
Response to the Reviewer #1 

 

The idea of the paper is to achieve the best result with as less as possible 

information. This idea is very innovative and I support any new effort. The 
application is the atmospheric dispersion in urban areas. The goal is to find 
the source when we know the flow field and the real concentration 

measurements.  

I have one major comment/question. 

When authors try to validate this approach they compare results of source 
inversion (distance to true source etc) with ’optimal network’ of 10 sensors 

with the results obtained by the full network (40 sensors). Why don’t they 
directly compare results of ’optimal’ network of 10 sensors with the results of 
other networks of 10 sensors? Of course, there are too many of such 

networks. But by application of the combination same procedure as we did 
in Kovalets et al (2011) and Efthimiou et al (2017) they at least could prove 

that their ’optimal network’ yields the results within say best 5 or 10% of the 
results that could be achieved with 10 sensors. 

Reply: We would like to thank Dr. Efthimiou for the positive feedback and we appreciate his 

comments/questions. We have carefully considered his comments and worked to include them 

in a revised version of the manuscript according to the proposed suggestions. 

Dr. Efthimiou’s above comment can be complied into two following comments and please find 

below the responses to these as follows:  

Comment 1: Why don’t we directly compare results of the ‘optimal’ network of 

10 sensors with the results of other networks of 10 sensors? 

Reply: The comparison with networks of the same size (10 sensors for example) is performed 

implicitly during the optimization process. The Simulated Annealing used in this study 

compares at each iteration two networks (of the same size) and retains the ‘best one’. The 

networks are generated randomly like in Kovalets et al (2011) and Efthimiou et al (2017). 

Since the search space is quite large, the number of the compared networks is equivalent to 

the number of iterations. The comparison is based on a cost function named Normalized 

Errors Js and inspired from the renormalized data assimilation method. This cost function 

quantifies the quadratic distance between the observed and the simulated measurements 

according to the normalized Gram matrix Hw. The ‘optimal network’ produce the ‘best’ 

description of the observations (i.e. corresponds to the minimal quadratic distance) and 

permits a posteriori to reconstruct its origin. In figures 1, 2 & 3 is presented the evolution of 

the cost functions (trials 5, 11 & 19) during the optimization process. For these trials, ~ 

3×104 networks of 10 sensors are compared. The challenge in our study is to design the 

networks without using a priori the parameters of the real source and without considering an 

acceptance level of networks quality (the solution is ‘good’ if it satisfies three fixed criteria of 

values rH ≤ 15 m, rV ≤ 2.5 m, δq ≤ 4 ) as performed in Kovalets et al (2011) and Efthimiou et 

al (2017).  These points are more clearly discussed in the revised text.  

 



Comment 2: Why we compare results of source inversion (distance to the true 

source, etc.) with ’optimal network’ of 10 sensors with the results obtained 
by the full network (40 sensors)? 

Reply: The results obtained by the optimal networks of 10 and 13 sensors are compared as a 

posteriori with the original network of 40 sensors used in MUST experiment and evaluated 

for source reconstruction by using the renormalization technique (Kumar et al, 2015b). As in 

practice, the number of measurements is limited, this comparison allowed concluding that in 

urban areas, the reduction of networks size is possible and does not degrade significantly its 

efficiency in source estimation. For more details, the choice of the size of the network (10 and 

13) is fixed after observing that an acceptable estimation of the source in majorities of the 

trials was enabled by using minimum 8 sensors. Also by using more than 13 sensors optimal 

networks, the errors in source parameters estimation are stable and does not improve 

significantly (Kouichi, 2017). For this reason, the optimized networks were constructed and 

evaluated for sizes 10 and 13 (1/4th and ∼ 1/3rd of the original network of 40 sensors) with 

the original large network. These points are more clearly discussed in the revised text. 
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Response to the Reviewer #2 

 

In this paper, the authors formulate a simulated annealing algorithm with a renormalization 

inversion algorithm coupled to a CDF flow and dispersion model and apply it to the Mock 

Urban Setting Test (MUST) tracer field experiment (which simulates an ‘urban-like’ 

environment). The aim of the work is to demonstrate how the inversion technique presented 

can be useful in optimally placing a smaller number of concentration samplers for quantifying 

a continuous point source with almost the same level of source detection ability as the original 

larger number of samplers. The paper is well written, but in my opinion requires a major 

revision. My comments are as follows: 

The authors are grateful to the reviewer’s remarks and thanking him/her for reviewing the 

manuscript. In light of the reviewer’s all suggestions, the manuscript is revised. Reviewer’s 

questions and remarks are repeated below (in red color) and our responses (in italic) follow 

each question. 

Main comments 

1) The MUST experiments took place under neutral to stable and strongly stable conditions. 

However, the CFD model used is for neutral conditions and does not include the effects of 

atmospheric stability over the urban area (the only stability effects included are through the 

specification of inflow boundary conditions). Atmospheric stability has a profound impact on 

dispersion and would thus influence the adjoint functions. The authors should discuss the 

consequences of its neglect on the results and the errors it introduces. 

Reply: We agree with the reviewer’s remark that the atmospheric stability effects in the CFD 

model fluidyn-PANACHE were included through the inflow boundary conditions. The used 

version of fluidyn-PANACHE was not capable of incorporating the atmospheric stratification 

through surface cooling or heating and whatever stability effects are included through the 

inflow boundary conditions. The fluidyn-PANACHE includes a Planetary Boundary Layer 

(PBL) model that serves as the interface between the meteorological observations and the 

boundary conditions required by the CFD solver. The PBL model is composed of two parts: 

(i) a micro-meteorological model that computes fundamental physical characteristics of the 

PBL from routine meteorological observations, and (ii) a boundary layer model for 

prescribing the vertical profiles of wind speed, temperature, and turbulence. However, as 

discussed in our previous study (Kumar et al., 2015a), even with the specification of the 

stability dependent inflow boundary conditions only, the predicting concentrations from the 

CFD model are in good agreement with the measured concentrations in the MUST 

experiment for all 20 trials in different atmospheric stability conditions. This may be due to 

that the scale and the urban geometry of the MUST field experiment are not large enough for 

the requirement to resolve the atmospheric stratification through surface cooling or heating. 

And the stability effects included through the inflow boundary conditions were enough to 

include the stability effects on the concentrations and adjoint functions at such a small scale 
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urban-like environment of the MUST field experiment.  However, at microscales also, small 

irregularities can break the repeated flow patterns found in a regular array of containers with 

identical shape (Qu et al, 2011). In addition, uncertainties associated with the thickness and 

the properties of the material of the container wall also affect flow pattern and the resulted 

concentrations and adjoint functions (Qu et al, 2011). Also, for a real urban environment at 

the larger scales, the atmospheric stability will have a profound impact on dispersion and 

would thus influence the adjoint functions. And the stability effects through the specification 

of inflow boundary conditions only, may not be appropriate for those environments. In these 

scenarios, the CFD model should be capable of incorporating the atmospheric stratification 

through surface cooling or heating in real urban environments.  

A brief discussion about these is now included in the revised manuscript. 

2) I have reservations about the usefulness of the methodology presented in real-world urban 

environments. The title of the paper states ‘urban monitoring network’ but there are no real 

urban configurations used. The MUST experimental domain was only 200 m x 200 m (with 

buildings represented by a grid of containers) which cannot quite represent an urban area in 

terms of scale, meteorological variability, or non-uniform terrain or roughness/canopy 

structure. So in a way the present study does not explore any aspects that are specific to urban 

environments. The authors should discuss this, particularly how their methodology could be 

applied and its limitations in real-world urban cases. Following on, the title of the paper 

should say ‘urban-like’ or something similar instead of ‘urban’. 

Reply: We agree with the referee’s remarks that the Mock Urban Setting Test (MUST) tracer 

field experiment was performed in an urban-like environment and cannot quite represent an 

urban area in terms of scale, meteorological variability, or non-uniform terrain or 

roughness/canopy structure. However, the MUST field experiment has been widely utilized for 

the validation of the atmospheric dispersion models in an urban-like environment. Although, 

as mentioned by the reviewer also, there are several limitations to utilize this experiment; but, 

the methodology presented here is general in nature to apply to a real urban environment 

also. The methodology involves the utilization of the CFD model which generally can include 

the effects of the urban geometry, meteorological variability, or non-uniform terrain or 

roughness/canopy structure in a real urban environment. Therefore the title that will appear 

on the revised version changed accordingly “Optimization of an Urban-like Monitoring 

Network for Retrieving an Unknown Point Source Emission”. Also, the limitations of the 

present methodology, for its application in real-world urban cases are discussed in the 

revised version.   

3) There were a total of 40 concentration samplers. In their optimisation, the authors 

arbitrarily fixed the number of samplers to 13 and 10 and then determined the optimum 

positions of these reduced number of samplers from the original 40 samplers. A better 

question to answer would have been “what is the minimum number of samplers required and 

what their positions are in order to quantify the source with a given degree of confidence or 

accuracy?” 
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Reply: The numbers of the sensors were not fixed arbitrarily. The trends of location error (El) 

and the ratio of the estimated to true source intensity (Eq) with the number of sensors from 4 

to 16 are performed and the results are presented in Kouichi (2017). As already mentioned in 

the manuscript, the number of sensors in the optimized networks were reduced to 1/3rd (13 

sensors) and 1/4th (10 sensors) of the total number of sensors (40) originally deployed 

because for some cases a small number of sensors could not allow to correctly reconstruct the 

source and divergences of the calculations have been noted. As an example for Trial 14, 

reconstructing the source by using a small number on sensors is not appropriate since 4, 5, or 

6 sensors are not enough (El> 100 m and log(Eq) > 10E+17). Also, after a certain number of 

sensors in the network, the source term estimation is not improved significantly (see Figure 

1). Thus, selecting 10 (1/4th) and 13 (1/3rd) number of sensors in the optimal networks ensures 

an acceptable estimate of the source for all the trials. These points are more clearly discussed 

in the revised manuscript.  

 

Figure 1: Errors in the estimation of the source (a) position and (b) intensity in Trial 14. Here 

p is the number of sensors 

The present optimisation is based on fixed meteorological conditions in a trial. In a real 

situation, the network design would also depend on diurnal and spatial variability in 

meteorological conditions (e.g. wind direction) which may increase or decrease the optimum 

number of sites. This, however, is not in the scope of the present study. Perhaps as a future 

study, the authors may consider using data from full scale field measurements such as Salt 

Lake City Urban 2000 experiment. 

Reply: As the problem is complex, in this first study each meteorological situation is assumed 

as stationary and described by wind speed and direction and stability class. However, we 

agree with the referee, the network design would also depend on diurnal and spatial 

variability in meteorological conditions which may increase or decrease the optimum number 

of sites and also may change the ‘best positions’ to be instrumented by sensors. Indeed, we 

envisage as continuity of this work, to study the effect of the variability of the meteorological 

conditions. As suggested by the reviewer, we would like to utilize and validate the present 
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methodology by using the data from full-scale field measurements such as Salt Lake City 

Urban 2000 experiment in a future study. 

4) Dense gas effects are included. How are they taken into account (or inverted) in the 

backward (i.e. retro plume) dispersion calculation for adjoint functions? 

Reply: Since the released tracer gas C3H6 in MUST field experiment is heavier than the air, a 

buoyancy model is used to model the body force term in the Navier-Stokes equations. The 

buoyancy model is suitable for the dispersion of heavy gases where density difference in the 

vertical direction drives the body force. Many attempts have been made in the literature to 

use CFD in simulating the dispersion of a negatively buoyant gas using a two-equation k-ε 

turbulence model (Sklavounos and Rigas, 2004; Tauseef et al., 2011, etc.). The fluidyn-

PANACHE implementation of the k-ε model is derived from the standard high-Reynolds 

number (Re) form with corrections for buoyancy and compressibility (Launder, 2004; 

Hanjalic, 2005). The k-ε model computes the length and time scales from the local turbulence 

characteristics. Thus, it can model the turbulent flows subjected to both mechanical shear 

(obstacles, terrain undulations, canopy) as well as buoyancy (stability and buoyant/heavy gas 

plumes). For more information, the fluidyn-PANACHE is a three-dimensional (3-D) 

diagnostic model that solves Reynolds-averaged forms of the Navier-Stokes dynamics 

equations along with the equations describing conservation of tracer concentration, mass, 

and energy in the atmosphere (Fluidyn-PANACHE, 2010). As already mentioned in the 

manuscript, a detailed description of the fluidyn-PANACHE and its evaluation for the 

forward dispersion with the MUST field experiment was presented in our earlier paper 

(Kumar et al., 2015). 

5) What is the uncertainty in the source estimation results in Table 2? Is the approach capable 

of providing uncertainty estimates (like the Bayesian one)? 

Reply: With the present method, at this moment we cannot derive uncertainties like the 

Bayesian methods. However, we calculated posterior uncertainties on the source parameters 

estimation due to the measurements errors. In order to quantify the uncertainty, a 10% 

Gaussian noise was added at each measurement. Using the optimal networks 50 simulations 

for source characterization are performed for each trial. The average and the standard 

deviation of Eq and El are calculated and the results are present in Table 1 below. For the 

optimal networks, there is not an obvious trend and the uncertainties are in the same order of 

magnitude compared to the original network (40 sensors). The Table 2 of the actual version 

of the manuscript will be replaced by the following table 1 accordingly. 
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Run  
No. 

𝑬𝒍
𝟒𝟎 

(m) 
𝑬𝒍
𝟏𝟑 

(m) 
𝑬𝒍
𝟏𝟎 

(m) 
𝑬𝒒
𝟒𝟎 𝑬𝒒

𝟏𝟑 𝑬𝒒
𝟏𝟎 

Skeleton 
Sensors 

1 3.3  ±1.3 19.6  ±12.13 33.76  ±5.30 0.92  ±0.08 1.04  ±0.23 1.24  ±0.22 3 

2 42.9   ±23.8 31.91  ±8.80 56.88  ±9.51 4.01  ±1.57 3.21  ±0.41 5.12  ±3.63 4 

3 10.8  ±1.6 9.01  ±2.47 9.01  ±3.02 1.17  ±0.27 0.71  ±0.16 0.71  ±0.16 7 

4 22.8  ±7.7 18.07  ±1.84 18.07  ±2.61 0.27  ±0.35 0.83  ±0.21 0.83  ±0.26 6 

5 21.9  ±2.1 2.13  ±2.54 11.56  ±4.21 0.57  ±0.07 0.95  ±0.05 0.67  ±0.05 6 

6 5.0  ±1.6 6.96  ±0.19 6.96  ±0.00 2.14  ±0.60 1.04  ±0.06 1.04  ±0.04 7 

7 12.4  ±9.1 18.85  ±9.08 12.99  ±1.67 0.41  ±0.49 3.11  ±0.51 1.06  ±0.07 4 

8 15.8  ±12.1 12.86  ±1.28 15.79  ±1.05 2.22  ±0.90 1.32  ±0.34 1.76  ±0.11 6 

9 7.7  ±1.2 8.20  ±0.35 8.08  ±0.00 1.37  ±0.07 3.06  ±0.17 7.55  ±0.39 5 

10 8.8  ±3.0 8.00  ±4.57 8.00  ±5.68 1.08  ±0.19 1.08  ±0.77 1.08  ±1.07 8 

11 19.8  ±5.0 17.19  ±12.00 17.19  ±7.06 1.67  ±0.12 1.62  ±0.40 1.62  ±0.26 3 

12 7.4  ±6.6 5.43  ±11.69 10.22  ±9.10 0.95  ±0.06 0.85  ±0.28 0.2  ±0.04 4 

13 7.7  ±0.6 8.63  ±4.36 8.63  ±3.86 0.97  ±0.07 0.78  ±0.18 0.78  ± 2.05 4 

14 2.2  ±1.9 5.50  ±2.98 5.50  ±3.88 1.42  ±0.17 0.88  ±0.24 0.88  ±0.40 7 

15 1.1  ±1.0 30.23  ±2.14 37.98  ±0.72 1.88  ±0.09 0.57  ±0.07 0.17  ±0.01 7 

16 26.7  ±4.9 63.04  ±6.84 29.80  ±9.86 1.70  ±0.06 0.29  ±0.06 0.67  ±0.23 5 

17 7.0  ±1.9 14.07  ±2.78 23.05  ±10.44 0.90  ±0.05 1.10  ±0.04 1.52  ±0.16 6 

18 14.3  ±11.0 12.83  ±4.18 12.83  ±4.61 1.15  ±0.46 1.15  ±0.16 1.15  ±0.21 6 

19 22.3  ±6.4 10.77  ±4.25 13.46  ±4.8 1.76  ±0.16 0.99  ±0.20 0.83  ±0.25 6 

20 32.5  ±1.8 45.23 ±1.78 44.29  ±0.31 0.83  ±0.04 1.68  ±0.06 1.56  ±0.06 7 

Table1. Source estimation results from the different monitoring networks for each selected trial of the MUST 

field experiment 

 

6) How does the uncertainty in the results in Table 2 change as the number of samplers is 

changed? Have you included model and measurement uncertainties in the methodology? 

Reply: A general relationship between the number of samplers and the uncertainties is not 

obvious. We noticed that changing size of the network (increasing or decreasing the number 

of sensors) can lead to the growth or diminution of the uncertainties in the source parameters 

estimation. As an example in Table 1, for Trial#7 uncertainties grow while for Trial#17 

uncertainties diminish. 

Accordingly to the answers of questions 5 and 6, results and interpretations of the effect of 

measurements errors on the source parameters estimation are included in the revised text. 

