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Abstract. This study presents an optimization methodology for reducing the size of an existing monitoring network of the

sensors measuring polluting substances in an urban-like environment in order to estimate an unknown emission source. The

methodology is presented by coupling the Simulated Annealing (SA) algorithm with the renormalization inversion technique

and the Computational Fluid Dynamics (CFD) modeling approach. This study presents an application of the renormalization

data-assimilation theory for optimally reducing the size of an existing monitoring networks in an urban-like environment.5

Performance of the obtained reduced optimal sensor networks is analyzed by reconstructing the unknown continuous point

emission using the concentration measurements from the sensors in that optimized network. This approach is successfully

applied and validated with 20 trials of the Mock Urban Setting Test (MUST) tracer field experiment in an urban-like environ-

ment. The main results consist in reducing the size of a fixed network of 40 sensors deployed in the MUST experiment. The

optimal networks in the MUST urban region are determined which makes it possible to reduce the size of original network10

(40-sensors) to∼ 1/3rd (13-sensors) and to 1/4th (10-sensors). Using measurements from the reduced optimal networks of 10

and 13 sensors, the averaged location errors are obtained 19.20 m and 17.42 m, respectively, which are comparable to 14.62

m obtained from the original 40-sensors network. In 80% of trials with networks of 10 and 13 sensors, the emission rates are

estimated within a factor of two to the actual release rates. These are also comparable to performance of the original network

where in 75% of the trials, the releases was estimated within a factor of two to the actual emission rates.15

1 Introduction

In case of an accidental or deliberated release of a hazardous contaminant in the densely populated urban or industrial regions,

it is important to accurately retrieve the location and the intensity of that unknown emission source for the risk assessment,

emergency response and mitigation strategies by the concern authorities. This retrieval of an unknown source in various source

reconstruction methodologies is completely dependent on the contaminant’s concentrations detected by some pre-deployed20

sensors in that affected or a nearby region. However, pre-deployment of these limited number of sensors in that region required

an optimal strategy for the establishment of an optimized monitoring network to achieve maximum a priori information regard-

ing state of emission. It is also required to correctly capture the data while extracting and utilizing information from a limited
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and noisy set of the concentration measurements. The optimal monitoring networks for the characterization of the unknown

emission sources in complex urban or industrial regions is a challenging problem.

The problem of a monitoring network optimization is complex and may consist a first deployment of the sensors, updating

an existing network, reducing the size of an existing network, increasing the size of an existing network. These problems are

independent and each one of them have its own requirements. The degree of complexity also depends on (i) the network type5

(mobile network deployed only on emergency, permanent mobile network, permanent static network), (ii) the scale (local,

regional, etc.) and (iii) the topography of the area of interest (flat terrain without obstacles, complex terrain, cities, urban,

industrial regions, etc.). It is important to note that the optimization also depends on the objective of a network design as

reconstruction of an emitting source, analysis of the air quality, triggering of an alert, etc. This study is focused on reducing

the size of an existing network at local scale in an urban-like terrain for source reconstruction.10

This study presents an optimization methodology for reducing the size of an existing monitoring network in a geometrically

complex urban environment. The measurements from a reduced optimal network can be used for the source term estimation

(STE) of an unknown source in an urban region with almost the same level of source detection ability as the original network

of a larger number of the samplers. The establishment of an optimal network required the sensor concentration measurements,

along with the availability of meteorological data, atmospheric dispersion model, choice of a STE procedure and an opti-15

mization algorithm. These type of the networks can have great applications in oil and gas industries for the estimation of the

emissions of the greenhouse gases (GHG) like methane. In order to utilize an inversion method to estimate the methane emis-

sions, accurate measurements of the methane at a network of the high precision sensors, downwind of a possible source, is a

prerequisite. However, these sensors may not be deployed in a large numbers due to their high cost. Alternatively, the low-cost

sensors (which may not be as high precision) can rapidly be deployed specifically for collecting the initial measurements.20

Using these less accurate measurements and the proposed optimization methodology, a reduced optimal network can quickly

be designed to provide the ’best’ sensors positions for the deployment of high precision sensors to obtain the accurate methane

measurements. These high precision measurements can be utilized in an inversion method to estimate accurate methane emis-

sions. A similar and very useful application of the method proposed here can be applied for the estimation of the methane

emissions from landfills.25

Ko et al. (1995) showed that the optimization of sensors network is an NP-hard (i.e. Non-deterministic Polynomial-time

hardness) problem, which means that it is difficult for an exhaustive search algorithm to solve all instances of the problem

because it requires a considerable time. Various optimization algorithms have been proposed to find the best solution, but these

methods are not applicable to all the cases especially for large size problems. To solve such problems, the metaheuristic algo-

rithms are efficient. Some studies discussed the optimization of sensor distribution and number for gas emission monitoring,30

e.g. Ma et al. (2013), Ngae et al. (2019), etc. Ma et al. (2013) used a direct approach with the Gaussian dispersion model to

optimize the sensors networks in homogeneous terrains. However, the present study utilizes an inverse approach by solving

the adjoint transport-diffusion equation with the building-resolving Computational Fluid Dynamics (CFD) model for an urban

environment. This methodological approach for an optimal monitoring network (i.e. coupling of the optimization algorithm,

inverse tracers transport modeling and CFD) includes the geometric and flow complexity inherent in an urban region for the35
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optimization process. Recently, for a different application point of view, Ngae et al. (2019) has also described an optimization

methodology for determining an optimal sensors network in an urban like environment using the available meteorological

conditions only. The CFD computations also required a considerable amount of time to compute the flow and dispersion in an

urban environment. However in order to apply the proposed methodology in an emergency situation for an area of interest in a

complex urban or industrial environment, an archive database of the CFD calculations can be established for a wide range of5

meteorological and turbulence conditions and can be utilized in the optimization process.

In this study, Simulated Annealing (SA) stochastic optimization algorithm (Jiang et al., 2007; Abida et al., 2008; Abida and

Bocquet, 2009; Saunier et al., 2009; Kouichi et al., 2016; Kouichi, 2017; Ngae et al., 2019, etc.) is utilized. The SA algorithm

was designed in the context of the statistical physics. It incorporates a probabilistic approach to explore the search space and

converges iteratively to the solution. This algorithm is often used and recommended to solve the problems of sensors network10

optimization (Abida, 2010). The network optimization process consists of finding the best set of sensors that leads to the

minimum of a defined cost function. A cost function can be defined as a regularized norm square of the distance between the

measurements and forecasts which is also used for the STE (Sharan et al., 2012). In this study, two canonical problems are

considered independently. (i) Optimization of the measuring network: the optimization consists of selecting the best positions of

the sensors among a set of potential locations. This choice is operated in a search space constituted by all the possible networks15

(of a specific size) and based on a cost function that describes quantitatively the quality of the networks. (ii) Identification of

the unknown source: the STE is studied in the framework of a parametric approach. Here the challenge is to determine the

parameters of the source (intensity and position) using the measurements from the sensors of an optimally designed network.

