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Abstract. This study presents a methodology for the optimization of a monitoring network of sensors measuring the polluting

substances in an urban-like environment with a view to estimate an unknown emission source. The methodology was presented

by coupling the Simulated Annealing algorithm with the renormalization inversion technique and the Computational Fluid Dy-

namics (CFD) modeling approach. Performance of an obtained optimal network was analyzed by reconstructing the unknown

continuous point emission using the concentration measurements from the sensors in that optimized network. This approach5

was successfully applied and validated with 20 trials of the Mock Urban Setting Test (MUST) tracer field experiment in an

urban-like environment. The optimal networks in the MUST urban region are determined which makes it possible to reduce

the size of original network (40-sensors) to ∼ 1/3rd (13-sensors) and to 1/4th (10-sensors). The 10 and 13 sensors optimal

networks have estimated the averaged location errors of 19.20 m and 17.42 m, respectively, which are comparable to 14.62

m from the original 40-sensors network. In 80% trials, emission rates with the 10 and 13 sensors networks were estimated10

within a factor of two which are also comparable to 75% from the original network. This study presents an application of

the renormalization data-assimilation theory for determining the optimal monitoring networks to estimate a continuous point

source emission in an urban-like environment.

1 Introduction

In case of an accidental or deliberated release of a hazardous contaminant in the densely populated urban or industrial regions,15

it is important to accurately retrieve the location and the intensity of that unknown emission source for the risk assessment,

emergency response and mitigation strategies by the concern authority. This retrieval of an unknown source in various source

reconstruction methodologies is completely dependent on the contaminant’s concentrations detected by some pre-deployed

sensors in that affected or a nearby region. However, pre-deployment of these limited number of sensors in that region required

an optimal strategy for the establishment of an optimized monitoring network to achieve maximum a priori information regard-20

ing state of emission. It is also required to correctly capture the data while extracting and utilizing information from a limited

and noisy set of the concentration measurements. The optimal monitoring networks for the characterization of the unknown

emission sources in complex urban or industrial regions is a challenging problem.
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The problem to optimize a monitoring network is common and consists in reducing the size of a network of sensors at

the level of a city, county, or a neighborhood while retaining its properties. The positions of a small number of sensors are

thus optimally determined so as to preserve the objectives of the initial monitoring network. These objectives are generally

diverse, e.g., reconstruction of an emitting source, analysis of the air quality, triggering of an alert, etc. This study will be

focused with an objective to reconstruct an unknown continuous point source’s release in an urban-like environment. Using the5

concentration measurements from an optimally monitoring sensors network, the determination of an unknown or fabricated

pollutant emissions from some industrial and accidental releases can be useful for mitigation strategies and also to impose strict

actions on such pollutant sources.

This study presents a methodology for the sensor’s locations choice, leading to the best network for the estimation of

an unknown point point source in a geometrically complex urban environment. This type of network is of great interest in10

case of an accidental or intentional pollutants release because this makes it possible to estimate the sources of pollution with

limited number of measurements from an optimal sensors network. In these conditions, it is necessary to know the location,

and the evolution of the spatial extent of the contaminant for an emergency response. The intensity, location and time of the

release are often unknown and should be inferred from sensor measurements. The source term estimation (STE) from the

measurements is an inverse modeling problem. The establishment of an optimal network may require the sensor concentration15

measurements, along with the availability of meteorological data, atmospheric dispersion model, choice of a STE procedure

and an optimization algorithm.

Ko et al. (1995) showed that the optimization of sensors network is an NP-hard (i.e. Non-deterministic Polynomial-time

hardness) problem, which means that it is difficult for an exhaustive search algorithm to solve all instances of the problem

because it requires a considerable time. Various optimization algorithms have been proposed to find the best solution, but these20

methods are not applicable to all the cases especially for large size problems. To solve such problems, the metaheuristic algo-

rithms are efficient. Some studies discussed the optimization of sensor distribution and number for gas emission monitoring,

e.g. Ma et al. (2013). Ma et al. (2013) used a direct approach with the Gaussian dispersion model to optimize the sensors

networks in homogeneous terrains. However, the present study utilizes an inverse approach by solving the adjoint transport-

diffusion equation with the building-resolving Computational Fluid Dynamics (CFD) model for an urban environment. This25

methodological approach for an optimal monitoring network (i.e. coupling of the optimization algorithm, inverse tracers trans-

port modeling and Computational Fluid Dynamics) includes the geometric and flow complexity inherent in an urban region

for the optimization process. In this study, the Simulated Annealing (SA) stochastic optimization algorithm (Jiang et al., 2007;

Abida et al., 2008; Abida and Bocquet, 2009; Saunier et al., 2009; Kouichi et al., 2016; Kouichi, 2017, etc.) is utilized. The

SA algorithm was designed for the statistical physics. It incorporates a probabilistic approach to explore the search space and30

converges iteratively to the solution. This algorithm is often used and recommended to solve the problems of sensors network

optimization (Abida, 2010). The network optimization process consists of finding the best set of sensors that leads to the min-

imum of a defined cost function. A cost function can be defined as a regularized norm square of the distance between the

measurements and forecasts which is also used for the STE (Sharan et al., 2012).
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The STE problem for atmospheric dispersion events has been an important topic of much consideration as reviewed in

Rao (2007); Hutchinson et al. (2017). Often, the source term is estimated using a network of static sensors deployed in a

region. In inverse modeling process, the adjoint source-receptor relationship and concentrations and meteorological datasets

are required for the STE. The adjoint source-receptor relationship is defined by an inverse computation of the atmospheric

transport dispersion model (Pudykiewicz, 1998). This relationship is often affected by the nonlinearities in the flow-field by5

building effects in complex scenarios arising in urban environments, where the backward and forward dispersion concentrations

will not match. Various inversion methods can be classified in two major categories: probabilistic and deterministic. The

probabilistic category treats source parameters as the random variables associated to the probability distribution. This includes

the Bayesian Estimation Theory (Bocquet, 2005; Monache et al., 2008; Yee et al., 2014, etc.), Monte Carlo algorithms using

Markov chains (MCMC) (Gamerman and Lopes, 2006; Keats, 2009, etc.) and various stochastic sampling algorithms (Zhang10

et al., 2014, 2015, etc.). Deterministic methods use cost functions to assess the difference between observed and modeled

concentrations and are based on an iterative process to minimize this difference (Seibert, 2001; Penenko et al., 2002; Sharan

et al., 2012, etc.). Among the other approaches, advanced search algorithm like genetic algorithm (Haupt et al., 2006, etc.)

or neural network algorithm (Wang et al., 2015, etc.) and other regularization methods (Ma et al., 2017; Zhang et al., 2017,

etc.) have been used for the STE. In this study, we focused on the renormalization inversion method (Issartel, 2005), which15

is deterministic in nature and does not require any prior information of the source parameters. The renormalization inversion

approach was successfully applied and validated for retrieval of an unknown continuous point source in flat terrain (Sharan

et al., 2009, etc.) and also in urban-like environment (Kumar et al., 2015b). Initially, the renormalization inversion method

was proposed to estimate emission of the distributed sources (Issartel, 2005). Sharan et al. (2009) and other studies have

shown that this technique is also effective for estimating continuous point sources. For these applications, the hypothesis of20

a linear relationship between the receptor and the source was assumed. For homogeneous terrains, the adjoint functions can

analytically be computed based on the Gaussian solution of the diffusion transport equation to estimate a continuous point

release. However, the flow-field in urban or industrial environments is quite complex and the asymmetry of the flow and

the dispersed plume in urban regions is generated mainly by the presence of buildings and other structures. In general, the

