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Authors’ responses to reviewers’ comments
Anonymous Reviewer #2

- The size of the vector b in figure 1 should be (55296 x 1), shouldn’t it? The reviewers’ responses suggest so,
and working through the calculation and text myself, this is how I understand it.

An aside: I know the software is written in R, but the broadcasting explaination in section 2.1 invokes numpy.
Technically, numpy broadcasting would only work here if the array b was of size (55296). The text implies that
the array size is (55296 x 1), which is fundamentally different in numpy. As a Python native this confused me
for a while, but the authors have explained their notation and broadcasting choice in section 2.1, so I am not too

concerned about this.

Both of these observations are correct. I have fixed Figure 1 accordingly, including dropping the second index on b. However, b

is still depicted graphically as a column vector, since that seems to be how most people regard “vectors” of unspecified shape.

- page 7, line 17: 3 to 20 years. I think 3 to 5 years is a bit more apparent; I don’t see any noticeable periodicity

on frequencies < 0.2. The captions to figures 5 and 6 also say 3-5 years.

The skewed shape of the PSD for EOF-2 makes it a little nebulous what the lower bounds of the frequencies in that mode are.
I have changed the frequency range in the description to 3—5 years to coincide more closely with the peak of the PSD and for
consistency with the figure captions.

Thank you for your helpful suggestions.
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Anonymous Reviewer #3

The title is not very informative - all emulators are computationally efficient, so what marks this one out? A
title that refers to internal variability might be useful, and would help to draw the attention of target end-users?

Specific examples of cases when impacts are strongly dependent upon internal variability might be useful to
make it crystal clear what this is doing and why it is needed. Even just pulling in the headline result from Ray

“Climate variation explains a third of global crop yield variability” would help non-specialist readers a lot I think.
These are both excellent suggestions, which I have implemented. Thank you.

I had similar thoughts as reviewer two re using different RCPs used to train the emulator, and I didn’t find the
response fully convincing — some tests should be possible here? In particular, I found myself wondering whether
EOFT1 reflected responses to different RCPs. Did you check whether EOF1 was similar in an emulator trained on
a few simulations with a single RCP (and didn’t disappear, as when you trained on a single simulation)? Why not
compare the variance of the full emulator (i.e. trained on all 9 simulations) separately with the RCP2.6 simulations
and with the RCP8.5 simulations to quantify any scenario bias? In any event, some discussion of this should be
included in the text as I suspect many people will question it. Repeating from Reviewer Two “Section 4.2 got me
thinking that as the model is trained on the RCP outputs, is there any difference in the results when taking just the
set of realisations from RCP2.6 and RCP8.5? Certaintly across ESMs, the variance across models increases with
increasing global mean temperature. It would therefore not be correct to use a variability model that is trained on
RCP8.5 for low forcing scenarios or those with a peak and decline. I note the authors address this in section 4.3,

but I wonder if they have tested this.”

My analysis of this point wound up being rather long, so I have placed it in our public code and data archive. It can be
downloaded from https://zenodo.org/record/2586040/files/cc-analysis.nb.html?download=1 The summary is that the mean re-
sponse model trained on the ensemble members from a single RCP is practically indistinguishable from the mean response
model trained on an equivalent number of ensemble members from different RCPs. I have added a new subsction 3.4, which
compares these mean field models and directs readers to the archive for further tests.

Abstract. Earth System Models (ESMs) are the gold standard for producing future projections of climate change, but running
them is difficult and costly, and thus researchers are generally limited to a small selection of scenarios. This paper presents
a technique for detailed emulation of Earth System Model (ESM) temperature output, based on constructing a deterministic
model for the mean response to global temperature. The residuals between the mean response and the ESM output temperature
fields are used to construct variability fields that are added to the mean response to produce the final product. The method
produces grid-level output with spatially and temporally coherent variability. Output fields include random components, so
the system may be run as many times as necessary to produce large ensembles of fields for applications that require them.

We describe the method, show example outputs, and present statistical verification that it reproduces the ESM properties it is


https://zenodo.org/record/2586040/files/cc-analysis.nb.html?download=1
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intended to capture. This method, available as an open-source R package, should be useful in the study of climate variability

and its contribution to unertainties in the interactions between human and earth systems.