The reduced optimal networks are validated using an STE technique to estimate the unknown parameters of a continuous

point source. The STE problem for atmospheric dispersion events has been an important topic of much consideration as re-20

viewed in Rao (2007); Hutchinson et al. (2017). Often, the source term is estimated using a network of static sensors deployed

in a region. In inverse process for the STE, the adjoint source-receptor relationship, concentrations and meteorological measure-

ments are required. The adjoint source-receptor relationship is defined by an inverse computation of the atmospheric transport

dispersion model (Pudykiewicz, 1998). This relationship is often affected by the nonlinearities in the flow-field by building

effects in complex scenarios arising in urban environments, where the backward and forward dispersion concentrations will not25

match. Various inversion methods can be classified in two major categories: probabilistic and deterministic. The probabilistic

category treats source parameters as the random variables associated to the probability distribution. This includes the Bayesian

Estimation Theory (Bocquet, 2005; Monache et al., 2008; Yee et al., 2014, etc.), Monte Carlo algorithms using Markov chains

(MCMC) (Gamerman and Lopes, 2006; Keats, 2009, etc.) and various stochastic sampling algorithms (Zhang et al., 2014,

2015, etc.). Deterministic methods use cost functions to assess the difference between observed and modeled concentrations30

and are based on an iterative process to minimize this difference (Seibert, 2001; Penenko et al., 2002; Sharan et al., 2012, etc.).

Among the other approaches, advanced search algorithms like genetic algorithm (Haupt et al., 2006, etc.) or neural network al-

gorithm (Wang et al., 2015, etc.) and other regularization methods (Ma et al., 2017; Zhang et al., 2017, etc.) have been used for

the STE. In this study, we utilized the renormalization inversion method (Issartel, 2005) for the STE using measurements from

the optimal networks, which is deterministic in nature and does not require any prior information of the source parameters. The35
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renormalization inversion approach was successfully applied and validated for retrieval of an unknown continuous point source

in flat terrain (Sharan et al., 2009, etc.) and also in urban-like environment (Kumar et al., 2015b). Initially, the renormalization

inversion method was proposed to estimate emission of the distributed sources (Issartel, 2005). Sharan et al. (2009) and other

studies have shown that this technique is also effective for estimating continuous point sources. For these applications, the

hypothesis of a linear relationship between the receptor and the source was assumed. For homogeneous terrains, the adjoint5

functions can analytically be computed based on the Gaussian solution of the diffusion transport equation to estimate a con-

tinuous point release. However, the flow-field in urban or industrial environments is quite complex and the asymmetry of the

flow and the dispersed plume in urban regions is generated mainly by the presence of buildings and other structures. In general,

the Gaussian models are unable to capture the effects of complex urban geometries on adjoint sensitivities between source

and receptors and also if dense gases are involved, the Gaussian distribution hypothesis fails. Recently, Kumar et al. (2015b,10

2016) have extended the applications of the renormalization inversion technique to retrieve an unknown emission source in the

urban environments, where a CFD approach was used to generate the adjoint receptors-source relationship. In this process, a

coupled CFD-renormalization source reconstruction approach was described for the identification of an unknown continuous

point source located at the ground surface or at a horizontal plane corresponding to a known or predefined altitude above the

ground surface, or an elevated release in an urban area.15

This study deals with a case of optimally reducing the size of an existing monitoring network. For this purpose, a predefined

network of sensors deployed in an area of interest is considered to determine an optimized network with smaller number of

sensors, but, with comparable information. This work explores with two requirements of the optimal networks that modifies the

spatial configuration of an existing network by moving the sensors and also reduces the number of sensors of an existing large

network. In real situation, this methodology can be applied for the optimization of mobile networks deployed in emergency20

situation. The methodological approach to optimally reduce the size of an existing monitoring network in urban environment

is presented by coupling the SA stochastic algorithm with the renormalization inversion technique and the CFD modeling ap-

proach. The concentration measurements obtained from the optimally reduced sensors networks in 20 trials of the Mock Urban

Setting Test (MUST) field tracer experiment are utilize to validate the methodology by estimating an unknown continuous

point source in an urban-like environment.25

2 Source Term Estimation Method: The Renormalization

In the context of an inversion approach, source parameters are often determined using the concentration measurements at the

sensor locations and a source-receptors relationship. The release is considered continuous from a point source located at the

ground or at a horizontal plane corresponds to an altitude of a known source height. Since the optimization methodology

presented in the next section utilizes some concepts from the renormalization inversion methodology (Sharan et al., 2009), the30

renormalization theory to estimate a continuous point release is briefly presented in following subsections.
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2.1 Source-Receptor relationship

A source-receptor relationship is an important concept in the source reconstruction process and it can be linear or nonlinear.

This study deals with the linear relationship, as except from the nonlinear chemical reactions, most of the other processes

occurring during the atmospheric transport of trace substances are linear: advection, diffusion, convective mixing, dry and

wet deposition, and radioactive decay (Seibert and Frank, 2004). A source-receptor relationship between the measurements5

and the source function is defined based on a solution of the adjoint transport-diffusion equation that exploits the adjoint

functions (retroplumes) corresponding to each receptor (Pudykiewicz, 1998; Issartel et al., 2007, etc.). These retroplumes

provide a sensitivity information between the source position and the sensor locations. Let’s consider a discretized domain of

N grid cells in a 2-dimensional space x = (x,y), a vector of M concentration measurements µ= (µ1,µ2, ...,µM )T ∈ RM ,

and an unknown source vector s(x) ∈ RN to estimate. The measurements µ are related to the source vector s by the use of10

sensitivity coefficients (also referred as adjoint functions) (Hourdin and Talagrand, 2006). The sensitivity coefficients describe

the backward propagation of information from the receptors toward the unknown source. These vectors are related by the

following linear relationship:

µ= As + ε (1)

where ε ∈ RM is the total measurements error and A ∈ RM×N is the sensitivity matrix with A(x) = [a(x1),a(x2), ...,a(xN )].15

Here, each column vector a(xi) ∈ RM of the matrix A represents the potential sensitivity of a grid cell with respect to all M

concentration measurements.

For a given set of the concentration measurements µ, the source estimate function s(x) in Eq. (1) can easily be estimated by

formulating a constrained optimization problem. This optimization problem minimizes a cost function J(s) = sT s, subjected

to a constraint ε= µ−As = 0. Using the method of Lagrange multipliers, s(x) can be estimated as a least-norm solution:20

s = AT H−1µ (2)

where H−1 is inverse of the Gram matrix H = AAT . This estimate (Eq. (2)) is not satisfactory because it generates artifacts

at the grid cells corresponding to the measurement points. Adjoint functions become singular at these points and have very

large values. These large values do not represent a physical reality, but rather an artificial information. This was highlighted by

Issartel et al. (2007) which reduced this artificial information by a process of renormalization.25

2.2 Renormalization process

This process involves a weight function W(x) ∈ RN×N in space, which is purely a diagonal matrix with the diagonal elements

wjj > 0 such that
N∑
i=1

wjj =M . Introduction of W transforms the source-receptor relationship in Eq. (1) to:

µ= AwWs + ε. (3)

where the modified sensitivity matrix Aw is defined as Aw = AW−1 = [aw(x1),aw(x2), ...,aw(xN )] in which the column30

vector aw(xi) = a(xi)/w(xi) of Aw is the weighted sensitivity vector at xi. Considering a similar approach that outlined in
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previous subsection, a new constrained optimization problem can be formulated for Eq. (3) to estimate s(x). This optimization

problem minimizes a cost function J(s) = sTWs, subjected to a constraint ε= µ−AwWs = 0, and deduces the following

expression sw of s (Appendix A in Kumar et al., 2016):

sw = AT
wH−1

w µ (4)

where H−1
w is the inverse of Hw = AwWAT

w.5

The weight function in the above discussed renormalization process is computed by using an iterative algorithm proposed

by Issartel et al. (2007) (Appendix A). A brief derivation for the estimation of an unknown point source (i.e. location and

intensity) from the renormalization inversion is described in Appendix B.