Gaussian models are unable to capture the effects of complex urban geometries on adjoint sensitivities between source and25

receptors and also if dense gases are involved, the Gaussian distribution hypothesis fails. Recently, Kumar et al. (2015b, 2016)

have extended the applications of the renormalization inversion technique to retrieve an unknown emission source in the urban

environments, where a CFD approach was used to generate the adjoint receptors-source relationship. In this process, a coupled

CFD-renormalization source reconstruction approach was described for the identification of an unknown continuous point

source located at the ground surface or at a horizontal plane corresponding to a known or predefined altitude above the ground30

surface, or an elevated release in an urban area.

In this study, two canonical problems are considered separately: (i) optimization of the measuring network: here, the op-

timization consists of selecting the best positions to be instrumented by the sensors among a set of potential locations. This

choice is operated in a space of search constituted of all possible networks (of a specific size) and based on a cost function

that describes quantitatively the quality of the networks. The cost function is defined from the inverse renormalization method35
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and is quantified during the searching process. (ii) Identification of the unknown source: the STE is studied in the framework

of a parametric approach using the renormalization technique. Here the challenge is to determine the parameters of the source

(intensity and position) using any measurements vector (in practice the number of measurements is limited). The evoqued

canonical problems are coupled in order to evaluate the performance of the proposed methodology.

The main objective of this study is to determine the sensors locations choice in an urban domain for an optimal monitoring5

network dedicated to estimate the location and intensity of a continuously polluting point source. A methodology is proposed

to determine an optimal network formed by a predetermined number of sensors, to better characterize a source of pollutant in

a complex urban environment. This study deals with a case of reducing the number of sensors in order to obtain an optimal

network from an existing network. For this purpose, a predefined network of sensors deployed in an area of interest is consid-

ered to determine an optimized network with smaller number of sensors, but, with comparable information. This work explores10

with two requirements of the optimal networks that modifies the spatial configuration of an existing network by moving the

sensors and also reduces the number of sensors of an existing large network. In real situation this methodology can be applied

for the optimization of mobile networks deployed in emergency situation. The methodological approach to optimize the moni-

toring network in urban environment was presented by coupling the SA stochastic algorithm with the renormalization inversion

technique and the CFD modeling approach. The concentration measurements from these optimized networks of sensors in 2015

trials of the Mock Urban Setting Test (MUST) field tracer experiment were utilize to validate the methodology to retrieve an

unknown continuous point source in an urban-like environment.

2 Source Term Estimation Method: The Renormalization

In the context of an inversion approach, source parameters are often determined using the concentration measurements at the

sensor locations and a source-receptors relationship. The release is considered continuous from a point source located at the20

ground or at a horizontal plane corresponds to an altitude of a known source height. Since the optimization methodology

presented in the next section utilizes some concepts from the renormalization inversion methodology (Sharan et al., 2009), the

renormalization theory to estimate a continuous point release is briefly presented in following subsections.

2.1 Source-Receptor relationship

A source-receptor relationship is an important concept in the source reconstruction process and it can be linear or nonlinear.25

This study deals with the linear relationship, as except from the nonlinear chemical reactions, most of the other processes

occurring during the atmospheric transport of trace substances are linear: advection, diffusion, convective mixing, dry and wet

deposition, and radioactive decay (Seibert and Frank, 2004). A source-receptor relationship between the measurements and

the source function is defined based on a solution of the adjoint transport-diffusion equation that exploits the computed adjoint

functions (retroplumes) corresponding to each receptor (Pudykiewicz, 1998; Issartel et al., 2007, etc.). These retroplumes30

provide a sensitivity information between the source position and the sensor locations. Let’s consider a discretized domain of

N grid cells in a 2-dimensional space x = (x,y), a vector of M concentration measurements µ= (µ1,µ2, ...,µM )T ∈ RM ,
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and an unknown source vector s(x) ∈ RN to estimate. The measurements µ are related to the source vector s by the use of

sensitivity coefficients (also referred as adjoint functions) (Hourdin and Talagrand, 2006). The sensitivity coefficients describe

the backward propagation of information from the receptors toward the unknown source. These vectors are related by the

following linear relationship:

µ= As + ε (1)5

where ε ∈ RM is the total measurements error and A ∈ RM×N is the sensitivity matrix with A(x) = [a(x1),a(x2), ...,a(xN )].

Here, each column vector a(xi) ∈ RM of the matrix A represents the potential sensitivity of a grid cell with respect to all M

concentration measurements.

For a given set of the concentration measurements µ, the source estimate function s(x) in Eq. (1) can easily be estimated by

formulating a constrained optimization problem. This optimization problem minimizes a cost function J(s) = sT s, subjected10

to a constraint ε= µ−As = 0. Using the method of Lagrange multipliers, s(x) can be estimated as a least-norm solution:

s = AT H−1µ (2)

where H−1 is inverse of the Gram matrix H = AAT . This estimate (Eq. (2)) is not satisfactory because it generates artifacts

at the grid cells corresponding to the measurement points. Adjoint functions become singular at these points and have very

large values. These large values do not represent a physical reality, but rather an artificial information. This was highlighted by15

Issartel et al. (2007) which reduced this artificial information by a process of renormalization.

2.2 Renormalization process

This process involves a weight function in space W(x) ∈ RN×N , which is purely a diagonal matrix with the diagonal elements

wjj > 0 such that
N∑
i=1

wjj =M . Introduction of W transforms the source-receptor relationship in Eq. (1) to:

µ= AwWs + ε. (3)20

where the modified sensitivity matrix Aw is defined as Aw = AW−1 = [aw(x1),aw(x2), ...,aw(xN )] in which the column

vector aw(xi) = a(xi)/w(xi) of Aw is the weighted sensitivity vector at xi. Considering a similar approach that outlined in

previous subsection, a new constrained optimization problem can be formulated for Eq. (3) to estimate s(x). This optimization

problem minimizes a cost function J(s) = sTWs, subjected to a constraint ε= µ−AwWs = 0, and deduces the following

expression sw of s (Appendix A in Kumar et al., 2016):25

sw = AT
wH−1

w µ (4)

where H−1
w is the inverse of Hw = AwWAT

w. The weight function in the above discussed renormalization process is computed

by using an iterative algorithm demonstrated by Issartel et al. (2007) (Appendix A).
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2.3 Identification of point source

Consider a point source of continuous release at a position xo = (xo,yo) and with the intensity qo. The point source is thus

expressed as a function of the preceding parameters: s(x) = qoδ(x−xo). The relationship between the source and the mea-

surements (Eq. (3)) becomes: µ= qoaw(xo)w(xo) + ε. By replacing the measurement term in Eq. (4), one obtains:

sw = qow(xo)AT
wH−1

w aw(xo). (5)5

sw reaches its maximum at position xo as the renormalization criterion (Eq. (A1)) is satisfied only at this position xo. Thus,

sw(x) at xo becomes:

sw(xo) = qow(xo), (6)

which estimates the source intensity qo = sw(xo)/w(xo).

