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1 The CFD model and Simulations

A detailed description of CFD model–fluidyn-PANACHE, used in this study, was presented in Fluidyn-PANACHE (2010)

and Kumar et al. (2015). The fluidyn-PANACHE solves the Reynolds Averaged Navier-Stokes (N-S) equations using the

finite volume numerical techniques. These equations were solved along with the equations describing conservation of species

concentration, mass, heat transfer and energy for a mixture of ideal gases. Ideal gas law is used for the thermodynamic model of5

mixture of gases. The Reynolds stresses are modelled using a linear eddy viscosity model (LEVM) (Ferziger and Peric, 2002).

The atmospheric boundary layer (ABL) processes are built-in the CFD code with different numerical models. Dispersion of

gases is modelled by solving the full conservation equations governing the transport of species concentration. The buoyancy

model is used to parametrize the body force term in the N-S equations. To couple the pressure and momentum equations

in the numerical computations, the Semi-Implicit Method for Pressure Linked Equations-Consistent (SIMPLEC or SIMPLE-10

Consistent) algorithm (Van Doormaal and Raithby, 1984) is utilized. It includes a built-in automatic 3-D mesh generator for

both structures and unstructured meshes that can generate finite-volume mesh around obstacles and body-fitting the terrain

undulations.

1.1 Turbulence model

Atmospheric turbulence due to shear (flow over ground or over obstacles) as well as due to thermal effects (solar heating of15

ground, buoyant plumes) is modelled with a two-equations prognostic k− ε model. The k− ε model is a two-equation linear

eddy viscosity model and describes the mean of a turbulent flow. It solves the transport equations for turbulent kinetic energy,

k and its dissipation rate, ε. The fluidyn-PANACHE implementation of the k− ε model is derived from the standard high-

Reynolds number (Re) form with corrections for buoyancy and compressibility (Launder, 2004; Hanjalic, 2005). The k− ε

model computes the length and time scales from the local turbulence characteristics. Thus, it can model the turbulent flows20

subjected to both mechanical shear (obstacles, terrain undulations, canopy) as well as buoyancy (stability and buoyant/heavy

gas plumes).

1.2 Boundary conditions

Depending on the wind direction with respect to the domain boundary, the lateral boundaries of the domain are treated as

inflow and outflow boundaries. For ground surface, a no-slip boundary condition is considered. The top boundary is treated as25

an outflow boundary. In order to parameterize the drag forces on solid walls, standard wall functions (Hanjalic, 2005) are used.

Following inflow boundary conditions for wind, temperature, and turbulence are specified as :

- Wind profile : Gryning et al. (2007) wind profile in stable and neutral conditions is used. These profiles are composed of the

three different length scales in surface, middle, and upper layers of the ABL, and is applicable in the entire ABL. As the

Gryning et al. (2007) wind profile is not suitable for very stable atmospheric conditions, a wind profile based on a similarity30

function proposed by Beljaars and Holtslag (1991) is used in extreme stability conditions due to its applicability in these

stability conditions (Sharan and Kumar, 2010).
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- Temperature profile : Monin-Obukhov similarity theory based logarithmic temperature profile is used to describe its vertical

variation in neutral and stable conditions.

- Turbulence profiles : The profiles of k and ε based on an approximate analytical solution of one-dimensional k−ε prognostic

equation (Yang et al., 2009) are used for inflow boundary conditions. Coefficients in these profiles of k and ε are estimated

based on the observations of k.5
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Figure S1.1. The optimal networks of 10 sensors for all 20 trials in the MUST field experiment. The blank and filled black circles respectively

represent the all (40) potential positions and the optimal positions of sensors.
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Figure S1.2. The optimal networks of 13 sensors for all 20 trials in the MUST field experiment. The blank and filled black circles respectively

represent the all (40) potential positions and the optimal positions of sensors.
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Figure S2.1. Isopleths of the renormalized weight function (w(x)) (gray colored in first and third columns) and the normalized source

estimate function (snw(x) = sw(x)/max(sw(x))) (colored in second and fourth columns) for both optimal network respectively of 10 and

13 sensors for trials 1, 2, 3, 4, & 5. The black and white filled circles respectively represent the true and estimated source locations.
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Figure S2.2. Isopleths of the renormalized weight function (w(x)) (gray colored in first and third columns) and the normalized source

estimate function (snw(x) = sw(x)/max(sw(x))) (colored in second and fourth columns) for both optimal network respectively of 10 and

13 sensors for trials 6, 7, 8, 9, & 10. The black and white filled circles respectively represent the true and estimated source locations.
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Figure S2.3. Isopleths of the renormalized weight function (w(x)) (gray colored in first and third columns) and the normalized source

estimate function (snw(x) = sw(x)/max(sw(x))) (colored in second and fourth columns) for both optimal network respectively of 10 and

13 sensors for trials 11, 12, 13, 14, & 15. The black and white filled circles respectively represent the true and estimated source locations.
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Figure S2.4. Isopleths of the renormalized weight function (w(x)) (gray colored in first and third columns) and the normalized source

estimate function (snw(x) = sw(x)/max(sw(x))) (colored in second and fourth columns) for both optimal network respectively of 10 and

13 sensors for trials 16, 17, 18, 19, & 20. The black and white filled circles respectively represent the true and estimated source locations.
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