Copyright statement. TEXT

1 Introduction

There are a variety of scientific applications that use data from future climate scenarios as input. Examples include crop
and agricultural productivity models (Rosenzweig et al., 2014; Elliott et al., 2014; Nelson et al., 2014), water and hydrology
models (Cui et al., 2018; Voisin et al., 2017), energy models (Turner et al., 2017), and global human systems models (Akhtar
et al., 2013; Calvin and Bond-Lamberty, 2018). Earth System Models (ESMs) are the gold standard for producing these future
projections of climate change; however, running ESMs is difficult and costly. As a result, most users of ESM data are forced
to rely on public libraries of ESM runs produced in model intercomparison projects, such as the CMIP5 (Coupled Model
Intercomparison Project) archive (Taylor et al., 2012). Although a few experiments have produced larger ensembles of runs
(e.g. Kay et al., 2015), typically users are limited to a small selection of scenarios with only a handful of runs for each scenario.

This limited selection of scenarios may be inadequate for many types of studies. Users might need customized scenarios
following some specific future climate pathway not covered by the scenario library, or they might need many realizations of
one or more future climate scenarios.

Examples of research areas for which archival runs might be insufficient include uncertainty studies, in which the multiple
realizations are used to compute a statistical distribution of outcomes in the downstream model (Murphy et al., 2004; Falloon
et al., 2014; Sanderson et al., 2015; Bodman and Jones, 2016; Rasmussen et al., 2016). Studying tail risk (i.e., the effects
of climate variables assuming values in the tails of their distribution, which by definition occurs infrequently in any single
scenario run) is another example (Greenough et al., 2001), and studying sensitivity to climate variability is a third (Kay et al.,
2015).

In these situations, researchers typically turn to emulators to get access to a sufficient quantity of data without having to do
an infeasible amount of computation. Climate model emulators attempt to approximate the output a climate model would have
produced had it been run for a specified scenario. Perhaps the best known emulator algorithm is pattern scaling, which develops
in each grid cell a linear relationship between global mean temperature 7T}, and the climate variable or variables being modeled
(Mitchell et al., 1999; Mitchell, 2003; Tebaldi and Arblaster, 2014). A variety of enhancements to this basic procedure have
been proposed, mostly centering around adding additional predictor variables (i.e., besides just T;) (MacMartin and Kravitz,
2016), adding nonlinear terms to the emulator function (Neelin et al., 2010), or separating the climate state into components,
each with its own dependence on the predictor variables (Holden and Edwards, 2010).

Most of these methods are deterministic functions of their inputs, and thus their outputs can be viewed as expectation

values for the ESM output. Real ESM output, however, would have some distribution around these mean response values. We
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will refer to these departures from the mean response generically as “variability.” Many of the applications described above

are sensitive to climate variability{e-e-Ray-et-al;2045)so~eapturing-it-. For example, Ray et al. (2015) found that “Globall

climate variability accounts for roughly a third (~32-—39%

capturing this variability in emulators is crucial to understanding the behavior of and uncertainties in these modelsapplications.

There have been some attempts to add variability to emulators, but producing realistic variability is difficult, due to the
complicated correlation structure exhibited by climate model output over both space and time. Typically methods deal with
this difficulty by either placing a priori limits on the form of the correlation function (Castruccio and Stein, 2013), or by using
bootstrap resampling of existing ESM output (Osborn et al., 2015; Alexeeff et al., 2016).

In this paper we describe a computationally-efficient method for producing climate scenario realizations with realistic vari-
ability. The realizations are constructed so as to have the same variance and time-space correlation structure as the ESM data
used to train the system. The variability produced by the method includes random components, so the system may be run many
times with different random number seeds to produce an ensemble of independent realizations. The results in this study are
limited to temperature output at annual resolution. Future papers will extend the method to additional output variables, such as

precipitation, and to subannual time resolution.

2 Method
2.1 Notation

In the text that follows, we use underlined bold symbols (e.g. R) to refer to matrices. Ordinary bold symbols are used for
vectors (e.g. ). When it is necessary to distinguish between column and row vectors, the latter will be marked as the transpose
of a column vector (e.g. ). These vectors represent collections of scalar quantities that bear some relationship to each other
in time or space. Because of this, the same variable can appear in both vector and scalar variants, with the vector decoration
(or lack thereof) indicating which is meant. For example, T}, is the global mean temperature, a scalar, while Ty is a vector
representing a sequence of global mean temperatures.

Occasionally we will add a matrix and a vector; e.g., B = A + . This should be interpreted to mean that the vector x is to
be added to each row of the matrix A. Therefore, the length of & must be equal to the number of columns in A. This broadcast
convention is slightly nonstandard mathematically, but it is common in programming languages that support matrix arithmetic

(e.g. the numpy package for python), and simplifies certain expressions that will come up in the derivation.
2.2 Input

Our method requires a collection of ESM model output to train on. Any model can be used, and by switching out the input
data the method can be tuned to produce results representative of any desired ESM. For all of the results in this paper we
have used the CESM(CAMS) (Community Earth System Model (Community Atmosphere Model)) output from the CMIP5

archive (Taylor et al., 2012). We used surface temperature data from all available 21st century runs for all four Representative
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Concentration Pathway (RCP) emissions scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5), for a total of 9 runs, each 95
years in length. These data were averaged to annual resolution, for a total of 855 global temperature states.