3 The Combinatorial Optimization of a Monitoring Network10

A predefined large network of n sensors deployed in an area of interest is considered to determine an optimized network with

smaller number of sensors, but with comparable information. For a given number of p sensors such that p < n, one determines

an array of p sensors among n, which delivers maximum of the information. It is a combinatorial optimization problem that

consists of choosing p sensors among n, and thus constituting an optimal network. The optimal network will consist of p

sensors for which a defined cost function is minimum. The number of possible choices nCp (number of combinations of p15

among n) is very high, when an initial network is sufficiently instrumented (n large) and p is small with respect to n. As the

number of combinations to be tested is very large, minimum of a cost function will be evaluated by a stochastic algorithm, viz.

simulated annealing (SA).

3.1 Cost function

A cost function is defined (based on the renormalization theory) as a function that minimizes the quadratic distance between20

the observed and the simulated measurements according to the Hw norm (Issartel et al., 2012). Hw is the Gram matrix defined

in a previous section 2.2. The quadratic distance between the real and the simulated concentration measurements according to

the Hw norm is given by :

J = ‖µ− µ̂‖2H−1
w

=
1

2

[
(µ− µ̂)T H−1

w (µ− µ̂)
]

(7)

When considering a point source, µ̂ is written by µ̂= qoaw(x)w(x), where qo and x are respectively the intensity and the25

position of a point source. By replacing µ̂ in Eq. (7), one obtains (Sharan et al., 2012; Issartel et al., 2012):

J = J(qo,x) =
1

2

[
(µ− qoaw(x)w(x))TH−1

w (µ− qoaw(x)w(x))
]

(8)
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For a fixed x in Eq. (8), J reaches a strict local minimum if following two conditions are satisfied:

∂J(qo,x)

∂qo
= 0 (9)

∂2J(qo,x)

∂q2
o

> 0 (10)

For each fixed x, the first condition (Eq. (9)) gives an estimate (q̃0) of q0 as: q̃0 =
aT
w(x)H−1

w µ
w(x) . The second condition (Eq. (10))5

is always satisfied as ∂2J(qo,x)
∂q2o

= w2(x)> 0,∀x (Sharan et al., 2012). Corresponding to the estimate q̃0 from the first condition

(Eq. (9)), the cost function J from Eq. (8) leads to the following expression (Issartel et al., 2012):

J(q̃0,x) =
µT H−1

w µ

2

[
1− s2

w

µT H−1
w µ

]
(11)

where sw is same as given in Eq. (4) and µT H−1
w µ is a positive constant. Considering Eq. (11), it is obvious that the minimiza-

tion of J also corresponds to the maximization of the term s2w
µT H−1

w µ
or minimization of term

[
1− s2w

µT H−1
w µ

]
. Accordingly, the10

minimum value of the cost function J in Eq (11) leads to the following expression of the cost function (say Js(x)) to minimize:

Js(x) = 1− s2
w

µT H−1
w µ

(12)

A global minimum of the cost function Js(x) is evaluated by the SA algorithm.

3.2 Simulated Annealing (SA) algorithm for the Sensor’s Network Optimization15

The problem of optimization of a network is solved using the simulated annealing (SA) algorithm. The SA optimization algo-

rithm is utilized here for the determination of the optimal networks by comparing its performance with the Genetic Algorithm

(GA)(Kouichi, 2017). These algorithms of different search technics (SA probabilistic and GA evolutionary) are evaluated based

on the same cost function. The results showed that the optimal networks retained by the GA and the SA are quantitatively and

qualitatively comparable (Kouichi, 2017). The SA has advantageous because it is relatively easy to implement and takes smaller20

computational time in comparison to GA. Both SA and GA optimization algorithms in the framework of this approach (based

in the renormalization theory) has little influence on the estimation of the parameters of a source (Kouichi, 2017).

The SA is a random optimization technique based on an analogy with thermodynamics. The technique has been introduced

to the computational physics over sixty years ago in the classic paper by Metropolis et al. (1953). The algorithm of simulated

annealing is initiated by starting from an admissible network. At the subsequent steps, the system moves to another feasible25

network, according to a prescribed probability, or it remains in the current state. However, it is crucial to explain how this prob-

ability is calculated. The mobility of the random walk depends on a global parameter T which is interpreted as ’temperature’.

The initial values of T are large, allowing free exploration of large extents of the state space (this corresponds to the “melted

state” in terms of the kinetic theory of matter). In the subsequent steps, the temperature is lowered allowing the algorithm to

reach a local minimum.30
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For the SA, each network is considered as a state of a virtual physical system, and the objective function is interpreted as the

internal energy of this system in a given state. According to statistical thermodynamics, the probability of a physical system

for being in a same state follows the Boltzmann distribution and depends on its internal energy and the temperature level. By

analogy, the physical quantities (temperature, energy, etc.) become a pseudo-quantities. And during the minimization process,

the probabilistic treatment consists to accept a new network selected in the neighborhood of the current network following the5

same Boltzmann distribution and depending both on the cost difference between the new and the current networks and on the

pseudo-temperature (’temperature’). To find the solution, the SA incorporates the ’temperature’ into a minimization procedure.

So at high ’temperature’ (starting ’temperature’), the space of solution is widely explored, while at lower ’temperature’ the

exploration is restricted. The algorithm is stopped when the cold ’temperature’ is reached. It is necessary to choose the law

of decreasing ’temperature’, called as cooling schedule. Different approaches to parameterize the SA are explored in Siarry10

(2016). Kirkpatrick et al. (1983) proposed an average probability to determine the initial (starting) ’temperature’. Nourani

and Andresen (1998) compared the most used cooling schedules (exponential, logarithmic, and linear). The SA algorithm

starts minimization of an objective function at annealing ’temperature’ from a single stochastic point, then it searches for the

minimal solutions by attempting all the points in search domain with respect to their value of the ’temperature’. The algorithm

is depicted in a flow diagram in Figure 2 and a step by step implementation of the SA procedure for an optimized monitoring15

network in an urban environment is described as follows:

Step 1. Parameters setting and initialization

Network parameters (n and p): n is the number of possible locations of the sensors and p is the optimal network number of

sensors.

Starting ’temperature’ (T0): T0 is also called the highest ’temperature’. It was determined from the Metropolis law: T0 =20

− (∆Js)
log(P0) , where (∆Js) is an average of the difference of cost functions calculated for a large number of cases. P0 is an

acceptance probability and following the recommendations of Kirkpatrick et al. (1983), it was set to 0.8. Start iterations

(Itt = 0).

Length of the bearing (Lmax): A length of the bearing is the number of iterations to be performed at each ’temperature’ level.

