

::
of

::::::::
Equation

::::::::::
9—leaving just its

product with the weight Gρ

Fz =Gρ · tz (10)600

as a recurrent operation.

As an example, we show here the forward gravity response of the geological model in figure

3c. The first important detail is the increased extent of the interpolated model to avoid boundary

errors. In general, a padding equal to the maximum distance used to compute the forward gravity

computation would be the ideal value. In this example (figure 6) we l add 10 km to the X and Y605

coordinates. The next step is to define the measurement 2-D grid—i.e. where to simulate the gravity

response and the densities of each layers. The densities chosen are: 2.92, 3.1, 2.61 and 2.92 kg/m^3

for the basement, "Unconformity" layer (i.e. the layer on top of the unconformity), Layer 1 and

Layer 2 respectively.

Listing 4. Computing forward gravity of a GemPy model for a given 2-D grid (see figure 6).610
import matplotlib.pyplot as plt

21

import gempy as gp

Main data management object containing. The extent must be large enough respect the forward

gravity plane to account the effect of all cells at a given distance, d to any spatial615
direction x, y, z.

geo_data = gp.create_data(extent=[-10,30,-10,20,-10,0],

resolution=[50,50,50],

path_o = "paper_Foliations.csv",

path_i = "paper_Points.csv")620

Defining the series of the sequential pile

gp.set_series(geo_data, series_distribution={’fault_serie1’: ’fault1’,

’younger_serie’ : ’Unconformity’,

’older_serie’: (’Layer1’, ’Layer2’)},625
order_formations= [’fault1’, ’Unconformity’, ’Layer2’, ’Layer1’])

Creating object with data prepared for interpolation and compiling.

interp_data = gp.InterpolatorData(geo_data, output=’gravity’)

630
Setting the 2D grid of the airborn where we want to compute the forward gravity

gp.set_geophysics_obj(interp_data_g, ai_extent = [0, 20, 0, 10, -10, 0],

ai_resolution = [30,10])

Making all possible precomputations: Decomposing the value tz for every point of the 2D grid635
to each voxel

gp.precomputations_gravity(interp_data_g, 25, densities=[2.92, 3.1, 2.61, 2.92])

Computing gravity (Eq. 10)

lith, fault, grav = gp.compute_model(interp_data_g, ’gravity’)640

Plotting lithology section

gp.plot_section(geo_data, lith[0], 0, direction=’z’,plot_data=True)

Plotting forward gravity645
plt.imshow(grav.reshape(10,30), cmap=’viridis’, origin=’lower’, alpha=0.8, extent=[0,20,0,10])

The computation of forward gravity is a required step towards a fully coupled gravity inversion.

Embedding this step into a Bayesian inference allows to condition the initial data used to create the

model to the final gravity response. This idea will be further developed in Section 3.4.2.650

3.3 Topology

The concept of topology provides a useful tool to describe adjacency relations in geomodels, such

as stratigraphic contacts or across-fault connectivity (for a more detailed introduction see Thiele

et al., 2016a, b). GemPy has in-built functionality to analyze the adjacency topology of its generated

models as Region Adjacency Graphs (RAGs), using the topology_computemethod (see Listing655

6). It can be directly visualized on top of model sections (see figure 7), where each unique topological

region in the geomodel is represented by a graph node, and each connection as a graph edge. The

function outputs the graph object G, the region centroid coordinates, a list of all the unique node

labels, and two look-up tables to conveniently reference node labels and lithologies

22

Nodes

Fault edge

Stratigraphic
edge

Topology

1

2

3

4
5

6

7

8

[km]

[k
m

]

Figure 7. Section of the example geomodel with overlaid topology graph. The geomodel contains eight unique

regions (graph nodes) and 13 unique connections (graph edges). White edges represent stratigraphic and un-

conformity connections, while black edges correspond to across-fault connections.

To analyze the model topology, GemPy makes use of a general connected component labeling660

(CCL) algorithm to uniquely label all separated geological entities in 3-D geomodels. The algorithm

is provided via the widely used, open-source, Python-based image processing library scikit-image

(Van der Walt et al., 2014) by the function skimage.measure.label, which is based on the

optimized algorithms of (Fiorio and Gustedt, 1996; Wu et al., 2005). But just using CCL on a 3-D

geomodel fails to discriminate a layer cut by a fault into two unique regions because in practice665

both sides of a fault are represented by the same label. To achieve the detection of edges across

the fault, we need to precondition the 3-D geomodel matrix, which contains just the lithology in-

formation (layer id), with a 3-D matrix containing the information about the faults (fault block

id).
:::
We

::::::::
multiply

:::
the

::::::
binary

::::
fault

:::::
array

::
(0
::::

for
::::
foot

::::
wall,

::
1
:::
for

:::::::
hanging

:::::
wall)

:::::
with

:::
the

:::::::::
maximum

:::::::
lithology

:::::
value

:::::::::::
incremented

::
by

::::
one.

:::
We

:::::
then

:::
add

::
it

::
to

:::
the

::::::::
lithology

:::::
array

::
to

:::::
make

::::
sure

:::
that

::::::
layers670

:::
that

:::
are

::
in
:::::::

contact
:::::
across

::::::
faults

:::
are

:::::::
assigned

::
a
::::::
unique

::::::
integer

::
in
::::

the
:::::::
resulting

:::::
array.

:
This yields a

3-D matrix which combines the lithology information and the fault block information. This matrix

can then be successfully labeled using CCL with a 2-connectivity stamp, resulting in a new matrix

of uniquely labeled regions for the geomodel. From these, an adjacency graph is generated using

skimage.future.graph.RAG, which created a Region Adjacency Graph (RAG) of all unique675

regions contained in a 2-D or 3-D matrix, representing each region with a node and their adjacency

relations as edges, successfully capturing the topology information of our geomodel. The connec-

tions (edges) are then further classified into either stratigraphic or across-fault edges, to provide

further information. If the argument compute_areas=True was given, the contact area for the

two regions of an edge is automatically calculated (number of voxels) and stored inside the adjacency680

graph.

Listing 5. Topology analysis of a GemPy geomodel.
...

Add Listing 3

...685

Computing result

23

lith, fault = gp.compute_model(interp_data)

Compute topology690
G, centroids, labels_unique, labels_lot, lith_lot = gp.topology_compute(geo_data, lith[0],

fault[0], compute_areas=True)

Plotting topology network

gp.plot_section(geo_data, lith[0], 5)695
gp.topology_plot(geo_data, G, centroids)

3.4 Stochastic Geomodeling and probabilistic programming

Raw geological data is noisy and measurements are usually sparse. As a result, geological models

contain significant uncertainties (Wellmann et al., 2010; Bardossy and Fodor, 2004; Lark et al., 2013;700

Caers, 2011; McLane et al., 2008; Chatfield, 1995) that must be addressed thoughtfully to reach a

plausible level of confidence in the model. However, treating geological modeling stochastically

implies many considerations: (i) from tens or hundreds of variables involved in the mathematical

equations which ones should be latent?; (ii) can we filter all the possible outcomes which repre-

sent unreasonable geological settings? and (iii) how can we use other sources of data—especially705

geophysics—to improve the accuracy of the inference itself?

The answers to these questions are still actively debated in research and are highly dependent

on the type of mathematical and computational framework chosen. In the interpolation method

explained
::::::::::
Uncertainty

::::::::::::
quantification

:::
and

:::
its

::::::
logical

::::::::
extension

::::
into

:::::::::::
probabilistic

:::::::
machine

::::::::
learning

:::
will

:::
not

:::
be

::::::
covered

::
in

:::
the

:::::
depth

:
in this paper , the parameters suitable to behave as a latent variables710

(see figure 4 for an overview of possible stochastic parameters) could be the
:::
due

::
to

:::
the

:::::
broad

:::::
scope

::
of

:::
the

::::::
subject.

:::::::::
However,

::
the

:::::
main

::::
goal

::
of

:::::::
GemPy

:
is
:::

to
::::
serve

:::
as

::::
main

:::::::::
generative

:::::
model

::::::
within

:::::
these

::::::::::
probabilistic

::::::::::
approaches

:::
and

:::
as

::::
such

:::
we

::::
will

:::::::
provide

::
a
:::::::::::
demostration

:::
of

::::
how

::::::
GemPy

:::
fits

::
on

::::
the

::::::::
workflow

::
of

:::
our

:::::::
previous

:::::
work

:::
(de la Varga and Wellmann, 2016; Wellmann et al., 2017) as

:::
well

:::
as

:::
how

::::
this

:::::
work

::::
may

:::
set

:::
the

:::::::::::
foundations

:::
for

::
an

::::::
easier

:::::::::
expansion

:::
into

::::
the

::::::
domain

:::
of

:::::::::::
probabilistic715

:::::::
machine

:::::::
learning

::
in

:::
the

::::::
future.

::
As

:::
we

:::::
have

::::
seen

:::
so

:::
far,

:::
the

::::::::::
CoKriging

::::::::
algorithm

::::
here

:::::::
enables

:::
the

:::::::::::
construction

:::
of

:::::::::
geological

::::::
models

:::
for

:
a
::::
wide

:::::
range

:::
of

::::::::
geometric

::::
and

:::::::::
topological

:::::::
settings

::::
with

:
a
:::::::
limited

::::::
number

::
of

::::::::::
parameters

::::::
(Figure

:
4
:::::
red):

–
::::::::
geometric

::::::::::
parameters, interface points xα(i

:::
—i.e. the 3 Cartesian coordinates x, y, z), orientations720

:::::::::::
—orientations

:
xβ(i

:::
—i.e. the 3 Cartesian coordinates x, y, z and the plane orientation normal

Gx, Gy, Gz) or densities for the computation of the forward gravity. But not only parameterswith

physical meaning are suitable to be considered stochastic.Many mathematical parametersused

in the kriging interpolation—such as:
:
;

–
::::::::::
geophysical

:::::::::
parameters,

::::
e.g.

:::::::
density;725

24

–
:::::
model

::::::::::
parameters,

:::
e.g.

:
covariance at distance zero C0 (i.e. nugget effect) or the range of the

covariance r (see AppendixD for an example of a covariance function)—play a crucial role

during the computation of the final models and, at best, are inferred by an educated guess to

a greater or lesser extent (Chiles et al., 2004; Calcagno et al., 2008). To tackle this problem in

a strict manner, it would be necessary to combine Bayesian statistics, information theory and730

sensitivity analysis among other expertises, but in essence all these methodologies begin with

a probabilistic programming framework.
:

::::::::
Therefore,

:::
an

:::::::
implicit

:::::::::
geological

::::::
model

::
is

::::::
simply

:
a
:::::::::

graphical
::::::::::::
representation

::
of

::
a

:::::::::::
deterministic

:::::::::::
mathematical

::::::::
operation

::
of
:::::

these
::::::::::

parameters
:::
and

:::
as

:::::
such,

:::
any

:::
of

:::::
these

:::::::::
parameters

:::
are

:::::::
suitable

:::
to

::::::
behave

::
as

:::::
latent

::::::::
variables.

:::::
From

::
a
:::::::::::
probabilistic

::::
point

:::
of

::::
view

:::::::
GemPy

:::::
would

:::
act

:::
as

:::
the

:::::::::
generative735

:::::
model

::::
that

:::::
links

:::
two

:::
or

::::
more

::::
data

:::
sets.