To keep clear the distinction between the data produced by the emulator and the ESM data used to train the emulator, we
will refer to the ESM data as “synthetic measurements” (when referring to the data as a whole) or “cases” (when referring
to individual frames in the data), while the terms “results” and “model output” will be reserved for the data produced by the
emulator.

Throughout the discussion, we will treat each temperature state as a vector, with each grid cell providing one entry in the
vector. The ordering of the grid cells within the vector is arbitrary, but consistent throughout the entire calculation. The entire
set of synthetic measurements will be grouped into the input matrix O, with the cases in rows and grid cells in columns. In the
input data used for this study, each case is 288 (longitude) x 192 (latitude), for a total of 55296 grid cells. Therefore, in this
case, O has dimension 855 x 55296.

We will also derive from the input an operator for computing the area-weighted mean of a grid state. We denote this vector

by
1 .
A= Esm(e), 1)

where 6 is the polar angle (i.e., colatitude) of each grid cell, and S is the sum of all the area weights across the entire grid.
When defined this way, the global mean temperature for a grid state x is T, = ATz =2\ Similarly, the matrix-vector

multiplication Tg = O produces a vector of global mean temperature values for the entire input data set.
2.3 Mean response model

Our basic procedure will be to construct a deterministic model for the mean response to global temperature. The residuals
between the mean response and the synthetic temperature fields will be taken as representative of the variability in the ESM
and used to construct variability fields that will be added to the mean response to produce the final product.

In principle the mean response could be calculated using any of the emulation techniques described in section 1. For illus-
trative purposes we will stick with a simple linear pattern scaling using a linear regression variant similar to that described in
Mitchell et al. (1999). Using standard least-square regression techniques we compute vectors of weights w and biases b (each
of these vectors has length equal to the number of grid cells) such that the mean response field m for global mean temperature

T, is given by
m(T,) =T,w+b. @)

This formula can be applied to the entire input data set, with T,;w becoming the outer product Tng to produce the residual

matrix

R=0-(T,w' +b), 3)
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Figure 1. Schematic of the residual calculation showing the shapes of the matrices involved. The result of the outer product Tg'wT is an

855 x 55296 matrix. The vector b is added to this matrix using the broadcast convention described in section 2.1

which will be used to construct the variability model. This calculation is shown schematically in Figure 1. Conversely, the vari-
ability fields generated will be added to the mean response (i.e., the last term of equation (3)) to generate absolute temperature
fields.

2.4 Generating variability

The matrix of residuals, R, characterizes the variability in the input data. We deem a generated variability data set to be realistic
if it matches the distribution of residual values in each grid cell and the space and time correlation properties of the residuals.
Our task, therefore, is to generate a random field with specified distribution and correlation properties.

To capture the time correlation we will make use of the Wiener-Khinchin Theorem (Champeney, 1973, § 5.4). This theorem

states that given a function g(¢) and its Fourier transform G(f),

F(C(g9) =GP, @)

where C(g) is the time autocorrelation function of g(t), and F(C') is the Fourier transform of C. The salient feature of
equation (4) is that the right-hand side of the equation depends only on the magnitudes of the elements of GG, not their phases
(recall that the results of a Fourier transform are complex numbers with both magnitude and phase). Therefore, we can generate
an alternate function ¢’ by setting |G’| = |G|, selecting the phases of G’ at random, and taking the inverse Fourier transform.
When ¢’ is constructed this way, the Wiener-Khinchin Theorem guarantees that g and g’ will have the same autocorrelation
function.

In theory we could use a similar technique to capture the spatial correlation; however, in practice the spherical geometry of
the spatial domain makes this difficult. Moreover, it is not just the spatial correlation properties that matter, but also the locations
at which spatially correlated phenomena occur. Therefore, we capture spatial correlations by using principal components

analysis (PCA) to express the grid state as a linear combination of basis vectors that diagonalize the covariance matrix of the
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system.

L
o(t) = ¢i(t)d, )
i=1
where
&/ 2;=0,
ifi # j. (6)
COV(¢i7¢]) = 07

The &, are called empirical orthogonal functions (EOFs) (Kutzbach, 1967) and are computed using singular value decomposi-
tion (SVD) (Golub and Van Loan, 1996, § 2.5.3). The ¢;(t) are the projection coefficients for the grid state vectors. The second
property in equation (6) is of particular interest for this application. Because the covariances of the projection coefficients for
different EOFs are zero, we can choose them independently. In particular, when applying the phase randomization procedure
described above, we can apply it to each ¢; independently because all of the spatial correlation properties of the system have
been absorbed into the definition of the EOFs.