An equilibrium is reached for this number of iterations and any significant improvement of the cost function can be expected.25

No general rule is proposed to determine a suitable length. This number is often constant and proportional to the size of the

problem.

The ’temperature’ decay factor (θ): The ’temperature’ remains constant for Lmax iterations corresponding to each bearing.

We used the exponential schedule due to its efficiency as denoted by Nourani and Andresen (1998). Then, the ’temperature’

decreases law between two bearings varies as: Tb+1 = θTb, with 0< θ < 1, where b represents a bearing. So, it was retained a30

decay pattern by the bearings.

The cold ’temperature’ (Tcold): Tcold is often called the stopping ’temperature’. There is no clear rule to set this parameter. It

is possible to stop calculations when no improvement in the cost function is observed during a large number of combinations.
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One can estimate this number and take into account the maximum length Lmax of each bearing, thus the cold ’temperature’

can be expressed as a fraction of the starting ’temperature’ T0.

Assigning the first best set of sensors, xBest← xrand(p,n): xrand(p,n) corresponds to a vector of p sensors locations randomly

chosen among the n possible locations. A new solution is randomly explored. This vector is assigned to the first ’best’ set of

sensors.5

Step 2. Assigning a new set of sensors

xnew← xrand(p,n), where xrand(p,n) corresponds to a vector of p sensors locations randomly chosen among the n possible

locations. This vector is assigned to a new set (xnew) of the sensors.

Step 3. Cost difference

Given a sensor location xnew, the cost function Js(xnew) is computed as follows:10

- set µ vector by using the measurements at the xnew locations,

- set rows of matrix A using the sensitivity at the xnew locations,

- determine w(x), Hw, and aw iteratively using the algorithm in Eq. (A2),

- compute the source term sw(x) using Eq. (4),

- compute the cost function Js(xnew) using Eq. (12).15

Js(xbest) is computed like Js(xnew) using the same precedent steps. A cost difference is then calculated using ∆Js =

Js(xnew)− Js(xbest). Increment the iterations (Itt← Itt + 1).

Step 4. Test of sign of ∆Js

If ∆Js < 0, the error associated with xnew is less than that with xbest and thus xnew will become the next ’best network’ (Step

6). If this condition is not satisfied, the algorithm can jump out of a local minimum (Step 5).20

Step 5. Conditional jump

When ∆Js > 0, the algorithm has ability to jump out any local minima if condition: P01 ≤ exp(−∆Js

T ) is satisfied, where P01

is the acceptance probability (a random number between 0 and 1), and T is the current annealing ’temperature’. It means that

xnew will be the next ’best network’ even if the associated error is greater than that of xbest. If P01 > exp(−∆Js

T ), go to Step

7.25

Step 6. Update xbest

In this step, xbest is updated by xnew.

9



Step 7. Maximum iteration check

If the maximum number of iterations of a bearing (Lmax) is reached, a state of equilibrium is then achieved for this ’tempera-

ture’ and one can cool the actual ’temperature’ (Step 8). If not, continue iterations (Step 2).

Step 8. ’Temperature’ cooling

’Temperature’ is cooled using the cooling schedule and iteration variable is reset to zero.5

Step 9. Cold ’temperature’ test

The cold ’temperature’ (Tcold) is also known as the stopping ’temperature’. If this ’temperature’ is reached, the algorithm is

stopped. When Tcold is not reached, other ’temperature’ bearing are performed using the cooling schedule.

Step 10. Optimal network

At this step, the last best network xbest is the optimal network. Source parameters are then estimated using the concentration10

measurements and retroplumes only for sensors from the obtained optimal network as: (i) x0 is estimated at position of the

maximum of the source estimate function sw(x), and (ii) the intensity q0 is given by q0 = sw(x0)/w(x0).

In stochastic optimization algorithms, especially in the SA, it was observed that there is no guarantee for the convergence

of the algorithm with such a strong cooling (Cohn and Fielding, 1999; Abida et al., 2008). However, chances are that a near-

optimal network configuration can be reached. Due to this, one or more near-optimal networks can be obtained from this15

methodology that satisfy the conditions of near overall optimum condition.

4 The Mock Urban Setting Test (MUST) Tracer Field Network

The MUST field experiment was conducted by the Defense Threat Reduction Agency (DTRA) in 2001. It was aimed to help

developing and validating the numerical models for flow and dispersion in an idealized urban environment. The experimental

design and observations are described in detail in Biltoft (2001) and Yee and Biltoft (2004). In this experiment, an urban20

canopy was represented by a grid of 120 containers. These containers were arranged along 12 rows and 10 columns on the

army ground in the Utah desert, USA. Each container has dimensions of 2.54 m high, 12.2 m long and 2.42 m wide. The

spacing between the horizontal lines is 12.9 m, while the columns are separated by a distance of 7.9 m. The total area thus

formed is approximately 200× 200 m2. The experiment consists of 63 releases of a flammable gas (propylene C3H6) that is not

dangerous or harmful in quantities and could be released through the dissemination system into the open atmosphere (Biltoft,25

2001). Different wind conditions (direction, speed, atmospheric stability) as well as different positions for gas emissions (inside

or outside the MUST urban canopy at different heights) were considered. These gas emissions were carried out under stable,

very stable, and neutral stability conditions. In this study, 20 trials in various atmospheric stability conditions are selected and

the meteorological variables are taken from an analysis of meteorological and micro-meteorological observations in Yee and
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Biltoft (2004) (Table 1). It is noted that the errors related to meteorological data can affects the accuracy of the source term

estimation (Zhang et al., 2014, 2015), although this error is not considered in this study. In each trial, the gas was continuously

released for ≈ 15 min, during which the concentration measurements were made. These concentration measurements were

carried out by 48 photoionization detectors (PIDs). 40 sensors were positioned on four horizontal lines at 1.6 m height (Figure

1) and 8 sensors were deployed in vertical direction at a tower located approximately in center of the MUST array.5

5 CFD Modelling for Retroplumes in an Urban Environment

The flow-field in atmospheric dispersion models in geometrically complex urban or industrial environments cannot be consid-

ered as homogeneous throughout the computational domain. This is because the buildings and other structures in that region

influence and divert the flow into unexpected directions. Consequently, the dispersion of a pollutant and computations of the

adjoint functions (retroplumes) are affected by the flow-field induced by these structures in an urban region. Recently, Ku-10

mar et al. (2015a) utilized a CFD model to compute the flow-field and the forward dispersion in 20 trials of the MUST field

experiment. In order to reconstruct an unknown continuous point source, the computed flow-field is then used to compute

the retroplumes for all selected trials (Kumar et al., 2015b). A CFD model fluidyn-PANACHE was utilized to calculate the

flow-field, considering a subdomain of calculation (whose dimensions are 250 × 225 m2 with a height of 100 m) that consists

the MUST urban array created by the containers, sources, receptors, and other instruments in this experiment. This subdomain15

is embedded in a larger computational domain (dimensions of 800 × 800 m2 with a height of 200 m) to ensure a smooth

transition of the flow between the edges of the domain and the obstacles zone. This extension of the outer domain far from the

main experimental site is essential to reduce effects of the inflow boundary conditions imposed at inlet of the outer domain. A

more detailed description about the CFD model and its simulations for the MUST field experiment, e.g., boundary conditions,

turbulence model, etc. are presented in Kumar et al. (2015a) and now briefly discussed in the Supplementary Information (SI).20

An unstructured mesh was generated in both domains with more refinement in the urbanized area in inner subdomain and at

the positions of receptors, thus generating 2849276 meshes.