3 The Combinatorial Optimization of a Monitoring Network

A predefined large network of n sensors deployed in an area of interest is considered to determine an optimized network with10

smaller number of sensors, but with comparable information. For a given number of p sensors such that p < n, one determines

an array of p sensors among n, which delivers maximum of the information. It is a combinatorial optimization problem that

consists of choosing p sensors among n, and thus constituting an optimal network. The optimal network will consist of p

sensors for which a defined cost function is minimum. The number of possible choices nCp (number of combinations of p

among n) is very high, when an initial network is sufficiently instrumented (n large) and p is small with respect to n. As the15

number of combinations to be tested is very large, minimum of a cost function will be evaluated by a stochastic algorithm, viz.

simulated annealing (SA).

3.1 Cost function

A cost function is defined (based on the renormalization theory) as a function that minimizes the quadratic distance between

the observed and the simulated measurements according to the Hw norm (Issartel et al., 2012), where Hw is the Gram matrix20

defined in a previous section 2.2. A cost function (say Js(x)) to minimize is defined (Appendix C) as follows:

Js(x) = 1− s2
w

µT H−1
w µ

(5)

where sw is given by Eq. (4). A global minimum of the cost function Js(x) is evaluated by the SA algorithm.

3.2 Simulated Annealing (SA) algorithm for the Sensor’s Network Optimization

The problem of optimization of a network is solved using simulated annealing algorithm. The SA optimization algorithm is25

utilized here for the determination of the optimal networks by comparing its performance with the Genetic Algorithm (GA)

(Kouichi, 2017). These algorithms of different search techniques (SA probabilistic and GA evolutionary) are evaluated based

on the same cost function. The results showed that the optimal networks retained by the GA and the SA are quantitatively

and qualitatively comparable (Kouichi, 2017). The SA has advantageous because it is relatively easy to implement and takes
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smaller computational time in comparison to GA. Both SA and GA optimization algorithms in the framework of this approach

(based in the renormalization theory) has little influence on the estimation of the parameters of a source (Kouichi, 2017).

The SA is a random optimization technique based on an analogy with thermodynamics. The technique has been introduced

to the computational physics over sixty years ago in the classic paper by Metropolis et al. (1953). The algorithm of simulated

annealing is initiated by starting from an admissible network. At the subsequent steps, the system moves to another feasible5

network, according to a prescribed probability, or it remains in the current state. However, it is crucial to explain how this prob-

ability is calculated. The mobility of the random walk depends on a global parameter T which is interpreted as ’temperature’.

The initial values of T are large, allowing free exploration of large extents of the state space (this corresponds to the “melted

state” in terms of the kinetic theory of matter). In the subsequent steps, the temperature is lowered allowing the algorithm to

reach a local minimum.10

For the SA, each network is considered as a state of a virtual physical system, and the objective function is interpreted

as the internal energy of this system in a given state. According to statistical thermodynamics, the probability of a physical

system for being in a same state follows the Boltzmann distribution and depends on its internal energy and the temperature

level. By analogy, the physical quantities (temperature, energy, etc.) become a pseudo-quantities. And during the minimization

process, the probabilistic treatment consists to accept a new network selected in the neighborhood of the current network15

following the same Boltzmann distribution and depending both on the cost difference between the new and the current networks

and on the pseudo-temperature (simply called, temperature). To find the solution, the SA incorporates the temperature into a

minimization procedure. So at high temperature (i.e. starting temperature), the space of solution is widely explored, while at

lower temperature the exploration is restricted. The algorithm is stopped when the cold temperature is reached. It is necessary to

choose the law of decreasing temperature, called as cooling schedule. Different approaches to parameterize the SA are explored20

in Siarry (2016). Kirkpatrick et al. (1983) proposed an average probability to determine the initial (starting) temperature.

Nourani and Andresen (1998) compared the widely used cooling schedules (exponential, logarithmic, and linear). The SA

algorithm starts minimization of an objective function at annealing temperature from a single stochastic point, then it searches

for the minimal solutions by attempting all the points in search domain with respect to their value of the temperature. The

algorithm is depicted in a flow diagram in Figure 2 and a step by step implementation of the SA procedure for an optimized25

monitoring network in an urban environment is described as follows:

Step 1. Parameters setting and initialization

Network parameters (n and p): n is the number of possible locations of the sensors and p is the optimal network number of

sensors.

Starting temperature (T0): T0 is also called the highest temperature. It was determined from the Metropolis law: T0 =− (∆Js)
log(P0) ,30

where (∆Js) is an average of the difference of cost functions calculated for a large number of cases. P0 is an acceptance

probability and following the recommendations of Kirkpatrick et al. (1983), it was set to 0.8. Start iterations (Itt = 0).

Length of the bearing (Lmax): A length of the bearing is the number of iterations to be performed at each temperature level.
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An equilibrium is reached for this number of iterations and any significant improvement of the cost function can be expected.

No general rule is proposed to determine a suitable length. This number is often constant and proportional to the size of the

problem.

The temperature decay factor (θ): The temperature remains constant for Lmax iterations corresponding to each bearing. We

used the exponential schedule due to its efficiency as denoted by Nourani and Andresen (1998). Then, the temperature decreases5

law between two bearings varies as: Tb+1 = θTb, with 0< θ < 1, where b represents a bearing. So, it was retained a decay

pattern by the bearings.

The cold temperature (Tcold): Tcold is often called the stopping temperature. There is no clear rule to set this parameter. It is

possible to stop calculations when no improvement in the cost function is observed during a large number of combinations.

One can estimate this number and take into account the maximum length Lmax of each bearing, thus the cold temperature can10

be expressed as a fraction of the starting temperature T0.

Assigning the first best set of sensors, xBest← xrand(p,n): xrand(p,n) corresponds to a vector of p sensors locations randomly

chosen among the n possible locations. A new solution is randomly explored. This vector is assigned to the first ’best’ set of

sensors.

Step 2. Assigning a new set of sensors15

xnew← xrand(p,n), where xrand(p,n) corresponds to a vector of p sensors locations randomly chosen among the n possible

locations. This vector is assigned to a new set (xnew) of the sensors.

Step 3. Cost difference

Given a sensor location xnew, the cost function Js(xnew) is computed as follows:

- set µ vector by using the measurements at the xnew locations,20

- set rows of matrix A using the sensitivity at the xnew locations,

- determine w(x), Hw, and aw iteratively using the algorithm in Eq. (A2),

- compute the source term sw(x) using Eq. (4),

- compute the cost function Js(xnew) using Eq. (5).

Js(xbest) is computed like Js(xnew) using the same precedent steps. A cost difference is then calculated using ∆Js =25

Js(xnew)− Js(xbest). Increment the iterations (Itt← Itt + 1).

Step 4. Test of sign of ∆Js

If ∆Js < 0, the error associated with xnew is less than that with xbest and thus xnew will become the next ’best network’ (Step

6). If this condition is not satisfied, the algorithm can jump out of a local minimum (Step 5).
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Step 5. Conditional jump

When ∆Js > 0, the algorithm has ability to jump out any local minima if condition: P01 ≤ exp(−∆Js

T ) is satisfied, where P01

is the acceptance probability (a random number between 0 and 1), and T is the current annealing temperature. It means that

xnew will be the next best network even if the associated error is greater than that of xbest. If P01 > exp(−∆Js

T ), go to Step 7.

Step 6. Update xbest5

In this step, xbest is updated by xnew.

Step 7. Maximum iteration check

If the maximum number of iterations of a bearing (Lmax) is reached, a state of equilibrium is then achieved for this temperature

and one can cool the actual temperature (Step 8). If not, continue iterations (Step 2).