7) Section 2.3: Is there a sensitivity of the source estimation / optimisation to how the weight 

function is selected? Could there be any other choices of the weight function? 

Reply: The weight function is selected to minimize the information retrieved from the 

observations thus avoiding inversion artifacts close to the detectors positions. This optimal 

renormalizing function denoted ϕ(x) is unique as demonstrated by Issartel (2004). However, 

the sensitivity of the source estimation is essentially due to the information provided by each 

vector of measurements. 

8) Did you specify any a priori bounds on the estimated source position and source emission 

rate? If yes, what were they? 

Reply: In this study, we do not require to specify any a priori bounds on the estimated source 

position and source emission rate in the renormalization inversion technique. 
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9) What is the advantage of the present technique compared to, say, the Bayesian approach 

which also provides probability associated with the solution? 

Reply: The technique used in this study does not require a priori information about the 

source (i.e. location and intensity) or about the measurements (i.e. knowledge of the 

observation-Error Covariance Matrices). The renormalization is a deterministic inversion 

method compatible with upstream offline preparation for network implementation and 

compatible with rapid implementation for the monitoring operation phase for local-scale 

applications around sensitive sites. Also, this method can be used to estimate a point or 

distributed source which can expand the cases studied.  

10) Page 3, line 15: ‘The Gaussian models are unable to capture. . .’ While this may be 

generally true, a well formulated Gaussian plume model can describe idealised urban 

dispersion (e.g. Huq and Franzese, BLM, 147, 102-121, 2013). 

Reply: Corrected accordingly as ‘In general, the Gaussian models are unable to capture. . .’ 

11) Section 5: Was the CFD model validated using the MUST data for its ability to simulate 

the measured concentrations? 

Reply: As already mentioned in the manuscript, the ability of the CFD model to simulate the 

measured concentrations using the MUST data and the prediction errors of the forward 

simulations used in this study were discussed in our previous study (Kumar et al., 2015).  

12) Source position was calculated. Does it include the source height too? Was source height 

a free parameter or a fixed one? 

Reply: The source height was not calculated in this study. The computations were carried out 

in the 2-dimensional domain on a horizontal plane corresponds to an altitude of known 

source height Hs. Accordingly, the vertical dimension was eliminated in the formulations and 

the computations. Consequently, the adjoint functions were chosen as steady state 

retroplumes on the horizontal cross-section area passing through a plane z = Hs. The 

assumption with respect to the vertical structure of the problem is useful to estimate the 

ground level sources or the emission sources along a horizontal cross-section area passing 

through a fixed vertical level. However, in this study, the problem of vertical structure (i.e. the 

height of a source) in three-dimensional space of an urban area is not addressed. In reality, 

an altitude of a release (i.e. source height) is also not known and required to estimate along 

with the projected release location on the ground surface and the release rate (Kumar et al., 

2016).  We envisage to include the height of the source in a future study. 

Other comments 

13) Page 2, line 14: What is ‘an NP-hard problem’? 

Reply: The problem of sensors network optimisationis NP-Hard (i.e. Non-deterministic 

Polynomial-time hardness) as shown by (Ko et al., 1995), which means that it is difficult for 

an exhaustive search algorithm to solve all instances of the problem because it's need a 

considerable time.  

14) Page 2, line 35: ‘probabilities’ should be ‘probability’. 

Reply: Corrected. We have now carefully checked the manuscript to eliminate possible 

linguistic errors. 
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15) Page 3, line 8: ‘required’ should be ‘require’. 

Reply: Corrected. 

16) Page 3, line 10: ‘the continuous’ should be ‘continuous’. 

Reply: Corrected. 

17) Page 3, line 23: ‘was’ should be ‘is’. 

Reply: Corrected. 

18) Is the optimisation methodology presented only valid for a single source? 

Reply: In this study, the presented optimization methodology is only valid for a single source. 

Nevertheless, it is possible to consider the optimization for multiple sources. We envisage that 

evaluation in the future. 

19) Page 7, line 3: The term temperature should be put in quotes as this is not a real 

temperature in the present context. 

Reply: Changed accordingly. 

20) Page 9, line 2: ‘stopped’ should be ‘is stopped’. 

Reply: Corrected. 

21) Figures 1 and 3: Why some of the 40 samplers locations do not coincide in these figures? 

Reply: In the schematization of the MUST experiment, the position of the tenth detector of the 

fourth row was slightly shifted from its true position. Figure 1 in actual manuscript version is 

adjusted accordingly as shown in figure 2 below. 

 

Figure 2: Schematization of the MUST experiment: (a) correct version (b) adjusted version 

22) Is the code for simulated annealing algorithm with the renormalization inversion 

technique available? 

Reply: Yes the codes are available for one trial as an example. 
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Response to the Reviewer #3 
 

The subject of this paper is challenging and very timely; certainly, we would like to know 

how to monitor the spread of pollutants in the urban milieu as efficiently and accurately as 

possible. In order to accomplish this task, the Authors derive a method based on the 

combination of optimization techniques, inverse tracers transport modelling and 

Computational Fluid Dynamics. The subject is very difficult and there are very few papers 

addressing the problem in a comprehensive manner; for this reason it is justified to consider 

publication of this study. 

We would like to thank Dr. Pudykiewicz for his careful consideration of this manuscript and 

for his helpful and insightful comments. We have carefully considered his comments and 

worked to include them in the revised version of the manuscript according to the proposed 

suggestions. 

Please find below the responses to his comments. 

1) ‘The Authors attempt to analyze two canonical problems: - Identification of the unknown 

source - Optimization of the measuring network. These two problems are mutually exclusive. 

Furthermore, they have different cost functionals defined on different vector spaces and, 

consequently, the set of control parameters is not the same for each case. This important 

distinction is overlooked in the paper and it is advisable to modify the text by precisely 

defining the functionals and the control variables.’ 

Reply: In this study two canonical problems are considered: 

a) Identification of the unknown source: the source term estimation STE is studied in the 

framework of a parametric approach using the renormalization technique. Here the challenge 

is to determine the parameters of the source (intensity and position) using any measurements 

vector (in practice the number of measurements is limited). Based on retroplumes (using 

sensors locations and CFD model in backward mode), we first determine the optimal 

renormalized Gram matrix Hw, for which an optimal weight function is required. This optimal 

weight function that verifies the renormalization condition minimize the information retrieved 

from the observations thus avoiding inversion artifacts close to the detectors positions. As the 

renormalization is a data assimilation method, the cost function to minimize is defined as the 

quadratic distance between the observed and the simulated measurements according to the 

Hw norm.  

b) Optimization of the measuring network: here, the optimization consists of selecting the best 

positions to be instrumented by the sensors among potential locations. This choice is operated 

in a space of search constituted of all possible networks (of a specific size) and based on a 

cost function that describes quantitatively the quality of the networks. The optimal network 

has the lowest quadratic distance between the observed and the simulated measurements 

according to the Hw norm. This optimal (or near-optimal) network is obtained using the 
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Simulated Annealing (SA) algorithm. The data here are the measurements and the according 

sensors locations.  

These canonical problems are coupled at each iteration during the searching process. 

The text of the revised manuscript is accordingly modified to clarify this important point.  

2) ‘The problem of optimization of the network is solved using the simulated annealing 

algorithm. The technique has been introduced to the computational physics over sixty years 

ago in the classic paper: Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M.; Teller, A. H.; 

and Teller, E. "Equation of State Calculations by Fast Computing Machines." J. Chem. Phys. 

21, 1087-1092, 1953. Despite that the original formulation is rooted in the basic principles of 

physics, the reviewed paper, concerned with the network optimization, is missing the physical 

interpretation of the Simulated Annealing. The description of the technique can read as 

follows: The algorithm of simulated annealing is initiated by starting from an admissible 

network. At the subsequent steps, the system moves to another feasible network, according to 

a prescribed probability, or it remains in the current state. It is crucial to explain how this 

probability is calculated. The mobility of the random walk depends on a global parameter T 

which is interpreted as temperature. The initial values of T are large, allowing free exploration 

of large extents of the state space (this corresponds to the “melted state” in terms of the 

kinetic theory of matter). In the subsequent steps, the temperature is lowered allowing the 

algorithm to reach a local minimum.’  

Reply: The SA algorithm is a random optimization technique based on an analogy with 

thermodynamics. For the SA, each network of p sensors is considered as a state of a virtual 

physical system, and the objective function is interpreted as the internal energy of this system 

in a given state. According to statistical thermodynamics, the probability of a physical system 

to being in a state β follows the Boltzmann distribution 𝑃𝛽 =
1

𝑍
𝑒𝑥𝑝(

−𝛥𝐸𝛽

𝐾𝐵𝑇
) , where 𝑍 is the 

partition function, 𝐸𝛽is the internal energy, T is the temperature at the state β and 𝐾𝐵is the 

constant of Boltzmann. By analogy, the physical quantities (temperature, energy, etc.) become 

pseudo-quantities and during the minimization process, the probabilistic treatment consists to 

accept a new network selected in the neighborhood of the current network following the 

probability 𝑃 = 𝑒𝑥𝑝(
−𝛥𝐽

𝑇
), where 𝛥𝐽is the cost difference between the new and the current 

configurations. At high temperature, the SA performs a coarse search of the space of global 

states, avoids local minima and finds a good minimum. As the temperature is lowered, the 

search becomes fine in the neighborhood of the already determined minimum and the SA 

reaches a better minimum. 

As suggested, we have included this physical interpretation of the Simulated Annealing in the 

revised manuscript. 

3) The main characteristic of SA is relatively fast convergence but, unfortunately, it is not 

possible to prove that the minimum of the cost functional is global. There are several others 

stochastic minimization methods which can be explored; it is possible that they are potentially 

more applicable in the context of the monitoring of air pollutants. 
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Reply: It is clear that for all the metaheuristic algorithms (such as the SA), it is not possible 

to prove that the minimum of the cost functional is global. This question is crucial for us, for 

this reason, we plan in the future to study the degree of confidence on the ‘optimal networks’. 

Nevertheless, before retaining the SA as an optimization technique, we tested and compared 

the results obtained by Genetic Algorithm (GA) and SA based on the normalized error cost 

function (Kouichi, 2017). These algorithms of different search technics (SA probabilistic & 

GA evolutionary) are evaluated for the reconstruction of a source in a wind tunnel (DYCE 

experiment (Lepley et al., 2011). The optimization consisted in selecting the best positions for 

sensors implantation among 27 potential positions scattered in the Wind Tunnel. The results 

show that the optimal networks retained by the GA and the SA are quantitatively (figure 1) 

and qualitatively (figure 2) comparable. The errors in source parameters estimation by using 

the optimal networks of 3 to 13 sensors are presented in figure 1 below. The SA has 

advantageous because it is relatively easy to implement and takes smaller computational time 

in comparison to GA. Both SA and GA optimization algorithms in the framework of our 

approach (based in the renormalization theory) has little influence on the estimation of the 

parameters of a source. 

Figure 1: Error of source parameters estimation for (a) SA (b) GA in the DYCE wind tunnel 

experiment. Here m is the number of sensors, El and Eq respectively denote the location error (m) and 

the ratio of the estimated to true source intensity 
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Figure 2: Optimal networks (m = 3, 6, 9 and 12) obtained by (a) Simulated Annealing SA and (b) 

Genetic Algorithm GA 
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4) The problem of selection of the initial admissible network and the role of stratification 

should be discussed. It is well known that the flow around and above complicated structures is 

characterized by a complex topology. After some analysis of the literature, I’m convinced that 

the solution of the network optimization depends strongly on the flow Froude number. The 

relevant information on the flow in the vicinity of a structure is discussed in the literature, 

please see for example https://link.springer.com/article/10.1007/s10652-016- 9470-3. It would 

be interesting to present some figures describing both wind and potential temperature fields 

from the CFD model used in the study. 

Reply: The initial admissible network is selected following the trends of location error (El) 

and ratio of the estimated to true source intensity (Eq) with the number of sensors from 4 to 16 

are performed and the results are presented in Kouichi (2017). As already mentioned in the 

manuscript, the number of sensors in the optimized networks were reduced to 1/3rd (13 

sensors) and 1/4th (10 sensors) of the total number of sensors (40) originally deployed 

because for some cases a small number of sensors could not allow to correctly reconstruct the 

source and divergences of the calculations have been noted. As an example for Trial 14, 

reconstructing the source by using a small number on sensors is not appropriate since 4, 5, or 

6 sensors are not enough (El> 100 m and log(Eq) > 10E+17). Also, after a certain number of 

sensors in the network, the source term estimation is not improved significantly (see Figure 

3). Thus, selecting 10 (1/4th) and 13 (1/3rd) number of sensors in the optimal networks ensures 

an acceptable estimate of the source for all the trials. These points are more clearly discussed 

in the revised manuscript.  

 

Figure 3: Errors in the estimation of the source (a) position and (b) intensity in Trial 14. Here p is the 

number of sensors 

The atmospheric stability effects in the CFD model fluidyn-PANACHE were included through 

the inflow boundary conditions. We had already analyzed the importance of the proper inflow 

boundary conditions for wind and turbulence variables on forward and backward 

atmospheric dispersion in an urban area (Kumar et al., 2015). Accordingly, Gryning et al. 

(2007) wind profile and an approximate analytical solution of the one-dimensional k-ε 

prognostic equation (Yang et al., 2009) for the turbulence profiles were used for inflow 
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boundary. Gryning et al. (2007) wind profile is composed of the three different length scales 

in the surface, middle, and upper layers of the atmospheric boundary layer (ABL), and is 

applicable in the entire ABL. It was also noted that Gryning’s wind profile is not applicable 

in the trials (number 4, 5, and 6 of the MUST field experiment) of very stable atmospheric 

conditions. Thus, a wind profile based on the similarity function proposed by Beljaars and 

Holtslag (1991) was used in these trials. The Monin-Obukhov similarity theory-based 

logarithmic temperature profile was used to describe its vertical variation in neutral and 

stable conditions in the MUST field experiment. Since the coefficients in approximated 

analytical profiles of k and ε are estimated by fitting the observed values of k, the turbulence 

profiles follow the actual representation of k in each trial of the MUST experiment (Kumar et 

al., 2015). 

More generally, in pollutant dispersion problems, when a proper level of turbulence intensity 

is important at the upwind side of the obstacles, the commonly used techniques are based on 

setting up simplified forms of inlet TKE (Santos et al., 2009), dynamical recycling (Tomas et 

al., 2015) or smooth inflow with generic downwind roughness elements (Tomas et al., 2016). 

Such conditions mostly affect the intensity of vertical mixing and the rate of boundary layer 

growth, decisive factors in determining concentrations of pollutants emitted within the urban 

canopy (Korycki et al., 2016). We think that these effects are beyond the scope of this work 

and could be further explored for the future. These discussions are now included in the 

revised manuscript, 

We also present in the revised manuscript figures describing wind fields from the CFD model 

for the trials 4, 11 and 19. As an example, in figure 4 below is showed the wind velocity 

vectors around some containers for the trial 11. 

 
 

 
Figure 4: Wind velocity vectors for the trial 11 
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Response to the Short Comment #SC4 

We thank to our former colleague Dr. Sarvesh Singh in the LMEE Laboratory with whom we 

have also published many research papers as a coauthor, for his detailed reading of our 

paper. We are grateful to him, despite the fact he is perhaps a bit too personally involved, 

reading and commenting so abundantly our work, pointing out the weakness of some difficult 

explanations given too quickly. He has a good practice in inverse modeling for the air 

pollutant source reconstruction in flat and homogeneous terrains. However, we understand 

that this multidisciplinary study which requires wide knowledge, not only of the inverse 

problem but also of the CFD modelling, optimization, and experience in engineering, can 

lead to some confusion and misunderstanding. Below we tried to answer (in italic form) to all 

of his comments (in red color), also many of his comments were repeated several times asking 

the similar question again and again.  

 

Comment: The manuscript highlights an interesting and challenging problem related to the 

optimization of sensor networks in the context of a point source reconstruction. In general, the 

optimization of monitoring network consists of two important issues: (i) reducing the number 

of receptors and (ii) finding an optimal design of the arrangement of the monitoring network. 

Here, the study deals only with selecting a reduced set of number of receptors among an 

already established monitoring network, which is very limited form of a real problem. 

 

Reply: The optimization of monitoring network doesn’t consist in general two important 

issues: reducing the number of receptors and finding an optimal design of the arrangement of 

the monitoring network, this affirmation is very simplistic. Fundamentally, the optimization of 

monitoring networks problems may concern:  

 

1. First deployment: This case is the more complex and consists in defining different 

interesting areas (monitored area, vulnerable area, danger area, the potential locations, etc.) 

before optimizing the network. This problem cannot be dealt with in general, because the 

studied zones change according to the situation (industrial zone, target of an aggression from 

the external, etc.). Once the search space is defined (i.e. the candidate locations for the 

sensors implantation), the problem can concern finding the best configuration of a minimal 

number of sensors (similar to problem 3 below) or the best spatial arrangement of a 

predetermined number of detectors (in some cases, for example, the protection against 

eventual terrorist attack, a limited number of sensors is not important and the security must 

be guaranteed by the maximum means). 

 

2. Updating an existing network: This problem consists in changing the sensors positions in 

the interesting area for the specific needs (such as an important variation of the 

meteorological situations after a long time the network is designed) without changing the size 

of the networks (i.e. the number of sensors). 

 

3. Reducing the size of an existing network: The challenge here is to determine the optimal 

size of the network and the best locations for the sensors implantation. Here the original 

network is considered as the search space.  
 