The simulations results with fluidyn-PANACHE in each MUST trial were obtained with inflow boundary conditions from

vertical profiles of the wind (U), the turbulent kinetic energy (k) and its dissipation rate (ε). These inflow profiles include:

(i) Wind profile: Gryning et al. (2007) profiles in stable and neutral conditions and a profile based on the stability function by25

Beljaars and Holtslag (1991) in very stable conditions, (ii) Temperature profile: Monin-Obukhov similarity theory based loga-

rithmic profiles, (iii) Turbulence profiles: k and ε profiles are based on an approximate analytical solution of one-dimensional

k− ε prognostic equations (Yang et al., 2009). The atmospheric stability effects in the CFD model fluidyn-PANACHE are in-

cluded through the inflow boundary condition (via advection). fluidyn-PANACHE includes a Planetary Boundary Layer (PBL)

model that serves as an interface between the meteorological observations and the boundary conditions required by the CFD30

solver. The observed turbulence parameters, e.g. (i) sensible heat flux (Qh), the Obukhov length (L), (iii) surface friction ve-

locity (u∗) and the temperature scale (θ∗) were used to derive the vertical profiles of mean velocity and potential temperature.

As an example, the wind velocity vectors around some containers for the trial 11 are shown in SI Figure S1.1. This figure
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shows the deviations in the wind speed and its direction due to the obstacles in an urban-like environment. It should be noted

that the MUST experiment took place under neutral to stable and strongly stable conditions. However, the only atmospheric

stability effects included in the CFD model are through the specification of inflow boundary conditions. Atmospheric stability

has a profound impact on dispersion and would thus influences the adjoint functions. However, as presented and discussed in

our previous study (Kumar et al., 2015a), even with specification of the stability dependent inflow boundary conditions only,5

the predicting forward concentrations from the CFD model are in good agreement with the measured concentrations for all 20

trials in different atmospheric stability conditions. However, at micro-scales also, small irregularities can break the repeated

flow patterns found in a regular array of containers with identical shape (Qu et al., 2011). In addition, uncertainties associated

with the thickness and the properties of the material of the container wall also affect flow pattern and the resulted concentra-

tions and adjoint functions (Qu et al., 2011). Accordingly, the atmospheric stratification and stability effects should also be10

included through surface cooling or heating in the CFD model and stability effects from inflow boundary conditions. Since the

released gas propylene is heavier than the air and would behave as a dense gas, a buoyancy model was used to model the body

force term in the Navier-Stokes equations. The buoyancy model is suitable for the dispersion of heavy gases where density

difference in the vertical direction drives the body force.

In order to compute the retroplumes in each MUST trial, firstly the CFD simulations were performed to compute the con-15

verged flow-field in computational domain, secondly the flow-field is reversed and used in the standard advection-diffusion

equation to compute the adjoint functions ai(x). In this computation of the retroplumes corresponding to each receptor in a

selected trial, the advection-diffusion equation is solved by considering a receptor as a virtual point source with unit release

rate at the height of that receptor. Also, the meteorological conditions remained invariant during the whole experimental period

in a trial. The details about the retroplumes and the correlated theory of the duality verification (i.e. comparison of the con-20

centrations predicted with the forward (direct) model and the adjoint model) for all 20 trials of the MUST field experiment are

given in Kumar et al. (2015b). Since we are concerned to establish an optimized monitoring network in a domain that contains

the MUST urban array, the retroplumes are computed in the inner subdomain only. Consequently all the computations for an

optimized monitoring network were carried out in the inner subdomain only. The sensors in the optimized monitoring network

are supposed to deploy on a fixed vertical height above the ground surface. Accordingly, the retroplumes corresponding to25

only 40 receptors at 1.6 m height were utilized in computations for the optimized monitoring networks in the MUST urban

environment.

6 Results and Discussion

The calculations were performed by coupling the SA algorithm to a deterministic renormalization inversion algorithm and

the CFD adjoint fields to optimize the monitoring network in an urban-like environment of the MUST field experiment. The30

network optimization process consists of finding the best set of sensors that leads to the lowest cost function. In this study, the

validation is realized following two separated steps. The first step consists to form two optimal monitoring networks by using

the presented optimization methodology which makes it possible to reduce the size of original network of 40 sensors to approx.
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one-third (13 sensors) and one-fourth (10 sensors). The second step consists to compare a posteriori the performance of the

obtained optimal networks to the ’MUST predefined network’ of 40 sensors at 1.6 m above the ground surface. In first step,

the comparison with networks of the same size (e.g. 10 sensors) was performed implicitly during the optimization process. As

the SA is an iterative algorithm, during the optimization process networks of same size are compared at each iteration and the

‘best one’ is retained. The networks have also been generated randomly like in Efthimiou et al. (2017); however, the search5

space of the problem is very large. In our case, the number of the compared networks is equivalent to the number of iterations

(as an example for optimal network of 10 sensors ∼ 3 × 104 configurations are compared). Here, the comparison is based

on a cost function and inspired from the renormalized data assimilation method. The cost function quantifies the quadratic

distance between the observed and the simulated measurements. The ’optimal network’ produces the ’best’ description of the

observations (i.e. corresponds to the minimal quadratic distance) and permits a posteriori to estimate the location and emission10

rate of an unknown continuous point source in an urban-like environment.

The size of the ’MUST predefined (original) network’ is 40 sensors and the sizes of the optimized networks are fixed after

performing a first optimization with the number of sensors from 4 to 16 (Kouichi, 2017). This first evaluation showed that for

some trials, a small number of sensors could not allow to correctly reconstruct the source and divergences in the calculations

have been noted. Accordingly, the source estimation obtained for different trials and network sizes show that, very often,15

networks of less than 8 sensors can not correctly characterize the source. On the other hand, beyond 13 sensors, the source

estimation is not significantly improved, and the associated errors were roughly constant (Kouichi, 2017). Therefore, in order

to ensure an acceptable estimate of the source for all the trials, the sizes of the optimized network are fixed as 10 and 13 sensors

(1/4th and ∼ 1/3rd respectively of the original network of 40 sensors).

The optimization calculations were performed using Matlab on a computer with configuration "Intel® CoreTM i7-4790 CPU20

@ 3.60 GHz and 16 GB RAM". The averaged computational time for optimization of one 10 sensors network was ≈ 2.5 hrs

and ≈ 8.5 hrs for 13 sensors network. In computations, a value of parameter T0 = 10 was fixed according to the scale of cost

function and using the methodology described in Step 1 and Tcold = 10−13 was used for both the optimal sensors networks. θ is

a decay factor of the ’temperature’ for an exponential cooling schedule that describes a procedure of the temperature decrease.