Step 8. Temperature cooling10

Temperature is cooled using the cooling schedule and iteration variable is reset to zero.

Step 9. Cold temperature test

The cold temperature (Tcold) is also known as the stopping temperature. If this temperature is reached, the algorithm is stopped.

When Tcold is not reached, other temperature bearing are performed using the cooling schedule.

Step 10. Optimal network15

At this step, the last best network xbest is the optimal network. Source parameters are then estimated using the concentration

measurements and retroplumes only for sensors from the obtained optimal network as: (i) x0 is estimated at position of the

maximum of the source estimate function sw(x), and (ii) the intensity q0 is given by q0 = sw(x0)/w(x0).

In stochastic optimization algorithms, especially in the SA, it was observed that there is no guarantee for the convergence

of the algorithm with such a strong cooling (Cohn and Fielding, 1999; Abida et al., 2008). However, chances are that a near-20

optimal network configuration can be reached. Due to this, one or more near-optimal networks can be obtained from this

methodology that satisfy the conditions of near overall optimum condition.

4 The Mock Urban Setting Test (MUST) Tracer Field Experiment

The MUST field experiment was conducted by the Defense Threat Reduction Agency (DTRA) in 2001. It was aimed to help

developing and validating the numerical models for flow and dispersion in an idealized urban environment. The experimental25

design and observations are described in detail in Biltoft (2001) and Yee and Biltoft (2004). In this experiment, an urban

canopy was represented by a grid of 120 containers. These containers were arranged along 12 rows and 10 columns on the
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army ground in the Utah desert, USA. Each container has dimensions of 2.54 m high, 12.2 m long and 2.42 m wide. The

spacing between the horizontal lines is 12.9 m, while the columns are separated by a distance of 7.9 m. The total area thus

formed is approximately 200× 200 m2. The experiment consists of 63 releases of a flammable gas (propylene C3H6) that is not

dangerous or harmful in quantities and could be released through the dissemination system into the open atmosphere (Biltoft,

2001). Different wind conditions (direction, speed, atmospheric stability) as well as different positions for gas emissions (inside5

or outside the MUST urban canopy at different heights) were considered. These gas emissions were carried out under stable,

very stable, and neutral stability conditions. In this study, 20 trials in various atmospheric stability conditions are selected and

the meteorological variables are taken from an analysis of meteorological and micro-meteorological observations in Yee and

Biltoft (2004) (Table 1). It is noted that the errors related to meteorological data can affects the accuracy of the source term

estimation (Zhang et al., 2014, 2015), although this error is not considered in this study. In each trial, the gas was continuously10

released for ≈ 15 min, during which the concentration measurements were made. These concentration measurements were

carried out by 48 photoionization detectors (PIDs). 40 sensors were positioned on four horizontal lines at 1.6 m height (Figure

1) and 8 sensors were deployed in vertical direction at a tower located approximately in center of the MUST array.

5 CFD Modelling for Retroplumes in an Urban Environment

The flow-field in atmospheric dispersion models in geometrically complex urban or industrial environments cannot be consid-15

ered as homogeneous throughout the computational domain. This is because the buildings and other structures in that region

influence and divert the flow into unexpected directions. Consequently, the dispersion of a pollutant and computations of the

adjoint functions (retroplumes) are affected by the flow-field induced by these structures in an urban region. Recently, Kumar

et al. (2015a) utilized a CFD model to compute the flow-field and the forward dispersion in 20 trials of the MUST field ex-

periment. In order to reconstruct an unknown continuous point source, the computed flow-field is then used to compute the20

retroplumes for all selected trials (Kumar et al., 2015b). The CFD computations of the flow field presented in Kumar et al.

(2015a) and retroplumes computed in Kumar et al. (2015b) are utilized in the proposed optimization methodology described

in this study to obtain the optimal monitoring networks. In these studies, a CFD model fluidyn-PANACHE was utilized to

calculate the flow-field, considering a subdomain of calculation (whose dimensions are 250 × 225 m2 with a height of 100

m) that consists the MUST urban array created by the containers, sources, receptors, and other instruments in this experiment.25

This subdomain is embedded in a larger computational domain (dimensions of 800× 800 m2 with a height of 200 m) to ensure

a smooth transition of the flow between the edges of the domain and the obstacles zone. This extension of the outer domain far

from the main experimental site is essential to reduce effects of the inflow boundary conditions imposed at inlet of the outer

domain. A more detailed description about the CFD model and its simulations for the MUST field experiment, e.g., bound-

ary conditions, turbulence model, etc. are presented in Kumar et al. (2015a) and now briefly discussed in the Supplementary30

Information (SI). An unstructured mesh was generated in both domains with more refinement in the urbanized area in inner

subdomain and at the positions of receptors, thus generating 2849276 meshes.
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The simulations results with fluidyn-PANACHE in each MUST trial were obtained with inflow boundary conditions from

vertical profiles of the wind (U), the turbulent kinetic energy (k) and its dissipation rate (ε). These inflow profiles include:

(i) Wind profile: Gryning et al. (2007) profiles in stable and neutral conditions and a profile based on the stability function by

Beljaars and Holtslag (1991) in very stable conditions, (ii) Temperature profile: Monin-Obukhov similarity theory based loga-

rithmic profiles, (iii) Turbulence profiles: k and ε profiles are based on an approximate analytical solution of one-dimensional5

k− ε prognostic equations (Yang et al., 2009). The atmospheric stability effects in the CFD model fluidyn-PANACHE are in-

cluded through the inflow boundary condition (via advection). fluidyn-PANACHE includes a Planetary Boundary Layer (PBL)

model that serves as an interface between the meteorological observations and the boundary conditions required by the CFD

solver. The observed turbulence parameters, e.g. (i) sensible heat flux (Qh), the Obukhov length (L), (iii) surface friction ve-

locity (u∗) and the temperature scale (θ∗) were used to derive the vertical profiles of mean velocity and potential temperature.10

As an example, the wind velocity vectors around some containers for the trial 11 are shown in SI Figure S1.1. This figure

shows the deviations in the wind speed and its direction due to the obstacles in an urban-like environment. It should be noted

that the MUST experiment took place under neutral to stable and strongly stable conditions. However, the only atmospheric

stability effects included in the CFD model are through the specification of inflow boundary conditions. Atmospheric stability

has a profound impact on dispersion and would thus influences the adjoint functions. However, as presented and discussed in15

our previous study (Kumar et al., 2015a), even with specification of the stability dependent inflow boundary conditions only,

the predicting forward concentrations from the CFD model are in good agreement with the measured concentrations for all 20

trials in different atmospheric stability conditions. However, at micro-scales also, small irregularities can break the repeated

flow patterns found in a regular array of containers with identical shape (Qu et al., 2011). In addition, uncertainties associated

with the thickness and the properties of the material of the container wall also affect flow pattern and the resulted concentra-20

tions and adjoint functions (Qu et al., 2011). Accordingly, the atmospheric stratification and stability effects should also be

included through surface cooling or heating in the CFD model and stability effects from inflow boundary conditions. Since the

released gas propylene is heavier than the air and would behave as a dense gas, a buoyancy model was used to model the body

force term in the Navier-Stokes equations. The buoyancy model is suitable for the dispersion of heavy gases where density

difference in the vertical direction drives the body force.25

In order to compute the retroplumes in each MUST trial, firstly the CFD simulations were performed to compute the con-

verged flow-field in computational domain, secondly the flow-field is reversed and used in the standard advection-diffusion

equation to compute the adjoint functions ai(x). In this computation of the retroplumes corresponding to each receptor in a

selected trial, the advection-diffusion equation is solved by considering a receptor as a virtual point source with unit release rate

at the height of that receptor. Also, the meteorological conditions remained invariant during the whole experimental period in30

a trial. The details about the retroplumes and the correlated theory of the duality verification (i.e. comparison of the concentra-

tions predicted with the forward (direct) model and the adjoint model) for all 20 trials of the MUST field experiment are given

in Kumar et al. (2015b) and we have utilized the same retroplumes in this study for the optimization process. Since we are

concerned to establish an optimized monitoring network in a domain that contains the MUST urban array, the retroplumes are

computed in the inner subdomain only. Consequently all the computations for an optimized monitoring network were carried35

11



out in the inner subdomain only. The sensors in the optimized monitoring network are supposed to deploy on a fixed vertical

height above the ground surface. Accordingly, the retroplumes corresponding to only 40 receptors at 1.6 m height were utilized

in computations for the optimized monitoring networks in the MUST urban environment.