In practice, it is convenient to force all of the basis vectors except for one to have area-weighted global means of zero, so
that all of the variability in the global mean is carried by a single component. This property is useful because it allows us to
control how much the generated variability distorts the global properties of the mean response field it is being added to. To
accomplish this, we introduce a small modification to the EOF decomposition procedure. We define the zeroth basis vector &g

to be the global mean operator, normalized to unit magnitude:

A
VAT

We force & to be a basis vector by subtracting from each residual vector its projection onto &( and performing the SVD on the

)

Zo =

modified residuals. This procedure forces all of the basis vectors to be orthogonal to &(. Since this vector is proportional to the
global mean operator A, this orthogonality property guarantees that all of the other basis vectors will have zero global mean.
Therefore, if ¢o(t) = 0, then the global means of the mean response fields will be unaffected when the generated residual fields
are added. On the other hand, if it is desirable to change the global means, perhaps because they were generated by a simple
climate model (Hartin et al., 2015; Meinshausen et al., 2011) that produces smoother results than real ESMs, then that can be
done by setting ¢ appropriately.

The typical use of PCA in many fields, including climate modeling, is for dimensionality reduction. In such applications
the next step after computing the EOFs would be to identify and keep a small set of EOFs that capture the majority of the
variability and to throw away the rest. In this case, dimensionality reduction is not our goal. Rather, we have used the EOF
decomposition only to separate the residual field into components that are uncorrelated over time. Therefore, we keep the full
set of EOFs and their projection coefficients. The sole exception is for components for which the singular values produced by
the SVD procedure are very small. There are generally 1 or 2 such components, and keeping them can cause problems with

roundoff error, so these are dropped.



10

15

Table 1. Summary of steps in the variability generation algorithm described in section 2

1. Select and fit the mean response model.

2. Construct residual field R by subtracting mean response from ESM output (equa-
tion (3)).

3. Orthogonalize residuals with respect to EOF-0 (equation (7)).

4. Perform the EOF analysis on the residual field.

5. Compute the DFT @ of the residual field’s projection coefficients onto the EOF basis.

6. Compute a new Fourier transform ®* such that |®| = |®*| and the phases of ®* are

chosen randomly, uniformly on the interval [0, 27).
7. Compute the projection coefficients ¢* of the variability field as the inverse DFT of
P*.

8. Compute the variability field as & (t) = 3 o @7 ()&

At this point we are ready to apply the Wiener-Khinchin Theorem. We compute the discrete Fourier transform (DFT) of the
¢ from equation (5): ®(f) = F(¢(t)). We then compute ®*(f) such that |®*| = |®|, but we choose the phases of ®* to be
uniform random deviates on the interval [0, 27r]. From this we can reconstruct ¢*(t) as the inverse DFT of ®*(f). Finally, we
construct the variability field using equation (5), replacing ¢ with ¢*.

The steps in the variability generation algorithm are summarized in Table 1.

3 Results, Analysis, and DiseussionValidation
3.1 Model output and performance

To illustrate the algorithm, we have produced four independent variability fields by applying the algorithm to the input data
described in section 2.2. Training the emulator (i.e., read-in and analysis of the ESM input) took approximately 143 seconds
on a midrange workstation. Each temperature field took 3—4 seconds to generate.

Figure 2 shows a single time slice for each of the variability fields (i.e., the temperature field, with the mean response field
subtracted out). The time series these slices were taken from could be used as an ensemble to study the effects of variability on
the downstream models that are consumers of these sorts of climate projections.

The spatial structure in the variability is readily apparent. Temperature perturbations occur on scales of roughly 40-60

degrees of arc. Some features, such as the one seen in the low-latitude eastern Pacific, appear in all of the frames, with greater
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Figure 2. Year 2025 snapshot for variability fields generated using the procedure described in section 2.4. Each field is a different randomly
generated realization of the temperature field’s departure from the mean response (sec. 2.3). The sequences these frames were drawn from

could be used as an ensemble of future climate scenarios for studying sensitivities or uncertainties in models that use climate data as inputs.

or lesser strength, or, in one case, with opposite sign. Other features, such as the cool patch over northern Europe in the third
frame, have no apparent analog in the other realizations.