The best cooling schedule is the exponential decay as demonstrated by Nourani and Andresen (1998); Cohn and Fielding25

(1999). θ was fixed as 0.9 following the recommendation in literature (Siarry, 2014). This value allows a sufficiently slow

cooling in order to give more chance to the algorithm to explore a large search space and to avoid the local minima. Lmax is

taken as 100 & 200 for 10 & 13 sensors networks, respectively, following the recommendation in Siarry (2014) and according

to number of the possible combinations that increases with the number of sensors (8.5× 108 for 10 sensors and 1.2× 1010 for

13 sensors).30

Figure 3 shows the optimal networks of 10 and 13 sensors respectively for three representative trials 5 (very stable), 11

(neutral), and 19 (stable) in the MUST urban array. These three trials correspond to one trial each in neutral, stable, and very

stable atmospheric conditions during the release. The optimal monitoring networks of 10 and 13 sensors for all selected 20

MUST trials are shown in SI Figures S2.1&S2.2.
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In order to analyze the performance of the optimal monitoring configurations, the source reconstructions were performed

to estimate the unknown location and the intensity of a continuous point release. These source reconstruction results were

obtained from the optimal monitoring networks formed by 10 and 13 sensors in each MUST trial. In this, the retroplumes

and the concentration measurements were utilized from the sensors corresponding to these optimal networks. The retroplumes

were computed using CFD simulations, considering the dispersion in a complex terrain. The source reconstruction results from5

both the optimal monitoring networks were also compared with results computed from the initial MUST network formed by 40

sensors (Kumar et al., 2015b). As in practice, the number of measurements is limited, this comparison allowed concluding that

in urban areas, the reduction of networks size is possible and does not degrade significantly its efficiency in source estimation.

Source estimation results from the different monitoring networks are shown in Table 2 for all 20 selected trials of the

MUST experiment. These results are presented in terms of the location error (Ep
l ), which is an euclidean distance between10

the estimated and the true source location, and Ep
q , a ratio of the estimated to the true source intensity. The corresponding

monitoring network is represented by a superscript p (representing the number of sensors in an optimal network) on Ep
l and

Ep
q . In order to quantify the uncertainty, a 10% Gaussian noise was added at each measurements. Accordingly, 50 simulations

for the source reconstruction were performed with these noise measurements using the optimal networks for each trial. The

average and the standard deviation of Ep
l and Ep

q are calculated and the result are also presented in Table 2.15

For a given trial, a parameter skeleton represents the common sensors between two optimal networks of different sizes

(with 10 and 13 sensors). These results exhibit that the SA algorithm coupled with renormalization inversion theory and CFD

modeling approach has succeeded in proposing the good optimal monitoring networks to estimate the unknown emissions in

an urban environment.

Figure 4 shows isopleths of the renormalized weight function (also called as the visibility function) and the normalized source20

estimate function snw(x) = sw(x)/max(sw(x)) correspond to both optimal monitoring networks for three representative trials

(e.g. 5, 11, and 19) of the MUST experiment. These isopleths for all selected 20 MUST trials are shown in SI Figures S3.

A statistical parameter, factor of g (FAg), for the source reconstruction results from each monitoring network is presented in

Table 3, where FAg represents the percentage no. of trials in which the source intensity is estimated within a factor of g. The

statistics calculated with 40 sensors network show that the average location error for all 20 trials is 14.62 m, and in 75% of the25

trials, the intensity of the source is estimated within a factor of two. In 90% of the trials, intensity was estimated within a factor

of three and within a factor of four in 95% trials (Table 3). If trial 2 is considered, large location errors (greater than 30 m) and

the intensity values ranged between a factor of three to five, were observed (Table 2) independently of the number of sensors in

the networks . If we consider the trials 15, 16, & 20, it was noted that the larger location errors do not necessarily correspond

to the high intensity errors (Table 2).30

From distribution of the optimized sensors in networks in Figures 3 for trials 5, 11 & 19 and SI Figures S2.1&S2.2 for all

selected trials, it was noted that a larger number of sensors are close to the source position in the optimal networks in most of the

trials. This tendency makes it possible for sensors from an optimal network to monitor the region where a source can be located

and it can be explained in terms of the visibility function. The visibility function includes the natural information associated

with a monitoring network for the source retrieval in a domain and physically interprets the extent of regions seen by the35
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network (Issartel, 2005; Sharan et al., 2009). The visibility function is independent of the effective values of the concentration

measurements and depends only on geometry of the monitoring network. Hence, this leads to a priori information about the

unknown source apparent to the monitoring network. It was observed that the visibility functions have significant levels at the

source positions (Figures 4 & S3).

The source reconstruction results from the optimal monitoring networks formed by 10 sensors have an averaged location5

error (E10
l ) of 19.20 m for all 20 trials in the MUST experiment (Tables 2&3). In most of the trials, the location and the

intensity of a continuous point emission are estimated accurately and close to the true source parameters. The location error is

minimum in trial 14 (E10
l = 5.50 m) and maximum in trial 2 (E10

l = 56.88 m) (Table 2). For this configuration of the optimal

sensors network, the source intensity in 80% of the trials are estimated within a factor of two to their true release rates (Tables

2&3).10

For all 20 trials, the averaged location error E13
l is 17.42 m for the optimal networks formed by 13 sensors, which is smaller

than the averaged E10
l = 19.20 m obtained with 10 sensors (Tables 2&3). The location error is observed minimum in trial 5

(E13
l = 2.13 m) and maximum in trial 16 (E13

l = 63.04 m) (Table 2). For this optimal network, in 80% of the trials, the source

intensity is estimated within a factor of two. It was noted that the increase in the number of sensors in a network has little

influence on the accuracy of the estimated intensity (Tables 2&3).15

In some trials, it was also noted that the distance of an estimated source to real source can decreases with a decrease in

sensors number and are also increases with the number of sensors in some other cases. It is because the information added by a

new sensor was not necessarily beneficial. As it is noticeable that in a particular meteorological condition (i.e. wind direction,

speed and atmospheric stability), some of the sensors in a network may have little contribution to the STE. So, increasing the

number of the sensors may not always provide the best estimation because with addition of the more no. of sensors, we also20

add more model and measurements errors in the estimation process. These errors can affect the source estimation results in

some trials. In some cases, it may also depend on sensitiveness of the added sensor’s position in an extended optimal network

to the source estimation. It is also noted that for a monitoring network, not only the number of sensors but also the sensors

distribution form (or sensor position) affect the information captured from network.

In fact, both optimal networks for each trial show a diversity of structures independently of the number of sensors considered.25

For this, the skeleton was used to analyze the heterogeneity of the structures of different optimal networks. A skeleton with

7 sensors is considered as a strong common base for the networks. This is the case for trials 3,6,14,15&20 (Table 2). It is

noted that the overall results obtained are comparable (little differences between the results obtained by the networks). For

these networks, a strong common base leads to a near global optimum. If we consider networks with a weak common base,

the skeleton was formed of up to 3 sensors, particularly in trials 1 and 11. The performances do not systematically converge30

independently of the size of networks. Thus, for trial 1, better results were obtained with a network formed by 13 sensors

compared to that by 10 sensors. This result reflects that the algorithm with the network formed by 13 sensors, converges

probably toward a near global optimum. For trial 11 also, it was noted that the performances obtained by the two networks are

identical. This shows that the networks with different sensors configurations may lead to a near overall optimum. This result is

in coherence with Kovalets et al. (2011) and Efthimiou et al. (2017). Considering a network of 10 sensors, they shown for the35
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same experimental data that the best source reconstruction is possible with only 5% or 10% of the total network combinations,

randomly selected.