GemPy is fully designed to be coupled with probabilistic frameworks, in particular with pymc3

(Salvatier et al., 2016) as both libraries are based on Theano.

pymc is a series of Python libraries that provide intuitive tools to build and subsequently infer com-

plex probabilistic graphical models (see Koller and Friedman, 2009, and figure ?? as an example of a PGM)
:::
(see Koller and Friedman, 2009, and figure 8 as an example of a PGM).740

These libraries offer expressive and clean syntax to write and use statistical distributions and different

samplers. At the moment two main libraries coexist due to their different strengths and weaknesses.

On the one hand, we have pymc2 (Patil et al., 2010) written in FORTRAN and Python. pymc2 does

not allow gradient based sampling methods, since it does not have automatic differentiation capa-

bilities. However, for that same reason, the model construction and debugging is more accessible.745

Furthermore, not computing gradients enables an easy integration with 3rd party libraries and easy

extensibility to other scientific libraries and languages. Therefore, for prototyping and lower dimen-

sionality problems—where the posterior can be tracked by Metropolis-Hasting methods (Haario

et al., 2001)–pymc2 is still the go-to choice.

On the other hand the latest version, pymc3 (Salvatier et al., 2016), allows the use of next gen-750

eration gradient-based samplers such as No-U-Turn Sampler (Hoffman and Gelman, 2014) or Au-

tomatic Variational Inference (Kucukelbir et al., 2015). These sampling methods are proving to be

a powerful tool to deal with multidimensional problems—i.e. models with high number of uncer-

tain parameters (Betancourt et al., 2017). The weakness of these methods are that they rely on the

computation of gradients, which in many cases cannot be manually derived. To circumvent this limi-755

tation pymc3 makes use of the AD capabilities of Theano. Being built on top of Theano confer to the

Bayesian inference process all the capabilities discussed in section 2.3.2 in exchange for the clarity

and flexibility that pure Python provides.

In this context, the purpose of GemPy is to fill the gap of complex algebra between the prior

data and observations, such as geophysical responses (e.g. gravity or seismic inversions) or geo-760

logical interpretations (e.g. tectonics, model topologies). Since GemPy is built on top of Theano

as well, the compatibility with both libraries is relatively straightforward. However, being able to

25

encode most of the conceivable probabilistic graphical models derived from, often, diverse and het-

erogeneous data would be an herculean task. For this reason most of the construction of the PGM

has to be coded by the user using the building blocks that the pymc packages offer (see listing765

6)
::
(Bishop, 2013; Patil et al., 2010; Koller and Friedman, 2009, and see e.g. listing 6). By doing so,

we can guarantee full flexibility and adaptability to the necessities of every individual geological

setting.

For this paper we will use pymc2 for its higher readability and simplicity. pymc3 architecture is

analogous with the major difference that the PGM is constructed in Theano—and therefore symbol-770

ically (for examples using pymc3 and GemPy check the online documention detailed in Appendix

A2).

3.4.1 Uncertainty Quantification

An essential aspect of probabilistic programming is the inherent capability to quantify uncertainty.

Monte Carlo error propagation (Ogilvie, 1984) has been introduced in the field of geological model-775

ing a few years ago (Wellmann et al., 2010; Jessell et al., 2010; Lindsay et al., 2012), exploiting the

automation of the model construction that implicit algorithms offer.

In this paper example (figure 9-Priors), we fit a normal distribution of standard deviation 300 [m]

around the Z axis of the interface points in initial model (figure 3 c). In other words, we allows

to the interface points that define the model to oscillate independently along the axis Z accordingly780

randomly—using normal distributions—and subsequently we compute the geomodels that these new

data describe.
:::
The

::::::
choice

::
of

:::::::::
perturbing

::::
only

:::
the

::
Z

:::
axis

::
is
::::::
merely

::::
due

::
to

::::::::::::
computational

::::::::::
limitations.

:::::::::
Uncertainty

:::::
tends

::
to
:::
be

::::::
higher

::
in

:::
this

::::::::
direction

::::
(e.g.

:::::
wells

::::
data

::
or

:::::::
seismic

::::::::
velocity),

:::::::
however

:::::
there

:
is
::
a
::
lot

:::
of

::::
room

:::
for

::::::
further

::::::::
research

::
on

:::
the

::::::::
definition

:::
of

::::
prior

::::::::
data—i.e.

:::
its

::::::
choice

:::
and

:::::::::::
probabilistic

:::::::::::::
description—on

::::
both

:::::::::
directions,

::
to

:::::
ensure

::::
that

:::
we

:::::::
properly

::::::
explore

:::
the

:::::
space

::
of

:::::::
feasible

::::::
models

::::
and785

::
to

:::::::
generate

:
a
:::::::::
parametric

:::::
space

::
as

:::::
close

::
as

:::::::
possible

::
to

:::
the

::::::::
posterior.

:

The first step to the creation of a PGM is to define the parameters that are supposed to be stochas-

tic and the probability functions that describe them. To do so, pymc2 provides a large selection of

distributions as well as a clear framework to create custom ones. Once we created the stochastic

parameters we need to substitute the initial value in the GemPy database (interp_data in the790

snippets) for the corresponding pymc2 objects. Next, we just need to follow the usual GemPy con-

struction process—i.e. calling the compute_model function—wrapping it using a deterministic

pymc2 decorator to describe that these function is part of the probabilistic model (figure ??
:
8). Af-

ter creating the graphical model we can sample from the stochastic parameters using Monte Carlo

sampling using pymc2 methods.795

Listing 6. Probabilistic model construction and inference using pymc2 and GemPy: Monte Carlo forward sim-

ulation (see figure 9-Priors for the results).
...

Add Listing 3

26

...

800
Coping the initial data

geo_data_stoch_init = deepcopy(interp_data.geo_data_res)

MODEL CONSTRUCTION

==================

Positions (rows) of the data we want to make stochastic805
ids = range(2,12)

List with the stochastic parameters. pymc.Normal attributes: Name, mean, std

interface_Z_modifier = [pymc.Normal("interface_Z_mod_"+str(i), 0., 1./0.01**2) for i in ids]

810
Modifing the input data at each iteration

@pymc.deterministic(trace=True)

def input_data(\DIFdelbegin \DIFdel{value = 0, }\DIFdelend interface_Z_modifier =

interface_Z_modifier,

geo_data_stoch_init = geo_data_stoch_init,815
ids = ids, verbose=0):

First we extract from our original intep_data object the numerical data that

is necessary for the interpolation. geo_data_stoch is a pandas Dataframe

geo_data_stoch = gp.get_data(geo_data_stoch_init, numeric=True)820

Now we loop each id which share the same uncertainty variable. In this case, each layer. We

add the stochastic part to the initial value

for num, i in enumerate(ids):

interp_data.geo_data_res.interfaces.set_value(i, "Z",825
geo_data_stoch_init.interfaces.iloc[i]["Z"] + interface_Z_modifier[num])

Return the input data to be input into the modeling function. Due to the way pymc2

stores the traces we need to save the data as numpy arrays

return interp_data.geo_data_res.interfaces[["X", "Y", "Z"]].values,830
interp_data.geo_data_res.orientations[["X", "Y", "Z", "dip", "azimuth",

"polarity"]].values

Computing the geological model

@pymc.deterministic(trace=True)835
def gempy_model(value=0, input_data=input_data, verbose=False):

modify input data values accordingly

interp_data.geo_data_res.interfaces[["X", "Y", "Z"]] = input_data[0]

840
Gx, Gy, Gz are just used for visualization. The Theano function gets azimuth dip and

polarity!!!

interp_data.geo_data_res.orientations[["G_x", "G_y", "G_z", "X", "Y", "Z", ’dip’,

’azimuth’, ’polarity’]] = input_data[1]

845
Some iterations will give a singular matrix, that’s why we need to

create a try to not break the code.

try:

lb, fb, grav = gp.compute_model(interp_data, outup=’gravity’)

return lb, fb, grav850

except np.linalg.linalg.LinAlgError as err:

If it fails (e.g. some input data combinations could lead to

27

a singular matrix and thus break the chain) return an empty model

with same dimensions (just zeros)855
if verbose:

print("Exception occured.")

return np.zeros_like(lith_block), np.zeros_like(fault_block), np.zeros_like(

grav_i)

860
Extract the vertices in every iteration by applying the marching cube algorithm

@pymc.deterministic(trace=True)

def gempy_surfaces(value=0, gempy_model=gempy_model):

vert, simp = gp.get_surfaces(interp_data, gempy_model[0][1], gempy_model[1][1],

original_scale=True)865
return vert

We add all the pymc objects to a list

params = [input_data, gempy_model, gempy_surfaces, *interface_Z_modifier]

870
We create the pymc model i.e. the probabilistic graph

model = pymc.Model(params)

runner = pymc.MCMC(model)

BAYESIAN INFERENCE875
==================

Number of iterations

iterations = 10000

Inference. By default without likelihoods: Sampling from priors880
runner.sample(iter=iterations, verbose=1)

The suite of possible realization of the geological model are stored, as traces, in a database of

choice (HDF5, SQL or Python pickles) for further analysis and visualization.

In 2-D we can display all possible locations of the interfaces on a cross-section at the center of the885

model (see figure 9-Priors-2-D representation), however the extension of uncertainty visualization to

3D is not as trivial. GemPy makes use of the latest developments in uncertainty visualization for 3-D

structural geological modeling (e.g Lindsay et al., 2012, 2013a, b; Wellmann and Regenauer-Lieb,

2012). The first method consists on representing the probability of finding a given geological unit F

at each discrete location in the model domain. This can be done by defining a probability function890

pF (x) =
∑
k∈n

IFk
(x)

n
(11)

where n is the number of realizations and IFk
(x) is a indicator function of the mentioned geologi-

cal unit (figure 9-Probability shows the probability of finding Layer 1). However this approach can

only display each unit individually. A way to encapsulate geomodel uncertainty with a single pa-

rameter to quantify and visualize it, is by applying the concept of information entropy Wellmann895

and Regenauer-Lieb (2012), based on the general concept developed by (Shannon, 1948). For a dis-

cretized geomodel the information entropy H (normalized by the total number of voxels n) can be

28

Interface
Point B

Input Data

GemPy: Topology

GemPy:
Structural Model

Topology Potential

Gravity
Likelihood

Interface
Point C

Interface
Point A Priors

Deterministic
Functions

Likelihoods /
Potentials

Observations

Error of
observations

μ = 0

ϵi xn

GemPy: Forward
Gravity L2 norm

σ

Half
Cauchy

Bayesian Inference

Forw
ard M

odel

Figure 8. Probabilistic Programming results on a cross-section at the middle of the
:::::::
graphical

:
model

(Y = 10000[m])
:::::::
generated

:::::
with

:::::
pymc2. (i) Priors-UQ shows the uncertainty of geological models given

::::::
Ellipses

:::::::
represent stochastic values to the Z position

::::::::
parameters,

:::::
while

::::::::
rectangles

::
are

::::::::::
deterministic

::::::::
functions

:::
that

:::::
return

::::::::::
intermediated

:::::
states

:
of the input data (σ = 300): (top) 2-D interface representation ; (middle)

probability of occurrence for Layer 1; (bottom) information entropy. (ii) Representation of data used as

likelihood functions: (top) ideal topology graph; (middle) Synthetic
:::::::::
probabilistic model taken

::::
such as reference

for the gravity inversion; (bottom) Reference forward gravity overlain on top of an XY cross-section of

the synthetic reference
::::::
GemPy model.Posterior analysis after combining priors and likelihood in a Bayesian

inference: (top) 2-D interface representation; (middle) probability of occurrence for Layer 1; (bottom)

information entropy.

defined as

H =−
n∑

i=1

pi log2 pi (12)

where pF ::
pi represents the probability of a layer at cell x. Therefore, we can use information entropy900

to compress our uncertainty
::::::
reduce

:::
the

::::::::::::
dimensionality

::
of

:::::::::
probability

:::::
fields into a single value at each

voxel as an indication of uncertainty, reflecting the possible number of outcomes and their relative

probability (see figure 9-Entropy).