We can get a sense of the behavior of the variability fields over time by looking at the power spectral density of the EOFs
(fig. 3). Two trends are immediately apparent. First, the total power present in each EOF decreases dramatically after the first
few EOFs (fig. 3). The first 10 components together account for 49% of the total power, and the first 50 components account
for 72%. Notwithstanding this observation, the long tail of EOFs makes a nontrivial contribution to the result. The last 400
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Figure 3. Relative power for each EOF. Roughly half of the total power is contained in the first 10 EOFs. The aggregate power for all EOFs
beyond 400 is 1% of the total.

EOFs collectively make up a little over 1% of the total power, and as we shall see below, all of the small-scale variability is
contained in these components.

The second observation is that the power spectrum whitens (becomes more uniform across frequencies) considerably (Fig. 4),
such that only a few of the most prominent EOFs have any significant periodic signature. One interpretation of this observation
is that there are only a few consistently repeatable periodic phenomena represented in the surface temperature data of this ESM.
The rest of the variability, although highly structured spatially, does not have a lot of temporal structure. The components with
significant periodicity account for roughly a third of the total variability signal. In other words, although periodic oscillations

are a prominent component of the variability, most of the variability appears to be of the uncorrelated, interannual sort.

10
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Figure 4. Heat map of power spectral density (PSD) for the first 50 EOFs. The trend of decreasing total power and more uniform spectral

density continues for the remaining EOFs beyond EOF-50.

In Figure 5 we show the power spectral density for the first nine EOFs. EOF-1 has power primarily at long periods, indicating
a pattern of variability that is largely locked in at the beginning of a run, but which varies from one run to the next. EOFs 2, 3,
and 5 show evidence of periodicity on time scales ranging from 3 to 20-5 years.

Figure 6 visualizes the spatial patterns represented by the first 6 EOFs, and Figure 7 visualizes some of the lower power
EOFs. These plots show that the scale of the features gets progressively smaller as the power decreases. For example, in EOF-
3 there is a complex of positive and negative associations that spans nearly the entire Pacific Ocean. The features visible in
EOF-25 are roughly continental scale, while the features in EOF-50 are about half that size. By EOF-400 the feature size is in

the hundreds of kilometers, and the lowest power EOF, EOF-853, shows variations a few grid cells in size.

11
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Figure 5. Power-Smoothed power spectral density (PSD) for the first 9 EOF basis functions. EOFs 2, 3, and 5 show peaks in the PSD,
indicating quasiperiodic behavior on 3-5 year time scales. EOF-1 has most of its power at low frequencies, indicating that this component is

approximately (though not exactly) constant over the course of a single ESM run.

3.2 Statistical equivalence to ESM input

The time series produced by this method are designed to match three key statistical properties of the ESM data used to train

the emulator:
1. Distribution of values in a grid cell over time and between realizations.
2. Correlation between values in different grid cells.

3. Time autocorrelation of spatially correlated patterns of grid cells.

12
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Figure 6. Spatial visualizations of the EOF1-6 basis functions. EOF grid cell values are scaled such that the magnitude of the largest value
is 1. These components capture large-scale patterns of variability. EOFs 2, 3, and 5 all feature a temperature anomaly in the eastern Pacific.

These same components can be seen in figure 5 to have some periodicity on 3-5 year time scales, suggesting that they may be rooted in

physical processes in the ESM the model was trained on.
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Figure 7. Spatial visualizations of higher EOF basis functions. EOF grid cell values are scaled such that the magnitude of the largest value
is 1. The characteristic scale of temperature fluctuations decreases for functions later in the series. Thus, EOFs 25 and 50 show features at
about half the scale of those shown in figure 6, while features in EOFs 200 and 400 are roughly one quarter the scale. By the time we get

to the last few hundred EOFs, features are just a few grid cells in size, resulting in patterns that might be thought of as spatially structured

noise.
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Table 2. F-test power for several hypothetical percentage differences between input and output variance.

Variance Difference  F-test Power

1% 0.05
2.5% 0.07
5% 0.13
10% 0.37

In this section we perform a series of statistical tests to verify properties 1 and 2. Property 3 is guaranteed by the Wiener-

Khinchin Theorem, and so we do not test it statistically.
3.2.1 Statistical tests of variability field properties

The generation procedure described in this paper does not strictly guarantee that the generated fields have the desired statistical
properties; therefore, we turn to statistical tests of some of the key properties. Testing for the absence of an effect is tricky. One
cannot simply run a hypothesis test and, seeing a lack of a positive result, conclude that there is no effect. The procedure we
have adopted is to focus on tests that can be run in each grid cell (or, in one case, for each pairwise combination of EOFs). We

can consider two competing hypotheses:
H1 The statistic being tested is the same in the generated data as in the input data.

H2 The statistic being tested differs in the generated data by some de minimis value from the input data.