Considering the networks of intermediate structures, with skeletons varying from 4 to 6 sensors, notedly for trials 2,4,5,7,8,9,

12,13,16,17,18,&19, no obvious trend is noticed. These results tend to show that for a given trial, one or more optimal networks

can satisfy the conditions of a near overall optimum (to be minimized). The obtained optimal networks may have a more or5

less common structure (having a greater or lesser number of skeleton).

Moreover, uncertainties calculated for different network sizes do not show an obvious trend. Indeed, a general relationship

between the number of samplers and the uncertainties is not obvious. One notice that changing size of the network (increasing or

decreasing the number of sensors) can lead to the growth or diminution of the uncertainties in the source parameters estimation.

As an example, for Trial 7 uncertainties grow while for Trial 17 uncertainties diminish (Table 2).10

It should be noted that this study deals with the case of reducing number of sensors in order to obtain an optimal network

from an existing large network. This optimization was carried out under the constraints of an existing network of the original

40 sensors in the MUST field experiment. If one compares the performances of the obtained optimal monitoring networks with

the initial (original) network of 40 sensors in MUST environment, both optimal networks provide satisfactory estimations of

unknown source parameters. The 40 sensors network gives an averaged location error of 14.62 m for all trials and the release15

rate were estimated within a factor of two in 75% trials. However, reducing the number of sensors to∼ 1/3rd from the original

40 sensors, the 13 sensors optimal networks also give comparable source estimations performance with an averaged location

error of 17.42 m. Even with the 13 sensors optimal networks, source intensities in 80% trials were accurately estimated within

a factor of two. Similarly for 10 sensors optimal networks, the averaged location error (=19.20 m) is slightly larger than that

obtained from 13 and 40 sensors networks. However, reducing the number of sensors to 1/4th gives extra advantages in case20

of the limited available sensors for a network in emergency scenarios of an accidental or deliberated releases in complex urban

environments.

Although the MUST field experiment has been widely utilized for validation of the atmospheric dispersion models and the

inversion methodologies for unknown source reconstruction in an urban-like environment, its experimental domain was only

approx. 200 m × 200 m (with buildings represented by a grid of containers) and can be considered small for a real urban25

environment. Thus, it may not quite represent a real urban region in terms of scale, meteorological variability, or non-uniform

terrain or roughness/canopy structure. However, the methodology presented here is general in nature to apply to a real urban

environment also. The methodology involves the utilization of the CFD model which generally can include the effects of the

urban geometry, meteorological variability, or non-uniform terrain or roughness/canopy structure in a real urban environment.

It is also to note that, the optimal network design would also depend on diurnal and spatial variability in meteorological30

conditions which may increase or decrease the optimum number of sensors and also may change the ’best positions’ to be

instrumented by sensors.
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7 Conclusions

This study describes an approach for the optimization of a monitoring network of the sensors in a geometrically complex urban

environment. It is a matter of reducing the size of networks while retaining the capabilities of estimating an unknown source

in an urban region. Given an urban-like environment of the MUST field experiment, the renormalization inversion method

was chosen for the Source Term Estimation. It was coupled with the CFD model fluidyn-PANACHE for generation of the5

adjoint fields. Combinatorial optimization by the simulated annealing consisted in choosing a set of sensors which leads to

an optimal monitoring network and allows an accurate unknown source estimation. This study extended an application of the

renormalization data-assimilation theory for the definition of optimality criterion for the optimal network design to estimate an

unknown continuous point release in an urban-like environment.

The numerical calculations were performed by coupling the simulated annealing stochastic algorithm to the renormalization10

inversion technique and the CFD modeling approach to optimize the monitoring network in urban-like environment of the

MUST field experiment. The optimal networks were constructed to reduce size of the original networks (40 sensors) to approx.

one-third (13 sensors) and to one-fourth (10 sensors). The 10 and 13 sensors optimal networks have estimated the averaged

location errors of 19.20 m and 17.43 m, respectively, and have comparable source estimations performance with an averaged

location error of 14.62 m from the original 40 sensors network. In 80% of the trials, the emission rates with 10 and 13 sensors15

networks were estimated within a factor of two which are also comparable with the factor of two source intensities in 75%

trials with the original network.

It was shown that in most of the MUST trials, the number of sensors in optimal networks slightly influences the location

error of an estimated source and this error tends to increase as the number of sensors decreases. In 20 MUST trials, an analysis

of the networks formed by 10 & 13 sensors revealed the heterogeneity of their structures in an urban domain. It was observed20

that for some trials, optimal networks had a strong common structure. This tends to prove that a certain number of sensors have

a primordial role in reconstructing an unknown source. It would reflect a fact that the disjoint sets of sensors can lead to the best

estimate of an unknown source in an urban region. This opens enormous prospects for assessing the relative importance of each

sensor in a source reconstruction process in an urban environment. Defining a global optimal network for all meteorological

conditions is a complex problem, but of greater importance that one may want to pursue. This challenge consists to define25

an optimal static network able to reconstruct the sources in all varied meteorological conditions. This information can be of

great importance to determine an optimal monitoring network by reducing the number of sensors for characterization of the

unknown emissions in the complex urban or industrial environments.

Data availability. The authors received access to the MUST field experiment dataset from Dr. Marcel Kon̈ig of Leibniz Institute for Tro-

pospheric Research. The MUST database was officially available from the Defense Threat Reduction Agency (DTRA) at https://must-30

dpg.dpg.army.mil/.
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Appendix A: Weight function

Issartel et al. (2007) demonstrated that a weight function, which reduces the artifacts of the adjoint functions at the measurement

points, must verify the following renormalization criterion:

aTw(x)H−1
w aw(x)≡ 1 (A1)

Following an iterative algorithm by Issartel et al. (2007), w(x) is determined as:5

w0(x) = 1, and wk+1(x) = wk(x)
√

aT
wk(x)H−1

wkawk(x) (A2)
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Table 1. The values of the meteorological (wind speed (S04), wind direction (α04) at 4 m level of mast S), turbulence (the Obukhov length

(L), friction velocity (u∗), turbulent kinetic energy (k) at 4 m level of tower T), and source parameters (source height (zs), release duration

(ts), release rate (qs)) in 20 selected trials of the MUST field experiment (Biltoft, 2001; Yee and Biltoft, 2004). Here, Trial Nos. 1-20 are

assigned for just continuation and simplicity and these are not correspond to the same assigned trial no. for a given Trial name in the MUST

experiment.