3.4.2 Geological inversion: Gravity and Topology

Although computing the forward gravity has its own value for many applications, the main aim of905

GemPy is to integrate all possible sources of information into a single probabilistic framework.The

use of likelihood functions in a Bayesian inference in opposition to simply rejection sampling

:::::::::
comparison

::
to
::::::

simple
:::::::
forward

:::::::::
simulation

:
has been explored by the authors during the recent years

29

(de la Varga and Wellmann, 2016; Wellmann et al., 2017; Schaaf, 2017). This approach enables to

tune the conditioning of possible stochastic realizations by varying the probabilistic density function910

used as likelihoods. In addition, Bayesian networks allow to combine several likelihood functions,

generating a competition among the prior distribution of the input data and likelihood functions re-

sulting in posterior distributions that best honor all the given information. To give a flavor of what

is possible, we apply custom likelihoods to the previous example based on, topology and gravity

constrains in an inversion.915

As, we have shown above, topological graphs can represent the connectivity among the segmented

areas of a geological model. As is expected, stochastic perturbations of the input data can rapidly

alter the configuration of mentioned graphs. In order to preserve a given topological configuration

partially or totally, we can construct specific likelihood functions. To exemplify the use of a topo-

logical likelihood function, we will use the topology computed in the section 3.3 derived from the920

initial model realization (figure 7 or 9-Likelihoods) as "ideal topology". This can be based on an

expert interpretation of kinematic data or deduced from auxiliary data.

The first challenge is to find a metric that captures the similarity of two graphs. As a graph is noth-

ing but a set of nodes and their edges we can compare the intersection and union of two different sets

using the the Jaccard index (Jaccard, 1912; Thiele et al., 2016a). It calculates the ratio of intersection925

and union of two given graphs A and B:

J(A,B) =
A∩B

A∪B

|A∩B|
|A∪B|
::::::

(13)

The resulting ratio is zero for entirely different graphs, while the metric rises as the sets of edges and

nodes become more similar between two graphs and reaches exactly one for an identical match.

Therefore, the Jaccard index can be used to express the similarity of topology graphs as a sin-930

gle number we can evaluate using a probability density function. The type of probability density

function used will determine the "strength" or likelihood that the mean graph represent. Here,
::
To

:::::::
evaluate

:::
the

::::::::
likelihood

:::
of

:::
the

::::::::
simulated

::::::
model

::::::::
topology we use a half Cauchy distribution (α= 0

and β = 10−3) due to its tolerance to outliers
::::
factor

::::::::
potential

::::
with

::
a
::::::::::
half-Cauchy

::::::::::::::
parametrization

::::
(rate

::::::::
parameter

:::::::::
β = 10−3)

::
to
::::::::
constrain

:::
our

::::::
model

:::::
using

:::
the

:::
soft

::::
data

:::
of

:::
our

:::::::::
topological

::::::::::
knowledge935

:::
(Lauritzen et al., 1990; Jordan, 1998; Christakos, 2002).

::::
This

:::::::
specific

:::::::::::::
parametrization

::::
was

:::::::
chosen

:::
due

::
to

::::::::
empirical

:::::::
evidence

::::
from

::::::::
different

:::::
model

::::
runs

::
to

:::::
allow

::
for

::::::::
effective

::::::::
parameter

:::::
space

:::::::::
exploration

::
in

:::
the

:::::
used

::::::
MCMC

:::::::
scheme.

Listing 7. Probabilistic model construction and inference using pymc2 and GemPy: Bayesian Inference (see

figure 9 for the results).
...940
Add Listing 6

...

Computation of toplogy

@pymc.deterministic(trace=True)945

30

def gempy_topo(value=0, gm=gempy_model, verbose=False):

G, c, lu, lot1, lot2 = gp.topology_compute(geo_data, gm[0][0], gm[1], cell_number=0,

direction="y")

if verbose:950
gp.plot_section(geo_data, gm[0][0], 0)

gp.topology_plot(geo_data, G, c)

return G, c, lu, lot1, lot2

955
Computation of L2-Norm for the forward gravity

@pymc.deterministic

def e_sq(value = original_grav, model_grav = gempy_model[2], verbose = 0):

square_error = np.sqrt(np.sum((value*10**-7 - (model_grav*10**-7))**2))

return square_error960

Likelihoods

===========

@pymc.stochastic

def like_topo_jaccard_cauchy(value=0, gempy_topo=gempy_topo, G=topo_G):965
"""Compares the model output topology with a given topology graph G using an inverse Jaccard-

index embedded in a half-cauchy likelihood."""

jaccard-index comparison

j = gp.Topology.compare_graphs(G, gempy_topo[0])

the last parameter adjusts the "strength" of the likelihood970
return pymc.half_cauchy_like(1 - j, 0, 0.001)

@pymc.observed

def inversion(value = 1, e_sq = e_sq):

return pymc.half_cauchy_like(e_sq,0,0.1)975

We add all the pymc objects to a list

params = [input_data, gempy_model, gempy_surfaces, gempy_topo, *interface_Z_modifier,

like_topo_jaccard_cauchy, e_sq, inversion]

980
We create the pymc model i.e. the probabilistic graph

model = pymc.Model(params)

runner = pymc.MCMC(model)

BAYESIAN INFERENCE985
==================

Number of iterations

iterations = 15000

Inference. Adaptive Metropolis990
runner.use_step_method(pymc.AdaptiveMetropolis, params, delay=1000)

runner.sample(iter = 20000, burn=1000, thin=20, tune_interval=1000, tune_throughout=True)

Gravity likelihoods
:::
aim

::
to

:
exploit the spatial distribution of density which can be related to dif-

ferent lithotypes (Dentith and Mudge, 2014). To test the likelihood function based on gravity data,995

we first generate the synthetic "measured" data. This was done simply by computing the forward

gravity for one of the extreme models (to highlight the effect that a gravity likelihood can have) gen-

erated during the Monte Carlo error propagation in the previous section. This model is particularly

31

Probability of Layer 2

Probability of Layer 2
Entropy

Entropy
2-D

 Representation

2-D
 Representation

-250

Prior models Posterior modelsLikelihoods

Bouguer gravity [m
Gal]

2) Forward gravity

1

2

3

4
5

6

7

8

Fault

Basement

Layer 1

Layer 2

Layer 3

1) Topology

High dip
values

Uncertainty reduced
to preserve topology

Syntetic m
odel to

 p
roduce forw

ard gravityForward
 Gravity

Posterior models re�ect
the high dip values

through gravity inversion

Possible outcomes
given uncertainty

to input data

Reduction of
overall entropy

12500

0

1.25

0

1

0

-10000

0

-10000

Z [m]

Z [m]

0

-10000

Z [m]

0

Z [m]

0 20000X [m] 20000X [m]
0 20000X [m]

Y [m]

1

0

0

1.27

Figure 9.
:::::::::
Probabilistic

::::::::::
Programming

:::::
results

:::
on

:
a
::::::::::
cross-section

::
at

:::
the

:::::
middle

::
of
:::

the
:::::
model

::::::::::::::
(Y = 10000[m]).

::
(i)

::::::::
Priors-UQ

:::::
shows

::
the

:::::::::
uncertainty

::
of

::::::::
geological

:::::
models

:::::
given

:::::::
stochastic

:::::
values

::
to
:::
the

::
Z

::::::
position

::
of

::
the

:::::
input

:::
data

:::::::
(standard

::::::::
deviation,

::::::::
σ = 300):

::::
(top)

:::
2-D

:::::::
interface

::::::::::
representation

:
;
:::::::

(middle)
:::::::::
probability

::
of

::::::::
occurrence

:::
for

::::
Layer

::
2;
:::::::

(bottom)
:::::::::

information
:::::::

entropy.
:::
(ii)

:::::::::::
Representation

:::
of

:::
data

::::
used

::
as
::::::::

likelihood
::::::::

functions:
::::

(top)
:::::

ideal

::::::
topology

::::::
graph;

:::::::
(middle)

:::::::
Synthetic

:::::
model

:::::
taken

::
as

:::::::
reference

:::
for

:::
the

::::::
gravity

::::::::
inversion;

:::::::
(bottom)

::::::::
Reference

::::::
forward

:::::
gravity

::::::
overlain

:::
on

::
top

::
of

::
an

:::
XY

::::::::::
cross-section

::
of

:::
the

::::::
synthetic

::::::::
reference

:::::
model.

:::::::
Posterior

::::::
analysis

::::
after

::::::::
combining

::::
priors

:::
and

::::::::
likelihood

::
in

:
a
:::::::
Bayesian

:::::::
inference:

::::
(top)

:::
2-D

:::::::
interface

:::::::::::
representation;

::::::
(middle)

:::::::::
probability

:
of
:::::::::

occurrence
::
for

:::::
Layer

::
2;

:::::::
(bottom)

:::::::::
information

::::::
entropy.

characteristic by its high dip values (figure 9-Syntetic model to produce forward gravity). Once we

have an "observed" gravity, we can compare it to a simulated gravity response. To do so, we compare1000

their values
:::
The

::::::::::
construction

:::
of

::
the

:::::::::
likelihood

:::::::
function

::
is
:::::
done applying an L2-norm encapsulating

the difference into a single error value. This error value acts as the input of the likelihood function,

in this case,
:::::::
between

::::
each

::::::::::
"measured"

::::
data

:::::
point

:::
and

::::
the

:::::::
forward

::::::::::
computation

::::
and

:::::::::
evaluating

:::
the

::::
result

:::
by

::
a

::::::
normal

::::::::::
distribution

::
of

:::::
mean

:::::
µ= 0

::::
and

::::
with

:::
the

:::::::
standard

:::::::::
deviation,

:
σ
:::

as a half Cauchy

(α= 0 and β = 10−1
::::
prior

::::
(rate

:::::::::
parameter

::::::::
β = 10−1). This probabilistic density function increases1005

as we approach to 0 and at both extremes (very low or high values of error) the function flatters

to accommodate to possible measurement errors
::::::::
likelihood

:::::::
function

::::
will

::::
push

:::
the

:::::
model

::::::::::
parameters

::
(4,

::::
red)

::
in
::::

the
::::::::
direction

::
to

::::::
reduce

:::
the

::::::::
L2-norm

:::
as

:::::
much

::
as

::::::::
possible

:::::
while

:::::::
keeping

:::
the

::::::::
standard

:::::::
deviation

:::::::
around

:::
the

::::
prior

:::::
value

::::
(this

::::
prior

:::::
value

::::::::::
encapsulate

:::
the

:::::::
inherent

::::::::::::
measurement

:::
and

::::::
model

::::::::::
uncertainty).1010

As sampler we use an adaptive Metropolis method
:::::::
Defining

:::
the

::::::::
topology

::::::::
potential

:::
and

:::::::
gravity

::::::::
likelihood

::::
on

::
the

:::::
same

::::::::
Bayesian

:::::::
network

::::::
creates

:
a
::::
joint

::::::::
likelihood

:::::
value

:::
that

::::
will

:::::
define

:::
the

::::::::
posterior

:::::
space.