The expected numbers of positive results under these hypotheses are just the p-value (H1) and the power (H2) of the test, each
multiplied by the number of tests performed. By observing which of the two hypotheses the actual number of positive results
agrees with more closely, we can decide which of the two hypotheses is more likely. The philosophy underlying this procedure
is that although we cannot prove that there is no statistical difference between the generated and input data, if we can show that
an upper bound on the effect size is small enough to be ignorable in practice, then that is sufficient.

All of the statistical tests described in this section were performed on an ensemble of 20 generated fields, each with 95
one-year time steps, for a total of 1900 model outputs in the tests that operated directly on the generated data. For the test that
operates on the ¢ values, each temperature grid time series had to be tested separately, for a total of 95 samples per test. In each
case the threshold p-value used for the tests was 0.05.

The first property we will examine is the variance of the distribution of grid cells. We used the F-test of equality of variances
to perform this test. In order to be valid, the F-test requires the samples being tested to be normally distributed. We test for this
property separately below. Table 2 gives the power (i.e., expected fraction of positive results) for several hypothetical percentage
differences in variance between the ESM and generated fields. The actual fraction of positive results was approximately 2 x
10~*, which is much smaller than the p-value of 0.05.

It may seem surprising that the fraction of positive results was so much smaller than the number expected from the p-value

of the tests. This result can be explained by observing that the derivation of the p-value assumes a particular model for H1.

15
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Table 3. Pearson test power for several hypothetical correlation coefficients between ¢ for different EOFs.

Correlation Coefficient Pearson Test Power

0.01 0.07
0.05 0.59
0.10 0.99

Specifically it assumes that the generated data and the reference data (i.e., the ESM input) come from populations with exactly
equal variance. We cannot observe population variances directly; instead we observe the variances of samples from those
populations. The variances of such samples can vary quite a bit from the variance of the underlying population, and so we
expect to see some fairly large differences between the variances of input grid cells and the corresponding variances of output
grid cells. The F-Distribution tells us just how large we might reasonably expect those discrepancies to be.

Our model results, on the other hand, are not being generated by sampling from a population. Instead, they are generated by
a process that seeks to replicate the variances of the reference data exactly. If it were completely successful at doing so, then all
of the variances would be identical to their counterparts in the reference set, and there would be precisely zero positive results.
In actuality, there are some slight discrepancies, but these are much smaller than the ones assumed in the formulation of H1.
Therefore, we see many fewer positive results than would be expected based on the p-value used in the tests.

Our second test concerns the covariance between grid cells. Testing for equal, nonzero covariances directly is challenging,
but we can transform the results into a form that is more readily testable. Starting from equation (5) we can show that for two

grid cells x,,, and x,,

COV (T, ) = »_var(§i)Zimain + D cov(i, §;)Timjn, ®)
i i#]

where Z;,, is the mth component of &;. The corresponding expression for the generated data is the same, except that the ¢ are

replaced by ¢*. For the input ESM data, the construction of the EOFs guarantees that cov(¢;, ¢;) = 0, when averaged over the

input data. Thus, the grid cell covariances of the generated data will match those of the ESM data if, averaged over runs of the

generator:
var(¢;) = var(¢;) for all 7, and )
cov(e;,¢7) =0 for all i # j. (10)

The first of these two conditions is guaranteed by the generation procedure. Parseval’s Theorem (Champeney, 1973, ap-

pendix E) states that for each of the ¢; (and likewise for the ¢}),

N, N;
> (@i0))* =D |1 Fr(ea)*. a1
t=1 k=1

Since our procedure ensures |F(¢F)| = | Fr(¢;)|, this guarantees that the condition in equation (9) holds.

16



10

distribution
= = Heta(5.5)

m— Normal

0.00 0.25 0.50 0.75 1.00

Figure 8. Comparison of the Beta(5,5) distribution and a Normal distribution with equal variance. The beta distribution is zero outside of
the depicted range, while the normal distribution asymptotically approaches zero. Although the difference between these two distributions is

small, the Shapiro-Wilk test can easily distinguish them.

To test the condition in equation (10) we used Pearson’s correlation test. Table 3 gives the power of the test for various
correlation coefficients for the alternative hypothesis. The actual fraction of positive tests, over the pairwise combinations of
EOFs, was 0.05, or roughly what we would expect from the p-value used in the test. From these observations we can conclude
that the upper bound on possible correlation coefficients between the ¢ is somewhere between 0.01 and 0.05.

The final statistical test concerns whether the generated residuals are normally distributed. Apart from being necessary to
ensure the validity of the F-tests above, a normal distribution is desirable per se because we expect the temperature residuals
to be normally distributed. This test is more challenging to perform than the rest because there is no obvious way to define
an effect size to use in calculating the power. Instead, we must determine a reasonable nonnormal distribution to use as the
benchmark for deviations from normality.