4. Increasing the size of an existing network: This problem consists in determining the best 

positions to add to a set of sensors already placed on a site. The number of detectors to add 

can be prefixed or included in the optimization problem (i.e. must be determined).  
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  The detailed problems are independent and each one of them have its own 

requirements. 

 

 It is also important to know that the optimization of sensors networks depends on the network 

type:  

  

a. Mobile network deployed only on emergency: Here the detectors are rapidly deployed 

specifically for collecting the information (i.e. measurements) to be used for a specific need 

(neutralize the source, refurbishment an installation on industrial site, etc.). In this case, the 

meteorological conditions (as wind speed and direction, etc.) can be known in real time from 

the available observations or from numerical weather forecasting models and can be assumed 

as stationary. The optimization, in this case, can be performed in real time if the interesting 

area is not complex and the calculation can be conducted quickly in a very short time (using 

Gaussian model and an optimization algorithm for example). If the domain is complex (i.e. 

contains several obstacles), CFD model must be used to include the effect of the obstacles, the 

optimal locations to be instrumented by the sensors must be determined in upstream off-line.  

 

b. Permanent mobile network: Here the vulnerable area is monitored permanently by 

detectors embarked in mobile systems (such as drones or robots). The optimization, in this 

case, consists in determining the best locations following the situation (meteorological 

conditions, the presence of a danger, detection of an accident, etc.).    

 

c. Permanent static network: Here the vulnerable area is monitored permanently by a fixed 

network that must be efficient regardless of the meteorological situations. The optimal design 

consists in finding the best arrangement of the detectors (the number can be minimal or 

prefixed).  

 

As a conclusion, the optimization of monitoring network in an urban environment is 

a complex problem that must be deal with the proper use of the inverse modeling, CFD 

modeling, and optimization techniques. The present study deals with the above cases (3) 

and (a).  As also pointed out by Dr. Pudykiewicz, one of the reviewers of this paper and a 

distinguished scientist in this field, the subject of this study is challenging, very timely, and 

very difficult and there are very few papers addressing the problem in a comprehensive 

manner. In order to accomplish this task, we derived a method based on the combination of 

optimization techniques, inverse tracers transport modeling, and Computational Fluid 

Dynamics. So the remark of Dr. Singh that the study is a very limited form of a real 

problem is not true.  

 

For more detail we have cited below some studies that can help to understand the challenges 

and the methods that can be used in the context of our work:  

 

- (Chen et al 2012): Optimization of water quality monitoring network in a large river 

by combining measurements, a numerical model and matter-element analyses.  

- (Ainslie et al 2009): Application of an entropy-based Bayesian optimization technique 

to the redesign of an existing monitoring network for single air pollutants.  

- (Mofarrah & Husain, 2010): A holistic approach for optimal design of air quality 

monitoring network expansion in an urban area.  

- (Lepley et al 2011): Dynamic sensor deployment for the monitoring of chemical 

releases in urban environment. 
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- (Le et al, 2003): Designing networks for monitoring multivariate environmental fields 

using data with monotone pattern.  

- (Jiang et al, 2007): Optimization of mobile radioactivity monitoring networks. 

Comment: The authors have already published the inversion methodology and simulated 

annealing algorithm (SA) with its application to wind tunnel experiment in Kuichi et al. 

(2016). The present study shows a similar application in an urban terrain field experiment by 

using a CFD model. 

Reply: ’’ Kuichi et al. (2016)’’, do you mean Kouichi et al. (2016)? 

 

This comment of Dr. Singh is not completely true and also misleading as in the study of 

Kouichi et al. (2016), which is, in fact, a conference paper, the dispersion experiment of the 

gas and the modeling study were performed in very idealized conditions in a wind tunnel 

(standard deviation adjusted specifically for the wind tunnel, wind speed fixed according to 

the best results, measurements far from the boundary layer, dispersion in a homogeneous 

space without obstacles, etc.). All these aspects simplify the complexity of the optimal design 

problem and don’t lead to a fine analysis of the locations importance on the reconstruction of 

the source parameters. The current study of the networks optimization in view of the source 

reconstruction in the urban domain is a very complex and challenging problem and the 

renormalization inversion method has never been the subject of this study, this clearly 

justifies the originality of this work.  With proper citations of our earlier works, in this study, 

we never claimed to present the inversion methodology. In fact, the earlier source 

reconstruction results were presented for comparison purposes only with proper citation of 

that work. In this study, we derived a methodology for designing the optimal monitoring 

networks in an urban-like environment based on the combination of optimization techniques, 

inverse tracers transport modeling and Computational Fluid Dynamics. Dr. Singh comment 

that this is just an application in an urban terrain field experiment by using a CFD model, 

cannot be justified as Dr. Pudykiewicz also pointed out that this study is challenging and very 

difficult and there are very few papers addressing the problem in a comprehensive manner.  

In fact, the complexity of the problem increases manifold for urban environments where 

simple analytical or Gaussian models have limitations and cannot apply to such complex 

environments.  This study presents a method for designing the optimal monitoring networks in 

an urban-like environment.  

 

Comment: It does not involve any new development in the model or inversion / optimization 

algorithm. 

 

 Reply: Fundamentally an optimization study does not require development in the used 

methods or algorithms but it is ensured by three essential phases:  

 

1. Choice of an objective function: (also known as cost functions), in our case this function is 

the optimality criterion which describes the quality of a network and which is in agreement 

with the defined problem (mobile or static network, for reconstruction of a source or for other 

need, etc.).  
 

2. The problem statement: this consists in defining how the optimization problem is 

approached (i.e. discrete or continuous search areas, definitions of spatial zones, etc.).  
 

3. The choice of the optimization algorithm: which is generally in coherence with the phase 2 

(Determinist optimization, Hard optimization, etc.)  
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The complexity of the optimization problems is in the well definition of these three phases 

especially the choice of the optimality criterion and also in the implementation and the 

exploitation of the retained techniques. In this study, we never claimed any development in 

the inversion or optimizations algorithms as these techniques were already available in the 

literature. We derived a methodology for designing the optimal monitoring networks in an 

urban-like environment which is based on the combination of optimization techniques, 

inverse tracers transport modeling, and Computational Fluid Dynamics. Which attests to a 

new development for optimally designing the sensors monitoring network in an urban-like 

environment. 
 

Comment: The presentation of the results is classically similar to a point source 

reconstruction study which do not highlight any significant contribution related to optimal 

networking.  

Reply: In the present study, the obtained optimal networks were analyzed qualitatively and 

quantitatively for all the trials of the MUST field experiment. The dispersion of the sensors in 

the urban-like environment was critically analyzed according to the source position and the 

meteorological situation. A fine analysis is performed to highlight the common structures 

(Skeleton) in the optimal networks.  Also, a posteriori study is realized in order to evaluate 

the performance of the optimal networks. For this, the errors in source parameters estimation 

are compared with the errors obtained from the original network which leads to the important 

conclusions in networks size reduction in the framework of source reconstruction in an urban 

environment. As the applicability of the obtained monitoring networks is validated and 

analyzed by estimating the source parameters from the concentration measurements from the 

optimal networks, it is obvious to present and analyzed the source reconstruction results and 

compare these with from the previous study. We do not agree with Dr. Singh’s point that this 

study does not highlight any significant contribution related to optimal networking. In fact, 

using the proposed methodology, we were accurately able to estimate the source parameters 

using the measurements only from 1/4th and 1/3rd sensors with approximately similar 

accuracy compare to the network of original number of sensors. This is a significant 

contribution that reduces the number of sensors in an urban-like environment and without 

compromising the ability of the network with a minimal number of sensors to estimate an 

unknown source.        

 

Comment: The application of renormalized inversion and SA methodology in optimizing 

receptors are associated with several issues which are not clarified in the text.  

 

Reply: As mentioned in the abstract and in the text the renormalized inversion method, the SA 

and the CFD model were coupled to obtain the optimized network of the receptors and the 

related issues were partially presented when the methodology of the networks optimization 

was presented for an urban-like environment. We have more clarified these issues in the 

updated version of the manuscript.   

 

Comment: Besides, there are several examples of uncleared and overstated sentences, 

misinterpretation of mathematics, poor description of results and methodology. 

 

Reply: Unfortunately, we cannot answer to a not given examples. Can you please indicate the 

“uncleared and overstated sentences” and the ‘’misinterpretation of mathematics’’? 

However, we will carefully read again and correct the text in the updated manuscript for such 

examples (if any).  
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Comment: Overall, it needs to be justified that what is the significant outcome of this study 

and how their approach of determining optimal network, which is biased towards 

measurements, is justified in a general framework?. 

 

Reply: As clarified before (see the first reply), this study is carried out in the framework of 

the cases (3) and (a). We do not study all the envisaged cases. It is clear that the problem of 

sensors network optimization is not trivial and need to be solved according to a given 

configuration. We remind that in this study we provide an answer to the specific operational 

need for which it is necessary to deploy sensors in emergency situations where the 

meteorological conditions are known in real time and some information about the 

measurements are available. We explain more: for example, in an industrial site the area 

where an eventual source can be located is known. Consequently, the source is roughly 

localized and the optimized network is deployed to refine the estimation of the source position 

which helps to repair the installation. A second concrete case concerns the estimation of the 

intensity of hazardous accidental release. This data (i.e. intensity of the source) is primordial 

for following and/or for predicting the evolution of the accidental plume. In such specific 

case, it is judicious to be based on the scenarios which justify the use of concentrations in 

optimal design. For more clarification we cite some example of works based on these 

scenarios (i.e. a priori information are available) where the measurements were used in the 

optimal design of the monitoring networks:  

- (Ma et al 2013): Comparison and improvements of optimization methods for gas 

emission source identification.  

- (Mason et Bohlin, 1995): Network optimization of a radionuclide monitoring system 

for the comprehensive nuclear test ban treaty. 

- (Berry et al, 2006-a): A facility location approach to sensor placement optimization.  

- (Watson J-P et al, 2004): A multiple-objective analysis of sensor placement 

optimization in water networks. 

- (Krause et al, 2008)  Efficient Sensor Placement Optimization for Securing Large 

Water Distribution Networks.  

-  (Hamel et al, 2010): Sensor Placement for Urban Homeland Security Applications.  

- (Abida et Bocquet, 2009): Targeting of observations for accidental atmospheric 

release monitoring.  

Also, we can find in the literature some works of sensors networks optimization based on 

error cost function (error objective function) similar to the optimality criterion that we 

proposed in our study: 

- (Abida et al, 2008): Design of a network over France in case of a radiological 

accidental release. 

- (Saunier et al, 2009): Model reduction via principal component truncation for the 

optimal design of atmospheric monitoring networks.  

- (Jiang et al, 2007): Optimization of mobile radioactivity monitoring networks. 
 

This study shows that it is possible to reconstruct a source of atmospheric emissions 

with a limited number of concentration measurements and presents a methodology for 

selecting the ‘best’ sensors positions based on an optimality criterion and by coupling an 

optimization algorithm an inversion method and a CFD model that include the complexity 

of an urban domain. This study presents a practical method for managing realistic 

situations. In an area of interest, it is not possible to place the sensors anywhere. This study 

presents an investigation of the measurements vector used in the inverse problems. 
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General Comments: 

Comment 1. In network optimization problem, finding an optimal rearrangement of a set of 

receptors and then, their evaluation for source estimation are two independent set of problems. 

The determination of optimal rearrangement should be performed independent of knowledge 

of measurements and it must contain available maximum information in the domain regarding 

observability of emissions. The second problem regarding evaluation of source retrieval 

should be carried out as a next step to validate the efficiency of such networks in the presence 

of random model-measurement errors. In this study, the two set of problems are mixed and 

arrangement of network is determined given the knowledge of measurements which is a 

biased choice of receptors. In addition, the study does not discuss any criterion which could 

quantify the information in a particular design or impact of model-measurement errors on the 

chosen network. 

 

Reply:  We agree with Dr. Singh’s remarks that in a network optimization problem, finding 

an optimal rearrangement of a set of receptors and then, their evaluation for source 

estimation are two independent set of problems. In fact, we also followed the same procedure. 

The network optimization problem was independently presented and performed before any 

evaluation by estimating the source parameters using the measurements from the sensors 

from the obtained optimal network. However, since the optimization methodology utilizes 

some concepts (not the source estimation part) from the renormalization inversion 

methodology, we presented it after the source estimation methodology. As also explained in 

the manuscript and more clearly in the updated version, the network optimization problem is 

completely independent of the source estimation evaluation. It is very clearly explained in the 

flow diagram of the methodology in Figure 2 and shows that source was estimated only when 

we obtained the optimal monitoring network.  In this work, the first step consists to find the 

best configuration of a limited set of sensors using the meteorological data, the sensors 

positions on the instrumented area, a CFD technique and the concentration observations. The 

second step consists to evaluate a posteriori the performance of the optimal networks in 

comparison with the original network used in the MUST field experiment.  

 

The problem of optimal design of sensors networks for source reconstruction can be 

performed (i) without a priori information or (ii) with a priori information of the source (such 

us its position, intensity, etc.) and the observations (i.e. measured pollutant concentrations) 

can be used in the optimization process see as examples (Ma et al, 2014). 

   In a case when the source is considered completely unknown (as for an example in a 

terrorist attack) the challenge is to design a network able to reconstruct an eventual source 

regardless of its position and intensity. Thus a specific cost function could be defined in 

order to assure the optimal design and the concept of information can be used. The Ph.D. 

thesis of Kouichi (2017) and Kouichi et al. (2016) was inspired by this concept for defining 

the entropic criterion based on the renormalization method in order to estimate the best 

arrangement of the sensors for source characterization regardless its intensity and position. 

This work is already a subject of a publication that we realized. 

   In a case when some knowledge about the source is available we remind as example 

on industrial sites the ‘danger zone’ were the source can be located is completely known 

(storage tank of hazardous products, network of pipelines, etc.)  for this reason works of 

optimization can be conducted based on scenarios for witch a priori information on the 

source was utilized (another example in specific situation of accidental release the position 

of the source is known (observed in the site) and the need is to estimate its intensity in order 

to estimate the dispersed quantities of a hazardous agent this can help to predict the 
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evolution of the accidental plume or to determine the contaminated area or to estimate the 

quantities inhaled by the personals exposed on site, etc.  

       Concentrations measurements can routinely be available from an already existing large 

monitoring network. In this study, we utilized these concentration measurements to reduce 

the size of a large network. The updated version of the manuscript also discusses a 

posteriori error analysis of the source reconstruction based on the random measurements 

errors from an obtained monitoring network.    

Comment 2. Throughout the text, authors have mentioned the keyword “optimal network”. A 

big question here, is how to prove that a particular design is optimal?. This requires rather 

mathematical or statistical arguments / proofs to support the fact that a design is optimal. This 

can not be shown by showing source retrieval which is nothing but just the estimation of 3 

parameters (location, (x, y) and strength q). 

 

Reply: Throughout the text we mentioned that there is no guarantee in the convergence of the 

SA and we confirmed (based on the adequate bibliographical references) that the obtained 

network can be the optimal or the near-optimal one. This complex combinatorial optimization 

approach retained a big attention in the literature and the SA is selected following the 

recommendations from more than one works of networks optimization in the framework of the 

atmospheric dispersion context (Abida et al, 2008; Abida et Bocquet, 2009; Jiang et al, 2007; 

etc.). Nevertheless, before utilizing the probabilistic algorithm SA, we tested its performance 

in comparison with the Genetic Algorithm GA of evolutionary research technic (Kouichi, 

2017). Concerning the statistical study after the achievement of the optimization, we plan to 

perform this investigation as continuity of this first study.  

 

Comment 3. A big limitation of this approach is the subjectivity and biasness in the 

methodology and their dependence on the measurements. The optimality of the reduced set of 

receptors is shown based on the accuracy of the point source retrieval which is not relevant. 

The good retrieval results with presumed lesser number of receptors are not surprising since 

their chosen cost function depends on the measurement’s values which always force the SA 

algorithm to choose the receptor locations with good model measurement accuracy. They 

completely ignored the fact that their network design criterion should be independent and 

prior to the knowledge of measurements, which is one of the big limitations. To be precise, 

the optimization methodology utilizes the same cost function for both the tasks: (i) Identifying 

a reduced set of receptors and (ii) retrieving the point source parameters. The cost function 

utilizes the actual measurements and measures the deviations between measured and predicted 

concentrations at the chosen set of receptors. The iterative SA algorithm tries to minimize this 

cost function, which means it selects the receptors with good model-measurement accuracy, 

i.e. which are closer to the measurements. This will eventually results in good retrieval 

depending on the model error. This clarifies the fact that the choice of receptors is always 

subjective to the model-measurement accuracy and will vary in case of perturbation in the 

model measurement variables. Thus, this is a poor approach and always biased towards 

model-measurement accuracy which do not signify the objective of optimization of receptors. 

The optimization of receptors should have performed independent and prior to the knowledge 

of measurements, which is not done here. 

 

Reply: This comment is similar to the comment n°1 and some evoked points in the 

introduction so we conserve the same responses. We hope that the clarification that we 

presented before help for best understanding the aim and the approach of this study.  
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Comment 4. The study do not provide any insights / discussion on systems observability 

while remaining ill-posed, quantification of information gain or loss during optimization of 

the network, statistical or mathematical criterion leading to network optimization and 

sensitivity of the network design with respect to the perturbation in the model-measurement 

variables. Also, the study do not mention any optimality criterion, design of experiment or 

information theory criterion. 