:::
To

::::::
sample

::::
from

:::
the

::::::::
posterior

:::
we

:::
use

:::::::
adaptive

::::::::::
Metropolis (Haario et al., 2001, for a more in

depth explanation of samplers and their importance see de la Varga and Wellmann, 2016). This

32

method varies the metropolis sampling size according to the covariance function that gets updated1015

every n iterations. For the results here exposed, we performed 20000 iterations, tuning the adaptive

covariance every 1000 steps (a convergence analysis can be found in the Jupyter notebooks attached

to the on-line supplement of this paper).

As a result of applying likelihood functions we can appreciate a clear change in the posterior (i.e.

the possible outcomes) of the inference. A closer look shows two main zones of influence, each of1020

them related to one of the likelihood functions. On one hand, we observe a reduction of uncertainty

along the fault plane due to the restrictions that the topology function imposes by conditioning the

models to high Jaccard values. On the other hand, what in the first example—i.e. Monte Carlo error

propagation—was
::::::::::
propagation,

::::
left

:::
on

:::::
Figure

:::::::
9—was

:
just an outlier, due to the influence of the

gravity inversion, now it becomes the norm bending the layers pronouncedly. In both cases, it is1025

important to keep in mind that the grade of impact into the final model is inversely proportional to

the amount of uncertainty that each stochastic parameter carries. Finally, we would like to remind

the reader that the goal of this example is not to obtain realistic geological models but to serve as an

example how the in-built functionality of GemPy can be used to handle similar cases.
:::
The

:::::::
purpose

::
of

:::
this

::::::::
example

::
is

::
to

::::::::
highlight

:::
the

:::::::::::
functionality.

:::
For

::
a
:::::::
realistic

:::::
study,

::::::
further

:::::::
detailed

:::::::::::
adjustments1030

:::::
would

::::
have

::
to

:::
be

::::
taken

:

4 Discussion

We have introduced GemPy, a Python library for implicit geomodelling with special emphasis on

the analysis of uncertainty. With the advent of powerful implicit methods to automate many of the

geological modeling steps, GemPy builds on these mathematical foundations to offer a reliable and1035

easy-to-use technology to generate complex models with only a few lines of code. In many cases—

and in research in particular—it is essential to have transparent software that allows full manipula-

tion and understanding of the logic beneath its front-end to honor the scientific method and allows

reproducibility by open-access to it.

Up until now, implicit geological modeling was limited to proprietary software suites—for the1040

petroleum industry (GoCad, Petrel, JewelSuite) or the mining sector (MicroMine, MIRA Geoscience,

GeoModeller, Leapfrog)—with an important focus on industry needs and user experience (e.g.

graphical user interfaces or data compatibilities). Despite the access to the APIs of many of these

softwares, their lack of transparency and the inability to fully manipulate any of the algorithms

represents a serious obstacle for conducting appropriate reproducible research. To overcome these1045

limitations, many scientific communities—e.g. simpeg in geophysics (?)
:::::::::::::::::
(Cockett et al., 2015), as-

tropy in astronomy (Robitaille et al., 2013) or pynoddy in kinematic structural modeling (Wellmann

et al., 2016)—are moving towards the open-source frameworks necessary for the full application of

the scientific method. In this regard, the advent of open-source programming languages such as R or

33

Python are playing a crucial role in facilitating scientific programming and enabling the crucial re-1050

producibility of simulations and script-based science. GemPy aims to fill the existing gap of implicit

modeling in the open-source ecosystem in geosciences that until now had to be filled by expensive

general-purpose commercial softwares.

Implicit methods rely on interpolation functions to automate some or all the construction steps.

Different mathematical approaches have been developed and improved in the recent years to tackle1055

many of the challenges that particular geological settings pose (e.g. Lajaunie et al., 1997; Hillier

et al., 2014; Calcagno et al., 2008; Caumon et al., 2013; Caumon, 2010). A significant advantage of

some of these methods is that they directly enable the re-computation of the entire structure when

input data is changed or added. Furthermore, they can provide a geological meaningful interpola-

tion function, for example considering deposition time (Caumon, 2010) or potential-fields (Lajaunie1060

et al., 1997) to encapsulate the essence of geological deposition in different environments. The cre-

ation of GemPy has been made possible in a moment when the automation of geological modeling

via implicit algorithms, as well as the maturity of the Python open-source ecosystem reached a point

where a few thousand new lines of code are able to perform efficiently the millions of linear algebra

operations and complex memory management necessary to create complex geological models. An1065

important aspect in GemPy’s design has been the willingness to allow users to simply use GemPy as

a tool to construct geological models for different purposes as well as to encourage users to develop

and expand GemPy’s code base itself. With the purpose to facilitate a low entry barrier we have taken

two main structural decisions: (i) a clear separation between core features and extensible assets and

(ii) combination of functional and object-oriented programming. The aim of this dual design is to1070

give a friendly, easy-to-use front-end to the majority of users while keeping a modular structure of

the code for future contributors.

Using GemPy requires a minimum familiarity with the Python syntax. The lack of an advanced

graphical interface to place the input data interactively forces the user to provide data sets with the

coordinates and angular data. For this reason, for complex initial models GemPy could be seen more1075

as a back-end library required to couple it with software providing 3-D graphical manipulation.

Due to the development team’s background, GemPy is fully integrated with GeoModeller through

the built-in library pygeomod. GemPy is able to read and modify GeoModeller projects directly,

allowing to take advantage of their respective unique features. All input data of GemPy itself is

kept in open, standard Python formats, making use of the flexible pandas DataFrames and powerful1080

numpy arrays. Hence, every user will be able to freely manipulate the data at any given point.

GemPy has built-in functionality to visualize results using the main visualization libraries offered

in Python: matplotlib for 2-D and vtk for 3-D and allows to export .vtk files for later visualization in

common open-source tools for scientific visualizations such as ParaView. Altought
:::::::
Although

:
GemPy

does not include an evolved user interface, we offer certain level of interactivity using GemPy’s1085

build-in 3-D visualization in vtk
:::
and

:::::::::
interactive

::::
data

:::::
frame

:::::::
through

:::::
qgrid. Not only is the user able

34

to move the input data via drag-and-drop
:
or

::::::::
changing

:::
the

::::
data

:::::
frame, but GemPy can immediately re-

interpolate the perturbed model, enabling an extremely intuitive direct feedback on how the changes

made affect the model. Visualization of vast model ensembles is also possible in 3-D using slider

functionality. Future plans for the visualization of GemPy include virtual reality support to make1090

data manipulation and model visualization more immersive and intuitive to use.

Another important feature of GemPy is the use of symbolic code. The lack of domain specific

language allows the compilation of the code to a highly efficient language. Furthermore, since all

the logic has to be described prior to the compilation, memory allocation and parallelization of the

code can be optimized. Theano uses BLAS (Lawson et al., 1979) to perform the algebraic operations1095

with out of the box Open MP (Dagum and Menon, 1998) capabilities for multi-core operations.

Additionally, parallel GPU computation is available and compatible with the use of CPUs, which

allows to define certain operations to a specific device and even to split big arrays (e.g. grid) to

multiple GPUs. In other words, the symbolic nature of the code enables the separation of the logic

according to the individual advantages of each device—i.e. sequential computations to CPUs and1100

parallel calculations to the GPUs—allowing for better use of the available hardware. Hence, this

scheme is portable to high performance computing in the same fashion.

Up to today
:::
now, structural geological models have relied significantly on the best deterministic,

explicit realization that an expert is capable to create
:::
able

::
to
::::::::
construct

:
using often noisy and sparse

data. Research into the interpretation uncertainty of geological data sets (e.g. seismic data) has recog-1105

nized the significant impact of interpreter education and bias on the extracted input data for geolog-

ical models (e.g. Bond et al., 2007; Bond, 2015). GemPy’s ability to be enveloped into probabilistic

programming frameworks such as pymc, allows for the consideration of input data uncertainties and

could provide a free, open-source foundation for developing probabilistic geomodeling workflows

which integrate uncertainties from the very beginning of data interpretation, through the geomodel1110

interpolation up to the geomodel application (e.g. flow simulations, economic estimations).

In the transition to a world dominated by data and optimization algorithms—e.g. deep neural

networks or big data analytics—there are many attempts to apply those advances in geological mod-

eling (Wang et al., 2017; Gonçalves et al., 2017). The biggest attempt to use data driven models

in geology comes from geophysical inversions (Tarantola and Valette, 1982; Mosegaard and Taran-1115

tola, 1995; Sambridge and Mosegaard, 2002; Tarantola, 2005). Their approaches consist of using

the mismatch of one or many parameters, comparing model with reality, modifying them accord-

ingly until reaching a given tolerance. However, since this solution is never unique, it is necessary

to enclose the space of possibilities by some other means. This prior approach to the final solution

usually is made using polygonal or elliptic bodies leading to oversimplified geometry of the distinct1120

lithological units. Other researchers use the additional data—geophysical data or other constrains

(Jessell et al., 2010; Wellmann et al., 2014)— to validate multiple possible realizations of geological

models generated either automatically by an interpolation function or manually. Here, the additional

35

information is used as a hard deterministic filter of what is reasonable or not. The limitation of pure

rejection filtering is that information does not propagate backward to modify the latent parameters1125

that characterize the geological models what makes computational infeasible to explore high dimen-

sional problems. In between these two approaches, we can find some attempts to reconcile both

approaches meeting somewhere in the middle. An example of this is the approach followed in the

software packages GeoModeller and SKUA. They optimize the layer densities, and when necessary

the discretized model, to fit the geological model to the observed geophysical response. The con-1130

sequence of only altering the discrete final model is that after optimization the original input data

used for the construction of the geological model (i.e. interface points and orientation data) gets

overwritten and consequently hard to reproduce.

We propose a more global
::::::
general approach. By embedding the geological model construction into

a model-based machine learning framework (Bishop, 2013)—i.e. a Bayesian inference network. In1135

short a Bayesian inference is a mathematical formulation to update beliefs in the light of new ev-

idence. This statement applied to geological modeling is translated into keeping all or a subset of

the parameters that generate the model uncertain and evaluate the quality of the model comparing

its mismatch with additional data or geological knowledge encoded mathematically (de la Varga and

Wellmann, 2016). In this way, we are able to utilize available information not only in a forward1140

direction to construct models, but also propagate information backwards in an inverse scheme to

refine the probabilistic distributions that characterize the modeling parameters. Compared with pre-

vious approaches, we do not only use the inversion to improve a deterministic model but instead to

learn about the parameters that define the model to begin with. In recent years, we have shown how

this approach may help closing the gap between geophysical inversions and geological modeling in1145

an intuitive manner (Wellmann et al., 2017). At the end of the day, Bayesian inferences operate in

a very similar way to how humans do: we create our best guess model; we compare it to the geo-

physical data or our geological knowledge and in case of disagreement we modify the input of the

geological model in the direction we think is the best to honor the additional data.

Despite the convincing mathematical formulation of Bayesian inferences, there are caveats to be1150

dealt with for practical applications. As mentioned in Section 3.4, the effective computational cost

to perform such algorithms have prohibited its use beyond research and simplified models. However,

recent developments in MCMC methods enable more efficient ways to explore the parametric space

and hence opening the door to a significant increase on the complexity of geological models. An in-

depth study of the impact of gradient-based MCMC methods in geological modeling will be carried1155

out in a future publication.