To arrive at such a distribution, consider how the generated residual fields are calculated. The value x of the residual tem-
perature in each grid cell is produced by summing over all EOFs and all Fourier components. Since the phases of the Fourier
components are chosen randomly, this amounts to a sum over uniform random deviates, which by the Central Limit Theorem
will be asymptotically normally distributed. Any deviations from normality will be due to having insufficient terms in the sum

to reach that asymptotic behavior. Such a distribution would appear truncated compared to the normal distribution, since the
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sum of uniform random deviates has hard minimum and maximum values. The Beta distribution, B(n1,n2) also has these
properties. When ny = ny = n, the distribution is symmetric and approaches a Normal distribution as n increases. We adopted
the B(5,5) distribution, shown in Figure 8, as our representative distribution for a de minimis effect size.

We used the Shapiro-Wilk test of normality to evaluate the normality of the grid cell distribution. For this sample size, the
power of the test for distinguishing between a B(5,5) and a Normal distribution is 0.998. The actual fraction of grid cells that
showed a positive result was 0.06, indicating that if there is any nonnormality, it is almost certainly smaller than the difference

between a normal distribution and a B(5,5) distribution.
3.2.2 Commentary on statistical properties

Property 3 deserves additional comment because it is explicitly not equivalent to matching the time autocorrelation function
of individual grid cells. We chose to focus on autocorrelation of spatial patterns rather than on grid cells because the only way
to preserve the autocorrelation of grid cells would be to force a constant phase difference between EOFs. This assumption
doesn’t seem particularly realistic and isn’t supported by the input data. Limiting the treatment of time autocorrelation to the
EOFs ensures that to the extent that EOFs represent physical phenomena they occur with the right frequency spectra, while not
overly constraining the phase relationships between modes.

The properties enumerated above ensure that, when using the generated data to drive an ensemble of downstream models and
compute statistics on those results, the scale of the fluctuations produced, their spatial location and extent, and their periodic
character, if any, will be faithfully reproduced, allowing reliable calculations of variance in outcomes, return times of extremes,
and regional differences in impacts. Therefore, we expect a technique like this to be invaluable for studies of the contribution
of variability to uncertainty in climate effects and feedbacks.

Supporting such uncertainty studies was our primary purpose in developing this tool, but the analysis in section 3.1 suggests
additional possibilities. A byproduct of the procedure to generate variability fields is that we develop quite a few statistics that
could be used to characterize the ESM used to train the emulator. Thus, the training stage of the emulation procedure could also
function as a diagnostic package for ESMs. For example, the high power at low frequencies for the first 10-15 EOFs (Fig. 4)

was unexpected and might be of interest for further study.
3.3 Opverfitting the mean response

There is one important pitfall to watch out for when using this method to learn the behavior of an ESM; viz., one must take
care not to allow the mean response model to overfit the ESM data. The more complex the model, the greater the danger of
overfitting, but even simple models like the linear regression used here can overfit. Consider EOF-1 and its power spectrum,
depicted in figure 5. The power spectrum’s strong peak at f =0 means that the coefficient ¢; of the component is nearly
constant within a single run of ESM data. Therefore, if we were to train the model on just a single run (i.e., a single realization
of a single scenario), this component would be absorbed into the mean response, causing it to be reproduced identically in

all generated temperature fields. In fact, this is precisely what happened in early versions of this work, where we trained the
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emulator on a single ESM run. EOF-1 only began to appear in the variability fields once we expanded the input data to include
the full suite of CESM(CAMS) runs from CMIPS5.

Therefore, it is essential to include enough independent ESM runs in the training data to ensure that the mean response
model will not capture fluctuations that are idiosyncratic to a particular run. Exactly how many runs are needed will depend
on the complexity of the mean field response model. For a relatively simple model, such as the linear model used in this
paper, as few as three independent runs (i.e., one more than the number of parameters per grid cell) should provide reasonable
protection against absorbing variability features into the mean response model. Conversely, mean response models with many
parameters per grid cell would require more independent inputs. In case of doubt, cross-validation should be used to diagnose
possible overfitting. Along similar lines, the input data should include runs for scenarios that span the entire range of future
scenarios that the system will be used to emulate. This practice ensures that the mean response model will not be called upon

to extrapolate beyond the range of conditions it was trained on.