6 Results and Discussion

The calculations were performed by coupling the SA algorithm to a deterministic renormalization inversion algorithm and5

the CFD adjoint fields to optimally reduce the size of an existing monitoring network in an urban-like environment of the

MUST field experiment. The network optimization process consists of finding the best set of sensors that leads to the lowest

cost function. In this study, the validation is realized following two separated steps. The first step consists to form two optimal

monitoring networks by using the presented optimization methodology which makes it possible to reduce the size of an original

network of 40 sensors to approx. one-third (13 sensors) and one-fourth (10 sensors). The second step consists to compare a10

posteriori performance of the obtained reduced size optimal networks with the ’MUST original network’ of 40 sensors at 1.6 m

above the ground surface. In first step, a comparison (based on a cost function) with networks of the same size (e.g. 10 sensors)

was performed implicitly during the optimization process. As the SA is an iterative algorithm, during the optimization process

networks of same size are compared at each iteration and the ’best one’ is retained. The networks have also been generated

randomly like in Efthimiou et al. (2017); however, the search space of the problem is very large. In our case, the number15

of the compared networks is equivalent to the number of iterations (as an example for optimal network of 10 sensors ∼ 3 ×

104 configurations are compared). Here, the comparison is based on a cost function and inspired from the renormalized data

assimilation method. The cost function quantifies the quadratic distance between the observed and the simulated measurements.

The ’optimal network’ produces the ’best’ description of the observations (i.e. corresponds to the minimal quadratic distance)

and permits a posteriori to estimate the location and emission rate of an unknown continuous point source in an urban-like20

environment.

The size of the ’MUST predefined (original) network’ is 40 sensors and the sizes of the optimized networks are fixed after

performing a first optimization with the number of sensors from 4 to 16 (Kouichi, 2017). This first evaluation showed that for

some trials, a small number of sensors could not allow to correctly reconstruct the source and divergences in the calculations

have been noted. Accordingly, the source estimation obtained for different trials and network sizes show that, very often,25

networks of less than 8 sensors may not characterize the source correctly. On the other hand, beyond 13 sensors, the source

estimation is not significantly improved, and the associated errors were roughly constant (Kouichi, 2017). Therefore, in order

to ensure an acceptable estimate of the source for all the trials, the sizes of the optimized network are fixed as 10 and 13 sensors

(1/4th and ∼ 1/3rd respectively of the original network of 40 sensors).

The optimization calculations were performed using Matlab on a computer with configuration "Intel® CoreTM i7-4790 CPU30

@ 3.60 GHz and 16 GB RAM". The averaged computational time for optimization of one 10 sensors network was ≈ 2.5 hrs

and ≈ 8.5 hrs for 13 sensors network. In computations, a value of parameter T0 = 10 was fixed according to the scale of cost

function and using the methodology described in Step 1 and Tcold = 10−13 was used for both the optimal sensors networks. θ
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is a decay factor of the temperature for an exponential cooling schedule that describes a procedure of the temperature decrease.

The best cooling schedule is the exponential decay as demonstrated by Nourani and Andresen (1998); Cohn and Fielding

(1999). θ was fixed as 0.9 following the recommendation in literature (Siarry, 2014). This value allows a sufficiently slow

cooling in order to give more chance to the algorithm to explore a large search space and to avoid the local minima. Lmax is

taken as 100 & 200 for 10 & 13 sensors networks, respectively, following the recommendation in Siarry (2014) and according5

to number of the possible combinations that increases with the number of sensors (8.5× 108 for 10 sensors and 1.2× 1010 for

13 sensors).

Figure 3 shows the optimal networks of 10 and 13 sensors respectively for three representative trials 5 (very stable), 11

(neutral), and 19 (stable) in the MUST urban array. These three trials correspond to one trial each in neutral, stable, and very

stable atmospheric conditions during the release. The optimal monitoring networks of 10 and 13 sensors for all selected 2010

MUST trials are shown in SI Figures S2.1&S2.2.

In order to analyze the performance of the optimal monitoring configurations of smaller sizes, the source reconstructions

were performed to estimate the unknown location and the intensity of a continuous point release. These source reconstruction

results were obtained using the information from the optimal monitoring networks formed by 10 and 13 sensors in each

MUST trial. In this performance evaluation process, the retroplumes and the concentration measurements were utilized from15

the sensors corresponding to these optimal networks. The retroplumes were computed using CFD simulations, considering

the dispersion in a complex terrain. The source reconstruction results from both the optimal monitoring networks were also

compared with results computed from the initial MUST network formed by 40 sensors (Kumar et al., 2015b). As in practice,

the number of measurements is limited, this comparison allowed concluding that in urban areas, the optimally reduction of a

networks size is possible without degrading significantly its efficiency for the source estimation.20

Source estimation results from the different monitoring networks are shown in Table 2 for all 20 selected trials of the

MUST experiment. These results are presented in terms of the location error (Ep
l ), which is an euclidean distance between

the estimated and the true source location, and Ep
q , a ratio of the estimated to the true source intensity. The corresponding

monitoring network is represented by a superscript p (representing the number of sensors in an optimal network) on Ep
l and

Ep
q . In order to quantify the uncertainty, a 10% Gaussian noise was added at each measurements. Accordingly, 50 simulations25

for the source reconstruction were performed with these noise measurements using the optimal networks for each trial. The

average and the standard deviation of Ep
l and Ep

q are calculated and the results are also presented in Table 2.

For a given trial, a parameter skeleton represents the common sensors between two optimal networks of different sizes

(with 10 and 13 sensors). These results exhibit that the SA algorithm coupled with renormalization inversion theory and CFD

modeling approach has succeeded to reduce the size of an existing larger network to estimate the unknown emissions with30

almost similar accuracy in an urban environment.

Figure 4 shows isopleths of the renormalized weight function (also called as the visibility function) and the normalized source

estimate function snw(x) = sw(x)/max(sw(x)) correspond to both optimal monitoring networks for three representative trials

(e.g. 5, 11, and 19) of the MUST experiment. These isopleths for all selected 20 MUST trials are shown in SI Figures S3.

As already discussed in the literature, the visibility function includes the natural information associated with a monitoring35

13



network for the source retrieval in a domain and physically interprets the extent of regions seen by the network (Issartel, 2005;

Sharan et al., 2009). This function is independent of the effective values of the concentration measurements and depends only

on geometry of the monitoring network. Hence, this leads to a priori information about the unknown source apparent to the

monitoring network. A statistical parameter, factor of g (FAg), for the source reconstruction results from each monitoring

network is presented in Table 3, where FAg represents the percentage no. of trials in which the source intensity is estimated5

within a factor of g to the actual emission rates. The statistics calculated with original 40 sensors network show that the average

location error for all 20 trials is 14.62 m, and in 75% of the trials, the intensity of the source is estimated within a factor of two

to the actual emission rates. In 90% of the trials, intensity was estimated within a factor of three and within a factor of four in

95% trials (Table 3). If trial 2 is considered, large location errors (greater than 30 m) and the intensity values ranged between

a factor of three to five, were observed (Table 2) independently of the number of sensors in the networks . If we consider the10

trials 15, 16, & 20, it was noted from the numerical results that the larger location errors do not necessarily correspond to the

high intensity errors (Table 2).