Nevertheless, performing AD does not come free of cost. The required code structures limit the

use of libraries which do not perform AD themselves, which in essence imposes to rewrite most of

the mathematical algorithms involved in the Bayesian network. Under these circumstances, we have

rewritten in Theano the potential field method—with many of the add-ons developed in recent years1160

36

(Calcagno et al., 2008)—and the computation of forward gravity responses for discrete rectangular

prisms.

Currently GemPy is in active development moving towards three core topics: (i) increasing the

model based machine learning capabilities by exploiting gradient based methods and new types of

likelihoods; (ii) post-processing of uncertainty quantification and its relation to decision theory and1165

information theory; and (iii) exploring the new catalog of virtual reality and augmented reality solu-

tions to improve the visualization of both the final geological models and the building environment.

However, ideally GemPy will function as a platform to create a vibrant open-source community to

push forward geological modeling into the new machine learning era. Therefore, we hope to include

functionality developed by other external users into the main package.1170

In conclusion, GemPy has evolved to a full approach for geological modelling in a probabilistic

programming framework. The lack of available open-source tools in geological modeling and the

necessity of writing all the logic symbolically has pushed the project to an unexpected stand-alone

size. However, this would not have been possible without the immense, ever-growing open-source

community which provide numerous and high-quality libraries that enable the creation of powerful1175

software with relative few new lines of code. And in the same fashion, we hope the community will

make use of our library to perform geological modeling transparently, reproducibly and incorporat-

ing the uncertainties inherent to earth sciences.

Code availability

GemPy is a free, open-source Python library licensed under the GNU Lesser General Public License1180

v3.0 (GPLv3). It is hosted on the GitHub repository https://github.com/cgre-aachen/gempy (DOI:

10.5281/zenodo.1186118).

Appendix A: GemPy package information

A1 Installation

Installing GemPy can be done in two ways: (i) Either by cloning the GitHub repository with $ git1185

clone https://github.com/cgre-aachen/gempy.git and then manually installing it

by running the Python setup script in the repository: $ python install.py (ii) Or by using

the Python Package Index (PyPI) with the command $ pip install gempy, which directly

downloads and installs the library.

A2 Documentation1190

GemPy’s documentaion is hosted on http://gempy.readthedocs.io/, which provides a

general overview over the library and multiple in-depth tutorials. The tutorials are provided as

37

https://github.com/cgre-aachen/gempy

Jupyter Notebooks, which provide the the convenient combination of documentation and executable

script blocks in one document. The notebooks are part of the repository and located in the tutori-

als folder. See http://jupyter.org/ for more information on installing and running Jupyter1195

Notebooks.

A3 Jupyter notebooks

We provide Jupyter notebooks as part of the online documentation. These notebooks can be ex-

ecuted in a local Python environment (if the required dependencies are correctly installed, see

above). In addition, static versions of the notebooks can currently be inspected directly on the1200

github repository web page or through the use of nbviewer. In addition, it is possible to run in-

teractive notebooks through the use of binder (provided through https://mybinder.org at the time

of writing). For more details and up-to-date information, please refer to the repository page https:

//github.com/cgre-aachen/gempy.

A4 Unit Tests1205

The GemPy package contains a set of tests, which can be executed in the standard Python testing

environment. If you cloned or downloaded the repository, then these tests can directly be performed

by going to the package folder and run the pytest command: $ pytest

If all tests are successful, you are ready to continue.

Appendix B: Kriging system expansion1210

The following equations have been derived from the work in Aug (2004); Lajaunie et al. (1997);

Chiles and Delfiner (2009).

B1 Gradient Covariance-Matrix C∂Z/∂u

The gradient covariance-matrix, C∂Z/∂u, is made up of as many variables as gradient directions that

are taken into consideration. In 3-D, we would have the Cartesian coordinates dimensions—Z/∂x,1215

Z/∂y, and Z/∂z—and therefore, they will derive from the partial differentiation of the covariance

function σ(xi,xj) of Z.

38

https://mybinder.org
https://github.com/cgre-aachen/gempy
https://github.com/cgre-aachen/gempy
https://github.com/cgre-aachen/gempy

ra

Figure 10. 2-D representation of the decomposition of the orientation vectors into Cartesian axis. Each Carte-

sian axis represent a variable of a sub CoKriging system. The dotted green line represent the covariance distance,

r
::
ra ::

for
:::
the

::::::::
covariance

::
of

:::
the

::::::
gradient.

As in our case the directional derivatives used are the 3 Cartesian directions we can rewrite gradi-

ents covariance, C∂Z/∂u, ∂Z/∂v for our specific case as:

C∂Z/∂x, ∂Z/∂y, ∂Z/∂z =

 C∂Z/∂x, ∂Z/∂x C∂Z/∂x, ∂Z/∂y C∂Z/∂x, ∂Z/∂z

C∂Z/∂y, ∂Z/∂x C∂Z/∂y, ∂Z/∂y C∂Z/∂y, ∂Z/∂z

C∂Z/∂z, ∂Z/∂x C∂Z/∂z, ∂Z/∂y C∂Z/∂z, ∂Z/∂z

 (B1)1220

Notice, however, that covariance functions by definition are described in a polar coordinate sys-

tem, and therefore it will be necessary to apply the chain rule for directional derivatives. Considering

an isotropic and stationary covariance we can express the covariance function as:

σ(xi,xj) = C(r) (B2)

with:1225

r =
√
h2
x +h2

y

√
h2
x +h2

y +h2
z

::::::::::::

(B3)

therefore we need to apply the chain rule in partial differentiation. For the case of the covariance

in a single direction :
:::
and

:::
hu:::

as
:::
the

:::::::
distance

:::::::
ui −uj:::

in
:::
the

:::::
given

::::::::
direction

:::::::
(usually

:::::::::
Cartesian

:::::::::
directions).

:::::::::
Therefore,

:::::
since

::
we

::::
aim

::
to

:::::
derive

::::::
CZ(r)::::::

respect
:::
an

:::::::
arbitrary

::::::::
direction

:
u
:::
we

:::::
must

:::::
apply

::
the

::::::::::
directional

::::::::
derivative

::::
rules

::
as

:::::::
follows:1230

C∂Z/∂u, ∂Z/∂u =
∂2CZ(r)

∂h2
u

=
∂CZ(r)

∂r

∂

∂hu

(
∂r

∂hu

)
+

∂

∂hu

(
∂CZ(r)

∂r

)
∂r

∂hu
(B4)

where:

∂CZ(r)

∂r
=

∂CZ(r)

∂r
=C ′

Z(r) (B5)

39

∂r

∂hu
=

hu√
h2
u +h2

v

=−hu

r
(B6)

∂

∂hu

(
∂r

∂hu

)
=

∂

∂hu

(
hu√

h2
u +h2

v

)
=− 2h2

u

2
√
h2
u +h2

v

+
1√

h2
u +h2

v

=−h2
u

r3
+

1

r
(B7)1235

∂

∂hu

(
∂CZ(r)

∂r

)
=

∂C ′
Z(r)

∂hu
=

∂C ′
Z(r)

∂r

∂r

∂hu
=−hu

r
C ′′

Z (B8)

Substituting:

C∂Z/∂u, ∂Z/∂u = C ′
Z(r)

(
−h2

u

r3
+

1

r

)
− hu

r
C ′′

Z

hu

r
= C ′

Z(r)

(
−h2

u

r3
+

1

r

)
+

h2
u

r2
C ′′

Z (B9)

While in case of two different directions the covariance will be:

C∂Z/∂u, ∂Z/∂v =
∂2CZ(r)

∂huhv
=

∂CZ(r)

∂r

∂

∂hv

(
∂r

∂hu

)
+

∂

∂hv

(
∂CZ(r)

∂r

)
∂r

∂hu
(B10)1240

with:

∂

∂hv

(
∂r

∂hu

)
=

∂

∂hv

(
hu√

h2
u +h2

v

)
=−huhv

r3
(B11)

∂

∂hv

(
∂CZ(r)

∂r

)
=

∂C ′
Z(r)

∂hv
=−C ′′

Z(r)
hv

r
(B12)

we have:

C∂Z/∂u, ∂Z/∂v = C ′
Z(r)

(
−huhv

r3

)
+C ′′

Z(r)
huhv

r2
=

huhv

r2

(
C ′′

Z(r)−
C ′

Z(r)

r

)
(B13)1245

This derivation is independent to the covariance function choice, however
::
of

::::::
choice.

:::::::
However, some

covariances may lead to mathematical indeterminations
:
if
::::
they

:::
are

:::
not

:::::::::
sufficiently

::::::::::::
differentiable.

40

B2 Interface Covariance-Matrix

rc

ra
rb

rd

Figure 11. Distances r involved in the computation of the interface subsystem of the interpolation. Because all

covariances are relative to a reference point xi
α,0, all four covariances

::::
with

:::
their

::::::::
respective

:::::::
distances,

::::::::
ra, rb, rc

:::
and

::
rd must be taken into account (equation B14)

In a practical sense, keeping the value of the scalar field at every interface unfixed forces us to

consider the covariance between the points within an interface as well as the covariance between1250

different layers following equation,

Cxr
α i,x

s
α j

= Cxr
α, i x

s
α, j

︷ ︸︸ ︷
Cxr

α, i x
s
α, j

ra
:
−Cxr

α, 0 xs
α, j

︷ ︸︸ ︷
Cxr

α, 0 xs
α, j

rb
:
−Cxr

α, i x
s
α, 0

︷ ︸︸ ︷
Cxr

α, i x
s
α, 0

rc
:
+Cxr

α, 0 xs
α, 0

︷ ︸︸ ︷
Cxr

α, 0 xs
α, 0

rd
:

(B14)

This lead to the subdivision of the CoKriging system respecting the interfaces:

CZ,Z =


Cx1

α,x1
α

Cx1
α,x2

α
... Cx1

α,xs
α

Cx2
α,x1

α
Cx2

α,x2
α

... Cx2
α,xs

α

...
...

. . .
...

Cxr
α,x1

α
Cxr

α,x2
α

... Cxr
α,xs

α

 (B15)

Combining Eq 5 and Eq B15 the covariance for the property potential
:::::
scalar

:
field will look like:1255

Cxr
α,xs

α
=


Cx1

1 x1
1
−Cx1

0 x1
1
−Cx1

1 x1
0
+Cx1

0 x1
0

Cx1
1 x1

2
−Cx1

0 x1
2
−Cx1

1 x1
0
+Cx1

0 x1
0

... Cx1
1 xs

j
−Cx1

0 xs
j
−Cx1

1 xs
0
+Cx1

0 xs
0

Cx1
2 x1

1
−Cx1

0 x1
1
−Cx1

2 x1
0
+Cx1

0 x1
0

Cx1
2 x1

2
−Cx1

0 x1
2
−Cx1

2 x1
0
+Cx1

0 x1
0

... Cx1
2 xs

j
−Cx1

0 xs
j
−Cx1

j xs
0
+Cx1

0 xs
0

...
...

. . .
...