 

Reply: The sensitivity of the network design with respect to the perturbation in the model-

measurement variables is studied a posteriori and discussed in the revised version according 

to the recommendation of the Referee#2. Concerning the optimality criterion and the 

information theory, we remind as we mentioned before (reply for comment 1) that the entropic 

criterion for optimal monitoring networks is defined by Kouichi (2017) and is the subject of 

another publication. We hope that the clarification that we presented before, especially the 

framework and the challenge of this study is now clear (mobile networks, with a priori 

information, etc.)   

 

Comment 5. Another issue with the methodology is that the SA algorithm may not converge 

always to the same set of reduced receptors. More often, there is high probability that the 

reduced set will change in every repeated simulation since the number of possible 

combinations are really high. In this case, how do you guarantee the optimality of design?.  

Also, the authors never compared between various such different sets corresponding to same 

trials as how they are varying or what are the differentiation between them. It seems that the 

authors just choose the arrangement with least reconstruction error which is not logical. 

 

Reply: This comment is similar to the comment n°2 and some evoked points in the 

introduction so we conserve the same responses that we clarified before.  

 

Comment 6. If the objective was simply to have a reduced set of network where model 

measurement errors are minimum (which is done here), why authors just did not select those 

locations where model predictions are matching with measurements?. This could be done 

simply by comparing model predictions and measurements instead of a massive SA 

computation. Based on the proposed approach, this can not be called an optimization of the 

monitoring network. 

 

Reply: Selecting the locations where model predictions are matching with measurements 

doesn’t guarantee a 'best' estimation of the source parameters (inverse problem and direct 

problem are completely different). Effectively, this is one of the important results of this study. 

As we used a data assimilation approach, the best network is obtained for the best 

reproduction of the observations (i.e. correspond to the minimal quadratic distance between 

the modeled and the measured concentrations). Also, as stated by Dr. Singh about the 

network based on the matching of direct model prediction with measurements, the direct 

model also required the knowledge of the exact source parameters and this information may 

not be available in general. However, in this study, we utilized only the concentration 

measurements and not the source parameters to obtain the monitoring networks.     

  

Comment 7. The proposed approach also raises questions regarding the efficiency of the 

network in case of perturbed model-measurement fields/variables. Also, the retrieved 

parameters are highly sensitive toward the design of their network which raise further 

questions regarding the efficiency of the chosen network. The optimized choice of network 

will always be subjective with respect to the wind variability, model, model errors and 
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measurements. In trials, where model does not perform well, the error will always be high, for 

example see in trials 2. This will raise the issue of failure of their monitoring networks in 

identifying correctly the emissions in case of large model errors. This is why the arrangement 

of the receptors vary in all the trials, even when in some trials, the wind conditions are 

approximately similar. 

 

Reply: This study presents our first attempt of the sensors networks optimization for the 

reconstruction of releases source in urban domains. The door are still open for continuity in 

order to integrate the effect of meteorological conditions variability or to integrate the 

influence of the model's errors. Nevertheless, following the recommendation of the Referee#2, 

the effect of random measurement errors is now integrated into the analyses of the 

performance of the optimal network. Some limitations of this work are also included in the 

updated version of the manuscript. It is not always true as Dr. Singh commented that in trials, 

where the model does not perform well, the error will always be high, for example, see in 

trials 2. In trial 2, the predicted concentrations from direct model were in good agreement 

with the observations (NMSE = 0.17, Correlation coefficient = 0.95, Index of Agreement = 

0.97) (Kumar et al., 2015a). Even by utilizing the concentration measurements from all 40 

sensors in source estimation, the retrieval error was large in this trial 2 (Kumar et al., 

2015b). Also, all problems of the optimizing the network, e.g., networks without using 

concentration measurements, one single network for all meteorological conditions, etc. 

cannot be deal in a single study. The optimal networks dealing with some of these problems 

were partially presented in the Ph.D. thesis of Kouichi (2017) and will be presented in 

separate publications.        

  

Comment 8. The study also discusses about weights which they, later, referred as visibility 

functions highlighting prior informations regarding emissions. However, authors never 

mention “why they could not determine a criterion based on just visibility weight functions”? 

Which could be far relevant and independent to the measurements. 

 

Reply: The method that we described to assure the optimization is not unique, it is possible to 

use the visibility as optimality criterion and it is a different approach. In any case, we 

mentioned that the renormalized errors criterion is the unique cost function that can be used 

to assure the design in such problem configuration. The optimization approach only based on 

the visibility weight function was also performed as another research problem in the Ph.D. 

thesis of Kouichi (2017). Dr. Singh is well aware of this study and corresponding partial 

results as he was also present in the final Ph.D. viva presentation of Hamza Kouichi.     

 

Comment 9. It is not clear why they could not find a common optimal network which could 

work in all the trials for point source retrieval?. The original network of 40 receptors was 

already working in all the trials irrespective of model errors and varying meteorological 

conditions. It is useless to propose different configurations based on different meteorological 

conditions since meteorology can never be constant in a real scenario. The different 

configurations for different trials again highlight subjectivity of their approach. Thus, the 

study do not bring any significant outcome regarding the optimization of receptors. 

 

Reply: As we clarified before (see first reply in page 2 / case of permanent static network), 

finding a common optimal network which could work in all the trials is a different 

optimization problem, also an adequate optimality criterion (entropic criterion extended for 

several meteorological situations) is defined by Kouichi (2017). Dr. Singh is well aware of 

this study progress and corresponding partial results as he was also present in the final PhD 
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viva presentation of Dr. Hamza Kouichi. We remind, this study is specific to emergency 

situations where the meteorological conditions can be known in real time and don’t vary 

significantly (it is assumed as stationary because the problem of optimization in an urban 

environment is very complex and this is our first tentative in this framework).  

 

Comment 10. How do you describe physical features and efficiency or quality of the reduced 

configuration?. This is never mentioned in the results and discussion. The discussion mainly 

involves only source retrieval. 

 

Reply: We analyzed qualitatively (structures of the optimal networks in the instrumented 

area) and quantitatively (errors in source reconstruction) and the results showed that no 

trend is obvious thus proves that the problem of sensors networks optimization in urban 

environment is not trivial also the reduction of an original network achieved successfully and 

the performance for source reconstruction is maintained.   

 

Comment 11. Why their optimization always results in finding most of the sensors (5-6 

detectors in the reduced configuration) close to the source location? It was never explained in 

the text. Does your optimized choice of receptors depends significantly on the receptors closer 

to the source location?. If yes, then what is use of optimizing since you will never know the 

source in accidental scenarios? 

 

Reply: Most of the sensors are selected by the SA close to the source location and this 

tendency is logical because these sensors make the area around the real source well visible 

from the network, nevertheless, this doesn’t guarantee a correct reconstruction of the source. 

As examined by Kouichi (2017), in some cases a limited number of sensors close to the source 

are not enough also adding sensors to a ‘key configuration’ don’t improve the precision in 

source parameters estimation thus prove that the reduction of the number of sensors is 

justified. We remind that this study is for a specific need where a priori information (i.e. the 

measurements) is available and the networks are optimized to be deployed in emergency 

situations.  

 

Comment 12. Why signal to noise ratio is not shown for all the reduced configurations? and 

it should be compared with the original network? 

 

Reply: Can you please clarify what do you mean by ‘signal to noise ratio’ in this context? 

 

Comment 13. The authors have simply described the errors in retrieving the location and 

intensity of the source. The responsible reasons behind it were never explained?. This shows 

that authors are just interpreting the retrieval rather than really analyzing the results. 

 

Reply: This comment is similar to the comment n°10 so we conserve the same responses. 

 

Comment 14. What is the role of weight function in your reduced configuration?. Does it 

have any effect on the systems observability and how it do affect your retrieval? 

 

Reply: Fundamentally, the role of the weight function in the renormalized data assimilation 

is minimizing the over interpretation of the observation, concerning the optimal networks no 

evident trend is relieved this confirm the complexity of such problem.   
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Comment 15. Why did you describe vectors on the figures of the source retrieval?. While it 

seems that you are retrieving source parameters in a weighted least-squares framework?. It 

was never explained in the results that what is the impact of reducing the receptors on the 

retrieved general source vector?. 

 

Reply: The source vector s is not described separately but analyzed with the visibility field 

obtained by the optimal networks and for each trial of the MUST experiment. The goal is to 

assure a qualitative examination and to validate the fact that the optimal network covers 

correctly the source position. Also to confirm that in the monitored area only one punctual 

source is detected, in the figures by analyzing the level in the source vector we confirm that 

the maximum is unique so the estimated source after the reduction of the original network size 

is physically coherent.  

 

Comment 16. A general choice of using a weight matrix in a least-squares methodology is 

measurement error covariance matrix. Authors did not justify how could they utilize matrix 

Hw as an alternative to measurement covariance matrix?. In addition, the Hw matrix is not a 

diagonal matrix which means that using Hw as a weight matrix will induce unphysical 

correlations among receptors which could be false as well. Did you analyze their impact on 

source retrieval?, If not, then why and how could you use them directly? Perhaps, you could 

assume an unity matrix. If not, why? 

 

Reply: As explained by Issartel et al. (2012), classically, the least squares are weighted using 

the covariance matrix (Hw) of the measurement errors. However, in practice, this matrix 

cannot be determined for the prevailing part of these errors arising from the limited 

representativity of the dispersion model. Issartel et al. (2012) proposed an alternative 

weighting based on a matrix Hw, that is related to a unified approach of the parametric and 

assimilative inverse problems corresponding, respectively, to the identification of the point of 

emission or estimation of the distributed emissions. The weighting was shown to optimize the 

resolution and numerical stability of the inversion (Issartel et al., 2012). The importance of 

the most common monitoring networks, with point detectors at various locations, is stressed 

as a misleading singular case. As discussed by Issartel et al. (2012), it is possible to 

understand a drawback of two classical choices of Hw as the identity matrix, associated with 

the ordinary norm, or as the diagonal covariance matrix of noise supposed to be uncorrelated 

in the various measurements. The justification to utilize the matrix Hw is proposed and given 

in Issartel et al. (2012). A brief discussion of the justification is presented in the revised 

version.  

 

Comment 17. Another issue is with the presentation of the methodology. The study begins by 

posing an under-determined inverse problem of estimating state of emissions while their 

objective was to optimize a reduced set configuration for point source retrieval which is an 

overdetermined inverse problem. Why authors did not begin by directly posing the over-

determined problem of point source retrieval?. Why they have presented unnecessary details 

regarding more general inverse problem of estimation emission state if it was not their 

objective?. The presented details were already published by several researchers in the 

literature. Further, authors again formulate the point source retrieval problem in a weighted 

least-squares sense. Why?. Why two different methods were presented for the same problem?. 

 

Reply: Before presenting the optimization methodology a brief mathematical formulation of 

the renormalisation technique is presented for a simple reason that we cannot define the 

optimality criterion without presenting its origin and its physical signification. If we present 
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directly the adequate cost function (i.e. normalized errors) this cannot be appropriate for 

readers that don’t have any information about the renormalisation method. Concerning the 

‘detail’ of point source estimation simply because for the quantitative analyses (i.e. 

performance in source parameters estimation) we use this method so it is logical to present 

this ‘detail’.  However, as suggested, this part is reduced subsequently in the updated 

manuscript.  

 

Comment 18. Why do you need to compute a general vector s of state of emissions?. The 

objective was just to estimate point source parameters which could be estimated with the 

weighted / non-weighted least-squares method?. Please clarify?. 

 

Reply: This comment is similar to the comment n°15 so we conserve the same responses. 

  

Comment 19. Again, in the results, figures highlights distribution of weights and vector s 

which was never related to their monitoring network optimization. Their presentation 

confuses the overall objective of the study. Do you propose an optimal design for point source 

retrieval or a general source retrieval?. The figures related to weights are never explained as 

why they were needed? or what information do they provide related to the monitoring 

arrangement?. The given explanation is just copy-paste from previous papers of the authors. 

 

Reply: This comment is similar to the comment n°15 & n°18 so we conserve the same 

responses. However, the figures related to the visibility function are discussed with respect to 

the corresponding optimal monitoring networks in the updated version of the manuscript.  

 

Comment 20. Why authors did not compare the weights in comparison to their weights 

corresponding to the original receptors?. 

 

Reply: We compared the performance of the optimal networks in comparison to the original 

network this implicitly and indirectly inadequate the role of the weights for each network.  

 

Comment 21. Another issue is also related to the common base network among the 10 and 13 

sensors network. Why their strong base network involves only 7 receptors? In general, the 10 

sensors networks should be a subset of the 13 sensor network, if not then why?. Please 

clarify?. It is also surprising that in some trials the common base network involves only 3 

sensors. This is unusual having so much variation in having common base sensors among 10 

and 13 sensor network in trials. The authors should provide the reasoning behind?, not just 

mentioning the results. 

 

Reply: The analyses of the common structures (Skeleton) in the optimal networks confirm 

that the solution is not unique so more than one network can lead to a good estimation of the 

source parameters. This result is very important and is in coherence with the works of 

Kovalets et al. (2011) and Efthimiou et al. (2017) that confirmed for the same experimental 

data the best source reconstruction using 10 sensors is possible for 5% or 10% among a 

significative set of randomly networks. 

 

Specific comments: 

1. Abstract, Page 1, line 7. The sentence “The optimal networks in the MUST urban regions 

enabled ...”. Rephrase the sentence. How could an optimal network enable a reduction?. I 

would like to mention again that the reduced set of receptors were never proved optimal. 
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Reply: The sentence is rephrased for more clarity in the updated version. However, another 

part of this comment is similar to the general comments n°2 & 5 and some evoked points in 

the introduction so we conserve the same responses that we clarified before. 

 

2. Abstract, Page 1, line 11. The sentence “This study presents first application of the 

renormalization data assimilation approach for the optimal network design : : :..” is overstated 

and wrong. I could not find where and how did you apply renormalize data assimilation for 

optimal network design. Renormalize assimilation is only for retrieving the source 

parameters. I do not see in the text, how it could retrieve the reduced set of receptors. Also, 

you have interpreted a least-squares framework without justifying their inherent equivalence 

and choice of parameters with respect to the renormalization. Why?. 

 

Reply: We modified this sentence in the updated version, however, the later part of this 

comment is similar to more than one comments and some evoked points in the introduction so 

we conserve the same responses. We hope that after the clarification, the aim and the 

presented methodology are now clear. A brief discussion about the justification of the 

weighted least-squares with respect to the renormalization framework is presented in the 

revised version.  

 

3. Page 1, line 18, the sentence “However, pre-deployment of these limited number of sensors 

: : :..”. Please clarify, how could a pre-deployment of sensors helps to achieve maximum 

information from set of noisy concentration measurements. The objective of pre-deployment 

of sensors is to have maximum a priori information regarding state of emission and to 

correctly capture the data while extracting and utilizing information from the data is the final 

task of data fusion techniques. 

 

Reply: This comment is similar to more than one comment and some evoked points in the 

introduction so we conserve the same responses.  

 

4. Page 2, line 2. The sentence “detection of an unknown continuous point source’s 

parameters ...” is wrong. How could you detect point source parameters? They are rather 

retrieved or estimated. 

 

Reply: We agree with this comment and accordingly, the sentence is modified. 

 

5. Page 2, line 12. See the sentence “The establishment of an optimal network requires...”. 

Why do you think that for an optimal network it requires availability of concentration 

measurements?. Please justify? Measurements may be required for the evaluation or 

validation but for establishment a network can be made with the meteorology and dispersion 

model. 

 

Reply: This comment is similar to more than one comment and some evoked points in the 

introduction so we conserve the same responses. This point was explained earlier in detail.  

 

6. Page 2, line 20, See the sentence “This approach includes the geometric and flow 

complexity inherent : : :..”. I do not think if there is any inverse approach which includes such 

things for optimization process. The flow variables are accounted through the model, perhaps 

in the inverse approach in the form of sensitivities which is also derived from adjoint model. 

All the STE approach can include such information from model. 
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Reply: The approach term written here doesn’t mean to refer the inversion or STE approach 

only. It refers to the whole methodological approach to optimize the network by coupling the 

optimization techniques, inverse tracers transport modeling, and Computational Fluid 

Dynamics. However, it is modified to avoid any confusion.   

 

7. Page 2, line 26. What is “regularized norm square”. I do not think Sharan et al., 2012 have 

included such terms. 
 

Reply: The sentence is modified. 

 

8. Page 3, lines 3-5. Issartel, 2005, Sharan et al., 2009, 2012 and Kumar et al., 2015b, do not 

discuss any iterative algorithm to minimize the difference between observed and modeled 

concentration. 
 

Reply: The sentence is modified.    

 

9. Page 3, line 8, “does not required”. Please correct the sentence. 
 

Reply: Corrected. 

 

10. Page 3, lines 16-17, Kumar et al. (2015b, 2016) do not provide any extension to 

renormalized inversion. It was just an application with CFD model. 
 

Reply: Modified.    

 

11. Page 3, lines 22-29. The authors defined the objective to determine optimal network but 

never achieved. In line 23, “A methodology was proposed : : :: : :.”. If the objective was to 

better characterize the source, why one need to reduce the number of receptors. The reduction 

of receptors simply refers to the reduction of information regarding the observability of state 

of emissions. In line 26, “For this purpose : : :., but with comparable information”. Where do 

you show in the manuscript that the reduced information is comparable to the original 

network. In line 27, “This work explores with two requirements : : :...”, What does it mean, 

there is no movement of sensors. You have performed only selection of sensors. 
 

Reply: This comment is similar to more than one comment and some evoked points in the 

introduction so we conserve the same responses. 

 

12. Page 4, line 2, please correct “concentrations measurements”. 
 

Reply: Corrected.  

 

13. Page 4, line 4, please correct “an horizontal plane”. 
 

Reply: Corrected.  