Trial Trial Name qs ts zs S04 α04 u∗ L k

No. (JJJhhmm) (l/min) (min) (m) (m/s) (deg) (m/s) (m) (m2s−2)

1 2640138 175 21 0.15 2.35 17 0.26 91 0.359

2 2640246 200 15 0.15 2.01 30 0.25 62 0.306

3 2671852 200 22 0.15 3.06 -49 0.32 330 0.436

4 2671934 200 15 1.8 1.63 -48 0.08 5.8 0.148

5 2672033 200 15 1.8 2.69 -26 0.17 4.8 0.251

6 2672101 200 14 0.15 1.89 -10 0.16 7.7 0.218

7 2672150 200 16 0.15 2.30 36 0.35 150 0.409

8 2672213 200 15 1.8 2.68 30 0.35 150 0.428

9 2672235 200 15 2.6 2.32 36 0.26 48 0.387

10 2672303 200 19 1.8 2.56 17 0.25 74 0.367

11 2681829 225 15 1.8 7.93 -41 1.10 28000 1.46

12 2681849 225 16 0.15 7.26 -50 0.76 2500 0.877

13 2682256 225 15 0.15 5.02 -42 0.66 240 0.877

14 2682320 225 15 2.6 4.55 -39 0.50 170 0.718

15 2682353 225 15 5.2 4.49 -47 0.44 120 0.727

16 2692054 225 22 1.3 3.34 39 0.36 170 0.362

17 2692131 225 17 1.3 4.00 39 0.42 220 0.582

18 2692157 225 15 2.6 2.98 43 0.39 130 0.505

19 2692223 225 15 1.3 2.63 26 0.35 120 0.484

20 2692250 225 17 1.3 3.38 36 0.37 130 0.537

23



Table 2. Source estimation results from the different monitoring networks for each selected trial of the MUST field experiment. Ep
l and

Ep
q respectively denote the location error (m) and ratio of the estimated to true source intensity with the corresponding monitoring network.

Here, the superscript p on Ep
l & Ep

q represents the no. of sensors in an optimal network. Skeleton refers to the number of sensors common to

the optimal networks of 10 and 13 sensors for a given MUST trial.

Run E40
l E13

l E10
l E40

q E13
q E10

q Skeleton

No. (m) (m) (m) sensors

1 3.3±1.3 19.60±12.13 33.76±5.30 0.92±0.08 1.04±0.23 1.24±0.22 3

2 42.9±23.8 31.91±8.80 56.88±9.51 4.01±1.57 3.21±0.41 5.12±3.63 4

3 10.8±1.6 9.01±2.47 9.01±3.02 1.17±0.27 0.71±0.16 0.71±0.16 7

4 22.8±7.7 18.07±1.84 18.07±2.61 0.27±0.35 0.83±0.21 0.83±0.26 6

5 21.9±2.1 2.13±2.54 11.56±4.21 0.57±0.07 0.95±0.05 0.67±0.05 6

6 5.0±1.6 6.96±0.19 6.96±0.00 2.14±0.60 1.04±0.06 1.04±0.04 7

7 12.4±9.1 18.85±9.08 12.99±1.67 0.41±0.49 3.11±0.51 1.06±0.07 4

8 15.8±12.1 12.86±1.28 15.79±1.05 2.22±0.90 1.32±0.34 1.76±0.11 6

9 7.7±1.2 8.20±0.35 8.08±0.00 1.37±0.07 3.06±0.17 7.55±0.39 5

10 8.8±3.0 8.00±4.57 8.00±5.68 1.08±0.19 1.08±0.77 1.08±1.07 8

11 19.8±5.0 17.19±12.00 17.19±7.06 1.67±0.12 1.62±0.40 1.62±0.26 3

12 7.4±6.6 5.43±11.69 10.22±9.10 0.95±0.06 0.85±0.28 0.20±0.04 4

13 7.7±0.6 8.63±4.36 8.63±3.86 0.97±0.07 0.78±0.18 0.78±2.05 4

14 2.2±1.9 5.50±2.98 5.50±3.88 1.42±0.17 0.88±0.24 0.88±0.40 7

15 1.1±1.0 30.23±2.14 37.98±0.72 1.88±0.09 0.57±0.07 0.17±0.01 7

16 26.7±4.9 63.04±6.84 29.80±9.86 1.70±0.06 0.29±0.06 0.67±0.23 5

17 7.0±1.9 14.07±2.78 23.05±10.44 0.90±0.05 1.10±0.04 1.52±0.16 6

18 14.3±11.0 12.83±4.18 12.83±4.61 1.15±0.46 1.15±0.16 1.15±0.21 6

19 22.3±6.4 10.77±4.25 13.46±4.8 1.76±0.16 0.99±0.20 0.83±0.25 6

20 32.5±1.8 45.23±1.78 44.29±0.31 0.83±0.04 1.68±0.06 1.56±0.06 7

Table 3. Statistics for the source reconstruction results from each monitoring network. Here,Ep
l is the averaged location error for all 20 trials

corresponding to each network. FAg represents the percentage number of trials in which the source intensity is estimated within a factor of

g.

Sensors (p) Ep
l (m) FA4 FA3 FA2

40 14.62 95 90 75

13 17.42 100 80 80

10 19.20 80 80 80
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Figure 1. A schematic diagram of the MUST geometry showing 120 containers and source (stars) and receptors (black filled circles) loca-

tions. In a given trial - only one source was operational.
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1©
PARAMETERS SETTING

Lmax, T0, Tcold, θ, p, n

xBest ← xrand(p, n)

2©
xnew ← xrand(p, n)

3©
Cost difference

∆Js = Js(xnew)− Js(xbest)

Itt ← Itt + 1

4©
∆Js < 0

5©
P01 ≤ exp(−∆Js

T )

6©
xbest ← xnew

7©
Itt < Lmax

8©
Cooling the temperature Tb+1 ← θTb

Itt ← 0

9©
T > Tcold

10©
Optimal Network

xopt ← xbest

Source Term Estimation

x0, q0

no

yes

no

no

yes

yes

no

yes

1

Figure 2. Flow diagram of the Simulated Annealing procedures to determine an optimized monitoring network.
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Trial − 5
Potential positions
Optimal network (10 detectors)

Trial − 11
Potential positions
Optimal network (10 detectors)

Trial − 19
Potential positions
Optimal network (10 detectors)

Trial − 5
Potential positions
Optimal network (13 detectors)

Trial − 11
Potential positions
Optimal network (13 detectors)

Trial − 19
Potential positions
Optimal network (13 detectors)

Figure 3. The optimal networks of 10 (first row) and 13 sensors (second row) respectively for trials 5 (very stable), 11 (neutral), and 19

(stable). Blank and filled black circles respectively represent the all (40) potential positions and the optimal positions of sensors.
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Figure 4. Isopleths of the renormalized weight function (w(x)) (gray colored in first and third columns) and the normalized source estimate

function (snw(x) = sw(x)/max(sw(x))) (colored in second and fourth columns) for both optimal networks of 10 and 13 sensors respectively

for trials 5 (very stable), 11 (neutral), and 19 (stable). The black and white filled circles respectively represent the true and estimated source

locations.
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