Cxr
i xs

1
−Cxr

0 xs
1
−Cxr

i xs
0
+Cxr

0 xs
0

Cxr
i xs

2
−Cxr

0 xs
2
−Cxr

i xs
0
+Cxr

0 xs
0

... Cxr
i xs

j
−Cxr

0 xs
j
−Cxr

i xs
0
+Cxr

0 xs
0


(B16)

41

B3 Cross-Covariance

In a CoKriging system, the relation between the interpolated parameters is given by a cross-covariance

function. As we saw above, the gradient covariance is subdivided into covariances with respect to the

three Cartesian directions (Eq B1), while the interface covariance is detached from the covariances1260

matrices with respect to each individual interface (Eq B15). In the same manner, the cross-covariance

will reflect the relation of every interface to each gradient direction,

ra

rb

Figure 12. Distances r
:
ra::::

and
::
rb involved in the computation of the cross-covariance function. In a similar

fashion as before, all interface covariance are computed relative to a reference point in each layer xi
α,0

CZ, ∂Z/∂u =



Cx1
α1, ∂Z(xβ 1)/∂x

Cx1
α2, ∂Z(xβ 1)/∂x

... Cxr
αi, ∂Z(xβ 1)/∂x

Cx1
α1, ∂Z(xβ 2)/∂x

Cx1
α2, ∂Z(xβ 2)/∂x

... Cxr
αi, ∂Z(xβ 2)/∂x

...
...

. . .
...

Cx1
α1, ∂Z(xβ 1)/∂y

Cx1
α2, ∂Z(xβ 1)/∂y

... Cxr
αi, ∂Z(xβ 1)/∂y

Cx1
α1, ∂Z(xβ 2)/∂y

Cx1
α2, ∂Z(xβ 2)/∂y

... Cxr
αi, ∂Z(xβ 2)/∂y

...
...

. . .
...

Cx1
α1, ∂Z(xβ j−1)/∂z

Cx1
α2, ∂Z(xβ j−1)/∂z

... Cxr
αi, ∂Z(xβ j−1)/∂z

Cx1
α1, ∂Z(xβ j)/∂z

Cx1
α2, ∂Z(xβ j)/∂z

... Cxr
αi, ∂Z(xβ j)/∂z


(B17)

As the interfaces are relative to a point
::::::::
reference

::::
point

::::
per

::::
laterxk

α 0 the value of the covariance

function :
:::
will

:::
be

:::
the

::::::::
difference

:::::::
between

::::
this

::::
point

::::
and

:::
the

:::
rest

:::
on

:::
the

::::
same

:::::
layer:

:
1265

Cxr
α i, ∂Z(xβ j)/∂x = CZ(xr

α i), ∂Z(xfi j)/∂x

︷ ︸︸ ︷
CZ(xr

α i), ∂Z(xβ j)/∂x
ra
:
−CZ(xr

α 0), ∂Z(xfi j)/∂x

︷ ︸︸ ︷
CZ(xr

α 0), ∂Z(xβ j)/∂x
rb
:

(B18)

with the covariance of the scalar field being function the vector r, its directional derivative is analo-

gous to the previous derivations:

CZ, ∂Z/∂u =
∂CZ(r)

∂r

∂r

∂hu
=−hu

r
C ′

Z (B19)

42

B4 Universal matrix1270

As the mean value of the scalar field is going to be always unknown, it needs to be estimated from

data itself. The simplest approach is to consider the mean constant for the whole domain, i.e. ordinary

Kriging. However, in the scalar field case we can assume certain drift towards the direction of the

orientations. Therefore, the mean can be written as function of known basis functions:

µ(x) =

L∑
l=0

alf
l(x) (B20)1275

where l is the grade of the polynomials used to describe the drift. Because of the algebraic depen-

dence of the variables, there is only one drift and therefore the unbiasedness can be expressed as:

UZλ1 +U∂Z/∂uλ2 = f10 (B21)

Consequently, the number of equations are determined according to the grade of the polynomial and1280

the number of equations forming the properties matrices equations B15 and B1:

UZ =



x1
1 −x1

0 x1
2 −x1

0 ... x2
1 −x2

0 x2
2 −x2

0 ... xr
i−1 −xr

0 xr
i −xr

0

y11 − y10 y12 − y10 ... y21 − y20 y22 − y20 ... yri−1 − yr0 yri − yr0

z11 − z10 z12 − z10 ... z21 − z20 z22 − z20 ... zri−1 − zr0 zri − zr0

x1
1x

1
1 −x1

0x
1
0 x1

2x
1
2 −x1

0x
1
0 ... x2

1x
2
1 −x2

0x
2
0 x2

2x
2
2 −x2

0x
2
0 ... xr

i−1x
r
i−1 −xr

0x
r
0 xr

i x
r
i −xr

0x
r
0

y11y
1
1 − y10y

1
0 y12y

1
2 − y10y

1
0 ... y21y

2
1 − y20y

2
0 y22y

2
2 − y20y

2
0 ... yri−1y

r
i−1 − yr0y

r
0 yri y

r
i − yr0y

r
0

z11z
1
1 − z10z

1
0 z12z

1
2 − z10z

1
0 ... z21z

2
1 − z20z

2
0 z22z

2
2 − z20z

2
0 ... zri−1z

r
i−1 − zr0z

r
0 zri z

r
i − zr0z

r
0

x1
1y

1
1 −x1

0y
1
0 x1

2y
1
2 −x1

0y
1
0 ... x2

1y
2
1 −x2

0y
2
0 x2

2y
2
2 −x2

0y
2
0 ... xr

i−1y
r
i−1 −xr

0y
r
0 xr

i y
r
i −xr

0y
r
0

x1
1z

1
1 −x1

0z
1
0 x1

2z
1
2 −x1

0z
1
0 ... x2

1z
2
1 −x2

0z
2
0 x2

2z
2
2 −x2

0z
2
0 ... xr

i−1z
r
i−1 −xr

0z
r
0 xr

i z
r
i −xr

0z
r
0

y11z
1
1 − y10z

1
0 y12z

1
2 − y10z

1
0 ... y21z

2
1 − y20z

2
0 y22z

2
2 − y20z

2
0 ... yri−1z

r
i−1 − yr0z

r
0 yri z

r
i − yr0z

r
0


(B22)

U∂Z/∂u =

xβ1 xβ2 ... xβ1 xβ2 ... xβi−1 xβi

1 1 ... 0 0 ... 0 0

0 0 ... 1 1 ... 0 0

0 0 ... 0 0 ... 1 1

2x1 2x2 ... 0 0 ... 0 0

0 0 ... 2y1 2y2 ... 0 0

0 0 ... 0 0 ... 2zi−1 2zi

y1 y2 ... x1 x2 ... 0 0

y1 y2 ... 0 0 ... xi−1 xi

0 0 ... z1 z2 ... xi−1 xi





∂xβi/∂x

∂xβi/∂y

∂xβi/∂z

∂2xβi/∂x
2

∂2xβi/∂y
2

∂2xβi/∂z
2

∂2xβi/∂x∂y

∂2xβi/∂x∂z

∂2xβi/∂y∂z

(B23)

Appendix C: Kriging Estimator

In normal Kriging the right hand term of the Kriging system (Eq. 4) corresponds to covariances and1285

drift matrices of dimensions m×n where m is the number of elements of the data sets—either xα

or xβ—and n the number of locations where the interpolation is performed, x0.

43

Since, in this case, the parameters of the variogram functions are arbitrarily chosen, the Kriging

variance does not hold any physical information of the domain. As a result of this, being interested

only in the mean value, we can solve the Kriging system in the dual form (Matheron, 1981)
::::::::::::::::::::::::::::::::::::
(Chiles and Delfiner, 2009; Matheron, 1981):1290

Z(x0) =
[
a′∂Z/∂u,∂Z/∂v b′Z,Z c′

]
c∂Z/∂u, ∂Z/∂v c∂Z/∂u,Z

cZ, ∂Z/∂u cZ,Z

f10 f20

 (C1)

where:
a∂Z/∂u,∂Z/∂v

bZ,Z

c

=


∂Z

0

0




C∂Z/∂u, ∂Z/∂v C∂Z/∂u,Z U∂Z/∂u

CZ, ∂Z/∂u CZ,Z UZ

U′
∂Z/∂u U′

Z 0


−1

(C2)

noticing that the 0 on the second row appears due to we are interpolation the difference of scalar1295

fields instead the scalar field itself 2.

Appendix D: Example of covariance function: cubic

The choice of the covariance function will govern the shape of the iso-surfaces of the scalar field.

As opposed to other Kriging uses, here the choice cannot be based on empirical measurements.

Therefore, the choice of the covariance function is merely arbitrary trying to mimic as far as possible1300

coherent geological structures.

Figure 13. Representation of a cubic variogram and covariance for an arbitrary range and nugget effect.

The main requirement to take into consideration when the time comes to choose a covariance

function is that it has to be twice differentiable, h2 in origin to be able to calculate C∂Z/∂u, ∂Z/∂v as

44

we saw in equation B13. The use of a Gaussian model C(r) = exp−(r/a)2 and the non-divergent

spline C(r) = r4Log(r) and their correspondent flaws are explored in Lajaunie et al. (1997).1305

The most widely used function in the potential field method is the cubic covariance due to math-

ematical robustness and its coherent geological description of the space.

C(r) =

C0(1− 7(ra)
2 + 35

4 (ra)
3 − 7

2 (
r
a)

5 + 3
4 (

r
a)

7) for 0≤ r ≤ a

0 for r ≥ a
(D1)

with a being the range and C0 the variance of the data. The value of a determine the maximum

distance that a data point influence another. Since, we assume that all data belong to the same deposi-1310

tional phase it is recommended to choose values close to the maximum extent to interpolate in order

to avoid mathematical artifacts. for the values of the covariance at 0 and nuggets effects so far only

ad hoc values have been used so far. It is important to notice that the only effect that the values of the

covariance in the potential-field method has it is to weight the relative influence of both CoKriging

parameters (interfaces and orientations) since te absolut value of the field is meaningless. Regarding1315

the nugget effect, the authors recommendation is to use fairly small nugget effects to give stability

to the computation—since we normally use the kriging mean it should not have further impact to the

result.

Appendix E: Probabilistic Graphical Model
::::::::
checking

::::
and

:::::::::
diagnostics

Here we can see the probabilistic graphical model of the Bayesian inference of Section 3.4.2:1320

:::::::::
Estimating

::::::::::
convergence

:::
of

:::::::
Markov

:::::
chain

::::::
Monte

:::::
Carlo

::::::::::
simulations.

::::
We

:::::
show

::::
here

:::::::
selected

:::::
plots

::
to

:::::::
evaluate

:::::::::::
convergence

::
of

:::
the

:::::::
MCMC

:::::::
process.

:::
In

:::::
figure

::::
15,

:::
we

::::::
present

:::::
trace

::::
plots

:::
for

::::::::
selected

:::::::::
parameters,

::::
and,

::
in

:::::
figure

:::
14,

:::
the

::::::::::::
corresponding

::::
plots

::
of

:::
the

::::::::
calculated

:::::::
Geweke

:::::::
statistics

::::::::::::::::::
(Geweke et al., 1991).

:::::
These

:::::::::
parameters

:::::
have

::::
been

:::::::
selected

::
to

:::::
show

:::
the

::::::
overall

:::::
range

::
of
:::::::::::

convergence
::::
and

::::
trace

::::::::
behavior

::::::
Overall,

::::
the

::::::::
sampling

::::::::
algorithm

::::::::
performs

:::::
well,

::::::::
although

::
in

:::::
some

:::::
cases

:::
the

::::
step

::::::
length

:::::
could

:::
be1325

:::::::
adjusted

::::::
further.