 

14. Page 4, lines 8-10, The sentence “This study deals with linear relationship, as except from 

the nonlinear chemical reactions : : :..” is wrong. Most of these process are nonlinear in your 

case due to complex flow structures. 
 

Reply: This statement was based on the cited reference and we will verify it again and 

remove/correct it accordingly.   
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15. Page 4, line 26, citing Kumar et al., 2016 is not appropriate. Please cite appropriate 

reference. 
 

Reply:  We will check and correct the appropriate reference if needed.  

 

16. Page 4, lines 28-30, I understand that the inverse solution from Eq. (2) will lead to peaks 

at the grid cells coinciding with the measurement cells. This is obvious since the sensitivity 

matrix has peaks at the measurement cells which are reflected in the inverse solution. 

However, the difficult part to understand is “why do you call these large values of sensitivities 

at measurement cells an artificial information? Or a virtual/unphysical reality?”. The peak at 

measurement cells is obvious since the concentration is always maximum at source location 

and in adjoint computations, you have replaced your measurement cells as source. Please 

clarify. 
 

Reply: These points were already clarified in many papers of Dr. J.-P. Issartel (main 

developer of the Renormalization inversion theory) and also in some other papers of his 

coauthors including Dr. Singh. In fact, this was one of the main force to the development of 

the renormalization inversion technique for source estimations which Dr. Singh has also used 

a lot in his papers.     

 

17. Page 5, line 5, Why do you think that normalizing peaks in the sensitivity matrix with 

weights will cure the peak problem. I mean, even if you normalize peaks (infinitely large 

value) by some nonzero weight values, it will not change anything. 
 

Reply: We don’t understand this comment can you please more clarify? However, these 

points were already clarified in most of the papers related to the renormalization inversion 

technique.  

 

18. Page 5, line 9, citing Kumar et al., 2016 is not appropriate. Please cite appropriate 

reference. 
 

Reply: We will check and correct the appropriate reference if needed  

 

19. Page 6, line 3, “but with comparable information”. It is never done in the study. 

  

Reply: What do you mean by “It is never done in this study”? In the evaluation of the 

optimized networks, we have compared the source estimation performances of the obtained 

optimal networks of a reduced number of sensors with the original network of 40 sensors. The 

obtained optimal networks with reduced sensors provided comparable estimates of the source 

parameters with the estimates obtained from the original network of 40 sensors.      

 

20. Page 6, line 4, “delivers maximum of the information”. It is never shown in the study. 
 

Reply: It is a statement that refers to define one of the objectives of an optimized monitoring 

network to deliver a maximum of the information in respect to the source estimation from a 

reduced number of sensors in an optimized network. We do not think any wrong in this 

sentence.   

 

21. Page 6, line 11, why cost function is defined according to Hw norm. Please clarify?. 
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Reply: Because our approach is based on the renormalized data assimilation method as an 

inverse technique. It was explained in several studies, originally discussed in a study by 

Issartel et al. (2012). It is more clarified in the updated version of the manuscript.   

 

22. Page 6, line 12. Check sentence “As the cost function is convex, its minimum value must 

correspond to the maximum intensity of the source”. WHY?. Please clarify?. The intensity of 

source here is q. Check your mathematical expressions. You will obtain an estimate of q for 

each location vector x. In such case, the maximum value of q in the domain may go to infinity 

in case where weights w are very small or zero. It is not necessary that the maximum value of 

q will occur at the minimum of the cost function or at the source location. 
 

Reply: We agree with Dr. Singh’s remark about the cost function which was mistakenly 

stated that way. This sentence is removed/modified from/in the updated version of the 

manuscript as it doesn’t affect the subsequent part of the methodology.     

 

23. Page 6, line 15. This is not clear how you can utilize matrix H_w in place of measurement 

error covariance matrix in Eq. (9). This is not obvious. Justify?. 
 

Reply: As it was explained in several studies, originally discussed in a study by Issartel et al. 

(2012), it is more clarified in the updated version of the manuscript.   

 

24. Page 6, line 16, why two notations q and q0 (section 2.4) are utilized for the same 

representation? 
 

Reply: Thank you for pointed it out. We have corrected it to the same symbol throughout the 

manuscript.    

 

25. Page 6, line 19, “conditions of maximum intensity: : :.”. It seems that authors have 

difficulties in understanding mathematics. Why equating first order derivative to zero will 

give maximum intensity? 
 

Reply: The sentence is corrected. It is just a simple derivative test of a function to find its 

critical points that determines whether each point is a local maximum, a local minimum, or a 

saddle point. Here, equating the first order derivative to zero leads to an estimate of the 

source intensity.   

 

26. Page 6, line 25, The expression for equation (13) is wrong. Please correct it. 
 

Reply: Corrected.  

 

27. Page 6, line 26. The mathematical expression is wrong. 
 

Reply: It seems to be correct; however, we will verify it again and modify if needed.  

 

28. Page 6, line 27. How do you guarantee the global minimum in SA algorithm?. 
 

Reply: This comment is repeated again and similar to more than one comments and some 

evoked points in the introduction so we conserve the same responses. 

 

29. Page 7, line 16, “average of the difference of the cost functions calculated for a large 

number of cases”. How did you compute it? 
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Reply: This is for estimating the starting ‘temperature’, the procedure consists in generating 

a set of random networks of the same size than in evaluating the quality of each network using 

the renormalization algorithm.   

 

30. Page 7, line 19, “An equilibrium is reached : : :..”. This means that the SA algorithm stops 

when cost function becomes constant. Then how do you prove global minimum? 
 

Reply: This comment is similar to more than one comments and some evoked points in the 

introduction so we conserve the same responses.  

 

31. In combinatorial optimization problem, it is not necessary that SA will provide the same 

solution or same set of receptors as the converged solution. In this case, how did you choose 

the solution?. 
 

Reply: This comment is similar to more than one comments and some evoked points in the 

introduction so we conserve the same responses. All the details about the SA and haw it is 

employed in this context are also available in Kouichi (2017). 

 

32. Page 8, step 2 and step 3 show that the choice of receptors depends on the measurements. 

Thus, there is no optimality in network. The authors have simply chosen the reduced set of 

receptors based on good retrieval results which is biased. 
 

Reply: The question is repeated again and the answers to these points are already given to 

his previous comments.  

 

33. Page 9, lines 8-11. These are not clear. What do you mean by near-optimal network?. 

What are the conditions for “near overall optimum condition”. 
 

Reply: As explained before, all these details are available in the cited references in the 

literature. 

 

34. Page 11, line 11, “The network optimization process : : :..”. This shows that the choice of 

receptors are biased towards the model-measurement accuracy. 
 

Reply: Again the same question is repeated and so we conserve the same responses as given 

earlier. 

 

35. Why the configuration of networks should vary based on meteorological stability 

conditions. 
 

Reply: This is evident because the arrangement of the sensors in the monitored area should 

be according to the wind direction for example. It is clear that we cannot place sensors in 

regions were no measurements will be collected. We remind that the objective of this study is 

not to optimize a permanent static network. 

 

36. Page 12, lines 8-9. “These results exhibit that the SA : : :..”. How it prove optimality of 

monitoring network? 
 

Reply: The answer is already given to this question as this comment is similar to more than 

one comment and some points in the introduction. 

 

37. Page 12, line 19. “were observed independently of the number of sensors”. Why?. Please 

clarify?. 
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Reply: This is showed in Table 2. However, the sentence is modified to avoid any confusion. 

  

38. Page 12, line 20, “larger location errors do not : : :.”. Why?. Please clarify? 
 

Reply: This is noted in the results.  

 

39. Page 12, line 23, “a large number of sensors are close to the source positions ..”. Why so?. 

Please justify?. 

Reply: This is noted in the qualitative analyses. This point is already clarified in response to   

a similar earlier comment. 

 

40. Page 12, line 29, “visibility functions have significant levels : : :..”. What does this mean?. 

 

Reply: This is noted in the qualitative analyses please see figures 4 & S2.  

 

41. Page 13, line 6, “increase in the number of sensors in a network has little influence on the 

accuracy: : :.” Why? Please clarify? 

 

Reply: This is clear in the text because by adding sensors in a performance network can more 

add measurements and model errors in the methodology which may affect the estimation of 

the parameters of the source. 

 

42. Page 13, lines 8-10, “In some trials, it was also noted : : :..not necessary benefial.” How 

could you justify this?. In fact, how did you evaluate if information added by a sensor is 

fruitful or not? If just based on accuracy of source retrieval, then it is illogical? If an 

information added by a new sensor is not beneficial then why it should increase the location 

error?. Also, how location error may decrease with decreasing the number of sensors? You 

can say this just because you are looking at source retrieval estimates. However, reducing the 

receptors will make the source retrieval unstable and more sensitive to the noise. 

 

Reply: We tried to explain these points in this section of the manuscript as it was observed in 

some trials. The distance of an estimated source to real source was observed to decreases 

with an increase in sensors number and also with the decrease number of sensors in some 

other cases. At this moment, we do not have a theoretical explanation for this behavior. 

However, it is also logical that increasing the number of the sensors after a number may not 

always provide the best estimation because with addition of the more no. of sensors, we also 

add more model and measurements errors in the estimation process. These errors may affect 

the source estimation results in some trials. As pointed out by Dr. Singh, reducing the 

receptors will make the source retrieval unstable and more sensitive to the noise, this problem 

may also require a theoretical justification of the minimum number of sensors needed for 

source estimation. And it is beyond the scope of this study. However, these limitations are 

now explained in the updated manuscript.    

 

43. Page 13, line 17, What do you mean by “: : : diversity of structures independently of the 

number of sensors.” You computation is based on fixed number of sensors and there is no 

discussion of diversity. However, in the following explanation, this is not understandable that 

why you have different number of common networks in different trials?. It seems that 

optimized choice of receptors is not really optimized. Otherwise, why in some trials (1, 11), 

only 3 sensors are found as a common base?. Also, even having 7 receptors as common in 10 

and 13 sensor arrangement can not be called a strong common base. There is no explanation 
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why all the 10 sensors are not subset of 13 sensor network. If, it was really optimized that it 

must have been. If not so, then please explain why? 

 

Reply: This comment is similar to the major comments n°21 so we reserve the same 

responses that we clarified before. 

 

44. Page 13, line 22, “The performances do not systematically converge independently to the 

size of the networks”. What does it mean and why it does not converge?. Further, it is 

mentioned that in trial 1, 13 sensor network leads better performance than a 10 sensors 

network and algorithm leading to near global optimum is contained in the 13 sensor network. 

This really proves that fact that you choice of receptors is biased by your source retrieval 

which is not the objective of an optimal network.  

 

Reply: This comment is similar to more than one comment and some evoked points in the 

introduction so we conserve the same responses. However, we wish to point out again that the 

choice of the receptors were not determined based on the source estimation. These optimal 

sensor locations were independently estimated based on the concentration measurements, 

adjoint functions, and SA algorithm. The source estimation is performed only to validate the 

performance of the obtained optimal networks. 

 

45. Page 13, line 27. Why there is no common trend in skeleton network observed in several 

trials?. There must be at least with similar flow conditions. If not, justify? 

 

Reply: This comment is similar to more than one comment so we conserve the same 

responses. 

  

46. Page 13, line 29, “optimal networks can satisfy conditions of a near overall optimum (to 

be minimized)”. What are the near overall optimum conditions?. If you are referring 

“minimization of cost function”. This is a wrong approach. 

 

Reply: This comment is also similar to more than one comment. Throughout the text we 

mentioned that there is no guarantee in the convergence of the SA and we confirmed (based 

on the adequate bibliographical references) that the obtained network can be the optimal or 

the near-optimal one. This complex combinatorial optimization approach retained a big 

attention in the literature and the SA is selected following the recommendations from more 

than one works of networks optimization in the framework of the atmospheric dispersion 

context (Abida et al, 2008; Abida et Bocquet, 2009; Jiang et al, 2007; etc.). Nevertheless, 

before utilizing the probabilistic algorithm SA, we tested its performance in comparison with 

the Genetic Algorithm GA of evolutionary research technic (Kouichi, 2017).  
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Abstract. This study presents a methodology for the optimization of a monitoring network of sensors measuring the polluting

substances in an urban urban-like environment with a view to estimate an unknown emission source. The methodology was

presented by coupling the Simulated Annealing algorithm with the renormalization inversion technique and the Computational

Fluid Dynamics (CFD) modeling approach. Performance of a an obtained optimal network was analyzed by reconstructing

the unknown continuous point emissions emission using the concentration measurements from the sensors in that optimized5

network. This approach was successfully applied and validated with 20 trials of the Mock Urban Setting Test (MUST) tracer

field experiment in an urban-like environment. The optimal networks in the MUST urban region enabled are determined which

makes it possible to reduce the size of original network (40-sensors) to ∼ 1/3rd (13-sensors) and to 1/4th (10-sensors). The

10 and 13 sensors optimal networks have estimated the averaged location errors of 19.20 m and 17.42 m, respectively, which

are comparable to 14.62 m from the original 40-sensors network. In 80% trials, emission rates with the 10 and 13 sensors10

networks were estimated within a factor of two which are also comparable to 75% from the original network. This study

presents the first an application of the renormalization data-assimilation approach for the optimal network design theory for determining the

optimal monitoring networks to estimate a continuous point source emission in an urban-like environment.

1 Introduction

In case of an accidental or deliberated release of a hazardous contaminant in the densely populated urban or industrial regions,15

it is important to accurately retrieve the location and the intensity of that unknown emission source for the risk assessment,

emergency response and mitigation strategies by the concern authority. This retrieval of an unknown source in various source

reconstruction methodologies is completely dependent on the contaminant’s concentrations detected by some pre-deployed

sensors in that affected or a nearby region. However, pre-deployment of these limited number of sensors in that region required

an optimal strategy for the establishment of an optimized monitoring network to achieve the maximum maximum a priori informa-20

tion regarding state of emission. It is also required to correctly capture the data while extracting and utilizing information

from a limited and noisy set of the concentration measurements. The optimal monitoring networks for the characterization of

the unknown emission sources in complex urban or industrial regions is a challenging problem.
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The problem to optimize a monitoring network is common and consists in reducing the size of a network of sensors at the

level of a city, county, or a neighborhood while retaining its properties. The positions of a small number of sensors are thus

optimally determined so as to preserve the objectives of the initial monitoring network. These objectives are generally diverse,

e.g., detection reconstruction of an emitting source, analysis of the air quality, triggering of an alert, etc. This study will be

focused on the detection of with an objective to reconstruct an unknown continuous point source’s parameters release in an urban-like5

environment. Using the concentration measurements from an optimally monitoring sensors network, the determination of an

unknown or fabricated pollutant emissions from some industrial and accidental releases can be useful for mitigation strategies

and also to impose strict actions on such pollutant sources.

This study presents a methodology for the sensor’s locations choice, leading to the best network for the estimation of

an unknown point point source in a geometrically complex urban environment. This type of network is of great interest in10

case of an accidental or intentional pollutants release because this makes it possible to estimate the sources of pollution with

limited number of measurements from an optimal sensors network. In these conditions, it is necessary to know the location,

and the evolution of the spatial extent of the contaminant for an emergency response. The intensity, location and time of the

release are often unknown and should be inferred from sensor measurements. The source term estimation (STE) from the

measurements is an inverse modeling problem. The establishment of an optimal network requires the availability of may require the15

sensor concentration measurements, along with the availability of meteorological data, atmospheric dispersion model, choice

of a STE procedure and an optimization algorithm.