From distribution of the optimized sensors in networks in Figures 3 for trials 5, 11 & 19 and SI Figures S2.1&S2.2 for all

selected trials, it was noted that a larger number of sensors are close to the source position in the optimal networks in most

of the trials. The source reconstruction results from the optimal monitoring networks formed by 10 sensors have an averaged15

location error (E10
l ) of 19.20 m for all 20 trials in the MUST experiment (Tables 2&3). In most of the trials, the location and

the intensity of a continuous point emission are estimated accurately and close to the true source parameters. The location error

is minimum in trial 14 (E10
l = 5.50 m) and maximum in trial 2 (E10

l = 56.88 m) (Table 2). For this configuration of the optimal

sensors network, the source intensity in 80% of the trials are estimated within a factor of two to their true release rates (Tables

2&3).20

For all 20 trials, the averaged location error E13
l is 17.42 m for the optimal networks formed by 13 sensors, which is smaller

than the averaged E10
l = 19.20 m obtained with 10 sensors (Tables 2&3). The location error is observed minimum in trial

5 (E13
l = 2.13 m) and maximum in trial 16 (E13

l = 63.04 m) (Table 2). For this optimal network, in 80% of the trials, the

source intensity is estimated within a factor of two to the actual emission rates. It was noted from the evaluation results that the

increase in the number of sensors in a network has little influence on the accuracy of the estimated intensity (Tables 2&3).25

In some trials, it was also noted that the distance of an estimated source to real source decreases with a decrease in sensors

number and are also increases with the number of sensors in some other cases. It may be because the information added by a

new sensor was not necessarily beneficial. As it is noticeable that in a particular meteorological condition (i.e. wind direction,

speed and atmospheric stability), some of the sensors in a network may have little contribution to the STE. So, increasing the

number of the sensors may not always provide the best estimation because with addition of the more no. of sensors, we also30

add more model and measurements errors in the estimation process. These errors can affect the source estimation results in

some trials. In some cases, it may also depend on sensitiveness of the added sensor’s position in an extended optimal network

to the source estimation. It is also noted that for a monitoring network, not only the number of sensors but also the sensors

distribution form (or sensor position) affect the information captured from network.
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In fact, both optimal networks for each trial show a diversity of structures independently of the number of sensors considered.

For this, the skeleton was used to analyze the heterogeneity of the structures of different optimal networks. A skeleton with

7 sensors is considered as a strong common base for the networks. This is the case for trials 3,6,14,15&20 (Table 2). It is

noted that the overall results obtained are comparable (little differences between the results obtained by the networks). For

these networks, a strong common base leads to a near global optimum. If we consider networks with a weak common base,5

the skeleton was formed of up to 3 sensors, particularly in trials 1 and 11. The performances do not systematically converge

independently of the size of networks. Thus, for trial 1, better results were obtained with a network formed by 13 sensors

compared to that by 10 sensors. This result reflects that the algorithm with the network formed by 13 sensors, converges

probably toward a near global optimum. For trial 11 also, it was noted that the performances obtained by the two networks are

identical. This shows that the networks with different sensors configurations may lead to a near overall optimum. This result is10

in coherence with Kovalets et al. (2011) and Efthimiou et al. (2017). Considering a network of 10 sensors, they shown for the

same experimental data that the best source reconstruction is possible with only 5% or 10% of the total network combinations,

randomly selected.

Considering the networks of intermediate structures, with skeletons varying from 4 to 6 sensors, notedly for trials 2,4,5,7,8,9,

12,13,16,17,18,&19, no obvious trend is noticed. These results tend to show that for a given trial, one or more optimal networks15

can satisfy the conditions of a near overall optimum (to be minimized). The obtained optimal networks may have a more or

less common structure (having a greater or lesser number of skeleton).

Moreover, uncertainties calculated for different network sizes do not show an obvious trend. Indeed, a general relationship

between the number of samplers and the uncertainties is not obvious. One notice that changing size of the network (increasing or

decreasing the number of sensors) can lead to the growth or diminution of the uncertainties in the source parameters estimation.20

As an example, for Trial 7 uncertainties grow while for Trial 17 uncertainties diminish (Table 2).

It should be noted that this study deals with the case of reducing number of sensors in order to obtain an optimal network

from an existing large network. This optimization was carried out under the constraints of an existing network of the original

40 sensors in the MUST field experiment. If one compares the performances of the obtained optimal monitoring networks of

smaller sizes with the initial (original) network of 40 sensors in MUST environment, both optimal networks provide satisfactory25

estimations of unknown source parameters. The 40 sensors network gives an averaged location error of 14.62 m for all trials and

the release rate were estimated within a factor of two in 75% trials. However, reducing the number of sensors to ∼ 1/3rd from

the original 40 sensors, the 13 sensors optimal networks also give comparable source estimations performance with an averaged

location error of 17.42 m. Even with the 13 sensors optimal networks, source intensities in 80% trials were accurately estimated

within a factor of two. Similarly for 10 sensors optimal networks, the averaged location error (=19.20 m) is slightly larger than30

that obtained from 13 and 40 sensors networks. However, reducing the number of sensors to 1/4th gives extra advantages in

case of the limited available sensors for a network in emergency scenarios of an accidental or deliberated releases in complex

urban environments.

It should also be noted that the optimization evaluation in this study is performed using the MUST set of measurements

and this makes it more likely that the resulting sensor configuration performs well reconstructing the source (that "the same35
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measurements shouldn’t be used for the optimization and for the reconstructions"). However, this doesn’t limit the application

of the proposed methodology for some important practical applications like the accurate emissions estimation. In fact, this can

be considered as a limitation of the used data for this application as for a complete process of the optimization and then the

evaluation one requires a sufficiently long set of measurements so that the whole data can be divided into two parts: (i) first

part for the designing an optimal sensor network and (ii) the second part for the evaluation of the designed optimal network.5

However, the durations of the releases in the MUST field experiment were not sufficiently large to divide the whole data from

a test release separately into two parts for designing the optimal sensor network and then its evaluation. However, in further

evaluation of the resulting optimal sensor configuration, a different set of the concentration measurements can be constructed

by adding some noise to the measurements. For a continuous release in steady atmospheric conditions, the average value of

the steady concentration in a test release is not expected to deviate drastically from the mean values in each segment of the10

complete data. So this new set of the concentration measurements with added noise can partially fulfill the purpose of the

evaluation of a designed optimal network. As shown in Table 2, the errors in the estimated source parameters are small even

with the new sets of concentration measurements constructed by adding 10% Gaussian noise. This exercise shows that even if

we have utilized a partially different set of the measurements for the evaluation of the optimal networks, the optimal networks

have almost the same level of the source detection ability in an urban-like environment. However, a realistic data is required15

for further evaluation of the optimization methodology.