:::::
Also,

:::
the

:::::::
Geweke

::::::::
statistics

:::
for

:::::
some

:::::::::
parameters

:::
fall

::::::
partly

::::::
outside

:::
of

:
2
::::::::
standard

:::::::::
deviations,

::::::::
indicating

::::
that

:::
the

:::::
chain

::::
may

:::
not

::::
have

::::
fully

::::::::::
converged.

::
As

:::::::::
described

::
in

:::
the

::::::::::
Discussion,

::
we

::::
will

:::::::
attempt

::
to

:::::::
address

:::::
these

:::::
issues

:::::
with

:::
the

:::
use

:::
of

:
a
:::::

faster
::::::::::::::

implementation
::
of

:::
the

:::::::::
modeling

::::::::
algorithm

:::
and

:::
by

:::::::::
considering

::::::
better

:::::::
sampling

::::::::
strategies

::
in
::::::
future

:::::
work.

45

4

0

4

Z
­s

co
re

interface_Z_mod_10 interface_Z_mod_11 interface_Z_mod_2 interface_Z_mod_3

4

0

4

Z
­s

co
re

interface_Z_mod_4 interface_Z_mod_5

0 100 200 300 400 500

Intervals

interface_Z_mod_6

0 100 200 300 400 500

Intervals

interface_Z_mod_7

0 100 200 300 400 500

Intervals

4

0

4

Z
­s

co
re

interface_Z_mod_8

0 100 200 300 400 500

Intervals

interface_Z_mod_9

Figure 14. Probabilistic graphical model generated with pymc2. Ellipses represent stochastic
::::::
Geweke

:::::
values

:
of
:::

the
:
parameters , while triangles are deterministic functions that return intermediated states

:::::::
belonging

::
to

:::
the

:::::::
inference of

::
all

:::::::::
likelihoods.

:::::
Every

::::
point

::::::::
represents the probabilistic model such as

::::
mean

::
of

:::::::
separated

:::::::
intervals

:
of
:

the GemPy model
:::::
chain.

::
If

::::::
interval

::
A

:::
and

::::::
interval

::
B

:::::
belong

::
to

:::
the

::::
same

::::::::::
distribution,

::::
most

::
of

:::
the

::::::
Z-score

:::::
should

:::
fall

:::::
within

:
2
:::
SD.

46

2

0

2

1e 2 interface_Z_mod_10

2.5

0.0

2.5

1e 2 interface_Z_mod_11

2

0

2

1e 2 interface_Z_mod_2

2

0

1e 2 interface_Z_mod_3

1.5

0.0

1.5

1e 2 interface_Z_mod_4

2

0

2

1e 2 interface_Z_mod_5

0 250 500 750
1000

1.5

0.0

1.5

1e 2 interface_Z_mod_6

0 250 500 750
1000

1.5

0.0

1.5
1e 2 interface_Z_mod_7

0 250 500 750
1000

2

0

2

1e 2 interface_Z_mod_8

0 250 500 750
1000

2

0

2

1e 2 interface_Z_mod_9

Figure 15.
:::::
Traces

::
of

:::
the

::::::::
parameters

::::::::
belonging

::
to

:::
the

:::::::
inference

::::
with

::
all

:::::::::
likelihoods.

:::
The

:::::::::
asymptotic

:::::::
behavior

:::::
probes

::::::::
ergodicity.

:::
The

::::
first

::::
1000

:::::::
iterations

::::
(not

:::::::
displayed

::::
here)

::::
were

::::
used

::
as

::::::
burn-in

:::
and

:::
are

:::
not

:::::::::
represented

::::
here.

Appendix F: Blender integration1330

Along the paper we have mentioned and show Blender visualizations (figure 1, b). The first step to

obtain them is to be able to run GemPy in Blender’s integrated Python (there are several tutorials

online to use external libraries in Blender). Once it is running, we can use Blender’s library bpy

to generate Blender’s actors directly from code. Here We include the code listing with the extra

functions necessary to create automatically GemPy models in Blender1335

Listing 8. Extra functionality needed to create GemPy models in Blender

Import Blender library, GemPy and GemPy colors

import bpy

import gempy as gp1340
from gempy.colors import color_lot

Delete previous objects

try:

bpy.ops.object.mode_set(mode=’OBJECT’)1345
bpy.ops.object.select_by_type(type=’MESH’)

bpy.ops.object.delete(use_global=False)

for item in bpy.data.meshes:

bpy.data.meshes.remove(item)

except:1350
pass

47

Define functio to create a Blender material, i.e. texture

def makeMaterial(name, diffuse, specular, alpha):

mat = bpy.data.materials.new(name)1355
mat.diffuse_color = diffuse

#mat.diffuse_shader = LAMBERT

mat.diffuse_intensity = 1.0

mat.specular_color = specular

mat.specular_shader = COOKTORR1360
mat.specular_intensity = 0.5

mat.alpha = alpha

mat.ambient = 1

return mat

1365
Define function the assing material to object

def setMaterial(ob, mat):

me = ob.data

me.materials.append(mat)

1370
...

add listing 1

...

Create interface spheres and orientation copes out of a (rescaled) geodata1375
Interfaces

for e, val in enumerate(interp_data.geo_data_res.interfaces.iterrows()):

index = val[0]

row = val[1]

color = makeMaterial(’color’,color_lot[row[’formation number’]],(1,1,1),1)1380
origin = (row[’X’]*10, row[’Y’]*10, row[’Z’]*10)

bpy.ops.mesh.primitive_uv_sphere_add(location=origin, size=0.1)

setMaterial(bpy.context.object, color)

Orientations1385
for e, val in enumerate(interp_data.geo_data_res.orientations.iterrows()):

index = val[0]

row = val[1]

red = makeMaterial(’Red’,color_lot[row[’formation number’]],(1,1,1),1)

origin = (row[’X’]*10, row[’Y’]*10, row[’Z’]*10)1390
rotation_p = (row[’G_y’], row[’G_x’], row[’G_z’])

bpy.ops.mesh.primitive_cone_add(location=origin, rotation=rotation_p)

bpy.context.object.dimensions = [.3,.3,.3]

#bpy.ops.transform.translate(value=(1,0,0))

setMaterial(bpy.context.object, red)1395

Create rescaled simpleces

verts, faces = gp.get_surfaces(interp_data,lith_block[1],

fault_block[1],

original_scale=False)1400
or import them from a previous project

import numpy as np

verts = np.load(’perth_ver.npy’)

faces = np.load(’perth_sim.npy’)

1405
Create surfaces

48

for i in range(0,n_formations):

mesh_data = bpy.data.meshes.new("cube_mesh_data")

mesh_data.from_pydata(verts[i]*10, [], faces[i].tolist())

mesh_data.update()1410

obj = bpy.data.objects.new("My_Object", mesh_data)

red = makeMaterial(’Red’,color_lot[i+1],(1,1,1),1)

setMaterial(obj, red)

scene = bpy.context.scene1415
scene.objects.link(obj)

obj.select = True

Acknowledgements. The authors would like to acknowledge all people—all around the world—who has con-

tributed to the final state of the library either by stimulating mathematical discussions or finding bugs. This1420

project could not be possible without the invaluable help of all them.

49

References

Aug, C.: Modélisation géologique 3D et caractérisation des incertitudes par la méthode du champ de potentiel:

PhD thesis, Ph.D. thesis, ENSMP, Paris, 2004.

Ayachit, U.: The paraview guide: a parallel visualization application, 2015.1425

Bardossy, G. and Fodor, J.: Evaluation of Uncertainties and Risks in Geology: New Mathematical Approaches

for their Handling, Springer, Berlin, Germany, 2004.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M.: Automatic differentiation in machine

learning: a survey, arXiv preprint arXiv:1502.05767, 2015.

Bellman, R.: Dynamic programming, Courier Corporation, 2013.1430

Betancourt, M., Byrne, S., Livingstone, S., Girolami, M., et al.: The geometric foundations of Hamiltonian

Monte Carlo, Bernoulli, 23, 2257–2298, 2017.

Bishop, C. M.: Model-based machine learning, Phil. Trans. R. Soc. A, 371, 20120 222, 2013.

Blender Online Community: Blender - a 3D modelling and rendering package, Blender Foundation, Blender

Institute, Amsterdam, http://www.blender.org, 2017.1435

Bond, C. E.: Uncertainty in structural interpretation: Lessons to be learnt, Journal of Structural Geology, 74,

185–200, 2015.

Bond, C. E., Gibbs, A. D., Shipton, Z. K., and Jones, S.: What do you think this is? “Conceptual uncertainty”

in geoscience interpretation, GSA Today, 17, 4, 2007.

Caers, J.: Introduction, in: Modeling Uncertainty in the Earth Sciences, pp. 1–8, John Wiley & Sons, Ltd,1440

Chichester, UK, 2011.

Calcagno, P., Chiles, J.-P., Courrioux, G., and Guillen, A.: Geological modelling from field data and geological

knowledge: Part I. Modelling method coupling 3D potential-field interpolation and geological rules: Recent

Advances in Computational Geodynamics: Theory, Numerics and Applications, Physics of the Earth and

Planetary Interiors, 171, 147–157, 2008.1445

Caumon, G.: Towards Stochastic Time-Varying Geological Modeling, Mathematical Geosciences, 42, 555–569,

2010.

Caumon, G., Collon-Drouaillet, P., Le Carlier de Veslud, C., Viseur, S., and Sausse, J.: Surface-Based 3D

Modeling of Geological Structures, Mathematical Geosciences, 41, 927–945, 2009.

Caumon, G., Gray, G., Antoine, C., and Titeux Marc-Olivier: Three-Dimensional Implicit Stratigraphic Model1450

Building From Remote Sensing Data on Tetrahedral Meshes: Theory and Application to a Regional Model of

La Popa Basin, NE Mexico, IEEE Transactions on Geoscience and Remote Sensing, 51, 1613–1621, 2013.

Chatfield, C.: Model Uncertainty, Data Mining and Statistical Inference, Journal of the Royal Statistical Society.

Series A (Statistics in Society), 158, 419–466, 1995.

Chiles, J.-P. and Delfiner, P.: Geostatistics: modeling spatial uncertainty, vol. 497, John Wiley & Sons, 2009.1455

Chiles, J.-P., Aug, C., Guillen, A., and Lees, T.: Modelling of Geometry of Geological Units and its Uncertainty

in 3D From Structural Data:~The Potential-Field Method, Perth, 2004.

Christakos, G.: On the assimilation of uncertain physical knowledge bases: Bayesian and non-Bayesian tech-

niques, Advances in Water Resources, 25, 1257–1274, 2002.

50

http://www.blender.org

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., and Oldenburg, D. W.: SimPEG: An open source frame-1460

work for simulation and gradient based parameter estimation in geophysical applications, Computers &

Geosciences, 85, 142–154, 2015.

Cohen, J. S.: Computer algebra and symbolic computation: Mathematical methods, Universities Press, 2003.

Dagum, L. and Menon, R.: OpenMP: an industry standard API for shared-memory programming, IEEE com-

putational science and engineering, 5, 46–55, 1998.1465

de la Varga, M. and Wellmann, J. F.: Structural geologic modeling as an inference problem: A Bayesian per-

spective, Interpretation, 4, 1–16, 2016.

Dentith, M. and Mudge, S. T.: Geophysics for the mineral exploration geoscientist, Cambridge University Press,

2014.

Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D.: Hybrid monte carlo, Physics letters B, 195,1470

216–222, 1987.

Fiorio, C. and Gustedt, J.: Two linear time union-find strategies for image processing, Theoretical Computer

Science, 154, 165–181, 1996.