Ko et al. (1995) showed that the optimization of sensors network is an NP-hard problem(i.e. Non-deterministic Polynomial-

time hardness) problem, which means that it is difficult for an exhaustive search algorithm to solve all instances of

the problem because it requires a considerable time. Various optimization algorithms have been proposed to find the best20

solution, but these methods are not applicable to all the cases especially for large size problems. To solve such problems,

the metaheuristic algorithms are efficient. Some studies discussed the optimization of sensor distribution and number for

gas emission monitoring, e.g. Ma et al. (2013). Ma et al. (2013) used a direct approach with the Gaussian dispersion model

to optimize the sensors networks in homogeneous terrains. However, the present study describes utilizes an inverse approach

by solving the adjoint transport-diffusion equation with the building-resolving Computational Fluid Dynamics (CFD) model25

for an urban environment. This approach methodological approach for an optimal monitoring network (i.e. coupling of the

optimization algorithm, inverse tracers transport modeling and Computational Fluid Dynamics) includes the geometric and

flow complexity inherent in the an urban region for the optimization process. In this study, the Simulated Annealing (SA)

stochastic optimization algorithm (Jiang et al., 2007; Abida et al., 2008; Abida and Bocquet, 2009; Saunier et al., 2009; Kouichi, 2017, etc.) (Jiang et al.,

2007; Abida et al., 2008; Abida and Bocquet, 2009; Saunier et al., 2009; Kouichi et al., 2016; Kouichi, 2017, etc.) is30

utilized. The SA algorithm was designed for the statistical physics. It incorporates a probabilistic approach to explore the

search space and converges iteratively to the solution. This algorithm is often used and recommended to solve the problems of

sensors network optimization (Abida, 2010). The network optimization process consists of finding the best set of sensors that

leads to the minimum of a defined cost function. A cost function can be defined as a regularized norm square of the distance

between the measurements and forecasts which is also used for the STE (Sharan et al., 2012).35
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The STE problem for atmospheric dispersion events has been an important topic of much consideration as reviewed in

Rao (2007); Hutchinson et al. (2017). Often, the source term is estimated using a network of static sensors deployed in a

region. In inverse modeling process, the adjoint source-receptor relationship and concentrations and meteorological datasets are

required for the STE. The adjoint source-receptor relationship is defined by an inverse computation of the atmospheric transport

dispersion model (Pudykiewicz, 1998). This relationship is often affected by the nonlinearities in the flow-field by building5

effects in complex scenarios arising in urban environments, where the backward and forward dispersion concentrations will not

match. Various inversion methods can be classified in two major categories: probabilistic and deterministic. The probabilistic

category treats source parameters as the random variables associated to the probabilities probability distribution. This includes

the Bayesian Estimation Theory (Bocquet, 2005; Monache et al., 2008; Yee et al., 2014, etc.), Monte Carlo algorithms using

Markov chains (MCMC) (Gamerman and Lopes, 2006; Keats, 2009, etc.) and various stochastic sampling algorithms (Zhang10

et al., 2014, 2015, etc.). Deterministic methods use cost functions to assess the difference between observed and modeled

concentrations and are based on an iterative process to minimize this difference (Seibert, 2001; Penenko et al., 2002; Issartel, 2005; Sharan et al.,

2009, 2012; Kumar et al., 2015b, etc.)(Seibert, 2001; Penenko et al., 2002; Sharan et al., 2012, etc.). Among the other approaches,

advanced search algorithm like genetic algorithm (Haupt et al., 2006, etc.) or neural network algorithm (Wang et al., 2015,

etc.) and other regularization methods (Ma et al., 2017; Zhang et al., 2017, etc.) have been used for the STE. In this study, we15

focused on the renormalization inversion method (Issartel, 2005), which is deterministic in nature and does not required any initial

guess for require any prior information of the source parameters. The renormalization inversion approach was successfully

applied and validated for retrieval of an unknown continuous point source in flat terrain (Sharan et al., 2009, etc.) and also

in urban-like environment (Kumar et al., 2015b). Initially, the renormalization inversion method was proposed to estimate

emission of the distributed sources (Issartel, 2005). Sharan et al. (2009) and other studies have shown that this technique is also20

effective for estimating the continuous point sources. For these applications, the hypothesis of a linear relationship between the

receptors receptor and the source was assumed. For homogeneous terrains, the adjoint functions can analytically be computed

based on the Gaussian solution of the diffusion transport equation to estimate a continuous point release. However, the flow-

field in urban or industrial environments is quite complex and the asymmetry of the flow and the dispersed plume in urban

regions is generated mainly by the presence of buildings and other structures. The In general, the Gaussian models are unable25

to capture the effects of complex urban geometries on adjoint sensitivities between source and receptors and also if dense gases

are involved, the Gaussian distribution hypothesis fails. Recently, Kumar et al. (2015b, 2016) have extended the applications

of the renormalization inversion technique to retrieve an unknown emission source in the urban environments, where a CFD

approach was used to generate the adjoint receptors-source relationship. In this process, a coupled CFD-renormalization source

reconstruction approach was described for the identification of an unknown continuous point source located at the ground30

surface or at a horizontal plane corresponding to a known or predefined altitude above the ground surface, or an elevated

release in an urban area.

In this study, two canonical problems are considered separately: (i) optimization of the measuring network: here, the

optimization consists of selecting the best positions to be instrumented by the sensors among a set of potential locations.

This choice is operated in a space of search constituted of all possible networks (of a specific size) and based on35

3



a cost function that describes quantitatively the quality of the networks. The cost function is defined from the inverse

renormalization method and is quantified during the searching process. (ii) Identification of the unknown source: the

STE is studied in the framework of a parametric approach using the renormalization technique. Here the challenge is to

determine the parameters of the source (intensity and position) using any measurements vector (in practice the number

of measurements is limited). The evoqued canonical problems are coupled in order to evaluate the performance of the5

proposed methodology.

The main objective of this study is to determine the sensors locations choice in an urban domain for an optimal monitor-

ing network dedicated to estimate the location and intensity of a continuously polluting point source. A methodology was is

proposed to determine an optimal network formed by a predetermined number of sensors, to better characterize a source of

pollutant in a complex urban environment. This study deals with a case of reducing the number of sensors in order to obtain10

an optimal network from an existing network. For this purpose, a predefined network of sensors deployed in an area of inter-

est is considered to determine an optimized network with smaller number of sensors, but, with comparable information. This

work explores with two requirements of the optimal networks that modifies the spatial configuration of an existing network by

moving the sensors and also reduces the number of sensors of an existing large network. In real situation this methodology

can be applied for the optimization of mobile networks deployed in emergency situation. The methodological approach15

to optimize the monitoring network in urban environment was presented by coupling the SA stochastic algorithm with the

renormalization inversion technique and the CFD modeling approach. The concentration measurements from these optimized

networks of sensors in 20 trials of the Mock Urban Setting Test (MUST) field tracer experiment were utilize to validate the

methodology to retrieve an unknown continuous point source in an urban-like environment.

2 Source Term Estimation Method: The Renormalization20

In the context of an inversion approach, source parameters are often determined using the concentrations concentration measure-

ments at the sensor locations and a source-receptors relationship. The release is considered continuous from a point source

located at the ground or at an a horizontal plane corresponds to an altitude of a known source height. The renormalization inversion

Since the optimization methodology presented in the next section utilizes some concepts from the renormalization inver-

sion methodology (Sharan et al., 2009), the renormalization theory to estimate a continuous point release is briefly presented25

in following subsections.

2.1 Source-Receptor relationship

The A source-receptor relationship is an important concept in the source reconstruction process and it can be linear or nonlinear.

This study deals with the linear relationship, as except from the nonlinear chemical reactions, most of the other processes

occurring during the atmospheric transport of trace substances are linear: advection, diffusion, convective mixing, dry and wet30

deposition, and radioactive decay (Seibert and Frank, 2004). A source-receptor relationship between the measurements and

the source function is defined based on a solution of the adjoint transport-diffusion equation that exploits the computed adjoint
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functions (retroplumes) corresponding to each receptor (Pudykiewicz, 1998; Issartel et al., 2007, etc.). These retroplumes

provide a sensitivity information between the source position and the sensor locations. Let’s consider a discretized domain of

N grid cells in a 2-dimensional space x = (x,y), a vector of M concentration measurements µ= (µ1,µ2, ...,µM )T ∈ RM ,

and an unknown source vector s(x) ∈ RN to estimate. The measurements µ are related to the source vector s by the use of

sensitivity coefficients (also referred as adjoint functions) (Hourdin and Talagrand, 2006). The sensitivity coefficients describe5

the backward propagation of information from the receptors toward the unknown source. These vectors are related by the

following linear relationship:

µ= As + ε (1)

where ε ∈ RM is the total measurements error and A ∈ RM×N is the sensitivity matrix with A(x) = [a(x1),a(x2), ...,a(xN )].

Here, each column vector a(xi) ∈ RM of the matrix A represents the potential sensitivity of a grid cell with respect to all M10

concentration measurements.

For a given set of the concentration measurements µ, the source estimate function s(x) in Eq. (1) can easily be estimated by

formulating a constrained optimization problem. This optimization problem minimizes a cost function J(s) = sT s, subjected

to a constraint ε= µ−As = 0. Using the method of Lagrange multipliers, s(x) can be estimated as a least-norm solution(Kumar

et al., 2016):15

s = AT H−1µ (2)

where H−1 is inverse of the Gram matrix H = AAT . This estimate (Eq. (2)) is not satisfactory because it generates artifacts at

the grid cells corresponding to the measurement points. Adjoint functions become singular at these points and have very large

values. These large values do not represent a physical reality, but rather an artificial information. This was also highlighted by

Issartel et al. (2007) which reduced this artificial information by a process of renormalization.20

2.2 Renormalization process

This process involves a weight function in space W(x) ∈ RN×N , which is purely a diagonal matrix with the diagonal elements

wjj > 0 such that
N∑
i=1

wjj =M . Introduction of W transforms the source-receptor relationship in Eq. (1) to:

µ= AwWs + ε. (3)

where the modified sensitivity matrix Aw is defined as Aw = AW−1 = [aw(x1),aw(x2), ...,aw(xN )] in which the column25

vector aw(xi) = a(xi)/w(xi) of Aw is the weighted sensitivity vector at xi. Considering a similar approach that outlined in

previous subsection, a new constrained optimization problem can be formulated for Eq. (3) to estimate s(x). This optimization

problem minimizes a cost function J(s) = sTWs, subjected to a constraint ε= µ−AwWs = 0, and deduces the following

expression sw of s (Kumar et al., 2016)(Appendix A in Kumar et al., 2016):

sw = AT
wH−1

w µ (4)30

where H−1
w is the inverse of Hw = AwWAT

w.
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2.3 Weight function

Issartel et al. (2007) demonstrated that a weight function , which reduces the artifacts of the adjoint functions at the measurement points, must verify the following renormalization

criterion:

aTw(x)H−1
w aw(x)≡ 1

Following The weight function in the above discussed renormalization process is computed by using an iterative algorithm by5

Issartel et al. (2007), w(x)is determined as: demonstrated by Issartel et al. (2007) (Appendix A).

w0(x) = 1, and wk+1(x) = wk(x)
√

aTwk(x)H−1
wkawk(x)

2.3 Identification of point source

Consider a point source of continuous release at a position xo = (xo,yo) and with the intensity qo. The point source is thus

expressed as a function of the preceding parameters: s(x) = qoδ(x−xo). The relationship between the source and the mea-10

surements (Eq. (3)) becomes: µ= qoaw(xo)w(xo) + ε. By replacing the measurement term in Eq. (4), one obtains:

sw = qow(xo)AT
wH−1

w aw(xo). (5)

sw reaches its maximum at position xo as the renormalization criterion (Eq. (A1)) is satisfied only at this position xo. Thus,

sw(x) at xo becomes:

sw(xo) = qow(xo), (6)15

which estimates the source intensity qo = sw(xo)/w(xo).

3 The Combinatorial Optimization of a Monitoring Network

A predefined large network of n sensors deployed in an area of interest is considered to determine an optimized network with

smaller number of sensors, but with comparable information. For a given number of p sensors such that p < n, one determines

an array of p sensors among n, which delivers maximum of the information. It is a combinatorial optimization problem that20

consists of choosing p sensors among n, and thus constituting an optimal network. The optimal network will consist of p

sensors for which a defined cost function is minimum. The number of possible choices nCp (number of combinations of p

among n) is very high, when an initial network is sufficiently instrumented (n large) and p is small with respect to n. As the

number of combinations to be tested is very large, minimum of a cost function will be evaluated by a stochastic algorithm, viz.

simulated annealing (SA).25
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3.1 Cost function

A cost function is defined (based on the renormalization theory) as a function that minimizes the quadratic distance between

the observed and the simulated measurements according to the Hw norm (Issartel et al., 2012). Hw is the Gram matrix defined

in a previous section 2.2. As the cost function is convex, its minimum value must also correspond to the maximum intensity of the source. The quadratic distance

between the real and the simulated concentration measurements according to the Hw norm is given by :5

Js = ‖µ− µ̂‖2H−1
w

=
1

2

[
(µ− µ̂)T H−1

w (µ− µ̂)
]

(7)

When considering a point source, µ̂ is written by µ̂= qaw(x)w(x), where q and x µ̂= qoaw(x)w(x), where qo and x are respectively

the intensity and the position vector of a of a point source. By replacing µ̂ in Eq. (7), one obtains (Sharan et al., 2012; Issartel

et al., 2012):

Js = Js(qo,x) =
1

2

[
(µ− qoaw(x)w(x))THH−1

w (µ− qoaw(x)w(x))
]

(8)10

The conditions of maximum intensity and convexity are expressed by two following equationsFor a fixed x in Eq. (8), J reaches a strict local minimum

if following two conditions are satisfied:

∂Js(q,x)

∂q

∂J(qo,x)

∂qo
= 0 (9)

∂2Js(q,x)

∂q2

∂2J(qo,x)

∂q2o
> 0 (10)15

For each fixed x, the first condition (Eq. (9)) gives an estimate (q̃0) of q0 as: q̃0 =
aT
w(x)H−1

w µ
w(x) . The second condition

(Eq. (10)) is always satisfied as ∂2J(q,x)

∂q2
= w2(x) > 0,∀x (Sharan et al., 2012). Sharan et al. (2012) has also shown that

∂2J(qo,x)
∂q2o

= w2(x)> 0,∀x
(Sharan et al., 2012). Corresponding to the estimate q̃0 from the first condition (Eq. (9))leads to following expression of Js, the cost

function J from Eq. (8) leads to the following expression (Issartel et al., 2012):

Js(q̃0,x) =
1

2

µTH−1w µ

2

[
1− s2

w

µT H−1
w µ

]
(11)20

where sw is same as given in Eq. (4) and µT H−1
w µ is a positive constant. Considering Eq. , it appears (11), it is obvious that

the minimization of Js(x)J also corresponds to the maximization of the term s2w
µT H−1

w µ
. or minimization of term

[
1− s2

w

µT H−1
w µ

]
.

Accordingly, the minimum value of the cost function J in Eq (11) leads to the following expression of the cost function

(say Js(x)) to minimize:

Js(x) = 1− s2w
µTH−1w µ

(12)25

A global minimum of the cost function Js(x) is evaluated by the SA algorithm.
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3.2 Simulated Annealing (SA) algorithm for the Sensor’s Network Optimization

The SA algorithm is problem of optimization of a network is solved using the simulated annealing (SA) algorithm. The SA

optimization algorithm is utilized here for the determination of the optimal networks by comparing its performance with

the Genetic Algorithm (GA)(Kouichi, 2017). These algorithms of different search technics (SA probabilistic and GA evo-

lutionary) are evaluated based on the same cost function. The results showed that the optimal networks retained by the5

GA and the SA are quantitatively and qualitatively comparable (Kouichi, 2017). The SA has advantageous because it is

relatively easy to implement and takes smaller computational time in comparison to GA. Both SA and GA optimization

algorithms in the framework of this approach (based in the renormalization theory) has little influence on the estimation

of the parameters of a source (Kouichi, 2017).

The SA is a random optimization technique based on an analogy with thermodynamics. To find a global minimum, it incorporates the10

temperature The technique has been introduced to the computational physics over sixty years ago in the classic paper by

Metropolis et al. (1953). The algorithm of simulated annealing is initiated by starting from an admissible network. At the

subsequent steps, the system moves to another feasible network, according to a prescribed probability, or it remains

in the current state. However, it is crucial to explain how this probability is calculated. The mobility of the random walk

depends on a global parameter T which is interpreted as ’temperature’. The initial values of T are large, allowing free15

exploration of large extents of the state space (this corresponds to the “melted state” in terms of the kinetic theory of

matter). In the subsequent steps, the temperature is lowered allowing the algorithm to reach a local minimum.

For the SA, each network is considered as a state of a virtual physical system, and the objective function is inter-

preted as the internal energy of this system in a given state. According to statistical thermodynamics, the probability of a

physical system for being in a same state follows the Boltzmann distribution and depends on its internal energy and the20

temperature level. By analogy, the physical quantities (temperature, energy, etc.) become a pseudo-quantities. And during

the minimization process, the probabilistic treatment consists to accept a new network selected in the neighborhood of

the current network following the same Boltzmann distribution and depending both on the cost difference between the

new and the current networks and on the pseudo-temperature (’temperature’). To find the solution, the SA incorporates

the ’temperature’ into a minimization procedure. So at high temperature (starting temperature’temperature’ (starting ’temperature’),25

the space of solution is widely explored, while at lower temperature ’temperature’ the exploration is restricted. The algorithm is

stopped when the cold temperature ’temperature’ is reached. It is necessary to choose the law of decreasing temperature’temperature’,

called as cooling schedule. Different approaches to parameterize the SA are explored in Siarry (2016). Kirkpatrick et al. (1983)

proposed an average probability to determine the initial (starting) temperature’temperature’. Nourani and Andresen (1998) com-

pared the most used cooling schedules (exponential, logarithmic, and linear). The SA algorithm starts minimization of an30

objective function at annealing temperature ’temperature’ from a single stochastic point, then it searches for the minimal solutions

by attempting all the points in search domain with respect to their value of the temperature’temperature’. The algorithm is depicted

in a flow diagram in Figure 2 and a step by step implementation of the SA procedure for an optimized monitoring network in

an urban environment is described as follows:
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Step 1. Parameters setting and initialization

Network parameters (n and p): n is the number of possible locations of the sensors and p is the optimal network number of

sensors.

Starting ’temperature’ (T0): T0 is also called the highest temperature’temperature’. It was determined from the Metropolis law:

T0 =− (∆Js)
log(P0) , where (∆Js) is an average of the difference of cost functions calculated for a large number of cases. P0 is5

an acceptance probability and following the recommendations of Kirkpatrick et al. (1983), it was set to 0.8. Start iterations

(Itt = 0).

Length of the bearing (Lmax): A length of the bearing is the number of iterations to be performed at each temperature ’temperature’

level. An equilibrium is reached for this number of iterations and any significant improvement of the cost function can be

expected. No general rule is proposed to determine a suitable length. This number is often constant and proportional to the size10

of the problem.

The ’temperature’ decay factor (θ): The temperature ’temperature’ remains constant for Lmax iterations corresponding to each

bearing. We used the exponential schedule due to its efficiency as denoted by Nourani and Andresen (1998). Then, the temperature

’temperature’ decreases law between two bearings varies as: Tb+1 = θTb, with 0< θ < 1, where b represents a bearing. So, it

was retained a decay pattern by the bearings.15

The cold ’temperature’ (Tcold): Tcold is often called the stopping temperature’temperature’. There is no clear rule to set this

parameter. It is possible to stop calculations when no improvement in the cost function is observed during a large number of

combinations. One can estimate this number and take into account the maximum length Lmax of each bearing, thus the cold

temperature ’temperature’ can be expressed as a fraction of the starting temperature ’temperature’ T0.