3.4 Underfitting the mean response

Several readers of early versions of this work questioned the decision to fit the mean response model over the entire range of
RCP scenarios, speculating that this practice would result in a mean response model that represented a sort of compromise
amongst the various RCPs in the input data, fitting none of them particularly well. If the mean response model were to
be underfit in this way, then the residuals from the misfitting would be lumped in with the variability and subjected to the
randomization procedure described in section 2.4. It was suggested that the long-period behavior of EOF-1 might be evidence
for short. We know that the CC is true to some extent, since it seems unlikely that the relationship between global and local
temperatures in these models has no dependence on the specifics of the warming scenario. One solution to the CC would be
to fit separate emulators for each of the RCP warming scenarios; however, for scenarios that do not correspond exactly to an
RCP, we still need to generate fields using an approximate mean response, and we will need to know how much of an error we
are making. Therefore, the question we must answer is, are the effects of using a compromise model acceptably small in the
context of the other approximations used in the emulator’s design?

To investigate this question, we fit two more emulators to subsets of the data. The first of these used only the three ensemble
members for the RCP-8.5 scenarios. We designated this emulator "RCP85”. The second fit used three ESM runs covering the
RCP-2.6, RCP-6.0, and RCP-8.5 scenarios. We designated this emulator “MULTT”. Our first test was to compare the mean
field models for these two emulators. Figure 9 shows a grid cell by grid cell comparison of the w (linear) and b (intercept)
coefficients for the two models, from which it can be see that the two mean response models are very similar,

We can quantify just how similar the two models are by fitting linear models predicting the RCP85 coefficients from the

corresponding MULTI coefficients. When we do this, we find that the average ratio between the RCP85 and MULTI w terms

is 0.994, with an R? of 0.999. Most of the residuals are within +/- 0.02 of 0 (for a coefficient that ranges approximately from
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Figure 9. Comparison between coefficients of the mean response model for the RCP85 and MULTI emulators. For both the linear term w
left) and the intercept term b (right) the two models are nearly identical.

0-3). For b, the relationship is nearly as good; the coefficient ratio is 0.987, with an R? of 0.998. Most of the residuals are

between -3 and +6 (the scale of this variable is considerably larger than the scale for w: approximately —650 - +300.)
From this result alone, we see that the mean response models for these two emulators are virtually identical, making it
extremely unlikely that CC effects are an appreciable source of error in the MULTI emulator. For this reason, description of
additonal tests of CC effects, along with source code and results have been relegated to the data and analysis code archive cited

in section 4.

3.5 Assumptions

As with most emulation schemes, this one makes certain assumptions about the models it is trying to emulate. The most
important assumption is that the ESM outputs can be linearly separated into a temperature-dependent component (what we’ve
been calling the “mean field response”) and a time-dependent component (the “variability”’). Notably, we assume that the
temperature response is independent of the temperature history. This assumption, though common in emulator studies, is
dubious. The assumption can be partially negated by including additional predictor variables in the mean field model (e.g.
Joshi et al., 2013; MacMartin and Kravitz, 2016). At the same time, the second assumption implies that the internal dynamics
of the ESM are unaffected by the specifics of the external forcing, which is certainly debatable.

A related assumption is the assumption of stationarity. The variability fields produced by this method have stationary statis-
tical properties. Some research has suggested that the variability is likely to change with increasing global mean temperature
(Murray and Ebi, 2012). This sort of phenomenon could be added to our method by introducing a global mean temperature-

dependent scale factor. Such a factor would be applied in between steps 7 and 8 in Table 1.
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4 Conclusions

Having a computationally efficient method for generating realizations of future climate pathways is a key enabler for research
into uncertainties in climate impacts. In order to be fit for this purpose, a proposed method must produce data with statistical
properties that are similar to those of Earth System Models, which are currently the state of the art in projecting future climate
states.

In the preceding sections we have described such a method, and we have shown that it reproduces key statistical properties
of the Earth System Model on which it was trained. Specifically, it produces equivalent distributions of residuals to the mean
field response and equivalent space and time correlation structure. The method is computationally efficient, requiring under 10
minutes to train on the input data set used for the results presented here. Once training is complete, generating temperature
fields takes just a few seconds per field generated.

As a result, we believe the method will be extremely useful for the impacts studies it was designed to support. Currently, the
method is limited to producing temperature only, and at annual resolution. However, we believe that the method can be readily

extended to other climate variables and to shorter time scales. These extensions will be the subject of follow-up work.

Code and data availability. Software implementing this technique is available as an R package released under the GNU General Public
License. Full source and installation instructions can be found in the project’s GitHub repository (https://github.com/JGCRI/fldgen). Release
version 1.0.0 of the package was used for all of the work in this paper.

The data and analysis code for the results presented in this paper are archived at https://doi.org/10.5281/zenodo.1183640.
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