Geuzaine, C. and Remacle, J.-F.: Gmsh: A 3-D finite element mesh generator with built-in pre-and post-

processing facilities, International journal for numerical methods in engineering, 79, 1309–1331, 2009.1475

Geweke, J. et al.: Evaluating the accuracy of sampling-based approaches to the calculation of posterior mo-

ments, vol. 196, Federal Reserve Bank of Minneapolis, Research Department Minneapolis, MN, USA, 1991.

Gonçalves, Í. G., Kumaira, S., and Guadagnin, F.: A machine learning approach to the potential-field method

for implicit modeling of geological structures, Computers & Geosciences, 103, 173–182, 2017.

Haario, H., Saksman, E., and Tamminen, J.: An adaptive metropolis algorithm. Bernoulli 7 223–242, Mathe-1480

matical Reviews (MathSciNet): MR1828504 Digital Object Identifier: doi, 10, 3318 737, 2001.

Hillier, M. J., Schetselaar, E. M., de Kemp, E. A., and Perron, G.: Three-Dimensional Modelling of Geologi-

cal Surfaces Using Generalized Interpolation with Radial Basis Functions, Mathematical Geosciences, 46,

931–953, 2014.

Hoffman, M. D. and Gelman, A.: The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte1485

Carlo., Journal of Machine Learning Research, 15, 1593–1623, 2014.

Hunter, J. D.: Matplotlib: A 2D graphics environment, Computing In Science & Engineering, 9, 90–95, 2007.

Jaccard, P.: The distribution of the flora in the alpine zone., New phytologist, 11, 37–50, 1912.

Jessell, M. W., Ailleres, L., and Kemp, A. E.: Towards an Integrated Inversion of Geoscientific data: what price

of Geology?, Tectonophysics, 490, 294–306, 2010.1490

Jordan, M. I.: Learning in graphical models, vol. 89, Springer Science & Business Media, 1998.

Koller, D. and Friedman, N.: Probabilistic graphical models: principles and techniques, 2009.

Kucukelbir, A., Ranganath, R., Gelman, A., and Blei, D.: Automatic variational inference in Stan, in: Advances

in neural information processing systems, pp. 568–576, 2015.

Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., and Blei, D. M.: Automatic differentiation variational1495

inference, arXiv preprint arXiv:1603.00788, 2016.

Lajaunie, C., Courrioux, G., and Manuel, L.: Foliation fields and 3D cartography in geology: Principles of a

method based on potential interpolation, Mathematical Geology, 29, 571–584, 1997.

51

Lark, R. M., Mathers, S. J., Thorpe, S., Arkley, S. L. B., Morgan, D. J., and Lawrence, D. J. D.: A statis-

tical assessment of the uncertainty in a 3-D geological framework model, Proceedings of the Geologists’1500

Association, 124, 946–958, 2013.

Lauritzen, S. L., Dawid, A. P., Larsen, B. N., and Leimer, H.-G.: Independence properties of directed Markov

fields, Networks, 20, 491–505, 1990.

Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T.: Basic linear algebra subprograms for Fortran

usage, ACM Transactions on Mathematical Software (TOMS), 5, 308–323, 1979.1505

Lindsay, M., Ailleres, L., Jessell, M. W., de Kemp, E., and Betts, P. G.: Locating and quantifying geological

uncertainty in three-dimensional models: Analysis of the Gippsland Basin, southeastern Australia, Tectono-

physics, 546-547, 10–27, 2012.

Lindsay, M. D., Jessell, M. W., Ailleres, L., Perrouty, S., de Kemp, E., and Betts, P. G.: Geodiversity: Explo-

ration of 3D geological model space, Tectonophysics, 594, 27–37, 2013a.1510

Lindsay, M. D., Perrouty, S., Jessell, M. W., and Ailleres, L.: Making the link between geological and geo-

physical uncertainty: geodiversity in the Ashanti Greenstone Belt, Geophysical Journal International, 195,

903–922, 2013b.

Lorensen, W. E. and Cline, H. E.: Marching cubes: A high resolution 3D surface construction algorithm, in:

ACM siggraph computer graphics, vol. 21, pp. 163–169, ACM, 1987.1515

Mallet, J.-L.: Space-time mathematical framework for sedimentary geology, Mathematical Geology, 36, 1–32,

2004.

Marechal, A.: Kriging seismic data in presence of faults, in: Geostatistics for natural resources characterization,

pp. 271–294, Springer, 1984.

Matheron, G.: Splines and kriging: their formal equivalence, Down-to-earth-statistics: Solutions looking for1520

geological problems, pp. 77–95, 1981.

McKinney, W.: pandas: a foundational Python library for data analysis and statistics, Python for High Perfor-

mance and Scientific Computing, pp. 1–9, 2011.

McLane, M., Gouveia, J., Citron, G. P., MacKay, J., and Rose, P. R.: Responsible reporting of uncertain

petroleum reserves, AAPG Bulletin, 92, 1431–1452, 2008.1525

Mosegaard, K. and Tarantola, A.: Monte Carlo sampling of solutions to inverse problems, Journal of Geophys-

ical Research, 100, 12–431, 1995.

Nabighian, M. et al.: 75 anniversary-The historical development of the gravity method in exploration, Geo-

physics, 70, 2005.

Nagy, D.: The gravitational attraction of a right rectangular prism, Geophysics, 31, 362–371, 1966.1530

Normark, K.: Overview of the four main programming paradigms, 2013.

Ogilvie, J. F.: A Monte-Carlo approach to error propagation, Computers & chemistry, 8, 205–207, 1984.

Patil, A., Huard, D., and Fonnesbeck, C. J.: PyMC: Bayesian stochastic modelling in Python, J. Stat. Softw, pp.

1–81, 2010.

Rall, L. B.: Automatic differentiation: Techniques and applications, 1981.1535

Robitaille, T. P., Tollerud, E. J., Greenfield, P., Droettboom, M., Bray, E., Aldcroft, T., Davis, M., Ginsburg,

A., Price-Whelan, A. M., Kerzendorf, W. E., et al.: Astropy: A community Python package for astronomy,

Astronomy & Astrophysics, 558, A33, 2013.

52

Salvatier, J., Wiecki, T. V., and Fonnesbeck, C.: Probabilistic programming in Python using PyMC3, PeerJ

Computer Science, 2, e55, 2016.1540

Sambridge, M. and Mosegaard, K.: Monte Carlo methods in geophysical inverse problems, Rev. Geophys, 40,

2002.

Schaaf, A.: Geological Inference based on Kinematic Structural Models, Master’s thesis, RWTH Aachen Uni-

versity, Aachen, Germany, 2017.

Schroeder, W. J., Lorensen, B., and Martin, K.: The visualization toolkit: an object-oriented approach to 3D1545

graphics, Kitware, 2004.

Shannon, E. C.: A mathematical theory of communication, Bell System Technical Journal, 27, 1948.

Stamm, F. A.: Bayesian Decision Theory in Structural Geological Modeling - How Reducing Uncertainties

Affects Reservoir Value Estimations, Master’s thesis, RWTH Aachen University, Aachen, Germany, 2017.

Tarantola, A.: Inverse problem theory and methods for model parameter estimation, Society for Industrial Math-1550

ematics, 2005.

Tarantola, A. and Valette, B.: Inverse Problems = Quest for Information, Journal of Geophysics, 50, 159–170,

1982.

Theano Development Team: Theano: A Python framework for fast computation of mathematical expressions,

arXiv e-prints, abs/1605.02688, http://arxiv.org/abs/1605.02688, 2016.1555

Thiele, S. T., Jessell, M. W., Lindsay, M., Ogarko, V., Wellmann, J. F., and Pakyuz-Charrier, E.: The topology

of geology 1: Topological analysis, Jorunal of Structural Geology, 91 IS -, 27–38, 2016a.

Thiele, S. T., Jessell, M. W., Lindsay, M., Wellmann, J. F., and Pakyuz-Charrier, E.: The topology of geology 2:

Topological uncertainty, Journal of Structural Geology, 91, 74–87, 2016b.

Van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E.,1560

and Yu, T.: scikit-image: image processing in Python, PeerJ, 2, e453, 2014.

van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart,

E., Yu, T., and the scikit-image contributors: scikit-image: image processing in Python, PeerJ, 2, e453,

doi:10.7717/peerj.453, http://dx.doi.org/10.7717/peerj.453, 2014.

van Rossum, G., Warsaw, B., and Coghlan, N.: PEP 8: style guide for Python code, Python. org, 2001.1565

Wackernagel, H.: Multivariate geostatistics: an introduction with applications, Springer Science & Business

Media, 2013.

Walt, S. v. d., Colbert, S. C., and Varoquaux, G.: The NumPy array: a structure for efficient numerical compu-

tation, Computing in Science & Engineering, 13, 22–30, 2011.

Wang, H., Wellmann, J. F., Li, Z., Wang, X., and Liang, R. Y.: A Segmentation Approach for Stochastic Geo-1570

logical Modeling Using Hidden Markov Random Fields, Mathematical Geosciences, 49, 145–177, 2017.

Waskom, M., Botvinnik, O., O’Kane, D., Hobson, P., Lukauskas, S., Gemperline, D. C., Augspurger, T.,

Halchenko, Y., Cole, J. B., Warmenhoven, J., de Ruiter, J., Pye, C., Hoyer, S., Vanderplas, J., Villalba, S.,

Kunter, G., Quintero, E., Bachant, P., Martin, M., Meyer, K., Miles, A., Ram, Y., Yarkoni, T., Williams,

M. L., Evans, C., Fitzgerald, C., Brian, Fonnesbeck, C., Lee, A., and Qalieh, A.: mwaskom/seaborn: v0.8.11575

(September 2017), doi:10.5281/zenodo.883859, https://doi.org/10.5281/zenodo.883859, 2017.

Wellmann, J. F. and Regenauer-Lieb, K.: Uncertainties have a meaning: Information entropy as a quality mea-

sure for 3-D geological models, Tectonophysics, 526-529, 207–216, 2012.

53

http://arxiv.org/abs/1605.02688
http://dx.doi.org/10.7717/peerj.453
http://dx.doi.org/10.7717/peerj.453
http://dx.doi.org/10.5281/zenodo.883859
https://doi.org/10.5281/zenodo.883859

Wellmann, J. F., Horowitz, F. G., Schill, E., and Regenauer-Lieb, K.: Towards incorporating uncertainty of

structural data in 3D geological inversion, Tectonophysics, 490, 141–151, 2010.1580

Wellmann, J. F., Lindsay, M., Poh, J., and Jessell, M. W.: Validating 3-D Structural Models with Geological

Knowledge for Improved Uncertainty Evaluations, Energy Procedia, 59, 374–381, 2014.

Wellmann, J. F., Thiele, S. T., Lindsay, M. D., and Jessell, M. W.: pynoddy 1.0: an experimental platform for

automated 3-D kinematic and potential field modelling, GMD, 9, 1019–1035, 2016.

Wellmann, J. F., de la Varga, M., Murdie, R. E., Gessner, K., and Jessell, M.: Uncertainty estimation for a ge-1585

ological model of the Sandstone greenstone belt, Western Australia–insights from integrated geological and

geophysical inversion in a Bayesian inference framework, Geological Society, London, Special Publications,

453, SP453–12, 2017.

Wu, K., Otoo, E., and Shoshani, A.: Optimizing connected component labeling algorithms, Lawrence Berkeley

National Laboratory, 2005.1590

54