Assigning the first best set of sensors, xBest← xrand(p,n): xrand(p,n) corresponds to a vector of p sensors locations randomly20

chosen among the n possible locations. A new solution is randomly explored. This vector is assigned to the first ’best’ set of

sensors.

Step 2. Assigning a new set of sensors

xnew← xrand(p,n), where xrand(p,n) corresponds to a vector of p sensors locations randomly chosen among the n possible

locations. This vector is assigned to a new set (xnew) of the sensors.25

Step 3. Cost difference

Given a sensor location xnew, the cost function Js(xnew) is computed as follows:

- set µ vector by using the measurements at the xnew locations,

- set rows of matrix A using the sensitivity at the xnew locations,

- determine w(x), Hw, and aw iteratively using the algorithm in Eq. (A2),30

- compute the source term sw(x) using Eq. (4),
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- compute the cost function Js(xnew) using Eq. (12).

Js(xbest) is computed like Js(xnew) using the same precedent steps. A cost difference is then calculated using ∆Js =

Js(xnew)− Js(xbest). Increment the iterations (Itt← Itt + 1).

Step 4. Test of sign of ∆Js

If ∆Js < 0, the error associated with xnew is less than that with xbest and thus xnew will become the next ’best network’ (Step5

6). If this condition is not satisfied, the algorithm can jump out of a local minimum (Step 5).

Step 5. Conditional jump

When ∆Js > 0, the algorithm has ability to jump out any local minima if condition: P01 ≤ exp(−∆Js

T ) is satisfied, where P01

is the acceptance probability (a random number between 0 and 1), and T is the current annealing temperature’temperature’. It

means that xnew will be the next ’best network’ even if the associated error is greater than that of xbest. If P01 > exp(−∆Js

T ),10

go to Step 7.

Step 6. Update xbest

In this step, xbest is updated by xnew.

Step 7. Maximum iteration check

If the maximum number of iterations of a bearing (Lmax) is reached, a state of equilibrium is then achieved for this temperature15

’temperature’ and one can cool the actual temperature ’temperature’ (Step 8). If not, continue iterations (Step 2).

Step 8. ’Temperature’ cooling

Temperature ’Temperature’ is cooled using the cooling schedule and iteration variable is reset to zero.

Step 9. Cold ’temperature’ test

The cold temperature ’temperature’ (Tcold) is also known as the stopping temperature’temperature’. If this temperature ’temperature’ is20

reached, the algorithm is stopped. When Tcold is not reached, other temperature ’temperature’ bearing are performed using the

cooling schedule.

Step 10. Optimal network

At this step, the last best network xbest is the optimal network. Source parameters are then estimated using the concentration

measurements and retroplumes only for sensors from the obtained optimal network as: (i) x0 is estimated at position of the25

maximum of the source estimate function sw(x), and (ii) the intensity q0 is given by q0 = sw(x0)/w(x0).

10



In stochastic optimization algorithms, especially in the SA, it was observed that there is no guarantee for the convergence

of the algorithm with such a strong cooling (Cohn and Fielding, 1999; Abida et al., 2008). However, chances are that a near-

optimal network configuration can be reached. Due to this, one or more near-optimal networks can be obtained from this

methodology that satisfy the conditions of near overall optimum condition.

4 The Mock Urban Setting Test (MUST) Tracer Field Network5

The MUST field experiment was conducted by the Defense Threat Reduction Agency (DTRA) in 2001. It was aimed to help

developing and validating the numerical models for flow and dispersion in an idealized urban environment. The experimental

design and observations are described in detail in Biltoft (2001) and Yee and Biltoft (2004). In this experiment, an urban

canopy was represented by a grid of 120 containers. These containers were arranged along 12 rows and 10 columns on the

army ground in the Utah desert, USA. Each container has dimensions of 2.54 m high, 12.2 m long and 2.42 m wide. The10

spacing between the horizontal lines is 12.9 m, while the columns are separated by a distance of 7.9 m. The total area thus

formed is approximately 200× 200 m2. The experiment consists of 63 releases of a flammable gas (propylene C3H6) that is not

dangerous or harmful in quantities and could be released through the dissemination system into the open atmosphere (Biltoft,

2001). Different wind conditions (direction, speed, atmospheric stability) as well as different positions for gas emissions (inside

or outside the MUST urban canopy at different heights) were considered. These gas emissions were carried out under stable,15

very stable, and neutral stability conditions. In this study, 20 trials in various atmospheric stability conditions are selected and

the meteorological variables are taken from an analysis of meteorological and micro-meteorological observations in Yee and

Biltoft (2004) (Table 1). It is noted that the errors related to meteorological data can affects the accuracy of the source term

estimation (Zhang et al., 2014, 2015), although this error is not considered in this study. In each trial, the gas was continuously

released for ≈ 15 min, during which the concentration measurements were made. These concentration measurements were20

carried out by 48 photoionization detectors (PIDs). 40 sensors were positioned on four horizontal lines at 1.6 m height (Figure

1) and 8 sensors were deployed in vertical direction at a tower located approximately in center of the MUST array.

5 CFD Modelling for Retroplumes in an Urban Environment

The flow-field in atmospheric dispersion models in geometrically complex urban or industrial environments cannot be consid-

ered as homogeneous throughout the computational domain. This is because the buildings and other structures in that region25

influence and divert the flow into unexpected directions. Consequently, the dispersion of a pollutant and computations of the

adjoint functions (retroplumes) are affected by the flow-field induced by these structures in an urban region. Recently, Kumar et al.

(2015b) Kumar et al. (2015a) utilized a CFD model to compute the flow-field and then the forward dispersion in 20 trials of the

MUST field experiment. In order to reconstruct an unknown continuous point source, the computed flow-field is then used

to compute the retroplumes for all selected trials in the MUST experiment(Kumar et al., 2015b). A CFD model fluidyn-PANACHE30

was utilized to calculate the flow-field, considering a subdomain of calculation (whose dimensions are 250 × 225 m2 with a
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height of 100 m) that consists the MUST urban array created by the containers, sources, receptors, and other instruments in

this experiment. This subdomain is embedded in a larger computational domain (dimensions of 800 × 800 m2 with a height

of 200 m) to ensure a smooth transition of the flow between the edges of the domain and the obstacles zone. This extension of

the outer domain far from the main experimental site is essential to reduce effects of the inflow boundary conditions imposed

at inlet of the outer domain. A more detailed description about the CFD model and its simulations for the MUST field experi-5

ment, e.g., boundary conditions, turbulence model, etc. is briefly presented in are presented in Kumar et al. (2015a) and now briefly

discussed in the Supplementary Information (SI). An unstructured mesh was generated in both domains with more refinement

in the urbanized area in inner subdomain and at the positions of receptors, thus generating 2849276 meshes.

The simulations results with fluidyn-PANACHE in each MUST trial were obtained with inflow boundary conditions from

vertical profiles of the wind (U), the turbulent kinetic energy (k) and its dissipation rate (ε). These inflow profiles include:10

(i) Wind profile: Gryning et al. (2007) profiles in stable and neutral conditions and a profile based on the stability function by

Beljaars and Holtslag (1991) in very stable conditions, (ii) Temperature profile: Monin-Obukhov similarity theory based loga-

rithmic profiles, (iii) Turbulence profiles: k and ε profiles are based on an approximate analytical solution of one-dimensional

k− ε prognostic equations (Yang et al., 2009). The atmospheric stability effects in the CFD model fluidyn-PANACHE are in-

cluded through the inflow boundary condition (via advection). fluidyn-PANACHE includes a Planetary Boundary Layer (PBL)15

model that serves as an interface between the meteorological observations and the boundary conditions required by the CFD

solver. The observed turbulence parameters, e.g. (i) sensible heat flux (Qh), the Obukhov length (L), (iii) surface friction ve-

locity (u∗) and the temperature scale (θ∗) were used to derive the vertical profiles of mean velocity and potential temperature.

As an example, the wind velocity vectors around some containers for the trial 11 are shown in SI Figure S1.1. This figure

shows the deviations in the wind speed and its direction due to the obstacles in an urban-like environment. It should be20

noted that the MUST experiment took place under neutral to stable and strongly stable conditions. However, the only

atmospheric stability effects included in the CFD model are through the specification of inflow boundary conditions. At-

mospheric stability has a profound impact on dispersion and would thus influences the adjoint functions. However, as

presented and discussed in our previous study (Kumar et al., 2015a), even with specification of the stability dependent

inflow boundary conditions only, the predicting forward concentrations from the CFD model are in good agreement with25

the measured concentrations for all 20 trials in different atmospheric stability conditions. However, at micro-scales also,

small irregularities can break the repeated flow patterns found in a regular array of containers with identical shape (Qu

et al., 2011). In addition, uncertainties associated with the thickness and the properties of the material of the container

wall also affect flow pattern and the resulted concentrations and adjoint functions (Qu et al., 2011). Accordingly, the atmo-

spheric stratification and stability effects should also be included through surface cooling or heating in the CFD model and30

stability effects from inflow boundary conditions. Since the released gas propylene is heavier than the air and would behave

as a dense gas, a buoyancy model was used to model the body force term in the Navier-Stokes equations. The buoyancy model

is suitable for the dispersion of heavy gases where density difference in the vertical direction drives the body force.

In order to compute the retroplumes in each MUST trial, firstly the CFD simulations were performed to compute the con-

verged flow-field in computational domain, secondly the flow-field is reversed and used in the standard advection-diffusion35
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equation to compute the adjoint functions ai(x). In this computation of the retroplumes corresponding to each receptor in a

selected trial, the advection-diffusion equation is solved by considering a receptor as a virtual point source with unit release

rate at the height of that receptor. Also, the meteorological conditions remained invariant during the whole experimental pe-

riod in a trial. The details about the retroplumes and the correlated theory of the duality verification (i.e. comparison of the

concentrations predicted with the forward (direct) model and the adjoint model) for all 20 trials of the MUST field experiment5

are given in Kumar et al. (2015a)Kumar et al. (2015b). Since we are concerned to establish an optimized monitoring network in a

domain that contains the MUST urban array, the retroplumes are computed in the inner subdomain only. Consequently all the

computations for an optimized monitoring network were carried out in the inner subdomain only. The sensors in the optimized

monitoring network are supposed to deploy on a fixed vertical height above the ground surface. Accordingly, the retroplumes

corresponding to only 40 receptors at 1.6 m height were utilized in computations for the optimized monitoring networks in the10

MUST urban environment.

6 Results and Discussion

The calculations were performed by coupling the SA algorithm to a deterministic renormalization inversion algorithm and the

CFD adjoint fields to optimize the monitoring network in an urban urban-like environment of the MUST field experiment. The

network optimization process consists of finding the best set of sensors that leads to the lowest cost function. In this study, the15

validation is realized following two separated steps. The first step consists to form two optimal monitoring networks were

formed to have the sizes reduced by by using the presented optimization methodology which makes it possible to reduce the size of

original network of 40 sensors to approx. one-third (∼ 13 13 sensors) and one-fourth (10 sensors)respectively compared to the initial

network. The second step consists to compare a posteriori the performance of the obtained optimal networks to the ’MUST

predefined network’ of 40 sensors at 1.6 m above the ground surface. In first step, the comparison with networks of the20

same size (e.g. 10 sensors) was performed implicitly during the optimization process. As the SA is an iterative algorithm,

during the optimization process networks of same size are compared at each iteration and the ‘best one’ is retained. The

networks have also been generated randomly like in Efthimiou et al. (2017); however, the search space of the problem is

very large. In our case, the number of the compared networks is equivalent to the number of iterations (as an example for

optimal network of 10 sensors ∼ 3 × 104 configurations are compared). Here, the comparison is based on a cost function25

and inspired from the renormalized data assimilation method. The cost function quantifies the quadratic distance between

the observed and the simulated measurements. The ’optimal network’ produces the ’best’ description of the observations

(i.e. corresponds to the minimal quadratic distance) and permits a posteriori to estimate the location and emission rate of

an unknown continuous point source in an urban-like environment.

The size of the ’MUST predefined (original) network’ is 40 sensors and the sizes of the optimized networks are fixed30

after performing a first optimization with the number of sensors from 4 to 16 (Kouichi, 2017). This first evaluation showed

that for some trials, a small number of sensors could not allow to correctly reconstruct the source and divergences in

the calculations have been noted. Accordingly, the source estimation obtained for different trials and network sizes show
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that, very often, networks of less than 8 sensors can not correctly characterize the source. On the other hand, beyond 13

sensors, the source estimation is not significantly improved, and the associated errors were roughly constant (Kouichi,

2017). Therefore, in order to ensure an acceptable estimate of the source for all the trials, the sizes of the optimized

network are fixed as 10 and 13 sensors (1/4th and ∼ 1/3rd respectively of the original network of 40 sensors).

The optimization calculations were performed using Matlab on a computer with configuration "Intel® CoreTM i7-4790 CPU5

@ 3.60 GHz and 16 GB RAM". The averaged computational time for optimization of one 10 sensors network was ≈ 2.5 hrs

and ≈ 8.5 hrs for 13 sensors network. In computations, a value of parameter T0 = 10 was fixed according to the scale of cost

function and using the methodology described in Step 1 and Tcold = 10−13 was used for both the optimal sensors networks. θ is

a decay factor of the temperature ’temperature’ for an exponential cooling schedule that describes a procedure of the temperature

decrease. The best cooling schedule is the exponential decay as demonstrated by Nourani and Andresen (1998); Cohn and10

Fielding (1999). θ was fixed as 0.9 following the recommendation in literature (Siarry, 2014). This value allows a sufficiently

slow cooling in order to give more chance to the algorithm to explore a large search space and to avoid the local minima.

Lmax is taken as 100 & 200 for 10 & 13 sensors networks, respectively, following the recommendation in Siarry (2014) and

according to number of the possible combinations that increases with the number of sensors (8.5× 108 for 10 sensors and

1.2× 1010 for 13 sensors).15

Figure 3 shows the optimal networks of 10 and 13 sensors respectively for three representative trials 5 (very stable), 11

(neutral), and 19 (stable) in the MUST urban array. These three trials correspond to one trial each in neutral, stable, and very

stable atmospheric conditions during the release. The optimal monitoring networks of 10 and 13 sensors for all selected 20

MUST trials are shown in SI Figures S1S2.1&S1S2.2.

In order to analyze the performance of the optimal monitoring configurations, the source reconstructions were performed20

to estimate the unknown location and the intensity of a continuous point release. These source reconstruction results were

obtained from the optimal monitoring networks formed by 10 and 13 sensors in each MUST trial. In this, the retroplumes

and the concentration measurements were utilized from the sensors corresponding to these optimal networks. The retroplumes

were computed using CFD simulations, considering the dispersion in a complex terrain. The source reconstruction results from

both the optimal monitoring networks were also compared with results computed from the initial MUST network formed by 4025

sensors (Kumar et al., 2015b). As in practice, the number of measurements is limited, this comparison allowed concluding

that in urban areas, the reduction of networks size is possible and does not degrade significantly its efficiency in source

estimation.

Source estimation results from the different monitoring networks are shown in Table 2 for all 20 selected trials of the

MUST experiment. These results are presented in terms of the location error (Ep
l ), which is an euclidean distance between30

the estimated and the true source location, and Ep
q , a ratio of the estimated to the true source intensity. The corresponding

monitoring network is represented by a superscript p (representing the number of sensors in a an optimal network) on Ep
l

and Ep
q . In order to quantify the uncertainty, a 10% Gaussian noise was added at each measurements. Accordingly, 50

simulations for the source reconstruction were performed with these noise measurements using the optimal networks for
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each trial. The average and the standard deviation of Ep
l and Ep

q are calculated and the result are also presented in Table

2.

For a given trial, a parameter skeleton represents the common sensors between two optimal networks of different sizes

(with 10 and 13 sensors). These results exhibit that the SA algorithm coupled with renormalization inversion theory and CFD

modeling approach has succeeded in proposing the good optimal monitoring networks to estimate the unknown emissions in5

an urban environment.

Figure 4 shows isopleths of the renormalized weight function (also called as the visibility function) and the normalized source

estimate function snw(x) = sw(x)/max(sw(x)) correspond to both optimal monitoring networks for three representative trials

(e.g. 5, 11, and 19) of the MUST experiment. These isopleths for all selected 20 MUST trials are shown in SI Figures S2S3.

A statistical parameter, factor of g (FAg), for the source reconstruction results from each monitoring network is presented in10

Table 3, where FAg represents the percentage no. of trials in which the source intensity is estimated within a factor of g. The

statistics calculated with 40 sensors network show that the average location error for all 20 trials is 14.62 m, and in 75% of the

trials, the intensity of the source is estimated within a factor of two. In 90% of the trials, intensity was estimated within a factor

of three and within a factor of four in 95% trials (Table 3). If trial 2 is considered, large location errors (greater than 30 m) and

the intensity values ranged between a factor of three to five, were observed (Table 2) independently of the number of sensors15

in the networks (Table 2). If we consider the trials 15, 16, & 20, it was noted that the larger location errors do not necessarily

correspond to the high intensity errors (Table 2).