Although the MUST field experiment has been widely utilized for validation of the atmospheric dispersion models and the

inversion methodologies for unknown source reconstruction in an urban-like environment, its experimental domain was only

approx. 200 m × 200 m (with buildings represented by a grid of containers) and can be considered small for a real urban

environment. Thus, it may not quite represent a real urban region in terms of scale, meteorological variability, or non-uniform20

terrain or roughness/canopy structure. However, the methodology presented here is general in nature to apply to a real urban

environment also. The methodology involves the utilization of the CFD model which generally can include the effects of the

urban geometry, meteorological variability, or non-uniform terrain or roughness/canopy structure in a real urban environment.

It is also to note that, the optimal network design would also depend on diurnal and spatial variability in meteorological

conditions which may increase or decrease the optimum number of sensors and also may change the ’best positions’ to be25

instrumented by sensors.

7 Conclusions

This study describes an approach for optimally reducing the size of an existing monitoring network of the sensors in a geomet-

rically complex urban environment. It is a matter of reducing the size of networks while retaining the capabilities of estimating

an unknown source in an urban region. Given an urban-like environment of the MUST field experiment, the renormalization30

inversion method was chosen for the Source Term Estimation. It was coupled with the CFD model fluidyn-PANACHE for

generation of the adjoint fields. Combinatorial optimization by the simulated annealing consisted in choosing a set of sensors

which leads to an optimal monitoring network and allows an accurate unknown source estimation. This study demonstrates
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how the renormalization inversion technique can be applied to optimally reducing the size of an existing large network of the

concentration samplers for quantifying a continuous point source in an urban-like environment with almost the same level of

source detection ability as the original network with larger number of samplers.

The numerical calculations were performed by coupling the simulated annealing stochastic algorithm to the renormalization

inversion technique and the CFD modeling approach to optimally reduce the size of an existing monitoring network in urban-5

like environment of the MUST field experiment. The optimal networks were constructed to reduce size of the original networks

(40 sensors) to approx. one-third (13 sensors) and to one-fourth (10 sensors). The 10 and 13 sensors optimal networks have esti-

mated the averaged location errors of 19.20 m and 17.43 m, respectively, and have comparable source estimations performance

with an averaged location error of 14.62 m from the original 40 sensors network. In 80% of trials with optimal networks of 10

and 13 sensors, the emission rates are estimated within a factor of two to the actual release rates. These are also comparable to10

performance of the original 40-sensors network where in 75% of the trials, the releases was estimated with a factor of two to

the actual release.

It was shown that in most of the MUST trials, the number of sensors in optimal networks slightly influences the location

error of an estimated source and this error tends to increase as the number of sensors decreases. In 20 MUST trials, an analysis

of the networks formed by 10 & 13 sensors revealed the heterogeneity of their structures in an urban domain. It was observed15

that for some trials, optimal networks had a strong common structure. This tends to prove that a certain number of sensors have

a primordial role in reconstructing an unknown source. It would reflect a fact that the disjoint sets of sensors can lead to the best

estimate of an unknown source in an urban region. This opens enormous prospects for assessing the relative importance of each

sensor in a source reconstruction process in an urban environment. Defining a global optimal network for all meteorological

conditions is a complex problem, but of greater importance that one may want to pursue. This challenge consists to define20

an optimal static network able to reconstruct the sources in all varied meteorological conditions. This information can be of

great importance to determine an optimal monitoring network by reducing the number of sensors for characterization of the

unknown emissions in the complex urban or industrial environments.

Data availability. The authors received access to the MUST field experiment dataset from Dr. Marcel Kon̈ig of Leibniz Institute for Tro-

pospheric Research. The MUST database was officially available from the Defense Threat Reduction Agency (DTRA) at https://must-25

dpg.dpg.army.mil/.

Appendix A: Weight function

Issartel et al. (2007) demonstrated that a weight function, which reduces the artifacts of the adjoint functions at the measurement

points, must verify the following renormalization criterion:

aTw(x)H−1
w aw(x)≡ 1 (A1)30
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From an iterative algorithm by Issartel et al. (2007), w(x) is determined as:

w0(x) = 1, and wk+1(x) = wk(x)
√

aT
wk(x)H−1

wkawk(x) (A2)

Appendix B: Identification of point source

Following Sharan et al. (2009), consider a point source of continuous release at a position xo = (xo,yo) and with the intensity

qo. The point source is thus expressed as a function of the preceding parameters: s(x) = qoδ(x−xo). The relationship between5

the source and the measurements (Eq. (3)) becomes: µ= qoaw(xo)w(xo) + ε. By replacing the measurement term in Eq. (4),

one obtains:

sw = qow(xo)AT
wH−1

w aw(xo). (B1)

sw reaches its maximum at position xo as the renormalization criterion (Eq. (A1)) is satisfied only at this position xo. Thus,

sw(x) at xo becomes:10

sw(xo) = qow(xo), (B2)

which estimates the source intensity qo = sw(xo)/w(xo).

Appendix C: Derivation of the Cost function

A cost function is defined (based on the renormalization theory) as a function that minimizes the quadratic distance between

the observed and the simulated measurements according to the Hw norm (Issartel et al., 2012). Hw is the Gram matrix defined15

in section 2.2. The quadratic distance between the real and the simulated concentration measurements according to the Hw

norm is given by :

J = ‖µ− µ̂‖2H−1
w

=
1

2

[
(µ− µ̂)T H−1

w (µ− µ̂)
]

(C1)

When considering a point source, µ̂ is written by µ̂= qoaw(x)w(x), where qo and x are respectively the intensity and the

position of a point source. By replacing µ̂ in Eq. (C1), one obtains (Sharan et al., 2012; Issartel et al., 2012):20

J = J(qo,x) =
1

2

[
(µ− qoaw(x)w(x))TH−1

w (µ− qoaw(x)w(x))
]

(C2)

For a fixed x in Eq. (C2), J reaches a strict local minimum if following two conditions are satisfied:

∂J(qo,x)

∂qo
= 0 (C3)

∂2J(qo,x)

∂q2
o

> 0 (C4)25
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For each fixed x, the first condition (Eq. (C3)) gives an estimate (q̃0) of q0 as: q̃0 =
aT
w(x)H−1

w µ
w(x) . The second condition (Eq.

(C4)) is always satisfied as ∂2J(qo,x)
∂q2o

= w2(x)> 0,∀x (Sharan et al., 2012). Corresponding to the estimate q̃0 from the first

condition (Eq. (C3)), the cost function J from Eq. (C2) leads to the following expression (Issartel et al., 2012):

J(q̃0,x) =
µT H−1

w µ

2

[
1− s2

w

µT H−1
w µ

]
(C5)

where sw is same as given in Eq. (4) and µT H−1
w µ is a positive constant. Considering Eq. (C5), it is obvious that the mini-5

mization of J also corresponds to the maximization of the term s2w
µT H−1

w µ
or minimization of term

[
1− s2w

µT H−1
w µ

]
. Accordingly,

the minimum value of the cost function J in Eq (C5) leads to the following expression of the cost function (say Js(x)) to

minimize:

Js(x) = 1− s2
w

µT H−1
w µ

(C6)

A global minimum of the cost function Js(x) is evaluated by the SA algorithm.10
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Table 1. The values of the meteorological (wind speed (S04), wind direction (α04) at 4 m level of mast S), turbulence (the Obukhov length

(L), friction velocity (u∗), turbulent kinetic energy (k) at 4 m level of tower T), and source parameters (source height (zs), release duration

(ts), release rate (qs)) in 20 selected trials of the MUST field experiment (Biltoft, 2001; Yee and Biltoft, 2004). Here, Trial Nos. 1-20 are

assigned for just continuation and simplicity and these are not correspond to the same assigned trial no. for a given Trial name in the MUST

experiment.

Trial Trial Name qs ts zs S04 α04 u∗ L k

No. (JJJhhmm) (l/min) (min) (m) (m/s) (deg) (m/s) (m) (m2s−2)

1 2640138 175 21 0.15 2.35 17 0.26 91 0.359

2 2640246 200 15 0.15 2.01 30 0.25 62 0.306

3 2671852 200 22 0.15 3.06 -49 0.32 330 0.436

4 2671934 200 15 1.8 1.63 -48 0.08 5.8 0.148

5 2672033 200 15 1.8 2.69 -26 0.17 4.8 0.251

6 2672101 200 14 0.15 1.89 -10 0.16 7.7 0.218

7 2672150 200 16 0.15 2.30 36 0.35 150 0.409

8 2672213 200 15 1.8 2.68 30 0.35 150 0.428

9 2672235 200 15 2.6 2.32 36 0.26 48 0.387

10 2672303 200 19 1.8 2.56 17 0.25 74 0.367

11 2681829 225 15 1.8 7.93 -41 1.10 28000 1.46

12 2681849 225 16 0.15 7.26 -50 0.76 2500 0.877

13 2682256 225 15 0.15 5.02 -42 0.66 240 0.877

14 2682320 225 15 2.6 4.55 -39 0.50 170 0.718

15 2682353 225 15 5.2 4.49 -47 0.44 120 0.727

16 2692054 225 22 1.3 3.34 39 0.36 170 0.362

17 2692131 225 17 1.3 4.00 39 0.42 220 0.582

18 2692157 225 15 2.6 2.98 43 0.39 130 0.505

19 2692223 225 15 1.3 2.63 26 0.35 120 0.484

20 2692250 225 17 1.3 3.38 36 0.37 130 0.537
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Table 2. Source estimation results from the different monitoring networks for each selected trial of the MUST field experiment. Ep
l and

Ep
q respectively denote the location error (m) and ratio of the estimated to true source intensity with the corresponding monitoring network.

Here, the superscript p on Ep
l & Ep

q represents the no. of sensors in an optimal network. Skeleton refers to the number of sensors common to

the optimal networks of 10 and 13 sensors for a given MUST trial.

Run E40
l E13

l E10
l E40

q E13
q E10

q Skeleton

No. (m) (m) (m) sensors

1 3.3±1.3 19.60±12.13 33.76±5.30 0.92±0.08 1.04±0.23 1.24±0.22 3

2 42.9±23.8 31.91±8.80 56.88±9.51 4.01±1.57 3.21±0.41 5.12±3.63 4

3 10.8±1.6 9.01±2.47 9.01±3.02 1.17±0.27 0.71±0.16 0.71±0.16 7

4 22.8±7.7 18.07±1.84 18.07±2.61 0.27±0.35 0.83±0.21 0.83±0.26 6

5 21.9±2.1 2.13±2.54 11.56±4.21 0.57±0.07 0.95±0.05 0.67±0.05 6

6 5.0±1.6 6.96±0.19 6.96±0.00 2.14±0.60 1.04±0.06 1.04±0.04 7

7 12.4±9.1 18.85±9.08 12.99±1.67 0.41±0.49 3.11±0.51 1.06±0.07 4

8 15.8±12.1 12.86±1.28 15.79±1.05 2.22±0.90 1.32±0.34 1.76±0.11 6

9 7.7±1.2 8.20±0.35 8.08±0.00 1.37±0.07 3.06±0.17 7.55±0.39 5

10 8.8±3.0 8.00±4.57 8.00±5.68 1.08±0.19 1.08±0.77 1.08±1.07 8

11 19.8±5.0 17.19±12.00 17.19±7.06 1.67±0.12 1.62±0.40 1.62±0.26 3

12 7.4±6.6 5.43±11.69 10.22±9.10 0.95±0.06 0.85±0.28 0.20±0.04 4

13 7.7±0.6 8.63±4.36 8.63±3.86 0.97±0.07 0.78±0.18 0.78±2.05 4

14 2.2±1.9 5.50±2.98 5.50±3.88 1.42±0.17 0.88±0.24 0.88±0.40 7

15 1.1±1.0 30.23±2.14 37.98±0.72 1.88±0.09 0.57±0.07 0.17±0.01 7

16 26.7±4.9 63.04±6.84 29.80±9.86 1.70±0.06 0.29±0.06 0.67±0.23 5

17 7.0±1.9 14.07±2.78 23.05±10.44 0.90±0.05 1.10±0.04 1.52±0.16 6

18 14.3±11.0 12.83±4.18 12.83±4.61 1.15±0.46 1.15±0.16 1.15±0.21 6

19 22.3±6.4 10.77±4.25 13.46±4.8 1.76±0.16 0.99±0.20 0.83±0.25 6

20 32.5±1.8 45.23±1.78 44.29±0.31 0.83±0.04 1.68±0.06 1.56±0.06 7

Table 3. Statistics for the source reconstruction results from each monitoring network. Here,Ep
l is the averaged location error for all 20 trials

corresponding to each network. FAg represents the percentage number of trials in which the source intensity is estimated within a factor of

g.

Sensors (p) Ep
l (m) FA4 FA3 FA2

40 14.62 95 90 75

13 17.42 100 80 80

10 19.20 80 80 80
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Figure 1. A schematic diagram of the MUST geometry showing 120 containers and source (stars) and receptors (black filled circles) loca-

tions. In a given trial - only one source was operational.
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1©
PARAMETERS SETTING

Lmax, T0, Tcold, θ, p, n

xBest ← xrand(p, n)

2©
xnew ← xrand(p, n)

3©
Cost difference

∆Js = Js(xnew)− Js(xbest)

Itt ← Itt + 1

4©
∆Js < 0

5©
P01 ≤ exp(−∆Js

T )

6©
xbest ← xnew

7©
Itt < Lmax

8©
Cooling the temperature Tb+1 ← θTb

Itt ← 0

9©
T > Tcold

10©
Optimal Network

xopt ← xbest

Source Term Estimation

x0, q0

no

yes

no

no

yes

yes

no

yes

1

Figure 2. Flow diagram of the Simulated Annealing procedures to determine an optimized monitoring network.
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Trial − 5
Potential positions
Optimal network (10 detectors)

Trial − 11
Potential positions
Optimal network (10 detectors)

Trial − 19
Potential positions
Optimal network (10 detectors)

Trial − 5
Potential positions
Optimal network (13 detectors)

Trial − 11
Potential positions
Optimal network (13 detectors)

Trial − 19
Potential positions
Optimal network (13 detectors)

Figure 3. The optimal networks of 10 (first row) and 13 sensors (second row) respectively for trials 5 (very stable), 11 (neutral), and 19

(stable). Blank and filled black circles respectively represent the all (40) potential positions and the optimal positions of sensors.
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 Net.− 10 : Trial− 5
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 Net.− 13 : Trial− 5
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 Net.− 10 : Trial− 11

 

 

 Net.− 10 : Trial− 11

 

 

 Net.− 13 : Trial− 11

 

 

 Net.− 13 : Trial− 11

 

 

 Net.− 10 : Trial− 19

 

 

 Net.− 10 : Trial− 19

 

 

 Net.− 13 : Trial− 19

 

 

 Net.− 13 : Trial− 19

 

 

Figure 4. Isopleths of the renormalized weight function (w(x)) (gray colored in first and third columns) and the normalized source estimate

function (snw(x) = sw(x)/max(sw(x))) (colored in second and fourth columns) for both optimal networks of 10 and 13 sensors respectively

for trials 5 (very stable), 11 (neutral), and 19 (stable). The black and white filled circles respectively represent the true and estimated source

locations.
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