From distribution of the optimized sensors in networks in Figures 3 for trials 5, 11 & 19 and SI Figures S1S2.1&S1S2.2

for all selected trials, it was noted that a larger number of sensors are close to the source position in the optimal networks

in most of the trials. This tendency makes it possible for sensors from an optimal network to monitor the region where a20

source can be located and it can be explained in terms of the visibility function. The visibility function includes the natural

information associated with a monitoring network for the source retrieval in a domain and physically interprets the extent of

regions seen by the network (Issartel, 2005; Sharan et al., 2009). The visibility function is independent of the effective values

of the concentration measurements and depends only on geometry of the monitoring network. Hence, this leads to a priori

information about the unknown source apparent to the monitoring network. It was observed that the visibility functions have25

significant levels at the source positions (Figures 4 & S2S3).

The source reconstruction results from the optimal monitoring networks formed by 10 sensors have an averaged location

error (E10
l ) of 19.20 m for all 20 trials in the MUST experiment (Tables 2&3). In most of the trials, the location and the

intensity of a continuous point emission are estimated accurately and close to the true source parameters. The location error is

minimum in trial 14 (E10
l = 5.50 m) and maximum in trial 2 (E10

l = 56.88 m) (Table 2). For this configuration of the optimal30

sensors network, the source intensity in 80% of the trials are estimated within a factor of two to their true release rates (Tables

2&3).

For all 20 trials, the averaged location error E13
l is 17.42 m for the optimal networks formed by 13 sensors, which is smaller

than the averaged E10
l = 19.20 m obtained with 10 sensors (Tables 2&3). The location error is observed minimum in trial 5

(E13
l = 2.13 m) and maximum in trial 16 (E13

l = 63.04 m) (Table 2). For this optimal network, in 80% of the trials, the source35
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intensity is estimated within a factor of two. It was noted that the increase in the number of sensors in a network has little

influence on the accuracy of the estimated intensity (Tables 2&3).

In some trials, it was also noted that the distance of an estimated source to real source can decreases with a decrease in

sensors number and are also increases with the number of sensors in some other cases. It is because the information added by a

new sensor was not necessarily beneficial. As it is noticeable that in a particular meteorological condition (i.e. wind direction,5

speed and atmospheric stability), some of the sensors in a network may have little contribution to the STE. So, increasing the

number of the sensors may not always provide the best estimation because with addition of the more no. of sensors, we also

add more model and measurements errors in the estimation process. These errors can affect the source estimation results in

some trials. In some cases, it may also depend on sensitiveness of the added sensor’s position in an extended optimal network

to the source estimation. It is also noted that for a monitoring network, not only the number of sensors but also the sensors10

distribution form (or sensor position) affect the information captured from network.

In fact, both optimal networks for each trial show a diversity of structures independently of the number of sensors considered.

For this, the skeleton was used to analyze the heterogeneity of the structures of different optimal networks. A skeleton with

7 sensors is considered as a strong common base for the networks. This is the case for trials 3,6,14,15&20 (Table 2). It is

noted that the overall results obtained are comparable (little differences between the results obtained by the networks). For15

these networks, a strong common base leads to a near global optimum. If we consider networks with a weak common base,

the skeleton was formed of up to 3 sensors, particularly in trials 1 and 11. The performances do not systematically converge

independently of the size of networks. Thus, for trial 1, better results were obtained with a network formed by 13 sensors

compared to that by 10 sensors. This result may reflect the fact reflects that the algorithm leading to a near global optimum is contained in with

the network formed by 13 sensors, converges probably toward a near global optimum. For trial 11 also, it was noted that the20

performances obtained by the two networks are identical. This shows that the networks with different sensors configurations

may lead to a near overall optimum. This result is in coherence with Kovalets et al. (2011) and Efthimiou et al. (2017).

Considering a network of 10 sensors, they shown for the same experimental data that the best source reconstruction is

possible with only 5% or 10% of the total network combinations, randomly selected.

Considering the networks of intermediate structures, with skeletons varying from 4 to 6 sensors, notedly for trials 2,4,5,7,8,9,25

12,13,16,17,18,&19, no obvious trend is noticed. These results tend to show that for a given trial, one or more optimal networks

can satisfy the conditions of a near overall optimum (to be minimized). The obtained optimal networks may have a more or

less common structure (having a greater or lesser number of skeleton).

Moreover, uncertainties calculated for different network sizes do not show an obvious trend. Indeed, a general relation-

ship between the number of samplers and the uncertainties is not obvious. One notice that changing size of the network30

(increasing or decreasing the number of sensors) can lead to the growth or diminution of the uncertainties in the source

parameters estimation. As an example, for Trial 7 uncertainties grow while for Trial 17 uncertainties diminish (Table 2).

It should be noted that this study deals with the case of reducing number of sensors in order to obtain an optimal network

from an existing large network. This optimization was carried out under the constraints of an existing network of the original

40 sensors in the MUST field experiment. If one compares the performances of the obtained optimal monitoring networks with35
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the initial (original) network of 40 sensors in MUST environment, both optimal networks provide satisfactory estimations of

unknown source parameters. The 40 sensors network gives an averaged location error of 14.62 m for all trials and the release

rate were estimated within a factor of two in 75% trials. However, reducing the number of sensors to 1/3rd ∼ 1/3rd from the

original 40 sensors, the 13 sensors optimal networks also give comparable source estimations performance with an averaged

location error of 17.42 m. Even with the 13 sensors optimal networks, source intensities in 80% trials were accurately estimated5

within a factor of two. Similarly for 10 sensors optimal networks, the averaged location error (=19.20 m) is slightly larger than

that obtained from 13 and 40 sensors networks. However, reducing the number of sensors to 1/4th gives extra advantages in

case of the limited available sensors for a network in emergency scenarios of an accidental or deliberated releases in complex

urban environments.

Although the MUST field experiment has been widely utilized for validation of the atmospheric dispersion models and10

the inversion methodologies for unknown source reconstruction in an urban-like environment, its experimental domain

was only approx. 200 m × 200 m (with buildings represented by a grid of containers) and can be considered small for a

real urban environment. Thus, it may not quite represent a real urban region in terms of scale, meteorological variability,

or non-uniform terrain or roughness/canopy structure. However, the methodology presented here is general in nature to

apply to a real urban environment also. The methodology involves the utilization of the CFD model which generally can15

include the effects of the urban geometry, meteorological variability, or non-uniform terrain or roughness/canopy structure

in a real urban environment. It is also to note that, the optimal network design would also depend on diurnal and spatial

variability in meteorological conditions which may increase or decrease the optimum number of sensors and also may

change the ’best positions’ to be instrumented by sensors.

7 Conclusions20

This study describes an approach for the optimization of a monitoring network of the sensors in a geometrically complex urban

environment. It is a matter of reducing the size of networks while retaining the capabilities of detecting estimating an unknown

source in an urban region. Given an urban-like environment of the MUST field experiment, the renormalization inversion

method was chosen for the Source Term Estimation. It was coupled with the CFD model fluidyn-PANACHE for generation of

the adjoint fields. Combinatorial optimization by the simulated annealing consisted in choosing a set of sensors which leads25

to an optimal monitoring network and allows an accurate unknown source estimation. This study presents the first extended an

application of the renormalization data-assimilation approach theory for the definition of optimality criterion for the optimal

network design to estimate an unknown continuous point release in an urban-like environment.

The numerical calculations were performed by coupling the simulated annealing stochastic algorithm to the renormalization

inversion technique and the CFD modeling approach to optimize the monitoring network in urban urban-like environment of the30

MUST field experiment. The optimal networks enabled were constructed to reduce size of the original networks (40 sensors)

to approx. one-third (13 sensors) and to one-fourth (10 sensors). The 10 and 13 sensors optimal networks have estimated the

averaged location errors of 19.20 m and 17.43 m, respectively, and have comparable source estimations performance with an
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averaged location error of 14.62 m from the original 40 sensors network. In 80% of the trials, the emission rates with 10 and

13 sensors networks were estimated within a factor of two which are also comparable with the factor of two source intensities

in 75% trials with the original network.

It was shown that in most of the MUST trials, the number of sensors in optimal networks slightly influences the location

error of an estimated source and this error tends to increase as the number of sensors decreases. In 20 MUST trials, an analysis5

of the networks formed by 10 & 13 sensors revealed the heterogeneity of their structures in an urban domain. It was observed

that for some trials, optimal networks had a strong common structure. This tends to prove that a certain number of sensors

have a primordial role in determining reconstructing an unknown source. It would reflect a fact that the disjoint sets of sensors can

lead to the best estimate of an unknown source in an urban region. This opens enormous prospects for assessing the relative

importance of each sensor in a source reconstruction process in an urban environment. Defining a global optimal network for all10

meteorological conditions is a complex problem, but of greater importance that one may want to pursue. This challenge consists

to define an optimal static network able to reconstruct the sources in all varied meteorological conditions. This information can

be of great importance to determine an optimal monitoring network by reducing the number of sensors for characterization of

the unknown emissions in the complex urban or industrial environments.

Data availability. The authors received access to the MUST field experiment dataset from Dr. Marcel Kon̈ig of Leibniz Institute for Tro-15

pospheric Research. The MUST database was officially available from the Defense Threat Reduction Agency (DTRA) at https://must-

dpg.dpg.army.mil/.

Appendix A: Weight function

Issartel et al. (2007) demonstrated that a weight function, which reduces the artifacts of the adjoint functions at the

measurement points, must verify the following renormalization criterion:20

aTw(x)H−1w aw(x)≡ 1 (A1)

Following an iterative algorithm by Issartel et al. (2007), w(x) is determined as:

w0(x) = 1, and wk+1(x) = wk(x)

√
aTwk(x)H−1wk awk(x) (A2)
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Table 1. The values of the meteorological (wind speed (S04), wind direction (α04) at 4 m level of mast S), turbulence (the Obukhov length

(L), friction velocity (u∗), turbulent kinetic energy (k) at 4 m level of tower T), and source parameters (source height (zs), release duration

(ts), release rate (qs)) in 20 selected trials of the MUST field experiment (Biltoft, 2001; Yee and Biltoft, 2004). Here, Trial Nos. 1-20 are

assigned for just continuation and simplicity and these are not correspond to the same assigned trial no. for a given Trial name in the MUST

experiment.

Trial Trial Name qs ts zs S04 α04 u∗ L k

No. (JJJhhmm) (l/min) (min) (m) (m/s) (deg) (m/s) (m) (m2s−2)

1 2640138 175 21 0.15 2.35 17 0.26 91 0.359

2 2640246 200 15 0.15 2.01 30 0.25 62 0.306

3 2671852 200 22 0.15 3.06 -49 0.32 330 0.436

4 2671934 200 15 1.8 1.63 -48 0.08 5.8 0.148

5 2672033 200 15 1.8 2.69 -26 0.17 4.8 0.251

6 2672101 200 14 0.15 1.89 -10 0.16 7.7 0.218

7 2672150 200 16 0.15 2.30 36 0.35 150 0.409

8 2672213 200 15 1.8 2.68 30 0.35 150 0.428

9 2672235 200 15 2.6 2.32 36 0.26 48 0.387

10 2672303 200 19 1.8 2.56 17 0.25 74 0.367

11 2681829 225 15 1.8 7.93 -41 1.10 28000 1.46

12 2681849 225 16 0.15 7.26 -50 0.76 2500 0.877

13 2682256 225 15 0.15 5.02 -42 0.66 240 0.877

14 2682320 225 15 2.6 4.55 -39 0.50 170 0.718

15 2682353 225 15 5.2 4.49 -47 0.44 120 0.727

16 2692054 225 22 1.3 3.34 39 0.36 170 0.362

17 2692131 225 17 1.3 4.00 39 0.42 220 0.582

18 2692157 225 15 2.6 2.98 43 0.39 130 0.505

19 2692223 225 15 1.3 2.63 26 0.35 120 0.484

20 2692250 225 17 1.3 3.38 36 0.37 130 0.537
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Table 2. Source estimation results from the different monitoring networks for each selected trial of the MUST field experiment. Ep
l and

Ep
q respectively denote the location error (m) and ratio of the estimated to true source intensity with the corresponding monitoring network.

Here, the superscript p on Ep
l & Ep

q represents the no. of sensors in an optimal network. Skeleton refers to the number of sensors common to

the optimal networks of 10 and 13 sensors for a given MUST trial.

Run E40
l E13

l E10
l E40

q E13
q E10

q Skeleton

No. (m) (m) (m) sensors

1 3.3±1.3 19.6 19.60±12.13 33.76±5.30 0.92±0.08 1.04±0.23 1.24±0.22 3

2 42.9±23.8 31.91±8.80 56.88±9.51 4.01±1.57 3.21±0.41 5.12±3.63 4

3 10.8±1.6 9.01±2.47 9.01±3.02 1.17±0.27 0.71±0.16 0.71±0.16 7

4 22.8±7.7 18.07±1.84 18.07±2.61 0.27±0.35 0.83±0.21 0.83±0.26 6

5 21.9±2.1 2.13±2.54 11.56±4.21 0.57±0.07 0.95±0.05 0.67±0.05 6

6 5.0±1.6 6.96±0.19 6.96±0.00 2.14±0.60 1.04±0.06 1.04±0.04 7

7 12.4±9.1 18.85±9.08 12.99±1.67 0.41±0.49 3.11±0.51 1.06±0.07 4

8 15.8±12.1 12.86±1.28 15.79±1.05 2.22±0.90 1.32±0.34 1.76±0.11 6

9 7.7±1.2 8.20±0.35 8.08±0.00 1.37±0.07 3.06±0.17 7.55±0.39 5

10 8.8±3.0 8.00±4.57 8.00±5.68 1.08±0.19 1.08±0.77 1.08±1.07 8

11 19.8±5.0 17.19±12.00 17.19±7.06 1.67±0.12 1.62±0.40 1.62±0.26 3

12 7.4±6.6 5.43±11.69 10.22±9.10 0.95±0.06 0.85±0.28 0.2 0.20±0.04 4

13 7.7±0.6 8.63±4.36 8.63±3.86 0.97±0.07 0.78±0.18 0.78±2.05 4

14 2.2±1.9 5.50±2.98 5.50±3.88 1.42±0.17 0.88±0.24 0.88±0.40 7

15 1.1±1.0 30.23±2.14 37.98±0.72 1.88±0.09 0.57±0.07 0.17±0.01 7

16 26.7±4.9 63.04±6.84 29.80±9.86 1.70±0.06 0.29±0.06 0.67±0.23 5

17 7.0±1.9 14.07±2.78 23.05±10.44 0.90±0.05 1.10±0.04 1.52±0.16 6

18 14.3±11.0 12.83±4.18 12.83±4.61 1.15±0.46 1.15±0.16 1.15±0.21 6

19 22.3±6.4 10.77±4.25 13.46±4.8 1.76±0.16 0.99±0.20 0.83±0.25 6

20 32.5±1.8 45.23±1.78 44.29±0.31 0.83±0.04 1.68±0.06 1.56±0.06 7

Table 3. Statistics for the source reconstruction results from each monitoring network. Here,Ep
l is the averaged location error for all 20 trials

corresponding to each network. FAg represents the percentage number of trials in which the source intensity is estimated within a factor of

g.

Sensors (p) Ep
l (m) FA4 FA3 FA2

40 14.62 95 90 75

13 17.42 100 80 80

10 19.20 80 80 80
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Figure 1. A schematic diagram of the MUST geometry showing 120 containers and source (stars) and receptors (black filled circles) loca-

tions. In a given trial - only one source was operational.
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1©
PARAMETERS SETTING

Lmax, T0, Tcold, θ, p, n

xBest ← xrand(p, n)

2©
xnew ← xrand(p, n)

3©
Cost difference

∆Js = Js(xnew)− Js(xbest)

Itt ← Itt + 1

4©
∆Js < 0

5©
P01 ≤ exp(−∆Js

T )

6©
xbest ← xnew

7©
Itt < Lmax

8©
Cooling the temperature Tb+1 ← θTb

Itt ← 0

9©
T > Tcold

10©
Optimal Network

xopt ← xbest

Source Term Estimation

x0, q0

no

yes

no

no

yes

yes

no

yes

1

Figure 2. Flow diagram of the Simulated Annealing procedures to determine an optimized monitoring network.
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Trial − 5
Potential positions
Optimal network (10 detectors)

Trial − 11
Potential positions
Optimal network (10 detectors)

Trial − 19
Potential positions
Optimal network (10 detectors)

Trial − 5
Potential positions
Optimal network (13 detectors)

Trial − 11
Potential positions
Optimal network (13 detectors)

Trial − 19
Potential positions
Optimal network (13 detectors)

Figure 3. The optimal networks of 10 (first row) and 13 sensors (second row) respectively for trials 5 (very stable), 11 (neutral), and 19

(stable). Blank and filled black circles respectively represent the all (40) potential positions and the optimal positions of sensors.

27



 Net.− 10 : Trial− 5

 

 

 Net.− 10 : Trial− 5

 

 

 Net.− 13 : Trial− 5

 

 

 Net.− 13 : Trial− 5

 

 

 Net.− 10 : Trial− 11

 

 

 Net.− 10 : Trial− 11

 

 

 Net.− 13 : Trial− 11

 

 

 Net.− 13 : Trial− 11

 

 

 Net.− 10 : Trial− 19

 

 

 Net.− 10 : Trial− 19

 

 

 Net.− 13 : Trial− 19

 

 

 Net.− 13 : Trial− 19

 

 

Figure 4. Isopleths of the renormalized weight function (w(x)) (gray colored in first and third columns) and the normalized source estimate

function (snw(x) = sw(x)/max(sw(x))) (colored in second and fourth columns) for both optimal networks of 10 and 13 sensors respectively

for trials 5 (very stable), 11 (neutral), and 19 (stable). The black and white filled circles respectively represent the true and estimated source

locations.
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